K-theory, regulators and L-functions for curves over number fields

R. de Jeu

University of Durham

email: rob.de-jeu@durham.ac.uk

website: http://maths.dur.ac.uk/~dma0rdj

k: a number field.

 \mathcal{O}_k : the ring of algebraic integers of k.

 r_1 : the number of embeddings $k \to \mathbb{R}$

 $2r_2$: the number of nonreal embeddings $k \to \mathbb{C}$

 $[k:\mathbb{Q}] = r_1 + 2r_2$

 \mathcal{O}_k^* has rank $r = r_1 + r_2 - 1$

Let $\sigma_1, \ldots, \sigma_{r+1}$ be the embeddings of k into \mathbb{C} up to complex conjugation.

If u_1, \ldots, u_r form a \mathbb{Z} -basis of \mathcal{O}_k^* /torsion, let

$$R = \frac{2^{r_2}}{[k : \mathbb{Q}]} \begin{vmatrix} 1 & \log |\sigma_1(u_1)| & \dots & \log |\sigma_1(u_r)| \\ \vdots & \vdots & & \vdots \\ 1 & \log |\sigma_{r+1}(u_1)| & \dots & \log |\sigma_{r+1}(u_r)| \end{vmatrix}$$

$$\zeta_k(s) = \sum_{\substack{(0) \neq I \subset \mathcal{O}_k \\ I \text{ an ideal of } \mathcal{O}_k}} (\#\mathcal{O}_k/I)^{-s}$$

$$= \prod_{\substack{0 \neq \mathcal{P} \subset \mathcal{O}_k \\ \mathcal{P} \text{ prime ideal}}} \frac{1}{1 - (\#\mathcal{O}_k/\mathcal{P})^{-s}}$$

$$\operatorname{Res}_{s=1} \zeta_k(s) = \frac{2^{r_1} (2\pi)^{r_2} R|\operatorname{Cl}(\mathcal{O}_k)|}{w\sqrt{\Delta_k}}$$

 Δ_k = the absolute value of the discriminant of k. $w = |\mathcal{O}_{k,\text{tor}}^*| = \#\text{roots of unity in } k$.

$$K_0(\mathcal{O}_k) \cong \mathbb{Z} \oplus \operatorname{Cl}(\mathcal{O}_k)$$
 $K_1(\mathcal{O}_k) \cong \mathcal{O}_k^*$
 $|\operatorname{Cl}(\mathcal{O}_k)| = |K_0(\mathcal{O}_k)_{\operatorname{tor}}|$
 $w = |K_1(\mathcal{O}_k)_{\operatorname{tor}}|$

If F is a field, then

$$K_0(F) \cong \mathbb{Z}$$

 $K_1(F) \cong F^* = F \setminus \{0\}$
 $K_2(F) \cong F^* \otimes_{\mathbb{Z}} F^* / \langle x \otimes (1-x), x \in F^* \setminus \{1\} \rangle$.

The class of $a \otimes b$ in $K_2(F)$ is denoted $\{a, b\}$, so $K_2(F)$ is generated by symbols $\{a, b\}$ with a, b in F^* , and rules

$$\{a_1 a_2, b\} = \{a_1, b\} + \{a_2, b\}$$
$$\{a, b_1 b_2\} = \{a, b_1\} + \{a, b_2\}$$
$$\{x, 1 - x\} = 0.$$

It follows that $\{a, b\} + \{b, a\} = \{x, -x\} = 0$.

F a field. Then for $n \geq 1$

$$K_n(F)_{\mathbb{Q}} = K_n^{(1)}(F) \oplus K_n^{(2)}(F) \oplus \ldots \oplus K_n^{(n)}(F)$$

and a similar decomposition for $K_n(X)_{\mathbb{Q}}$ for a reasonable scheme X.

[Here and elsewhere, $A_{\mathbb{Q}} = A \otimes_{\mathbb{Z}} \mathbb{Q}$.]

Borel's theorem

k: number field

 $K_n(\mathcal{O}_k)$ is finitely generated for all $n \geq 0$.

 $m_n = \text{the rank of } K_n(\mathcal{O}_k).$

Theorem (Borel) $K_{2n}(\mathcal{O}_k)$ is a finite group if $n \geq 1$. $K_{2n-1}(\mathcal{O}_k)$ has rank $m_{2n-1} = r_1 + r_2$ if n is odd, and has rank $m_{2n-1} = r_2$ if n is even $(n \geq 2)$.

Furthermore, there exists a natural regulator map

$$K_{2n-1}(\mathcal{O}_k) \to \mathbb{R}^{m_{2n-1}}$$
.

The image is a lattice with volume V_n of a fundamental domain

$$V_n \sim_{\mathbb{Q}^*} rac{\zeta_k(n)}{\pi^{n([k:\mathbb{Q}]-m_{2n-1})}\sqrt{\Delta_k}}$$

where Δ_k is the absolute value of the discriminant of k.

[$a \sim_{\mathbb{Q}^*} b$ means a = qb for some q in \mathbb{Q}^* .]

Example $\zeta_{\mathbb{Q}}$ is the Riemann zeta function. For $n \geq 2$:

 $K_{2n-1}(\mathbb{Z})$ is finite for n even;

 $K_{2n-1}(\mathbb{Z})$ has rank 1 for n odd, and $V_n \sim_{\mathbb{Q}^*} \zeta(n)$.

n	2	3	4	5	6	7	• • •
m_{2n-1}	0	1	0	1	0	1	• • •
$\zeta(n)$	$\pi^2/6$	irrat.	$\pi^4/90$???	$\pi^{6}/945$???	

Curves.

 E/\mathbb{Q} an elliptic curve.

 $E_{\mathbb{C}}$ the extension of the coefficients to \mathbb{C} .

F the field of meromorphic functions on $E_{\mathbb{C}}$.

Exact localization sequence

$$K_2(E_{\mathbb{C}}) \longrightarrow K_2(F) \xrightarrow{T} \coprod_{x \in E_{\mathbb{C}}} \mathbb{C}^*$$

T is the tame symbol. With $\operatorname{ord}_x(f)$ the order of vanishing of f at x, T_x is given by:

$$\{f,g\} \mapsto (-1)^{\operatorname{ord}_x(f)\operatorname{ord}_x(g)} \frac{f^{\operatorname{ord}_x(g)}}{g^{\operatorname{ord}_x(f)}}|_x.$$

For f and g in F^* , put $\eta(f,g) = \log |f| \operatorname{d} \arg g - \log |g| \operatorname{d} \arg f$, a closed 1-form on an open part of $E_{\mathbb{C}}$.

$$\log |z| \operatorname{d} \arg(1-z) - \log |1-z| \operatorname{d} \arg z = \operatorname{d} P_2(z),$$

 $P_2(z)$ a C^{∞} -function on $\mathbb{C} \setminus \{0,1\}$

$$\operatorname{reg}: K_2(F) \to \left\{ \frac{\operatorname{closed 1-forms on open parts}}{\operatorname{exact 1-forms on open parts}} \right\}$$

$$\left\{ f, g \right\} \mapsto \eta(f, g)$$

This fits into a commutative diagram

$$H^1_{\mathrm{dR}}(F;\mathbb{R}) = \lim_{\stackrel{\longrightarrow}{U \subset E_{\mathbb{C}}}} H^1_{\mathrm{dR}}(U;\mathbb{R}), \ U \text{ s.t. } E_{\mathbb{C}} \setminus U \text{ is finite.}$$

Theorem (Bloch) E an elliptic curve over \mathbb{Q} with complex multiplication. For some α in $K_2(E)$,

$$L'(E,0) \sim_{\mathbb{Q}^*} \frac{1}{2\pi} \int_{E(\mathbb{C})} \operatorname{reg}(\alpha) \wedge \omega$$

or, using the functional equation for the L-function:

$$\frac{1}{2\pi}L(E,2) \sim_{\mathbb{Q}^*} \int_{E(\mathbb{C})} \operatorname{reg}(\alpha) \wedge \omega.$$

 $[\omega \text{ a holomorphic form on } E_{\mathbb{C}} \text{ with } \int_{E(\mathbb{R})} \omega = 1.]$

Getting a hold on higher K-groups.

"Algebraic K-theory is a functor that associates to your favourite exact category Abelian groups K_n $(n \ge 0)$, about which you know nothing."

Let F be an infinite field, and write $F_{\mathbb{Q}}^*$ for $F^* \otimes_{\mathbb{Z}} \mathbb{Q}$. $B_n(F)$: a free \mathbb{Q} -vector space on $[x]_n$, x in F, $x \neq 0, 1$, modulo some inductively defined relations.

Complex $\Gamma(F, n)$ in degrees $1, \ldots, n$ for $n \geq 2$:

$$B_{n}(F) \to B_{n-1}(F) \otimes F_{\mathbb{Q}}^{*} \to \dots \to B_{2}(F) \otimes \bigwedge^{n-2} F_{\mathbb{Q}}^{*} \to \bigwedge^{n} F_{\mathbb{Q}}^{*}$$
$$d[x]_{l} \otimes y_{1} \wedge \dots \wedge y_{n-l} = [x]_{l-1} \otimes x \wedge y_{1} \wedge \dots \wedge y_{n-l} (l \geq 3)$$
$$d[x]_{2} \otimes y_{1} \wedge \dots \wedge y_{n-2} = (1-x) \wedge x \wedge y_{1} \wedge \dots \wedge y_{n-2}$$

C is a complete nonsingular curve over an infinite field k, F = k(C): the field of rational functions on C $\Gamma(n, C)$: total complex associated to double complex

with the coproduct over the closed points x in C. The vertical maps are "based on" $[f]_m \otimes g \mapsto \operatorname{ord}_x(g) \cdot [f(x)]_m$ with $[0]_m = [\infty]_m = 0$.

Conjecture (Zagier): k a number field. Then for $n \geq 2$,

$$K_{2n-1}(k)_{\mathbb{Q}} \cong H^1(\Gamma(k,n)) = \operatorname{Ker}(d_n),$$

with

$$d_n: B_n(k) \to B_{n-1}(k) \otimes k_{\mathbb{Q}}^*$$

 $[x]_n \mapsto [x]_{n-1} \otimes x$

for $n \geq 3$, and

$$d_2: B_2(k) \to \bigwedge^2 k_{\mathbb{Q}}^*$$

$$[x]_2 \mapsto (1-x) \wedge x$$

together with a formula for the regulator in terms of polylogarithms on $Ker(d_n)$.

Conjecture (Goncharov) $(n \ge 2)$

- (1) $H^p(\Gamma(n,F)) \cong K_{2n-p}^{(n)}(F)$ if F is an infinite field.
- (2) $H^p(\Gamma(n,C)) \cong K_{2n-p}^{(n)}(C)$ if C is a complete smooth curve over an infinite field k.

Theorem

(i) (Deligne-Beilinson, RdJ) There is an injection

$$H^1(\Gamma(n,k)) \to K_{2n-1}(k)_{\mathbb{Q}}$$

with the expected formula for the regulator.

- (ii) (Suslin/Goncharov) For n=2 or 3 it is also surjective.
- (iii) (**Zagier**) It is also surjective if k is a cyclotomic field.

Theorem (RdJ) Let C be a complete, smooth, geometrically irreducible curve over a number field k, F = k(C). Then there exist complexes $\widetilde{\mathcal{M}}_{(n)}(F)$ and $\widetilde{\mathcal{M}}_{(n)}(C)$ similar to Goncharov's (with B_n replaced by \widetilde{M}_n , also generated by $[x]_n$'s), with maps to the K-theory as follows.

(1) $n = 3, p \ge 2$; in particular,

$$H^2(\widetilde{\mathcal{M}}_{(3)}(F)) \to K_4^{(3)}(F)$$

and

$$H^2(\widetilde{\mathcal{M}}_{(3)}(C)) \to K_4^{(3)}(C) + K_3^{(2)}(k) \cup F^*/K_3^{(2)}(k) \cup F^*.$$

[Note: if k is totally real, then $K_3^{(2)}(k) = 0$.]

(2) $n = 4, p \ge 3$, and for p = 2 more or less:

$$H^2(\widetilde{\mathcal{M}}_{(4)}(F)) \leftarrow H^2(\mathcal{M}_{(4)}(F)) \to \frac{K_6^{(4)}(F)}{K_4^{(2)}(F) \cup K_2^{(2)}(F)}$$

and

$$\begin{split} H^2(\widetilde{\mathcal{M}}_{(4)}(C)) &\longleftarrow H^2(\mathcal{M}_{(4)}(F)) \to \\ &\frac{K_6^{(4)}(C) + K_4^{(2)}(F) \cup K_2^{(2)}(F) + K_5^{(3)}(k) \cup F^*}{K_4^{(2)}(F) \cup K_2^{(2)}(F) + K_5^{(3)}(k) \cup F^*}. \end{split}$$

 $[\widetilde{\mathcal{M}}_{(n)}(F)]$ is a quotient complex of a rather similar complex $\mathcal{M}_{(n)}(F)$, and similarly for $\widetilde{\mathcal{M}}_{(n)}(C)$.

Theorem (RdJ, also using results by Goncharov)

Let C be as above. Then

$$H^{2}(\Gamma(3,C)), \ H^{2}(\widetilde{\mathcal{M}}_{(3)}(C)) \text{ and } K_{4}^{(3)}(C)$$

all have the same image in $H^1_{\mathrm{dR}}(C\otimes_{\mathbb{Q}}\mathbb{C};\mathbb{R}(2))^+$ under the regulator. Similarly,

$$H^2(\Gamma(4,C)), H^2(\mathcal{M}_{(4)}(C)), H^2(\widetilde{\mathcal{M}}_{(4)}(C)) \text{ and } K_6^{(4)}(C)$$

all have the same image in $H^1_{\mathrm{dR}}(C\otimes_{\mathbb{Q}}\mathbb{C};\mathbb{R}(3))^+$ under the regulator.

[Here and elsewhere, $\mathbb{R}(n) = (2\pi i)^n \mathbb{R} \subset \mathbb{C}$.]

Polylogarithms

 $Li_n(z) = \sum_{k=1}^{\infty} \frac{z^k}{k^n}$ for $n \ge 1$ on |z| < 1. $Li_1(z) = -\text{Log}(1-z)$

$$Li_1(z) = -\text{Log}(1-z)$$

Using $dLi_{n+1}(z) = Li_n(z)d\log z$ for $n \geq 1$, $Li_n(z)$ extends to a multivalued function on $\mathbb{P}^1_{\mathbb{C}} \setminus \{0, 1, \infty\}$.

Single valued versions

$$(\pi_{n-1}: \mathbb{C} = \mathbb{R}(n) \oplus \mathbb{R}(n-1) \to \mathbb{R}(n-1)$$
 projection):

$$P_n(z) = \pi_{n-1} \sum_{k=0}^{n-1} \frac{(-1)^k}{k!} \log^k |z| Li_{n-k}(z)$$

$$P_{n,\text{Zag}}(z) = \pi_{n-1} \sum_{k=0}^{n-1} \frac{2^k B_k}{k!} \log^k |z| Li_{n-k}(z)$$

 $[B_k: Bernoulli number.]$

Then
$$P_{n,\text{Zag}}(z) + (-1)^n P_{n,\text{Zag}}(z^{-1}) = 0.$$

Formulae for the regulator

- (1) k a number field. [As $K_n(\mathcal{O}_k)_{\mathbb{Q}} = K_n(k)_{\mathbb{Q}}$ for $n \geq 2$, this provides information about Borel's theorem.] $H^1(\widetilde{\mathcal{M}}_{(n)}(k)) \hookrightarrow K_{2n-1}^{(n)}(k) \to (\mathbb{R}(n-1)_{\sigma})_{\sigma:k \hookrightarrow \mathbb{C}}^+$ maps $[x]_n$ to $\pm ((n-1)! P_{n,\mathrm{Zag}}(\sigma(x)))_{\sigma}$ $(n \geq 2)$.
- (2) C complete, smooth, geometrically irreducible curve over a number field k, F = k(C). Fix ω in $H^0(C \otimes_{\mathbb{Q}} \mathbb{C}, \Omega^1_{/\mathbb{C}})^+$ (+: certain invariance w.r.t. complex conjugation).

$$H^2(\widetilde{\mathcal{M}}_{(3)}(F)) \longrightarrow H^1_{\mathrm{dR}}(F \otimes_{\mathbb{Q}} \mathbb{C}; \mathbb{R}(2))^+ \xrightarrow{\int \cdot \wedge \overline{\omega}} \mathbb{R}(1)$$

is

$$[f]_2 \otimes g \mapsto \pm \frac{8}{3} \int_{C \otimes_{\mathbb{Q}} \mathbb{C}} \log|g| \, \eta(f, 1 - f) \wedge \overline{\omega}$$
or $\pm \frac{8}{3} \int_{C \otimes_{\mathbb{Q}} \mathbb{C}} P_2 \circ f \, \mathrm{d} \log|g| \wedge \overline{\omega}$

with $\eta(h_1, h_2) = \log |h_1| \operatorname{d} i \operatorname{arg} h_2 - \log |h_2| \operatorname{d} i \operatorname{arg} h_1$. For $H^2(\widetilde{\mathcal{M}}_{(4)}(F))$ we get

$$[f]_3 \otimes g \mapsto \pm 6 \int_{C \otimes_{\mathbb{Q}} \mathbb{C}} \log |g| \log |f| \eta(f, 1 - f) \wedge \overline{\omega}.$$

Coleman integration

$$\mathbb{C}_p = \hat{\overline{\mathbb{Q}}}_p$$

 $|\cdot|$: p-adic valution with $|p| = p^{-1}$

 \mathcal{O} : ring of integers of \mathbb{C}_p

 $\overline{\mathbb{F}}_p$: residue field

 X/\mathcal{O} : smooth curve over \mathcal{O} (=smooth projective surjective scheme of relative dimension 1)

For x in $X(\overline{\mathbb{F}}_p)$, put

 U_x = residue disc of x = {all pts in $X(\mathbb{C}_p)$ reducing to x}, a copy of the maximal ideal of \mathcal{O} .

 $Y \subseteq X_{\overline{\mathbb{F}}_p}$ nonempty open affine subscheme, smooth over $\overline{\mathbb{F}}_p$, so $X(\overline{\mathbb{F}}_p) = Y(\overline{\mathbb{F}}_p) \coprod \{e_1, \dots, e_n\}$.

 $U_r = \text{rigid space obtained by removing discs of radius } r < 1$ from $X(\mathbb{C}_p)$ for all e_i : e_i locally given by $\overline{h} = 0$, so leave out $|h| \leq r$.

 $U = \lim_{r \to 1} U_r$ is independent of the choices

Make a choice of logarithm $\log : \mathbb{C}_p^* \to \mathbb{C}_p$ such that

- $(1) \log ab = \log a + \log b$
- (2) $\log(1+z) = \text{usual powerseries expansion for } |z| \text{ small.}$ (I.e., fix a choice of $\log p$.)

For
$$x \in Y(\overline{\mathbb{F}}_p)$$
, put $A(U_x) = \{\sum_{n=0}^{\infty} a_n z^n \text{ conv. for } |z| < 1\}$ $A_{\log}(U_x) = A(U_x)$ $\Omega_{\log}(U_x) = A_{\log}(U_x) \mathrm{d} z_x$ $[z = z_x \text{ is a local parameter on } U_x.]$

For
$$x \notin Y(\overline{\mathbb{F}}_p)$$
 (i.e., $x = e_1, \dots, e_n$), put $A(U_x) = \{\sum_{n=-\infty}^{\infty} a_n z^n \text{ conv. for some } r < |z| < 1\}$ $A_{\log}(U_x) = A(U_x)[\log z]$ $\Omega_{\log}(U_x) = A_{\log}(U_x) dz_x$

Put

$$A_{\mathrm{loc}}(U) = \prod_{x \in X(\overline{\mathbb{F}}_p)} A_{\mathrm{log}}(U_x)$$

(locally analytic functions, with choice of logs around the e_i) $\Omega_{\text{loc}}(U) = \prod_{x \in X(\overline{\mathbb{F}}_p)} \Omega_{\text{log}}(U_x)$

(locally analytic forms, with choice of log around the e_i)

$$0 \to \prod_{x \in X(\overline{\mathbb{F}}_p)} \mathbb{C}_p \to A_{\mathrm{loc}}(U) \to \Omega_{\mathrm{loc}}(U) \to 0$$

is exact as $d \log z = \frac{dz}{z}$.

Coleman: there exists a subspace $A_{\text{Col}}(U)$ of $A_{\text{loc}}(U)$, containing the rigid analytic functions A(U) on U, such that with $\Omega_{\text{col}}(U) = A_{\text{Col}}(U) \otimes \Omega^1(U/\mathbb{C}_p)$

$$0 \to \mathbb{C}_p \to A_{\operatorname{Col}}(U) \to \Omega_{\operatorname{col}}(U) \to 0$$

is exact.

Let P and Q be in U, ω in $\Omega_{\rm col}(U)$, F_{ω} in $A_{\rm Col}(U)$ with $dF_{\omega} = \omega$. Put $\int_{P}^{Q} \omega = F_{\omega}(Q) - F_{\omega}(P)$.

Example

$$X = \mathbb{P}^{1}_{\mathbb{C}_{p}}$$

$$Y = \mathbb{P}^{1}_{\overline{\mathbb{F}}_{p}} \setminus \{1, \infty\}$$

$$U = \mathbb{C}_{p} \setminus U_{1} \coprod U_{\infty}.$$

Put $Li_{n+1}(z) = \int_0^z Li_n(z) d\log z$ starting with $Li_0(z) = \frac{z}{1-z}$.

$$Li_n(z) = \sum_{k=1}^{\infty} \frac{z^k}{k^n}$$
 for $|z| < 1$.

[In fact, $Li_n(z)$ extends naturally to $\mathbb{C}_p \setminus \{1\}$.]

$$L_{\text{mod}_n}(z) = \sum_{k=0}^{n-1} \alpha_k Li_{n-k}(z) \log^k z$$

satisfies $L_{\text{mod }n}(z) + (-1)^n L_{\text{mod }n}(z^{-1}) = 0$ for suitable α_m .

Theorem (Besser and RdJ) Let $k \subset \mathbb{C}_p$ be a number field, and let $n \geq 2$. Then

$$H^1(\widetilde{\mathcal{M}}_{(n)}(k)) \to K_{2n-1}^{(n)}(k) = K_{2n-1}^{(n)}(\mathcal{O}_k) \stackrel{r_{\mathrm{syn}}}{\to} \mathbb{C}_p$$

is

$$[x]_n \mapsto (-1)^n (n-1)! \ L_{\text{mod}\,n}(x)$$

if x is a root of unity, or x is a special unit in \mathcal{O} , i.e., both x and 1-x are units in $\mathcal{O} = \mathcal{O}_{\mathbb{C}_p}$.

 C/\mathbb{C}_p smooth complete irreducible curve with good reduction. Coleman and de Shalit define

$$r_p: K_2(\mathbb{C}_p(C)) \to H^0(C, \Omega^1_{C/\mathbb{C}_p})^{\vee}$$

$$\{f, g\} \mapsto \left[\omega \mapsto \int_{(f)} \log(g) \cdot \omega\right]$$

(Here, if
$$(f) = \sum_{j} a_{P}(P), \int_{(f)} \rho = \sum_{j} a_{P} F_{\rho}(P).$$
)

Theorem (Coleman and de Shalit) If E/\mathbb{Q} is an elliptic curve with complex multiplication, p a prime that splits in the CM field of E, then for the same α in $K_2(E)$ as in Bloch's theorem, and the same ω , $r_p(\alpha)(\omega) = a_\alpha \Omega_p L_p(E, 0)$ for the same a_α as for Bloch. $[\Omega_p$ is a p-adic period.]

[Cf. Bloch: $\int_{E(\mathbb{C})} r(\alpha) \cup \omega = a_{\alpha} \Omega L^*(E, 0)$, where $L^*(E, s)$ is the usual L-function multiplied by the Γ factor.]

Theorem (Besser) C/\mathbb{C}_p as above. C/\mathcal{O} model of C/\mathbb{C}_p . Then r_p equals $[r_{\text{syn}}$ the syntomic regulator]

$$K_2(C) = K_2(\mathcal{C}) \stackrel{r_{\mathrm{syn}}}{\to} H^1_{\mathrm{dR}}(C/\mathbb{C}_p) \stackrel{\mathrm{Tr}(\cdot \cup \omega)}{\to} \mathbb{C}_p.$$

Theorem (Besser and RdJ) C as above, defined over a number field $k \subset \mathbb{C}_p$. C: a model of C over $k \cap \mathcal{O}$. Then

$$H^{2}(\widetilde{\mathcal{M}}_{(3)}(C)) \to K_{4}^{(3)}(C) = K_{4}^{(3)}(C) \stackrel{r_{\text{syn}}}{\to} H^{1}_{dR}(C/\mathbb{C}_{p}) \stackrel{\text{Tr}(\cdot \cup \omega)}{\to} \mathbb{C}_{p}$$
is

$$[f]_2 \otimes g \mapsto 2 \int_{(g)} L_2(f) \cdot \omega,$$

provided that f, 1-f and g do not have a zero or pole along the special fibre of C.

$$[L_2(z) = Li_2(z) + \log(z) \cdot \log(1-z).]$$

For $K_4^{(3)}(F)$ and $K_4^{(3)}(C)$ we are looking at

$$\widetilde{M}_{3}(F) \longrightarrow \widetilde{M}_{2}(F) \otimes_{\mathbb{Q}} F_{\mathbb{Q}}^{*} \stackrel{\mathrm{d}}{\longrightarrow} \bigwedge^{3} F_{\mathbb{Q}}^{*}$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow$$

with
$$d[f]_3 = [f]_2 \otimes f$$

$$d[f]_2 \otimes g = (1 - f) \wedge f \wedge g$$

$$\delta_x[f]_2 \otimes g = \operatorname{ord}_x(g) \cdot [f(x)]_2.$$
(Coproduct over all (closed) points x in C .)