Algebraic K-theory and special values of ζ - and L-functions.

R. de Jeu

University of Durham

email: rob.de-jeu@durham.ac.uk

website: http://maths.dur.ac.uk/~dma0rdj

k: a number field, i.e., for some f(X) irreducible in $\mathbb{Q}[X]$ of degree d, α in \mathbb{C} with $f(\alpha) = 0$,

$$k = \mathbb{Q}(\alpha) = \{b_0 + b_1 \alpha + \ldots + b_{d-1} \alpha^{d-1}, \text{ all } b_j \text{ in } \mathbb{Q}\}.$$

 \mathcal{O}_k : the ring of algebraic integers of k. x in k is in \mathcal{O}_k if it is a zero of some $X^n + a_{n-1}X^{n-1} + \ldots + a_1X + a_0$ with all a_i in \mathbb{Z} .

 r_1 : the number of embeddings $k \to \mathbb{R}$

 $2r_2$: the number of nonreal embeddings $k \to \mathbb{C}$

$$[k:\mathbb{Q}] = r_1 + 2r_2$$

 \mathcal{O}_k^* has rank $r = r_1 + r_2 - 1$

Let $\sigma_1, \ldots, \sigma_{r+1}$ be the embeddings of k into \mathbb{C} up to complex conjugaton.

If u_1, \ldots, u_r form a \mathbb{Z} -basis of \mathcal{O}_k^* /torsion, let

$$R = \frac{2^{r_2}}{[k : \mathbb{Q}]} \begin{vmatrix} 1 & \log |\sigma_1(u_1)| & \dots & \log |\sigma_1(u_r)| \\ \vdots & \vdots & & \vdots \\ 1 & \log |\sigma_{r+1}(u_1)| & \dots & \log |\sigma_{r+1}(u_r)| \end{vmatrix}$$

$$\begin{split} \zeta_k(s) &= \sum_{\stackrel{(0) \neq I \subset \mathcal{O}_k}{I \text{ an ideal of } \mathcal{O}_k}} (\#\mathcal{O}_k/I)^{-s} \\ &= \prod_{\stackrel{0 \neq \mathcal{P} \subset \mathcal{O}_k}{\mathcal{P} \text{ prime ideal}}} \frac{1}{1 - (\#\mathcal{O}_k/\mathcal{P})^{-s}} \end{split}$$

$$\operatorname{Res}_{s=1}\zeta_k(s) = \frac{2^{r_1}(2\pi)^{r_2}R|\operatorname{Cl}(\mathcal{O}_k)|}{w\sqrt{\Delta_k}}$$

 Δ_k = the absolute value of the discriminant of k. $w = |\mathcal{O}_{k,\text{tor}}^*| = \#\text{roots}$ of unity in k.

$$K_0(\mathcal{O}_k) \cong \mathbb{Z} \oplus \operatorname{Cl}(\mathcal{O}_k)$$
 $K_1(O_k) \cong \mathcal{O}_k^*$
 $|\operatorname{Cl}(\mathcal{O}_k)| = |K_0(\mathcal{O}_k)_{\operatorname{tor}}|$
 $w = |K_1(\mathcal{O}_k)_{\operatorname{tor}}|$

Algebraic K-theory.

R a commutative ring with identity $1 \neq 0$.

 $K_0(R) = \frac{\text{free Abelian group on } [M], M \text{ a finitely}}{\left\langle [M] - [M'] - [M''] \text{ for each exact} \right\rangle}$ $\text{sequence } 0 \to M' \to M \to M'' \to 0$

View
$$GL_n(R) \subset GL_{n+1}(R)$$
 via $A \mapsto \begin{pmatrix} A & 0 \\ 0 & 1 \end{pmatrix}$.
Let $GL(R) = \bigcup_n GL_n(R)$.
 $K_1(R) = GL(R)/[GL(R), GL(R)]$

If F is a field, then

$$K_0(F) \cong \mathbb{Z}$$

 $K_1(F) \cong F^* = F \setminus \{0\}$
 $K_2(F) \cong F^* \otimes_{\mathbb{Z}} F^* / \langle x \otimes (1-x), x \in F^* \setminus \{1\} \rangle$.

The class of $a \otimes b$ in $K_2(F)$ is denoted $\{a, b\}$, so $K_2(F)$ is generated by symbols $\{a, b\}$ with a, b in F^* , and rules

$$\{a_1a_2, b\} = \{a_1, b\} + \{a_2, b\}$$
$$\{a, b_1b_2\} = \{a, b_1\} + \{a, b_2\}$$
$$\{x, 1 - x\} = 0.$$

It follows that $\{a, b\} + \{b, a\} = \{x, -x\} = 0$.

Example

$$K_2(\mathbb{Q}) \cong \{\pm 1\} \oplus \bigoplus_{\substack{p \text{ prime} \\ p>2}} (\mathbb{Z}/p)^*,$$

p a prime, a in \mathbb{Q}^* , $a = \frac{u}{v}p^s$ with integers u, v not divisible by p. Set $v_p(a) = s$.

p-component of the isomorphism: the tame symbol

$$T_p: \{a,b\} \mapsto (-1)^{v_p(a)v_p(b)} \frac{a^{v_p(b)}}{b^{v_p(a)}} \bmod p.$$

The map T_2 to $\{\pm 1\}$ is given as follows. $a=(-1)^i 2^j 5^k \frac{c}{d}$ with i,k=0,1 and $c,d\equiv 1 \mod 8,$ $b=(-1)^I 2^J 5^K \frac{c'}{d'}$ similarly. Then

$$T_2({a,b}) = (-1)^{iI+jK+kJ}.$$

There is another map

$$T_{\infty}: K_2(\mathbb{Q}) \to \{\pm 1\}, \qquad \{a,b\} \mapsto \begin{cases} -1 & \text{if } a,b < 0, \\ 1 & \text{otherwise.} \end{cases}$$

Identify $\{\pm 1\} \subset (\mathbb{Z}/p)^*$ for all primes p > 2.

Theorem

$$T_{\infty}(\{a,b\}) = T_{2}(\{a,b\}) \prod_{\substack{p>2\\ p \text{ prime}}} T_{p}(\{a,b\})^{\frac{p-1}{2}}$$

p and q distinct odd primes, $\left(\frac{p}{q}\right) = \begin{cases} 1 \text{ if } p \text{ is a square modulo } q \\ -1 \text{ if } p \text{ is not a square modulo } q \end{cases}$ Equivalently,

$$\left(\frac{p}{q}\right) = p^{\frac{q-1}{2}} \bmod q = T_q\left(\{p,q\}\right)^{\frac{q-1}{2}}$$

The theorem says that

$$1 = T_2(\{p,q\})T_p(\{p,q\})^{\frac{p-1}{2}}T_q(\{p,q\})^{\frac{q-1}{2}}$$
$$= (-1)^{\frac{p-1}{2} \cdot \frac{q-1}{2}} \left(\frac{q}{p}\right) \left(\frac{p}{q}\right)$$

Borel's theorem

k: number field as before $K_n(\mathcal{O}_k)$ is finitely generated for all $n \geq 0$. $m_n = \text{the rank of } K_n(\mathcal{O}_k)$.

Theorem (Borel) $K_{2n}(\mathcal{O}_k)$ is a finite group if $n \geq 1$. $K_{2n-1}(\mathcal{O}_k)$ has rank $m_{2n-1} = r_1 + r_2$ if n is odd, and has rank $m_{2n-1} = r_2$ if n is even $(n \geq 2)$.

Furthermore, there exists a natural regulator map

$$K_{2n-1}(\mathcal{O}_k) \to \mathbb{R}^{m_{2n-1}}$$
.

The image is a lattice with volume V_n of a fundamental domain

$$V_n \sim_{\mathbb{Q}^*} \frac{\zeta_k(n)}{\pi^{n([k:\mathbb{Q}]-m_{2n-1})}\sqrt{\Delta_k}}$$

where Δ_k is the absolute value of the discriminant of k.

[$a \sim_{\mathbb{Q}^*} b \text{ means } a = qb \text{ for some } q \text{ in } \mathbb{Q}^*.$]

Example $\zeta_{\mathbb{Q}}$ is the Riemann zeta function. For $n \geq 2$: $K_{2n-1}(\mathbb{Z})$ is torsion for n even;

 $K_{2n-1}(\mathbb{Z})$ has rank 1 for n odd, and $V_n \sim_{\mathbb{Q}^*} \zeta(n)$.

n	2	3	4	5	6	7	• •
m_{2n-1}	0	1	0	1	0	1	• •
$\zeta(n)$	$\pi^{2}/6$	irrat.	$\pi^4/90$???	$\pi^6/945$???	

Generalizations: curves.

E an elliptic curve defined over \mathbb{Q} , e.g., defined in $\mathbb{P}^2_{\mathbb{Q}}$ by a Weierstraß equation

$$Y^2Z = X^3 + AXZ^2 + BZ^3$$

with A, B in \mathbb{Z} , and $-4A^3 - 27B^2 \neq 0$.

p a prime number such that E has good reduction E_p at p.

(E.g., in the above example, if $p \neq 2, 3$ and p does not divide $-4A^3 - 27B^2$, then $Y^2Z = X^3 + \overline{A}XZ^2 + \overline{B}Z^3$ defines an elliptic curve E_p in $\mathbb{P}^2_{\mathbb{F}_p}$).

$$a_p = 1 + p - |E_p(\mathbb{F}_p)|$$

$$L_p(E, s) = \frac{1}{1 - a_p p^{-s} + p^{1-2s}}.$$

There is also $L_p(E,s)$ if E has bad reduction at p.

$$L(E, s) = \prod_{p \text{ prime}} L_p(E, s) \text{ for } \text{Re}(s) > \frac{3}{2}.$$

[Cf.
$$\zeta(s) = \prod_{p = 1 - p^{-s}} for \operatorname{Re}(s) > 1$$
.]

Let $E_{\mathbb{C}}$ be the extension of the coefficients to \mathbb{C} . (E.g., in the above example, consider the equation in $\mathbb{P}^2_{\mathbb{C}}$.) F the field of meromorphic functions on $E_{\mathbb{C}}$. Exact localization sequence

$$K_2(E_{\mathbb{C}}) \to K_2(F) \to \coprod_{x \in E_{\mathbb{C}}} \mathbb{C}^*$$

x-component of the last map is the tame symbol again: $\operatorname{ord}_x(f)$ is the order of vanishing of f at x, then

$$\{f,g\}\mapsto (-1)^{\operatorname{ord}_x(f)\operatorname{ord}_x(g)}\frac{f^{\operatorname{ord}_x(g)}}{g^{\operatorname{ord}_x(f)}}|_x.$$

If f and g are in F^* , then $\log |f| \operatorname{d} \operatorname{arg} g - \log |g| \operatorname{d} \operatorname{arg} f$ is a closed 1-form on an open part of $E_{\mathbb{C}}$.

$$\log |z| \operatorname{d}\operatorname{arg}(1-z) - \log |1-z| \operatorname{d}\operatorname{arg} z = \operatorname{d}P_2(z),$$

 $P_2(z)$ a C^{∞} -function on $\mathbb{C} \setminus \{0,1\}$

$$\operatorname{reg}: K_2(F) \to \left\{ \frac{\operatorname{closed 1-forms on open parts}}{\operatorname{exact 1-forms on open parts}} \right\}$$
$$\{f,g\} \mapsto \log|f| \operatorname{d} \arg g - \log|g| \operatorname{d} \arg f$$

This fits into a commutative diagram

$$K_{2}(E)$$

$$K_{2}(E_{\mathbb{C}}) \longrightarrow K_{2}(F) \longrightarrow \coprod_{x \in E_{\mathbb{C}}} \mathbb{C}^{*}$$

$$reg \qquad reg \qquad log |\cdot| \downarrow$$

$$0 \longrightarrow H^{1}_{dR}(E_{\mathbb{C}}; \mathbb{R}) \longrightarrow H^{1}_{dR}(F; \mathbb{R}) \xrightarrow{i \cdot res} \coprod_{x \in E_{\mathbb{C}}} \mathbb{R}$$

$$H^1_{\mathrm{dR}}(F;\mathbb{R}) = \lim_{U \subset E_{\mathbb{C}}} H^1_{\mathrm{dR}}(U;\mathbb{R}), U \text{ s.t. } E_{\mathbb{C}} \setminus U \text{ is finite.}$$

Theorem (Bloch) E an elliptic curve over \mathbb{Q} with complex multiplication. For some α in $K_2(E)$,

$$L'(E,0) \sim_{\mathbb{Q}^*} \frac{1}{2\pi} \int_{E_{\mathbb{C}}} \operatorname{reg}(\alpha) \wedge \omega$$

or, using the functional equation for the L-function:

$$\frac{1}{2\pi}L(E,2) \sim_{\mathbb{Q}^*} \int_{E_{\mathbb{C}}} \operatorname{reg}(\alpha) \wedge \omega.$$

 $[\omega \text{ a holomorphic form on } E_{\mathbb{C}} \text{ with } \int_{E(\mathbb{R})} \omega = 1.]$

(Part of) Beilinson's conjectures

 C/\mathbb{Q} a complete nonsingular curve such that $C_{\mathbb{C}}$ is a Riemann surface of genus g.

Beilinson defines a regulator map $(n \ge 1)$

$$K_{2n}(C) \to H^1_{\mathrm{dR}}(C_{\mathbb{C}}; \mathbb{R}(n))^+ (\cong \mathbb{R}^g).$$

 $[\mathbb{R}(n) = (2\pi i)^n \mathbb{R} \subset \mathbb{C}$; + indicates a subspace invariant with respect to an action of complex conjugation.] Then for $n \geq 2$ (n = 1 needs an additional condition):

- (i) $K_{2n}(C)_{\mathbb{Q}} \cong \mathbb{Q}^g$ and the regulator induces an isomorphism $K_{2n}(C)_{\mathbb{R}} \cong H^1_{\mathrm{dR}}(C_{\mathbb{C}}; \mathbb{R}(n))^+$.
- (ii) If $\{a_1, \ldots, a_g\}$ is a \mathbb{Q} -basis of $\operatorname{reg}(K_{2n}(C)_{\mathbb{Q}})$, A is the transition matrix from $\{a_1, \ldots, a_g\}$ to a \mathbb{Q} -basis of $H^1_{\operatorname{sing}}(C_{\mathbb{C}}; \mathbb{Q}(n))^+ \subset H^1_{\operatorname{dR}}(C_{\mathbb{C}}; \mathbb{R}(n))^+$, then, assuming the L-function can be extended meromorphically,

$$L^*(C, 1-n) \sim_{\mathbb{Q}^*} \det(A),$$

where $L^*(C, b)$ is the first nonvanishing coefficient in the expansion of L(C, s) around s = b.

[Using the functional equations for $\zeta_k(s)$ and L(E, s) the previous results come in this form.]

Various results:

- (i) Relation between the regulator of a specific element in K-theory and the corresponding L-function for the product of two modular curves (Beilinson).
- (ii) Relation of certain parts of the K-theory of cyclotomic fields and Dirichlet L-functions (Beilinson).
- (iii) Precise conjecture about the rational numbers involved in the Beilinson conjecture (Bloch-Kato), with various results.
- (iv) Generalization of Bloch's result to p-adic regulator and p-adic L-function (Coleman—de Shalit).
- (v) Generalization of Bloch's result for CM elliptic curves over \mathbb{Q} to all $K_{2n}(E)$ $(n \geq 2)$ (Deninger).