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k: a number field.
Qy: the ring of algebraic integers of k.

r1: the number of embeddings £ — R

2ry: the number of nonreal embeddings k£ — C
[k’@] =171+ 2ro

OF hasrank r =7; + 79 — 1

Let 01,...,0,41 be the embeddings of £ into C up to complex
conjugation.
If uy,...,u, form a Z-basis of O; /torsion, let
o 1 log|oi(ur)| ... loglor(uy,)
R — . . -
[k . Q] | . . . |
1 logloryi(ur)| ... log|oryr(ur)

G(s) = Y (H#Ow/I)°

(0)#£IC Oy
I an ideal of Oy

I1 ;
0£PC Oy 1 - (#Ok/P)_S
P prime ideal

2r1(27)72 R|CL(O},)]
WA/ Ak

A = the absolute value of the discriminant of k.

w = |0 ,..| = #roots of unity in k.

Res;—1(k(s) =



Ko(Or) 2 Z @ Cl(Oy)
K1(Ok) = O},
[CL(Ok)| = [Ko(Ok)tor|
w = |K1(Ok)tor|

If F'is a field, then

Ko(F)27Z
Ki(F)= F* = F\{0}
K)(F)2F'QzF'/<z®(1—z),z€ F"\{1} >.

The class of a ® b in K5(F') is denoted {a,b}, so Ko(F)) is
generated by symbols {a, b} with a, b in F*, and rules

{alag, b} = {0,1, b} -+ {CLQ, b}
{CL, ble} = {CL, bl} + {CL, bz}
{z,1—2x} =0.

It follows that {a,b} + {b,a} = {z,—x} = 0.
F a field. Then forn >1
K,(Flo=KPMF)o KPF)®...0 K[V (F)

and a similar decomposition for K, (X)g for a reasonable
scheme X.
[Here and elsewhere, Ag = A ®z Q.]
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Borel’s theorem

k: number field
K, (Oy) is finitely generated for all n > 0.
m,, = the rank of K,,(O).

Theorem (Borel) K5,(O) is a finite group if n > 1.
Ks,_1(Ok) has rank mso,,_1 = r1 + 79 if n is odd, and has
rank mo,_1 = 79 if n is even (n > 2).

Furthermore, there exists a natural regulator map

Kgn_l(ok) — R™M2n-1

The image is a lattice with volume V,, of a fundamental
domain
Ck(n)

Q* ,n.n([k:(@]—an_l) . /Ak

where Aj is the absolute value of the discriminant of k.

Vi ~

a ~o+ b means a = qb for some ¢ in Q*.
Q

Example (g is the Riemann zeta function. For n > 2:
Ko,—1(Z) is finite for n even;
Ko,—1(Z) has rank 1 for n odd, and V,, ~¢+ {(n).

n 2 3 4 5 6 7
mon—1 0 1 0 1 0 1
((n) |w?/6|irrat. | 7*/90| 7?7 | 7®/945| 2777 ...




Curves.

E/Q an elliptic curve.
E¢ the extension of the coefficients to C.
F' the field of meromorphic functions on FEg.

Exact localization sequence

Ky(Ec) — Ky(F) —— [ C*

rzeFE¢

T is the tame symbol. With ord,(f) the order of vanishing
of f at x, T}, is given by:

or or fordx(g)
{f7 g} = (_1) 9o (f) orda(g) gord:c(f) |$

For f and g in F™*, put n(f, g) = log|f|darg g—log|g|d arg f,
a closed 1-form on an open part of E¢.

log |z|darg(1l — z) — log |1 — z|d arg z = dP2(z2),

Py(z) a C*°-function on C \ {0,1}

closed 1-forms on open parts
reg : Ko(F) — PER D
exact 1-forms on open parts

{f,9} —n(f9)



This fits into a commutative diagram

KQ(E)
Ko (Eg) Ko(F) — > HE C*
: relic
reg reg log || \L
v
0 —>H5R(EC;R)) —>H&R(F; R)) PRSI l_[E R
z€Ec

Hip(F;R) = lim Hig(U;R), U s.t. Ec\ U is finite.

UCEg¢

Theorem (Bloch) F an elliptic curve over Q with complex
multiplication. For some « in Ky(FE),

1
/ reg(a) A w
2T E(C)

or, using the functional equation for the L-function:

L,(E7 0) ~o*

1

—L(F,2) ~ */ reg(a) A w.
e B2 e [ res(a)

[w a holomorphic form on E¢ with [ pw @ =1]



Getting a hold on higher K-groups.

“Algebraic K-theory is a functor that associates
to your favourite exact category Abelian groups
K, (n > 0), about which you know nothing.”

Let F' be an infinite field, and write Fa for F'* ®7 Q.
B, (F): a free Q-vector space on [z],, z in F, x # 0,1,
modulo some inductively defined relations.

Complex I'(F,n) in degrees 1,...,n for n > 2:

n—2 n
Bp(F) = Bna(F)®Fy— ... = By(F)® )\ F§— N\ F

dzi @yi Ao AYnr = [Zlic1 @TAYL AL Ay (1> 3)
dlz]o Qi Ao AYp2a=1—2)AZTAY1 A ... AYp_2

C' is a complete nonsingular curve over an infinite field k&,
F = k(C): the field of rational functions on C
['(n,C): total complex associated to double complex

0 —— [ Ba-1(k(2)) — -
with the coproduct over the closed points x in C. The ver-

tical maps are “based on” |[f],, ® g — ord,(g) - [f(x)]m with
0] = [00];m = 0.



Conjecture (Zagier): k a number field. Then for n > 2,
Kopn—1(k)g = H'(I'(k,n)) = Ker(d,,),
with
dn : Bn(k) = Br_1(k) ® kg
@l = [zl @@

for n > 3, and

dQZl%Kk)—%';kka
[z]2— (1 —2) A x

together with a formula for the regulator in terms of poly-
logarithms on Ker(d,,).

Conjecture (Goncharov)(n > 2)
(1) HP(T(n,F)) = K (F)if F is an infinite field.

2n—p
(2) HP(T'(n,C)) = Kéz)_p((}') if C is a complete smooth curve
over an infinite field k.

Theorem
(i) (Deligne-Beilinson, RdJ) There is an injection

H'(T(n, k)) = Kan-1(k)g
with the expected formula for the regulator.

(ii) (Suslin/Goncharov) For n = 2 or 3 it is also surjective.
(iii) (Zagier) It is also surjective if k is a cyclotomic field.
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Theorem (RdJ) Let C be a complete, smooth, geomet-
rically irreducible curve over a number field k, F' = k(C).

Then there exist complexes M(n)( ) and M (n)(C) similar

to Goncharov’s (with B,, replaced by Mn, also generated by
[x],,’s), with maps to the K-theory as follows.
n = 3, p > 2; in particular,

H?(Ms)(F)) = KP(F)
and

H?(M3(C)) = KP(C) + K (k) U F* /K (k) U F*.

[Note: if k is totally real, then K§2)(k) =0.]
n =4, p > 3, and for p = 2 more or less:

KV (F)
2 2
KP(F)u K (F)

H*(M4y(F)) 4= HX (M) (F)) —

and

H2(ﬂ(4)(0)) « H*(My(F)) —
kM) + KPP oK (F) + K (k) U Fr
KPP KPP (F) + K (k) U F*

[.//\\/l/ (n)(F) is a quotient complex of a rather similar complex
My (F), and similarly for Mv(n)(C).]



Theorem (RdJ, also using results by Goncharov)
Let C be as above. Then

H*(T'(3,C)), H*(M3)(C)) and K¥(C)

all have the same image in Hig(C ®g C;R(2))* under the
regulator. Similarly,

H2(T(4,0)), H}(M5(C)), HX(M4(C)) and KV(C)

all have the same image in Hig(C ®g C;R(3))" under the
regulator.
[Here and elsewhere, R(n) = (27¢)"R C C.]

Polylogarithms

Lin(2) = rey Z—: forn>1 on |z] < 1.

Lii(z) = —Log(1 — z)

Using dLipny1(2) = Liy(z)dlogz for n > 1, Li,(z) extends
to a multivalued function on P¢ \ {0,1, c0}.

Single valued versions
(p—1 : C=R(n) ®R(n — 1) = R(n — 1) projection):

D
Po(2) =mn_1 ) 5 log® |2 Lin_1(2)
k=0 '

—1

Pozag(2) = Tuo1 Y - % log® |2| Lin_1(2)
k=0 '

| Br: Bernoulli number.]
Then P, 7.5(2) + (—1)" Py, zag(271) = 0.
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Formulae for the regulator

k a number field. [As K, (Ok)g = K,(k)g for n > 2, this
provides information about Borel’s theorem.]

HY (M (k) < K51 (k) — (R(n — 1))

o:k—C

maps [z], to £((n — 1)! P, zag(0(z)))s (n > 2).

C complete, smooth, geometrically irreducible curve over a
number field k, F = k(C). Fix w in H°(C ®q C, Q}C)"'
(4: certain invariance w.r.t. complex conjugation).

H2 (M3 (F)) —= Hip(F ®g GR(2)) > R(1)
1S 9
flawgmty [ loglgln(fil-f)As
C®Q(C

8

or :i:—/ Pyo fdloglg| ANw
3 C®eC

with n(hy, he) = log|h1|di arg he — log |he|di arg hy.
For H?(M4)(F)) we get

Ub@g%iﬁﬁ@cbmmbmﬂMﬁl—ﬂAw-
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Coleman integration

A

Cp =@,

| - |- p-adic valution with |p| =p
O: ring of integers of C,

F,: residue field

—1

X/O: smooth curve over O (=smooth projective surjective
scheme of relative dimension 1)

For z in X(F,), put
U, = residue disc of x = {all pts in X(C,) reducing to z},
a copy of the maximal ideal of O.

Y C XE, nonempty open affine subscheme, smooth over Fp,
so X(F,) = Y(F,) TH{er, - en}:

U, = rigid space obtained by removing discs of radius r < 1
from X (C,) for all e;: e; locally given by h = 0, so leave out
[h| <.

U = lim,_,1 U, is independent of the choices

Make a choice of logarithm log : C; — €, such that
(1) logab =loga + logb
(2) log(1 + z) = usual powerseries expansion for |z| small.

(Le., fix a choice of logp.)
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For x € Y (FF,), put
A(U) ={>>,_yanz™ conv. for |z| < 1}
Aiog(U,) = A(U)
Qlog(U ) = Alog(Um)dzm
[z = 2, is a local parameter on U, .]
For x ¢ Y(F,) (ie., x =ey,...,e,), put
AU,) ={>_" __ anz™ conv. for some 1 < |z| < 1}

z)
Arog(Uz) = A(U )log 2
Qlog(U) AIOg( z)dzg

Put

Aloc(U) = erx(Fp) AIOg(Uw)
(locally analytic functions, with choice of logs around the e;)

QIOC(U) — H:vEX(E,) Qlog(Um)
(locally analytic forms, with choice of log around the e;)

0— H Cp = Aioc(U) = Qoc(U) — 0
reX (F p)

is exact as dlogz = 42,
z

Coleman: there exists a subspace Aco1(U) of Ajoe(U), con-
taining the rigid analytic functions A(U) on U, such that
with Qcol(U) = ACol(U) 0% Ql(U/(Cp)

0—-C, = Acol(U) = Qca1(U) — 0

1s exact.

Let P and @ be in U, w in Qco1(U), F, in Aco(U) with
dF, = w. Put [ w = F,(Q) — F.,(P).
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Example
X = Pclcp
_ ml
Y = ]P’Fp \ {1, 00}
U=C,\U;]]|Uw.

Put Lin11(2) = [, Lin(z)dlog 2 starting with Lig(z) = 1%

Lin(z) = Y202, 2 for |2] < 1.

[In fact, Li,(2) extends naturally to C, \ {1}.]

satisfies Liodp (2) + (—1)" Lo, (27 1) = 0 for suitable ayy,.

Theorem (Besser and RdJ) Let £ C C, be a number
field, and let n > 2. Then

HY (M (k) = K521 (k) = KS¥ 1 (O)) ™5 C,
1S
[x]n = (_1)n(n T 1)‘ Lmodn(x)

if x is a root of unity, or x is a special unit in O, i.e., both x
and 1 — z are units in O = O, .
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C'/C, smooth complete irreducible curve with good reduc-
tion. Coleman and de Shalit define

rp : K2(Cp(C)) = H(C, Q)"

{f,g} — lw — /(f) log(g) -w]

(Here, if (f) = >_; ap(P), f(f) p=2.;0rF,(P).)

Theorem (Coleman and de Shalit) If £/Q is an elliptic
curve with complex multiplication, p a prime that splits in
the CM field of E, then for the same a in K3(FE) as in Bloch’s

theorem, and the same w, r,(a)(w) = aa2pL,y(E,0) for the
same a,, as for Bloch. [, is a p-adic period.]

[Cf. Bloch: fE(C) r(a)Uw = anQL*(E,0), where L*(E, s) is
the usual L-function multiplied by the I' factor.]

Theorem (Besser) C/C, as above. C/O model of C/C,.
Then 7, equals [rsy, the syntomic regulator]

Tr( Uw)

K>(C) = K5(C) =% HR(C/C,) ="C,.

Theorem (Besser and RdJ) C as above, defined over a
number field £k C C,. C: a model of C over k() O. Then

Tr( Uw)

H2(M5)(0) = KX (0) =K (€)™ HiR(C/C,) 5

1S

Cp

[f]2®9'—>2/()L2(f)'w

provided that f, 1— f and g do not have a zero or pole along
the special fibre of C.

[Lo(z) = Lis(z) + log(z) - log(1 — 2).]
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For Kf’)(F) and Kf’)(C’) we are looking at

—~—

Ms(F) — Ma(F) ®g Fy —— N\’ F}

N

—_~—

L Ms(k(z)) — 1T A k(@)

with

d[fls=[fl2® f
difle®@g=0—-f)ANfAg
0z[fl2 ® g = ordy(g) - [f(z)]2.

(Coproduct over all (closed) points x in C.)
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