K5 of elliptic curves over non-Abelian cubic and
quartic fields

Joint work with
Francois Brunault, Hang Liu, and Fernando Rodriguez Villegas

Rob de Jeu
r.m.h.de.jeu@vu.nl
http://www.few.vu.nl/~jeu

Department of Mathematics
Vrije Universiteit Amsterdam

22nd March 2024, Amsterdam, The Netherlands

Rob de Jeu Ky of elliptic curves over non-Abelian cubic and quartic fields



Borel, Bloch, Beilinson

Borel (1977) (+Quillen4+Soulé) For a number field F with ring of
algebraic integers OF, and n > 2, Kyp,—1(F) = Kon—1(OF) is
finitely generated. Using a regulator based on continuous group
cohomology of GL(C), as well as the embeddings of F — C, he
defined a regulator R, r for K2,—1(OF) and showed a relation
between it and (g (n).

Bloch (1978). For CM elliptic curves over Q he defined an element
in K2(E) ®z Q and related an ad hoc regulator of it with L(E, 2).

Beilinson (~1985) Defined a theory of regulators for the K-groups
of regular projective varieties over O, and conjectured relations
with the L-functions at certain points. Using the image of the
K-group of a regular proper model of the variety if it exists;
nowadays use alterations (Scholl).
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Some evidence for Beilinson’s conjectures for curves

Constructing as many elements as Beilinson predicts, and relating
their regulator to the L-value is done by, for example:

@ Beilinson (K2, of modular curves, n > 1; 1986),

@ Deninger (Ko, of certain CM elliptic curves over number
fields, n > 1; 1989),

o dJ (Ky of y? = x3 — 2x? 4 1 over Q, numerical relation with
L*(E,—1); 1996)

@ Dokchitser-dJ-Zagier (K> of hyperelliptic curves over Q,
numerically; 2006)

@ Ito (K> of three elliptic curves over Q; 2018)

@ Asakura (K3 of some elliptic curves over Q, either
theoretically or numerically; 2018)

@ Brunault (for K3 of strongly modular curves over Abelian
number fields; 2018)

@ Brunault (for Ky of all elliptic curves over Q of conductor at
most 50, numerically; preprint 2020,/2022)
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‘Integrality’ for curves; choice of model

L any field: Ka(L) = L* @z L* /(1@ (1 —1)); {h,h} =class of h @ h
For a regular, proper, irreducible curve C over the number field F,
fix a regular, flat, proper model C of C over the ring of algebraic

integers Of of F. Then we define
HT

Ky (C) = ker (Ka(F(C)) = ®peca F(P)¥)

KT (Cline = ker (Kao(F(C)) 1% @pF(D)*)
):

the residue field at D.

1% 1% a D(b)
Tp:{a,b} s (~1)"2()2®) bvo(3)

where vp is the valuation on F(C) corresponding to D.

D: an irreducible curve on C; F(D

(D) tame symbol for D

KT (C)int is the subgroup of K, (C) consisting of integral elements.
Theorem (Liu-dJ, 2015)

The subgroup Ky (C)int is the image of Ka(C) in Ka(F(C)) under
localisation, and does not depend on the choice of C.
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The Beilinson regulator for K, of curves

As a starter,

e C/C be a regular, proper curve

e 0= Y{f.g}in kI (C)

e vin Hi(C(C),Z)

e their regulator pairing is (well-)defined by

()= 5= [ S (e

with n(f,g) = log|f|d arg(g) — log|g|d arg(f) for non-zero
functions f and g on C; we use a representative of v that avoids
all zeroes and poles of the functions involved.
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Beilinson regulator for K, of curves (continued)

As main course,

e C a regular, proper, geometrically irreducible curve over a
number field F of degree m, of genus g; let n = mg

e X the Riemann surface consisting of all C-valued points of C, a
disjoint union of the complex points of m curves C? over C,
indexed by the embeddings o of F into C. Complex conjugation
acts through its action on C, and Hy(X,Z)” ~7Z"

e Define a pairing

Hi(X,Z) x K (C) = R
(’770‘) = <’)/,Oé>x = Z<707050>

g

if v = (7)o in H(X,Z) = &,H1(C?(C),Z), a° the pullback of «
to C7.
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Beilinson's conjecture for K, of curves (continued)

Assume L(C,s) can be analytically continued to the complex plane
and satisfies a functional equation for s versus 2 — s as in the
Hasse-Weil conjecture.

Then L(C,s) should have a zero of order n at s =0, and we

let L*(C,0) = (n!)~1L("(C,0) be the first non-vanishing
coefficient in its Taylor expansion in s at 0.

o Letvyi,...,vp and aq,...,a, form Z-bases of Hi(X,Z)~
and KZT(C )int modulo torsion respectively borrowing finite
generation of Ky (C)int from Bass's conjecture

Let the Beilinson regulator of the aj be R = |det({vi, aj)x)i |-
Then

L*(C,0)=Q R

for some @ in Q*
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Hyperelliptic curves over Q (Dokchitser-dJ-Zagier, 2006)

They considered (hyper)elliptic curves C of genus g > 1 defined
by, e.g.,
V24 f(x)y +x*6T2 =0

where f(x) = 2x8*1 4+ bgx8 4 -4 bix + by; bj in Q, by # 0, and
—x%6%2 4 f(x)?/4 has no multiple roots
For f(x) = 2x8T1 & (vix + 1) ... (vgx + 1) with the v; integers, all

2 :
{Zem=,vix + 1} arein KT (C)int
The Beilinson conjecture was verified numerically for many curves
in the above (and other) families.

(dJ) Limit results for the Beilinson regulator for fixed vi,...,vg_1
and |vg| — 0o, which imply linear independence for |vg| > 0.
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More general higher genus curves over Q (Liu-dJ, 2015)

Define C as the normalisation of the projective closure of

NN
[IIIt=t

i=1j=1

with L;; = ajx + bjy + ¢; distinct, non-parallel for distinct i.
If C has regular affine part then C has genus
§=1=2 1cicn Ni+ X 1<icjcn NiNj
Then K, (C) contains ‘rectangular’ and ‘triangular’ elements
Lij Lim)\ /:
o {£. 22} (i £ 1)
i, m]L i KlLim \ - - . .
. {{L'E]L’jj’, [[;n}(]L,J} (i, k, m distinct; [i, k] = ajbx — axb;) with
some relations, giving at most g independent elements.
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More general higher genus curves over Q (Liu-dJ, 2015)

If no three of the L;; pass through an affine point and the a;, b;

and c;j are real, then there are ay, ..., g among the rectangular
and/or linear elements with lim;_,o % =1
If the defining equation is
Ny Ny N3
AMIG+a)[Jo+6) [ —x+a) =1
i=1 j=1 k=1

(N1 > No > N3 >0, No > 1) with A, a;, bj and ¢, algebraic
integers, then all rectangular and triangular elements are integral.

For fixed integers a;, b;, cx this gives g linearly independent
elements in K,/ (C)int if A is an integer with |[A| 3> 0. C is not
hyperelliptic when N + N3 > 2.
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Some special cubic number fields

Now on to the joint work with Brunault, Liu, and Fernando Villegas

We need exceptional units in (hence special) cubic number fields.

For every integer a, and all €, in {£1}
f(X)=X3+aX?—(a+e+e +1)X +¢

is irreducible in Q[X].

A cubic field F has an element u such that F = Q(u) and both u
and 1 — u are in OF precisely when u is a root of some f,(X).
F/Q is cyclic if and only ife =&’ =1 or|2a—e+¢&' + 3| =T.

e For e =&’ =1 we get the simplest cubic fields (Shanks).

e The fields are totally real for |a| > 0

e ur— 1— uand ur— u~! generate some identifications; we end
up with two ‘half’ families.
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First construction

Let F = Q(u) with u a root of f,(X) as for the special cubic
families. Let p=u—1, h(x) = (p?> + p+ 1)x + p>(p + 1)2. Then
for A =1, 2, 3 or 4 the normalisation of the curve defined by
y2 + (2x° + Ah(x)?)y +x® =0
with a few exceptions is an elliptic curve E. The elements
y h(x) y 2
BV b VRN S A S
{ 52 h(O)} q A T
(g=p,p+1,p(p+1), GG=6 Co=4, CGG=3, G4 =2) are
in Ky (E)int and satisfy 2C\M = Y- M.
The Beilinson regulator R = R(a) of the M, satisfies

im @ _ 463
|la|—o0 log® |

For A # 4 the support of the divisor (=2 + 1) is in general not
contained in the torsion of E.
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First construction (numerical results)

fa(X) = X3+ aX?—(a+1)X +1, a> 0, one of the special cubic
families F is non-Abelian for a # 3
° C~): rational number in the Beilinson conjecture for M,, M, 1, M
e d: discriminant of F e ¢: conductor norm of E

Data for A =1 red: F not totally real

c L*(E,0) Q
4
4

L
Q.

—23 [23.17-107| 132.724179260406391
—31 | 23.3%.17 | 168.814511547175067
—23 [ 23.19-37 | 53.4019469956784239 2—4
72 23.127 | 37.1776384769406512 [274.3.771
257 23.3% | —721.242054102691853| —273.3
17-41| 23.19 1414.02549043158906 272.3
1489 | 23.17-19 | 83163.7726064265207 2.33
2777 | 23-3%.37 | 2915249.85675393311 | 22-33.13
4729 |23.71-163| 33679082.6389894579 | 2-33.241
7537 |23 .37-863| 260954243.280987485 |2 -33. 1567

© 0O NO Ol WD~ O
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Data for A =2 and A = 3 red: F not totally real

a| d c L*(E,0) Q
—23 | 26.11.23-37 | 4486.81605627777558 | 2~1.3.5
—31 | 26.33.11-13 | 3599.55769844723823 2-1.32
—23 26.52.59 837.555573566513198 2
26.13.83 | —2498.99534192761051 -3
257 26.33.37 | —-64543.3050825583931| —22.33
17 -41(26.11%2.13-23|—-16392164.6852019715| —22 - 3% . 53
1489 [26.23.47.179| 437520185.347094640 |25-32.1187

SOk W= O
\l
N

al d c L*(E,0) Q

0|—23|23-3%.19 | 25300.9847248343307 3.17
1|—31| 23.31 |_-21806.9954627600874| —22.3.5
2|—23|23.3%.17 | —21113.3123276958079| —22-3-5
3
4

72 23.39 5601.39536780219401 22.3
257 |23 .311.19|-26042785.9143510709 | —23 - 33 . 233
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Data for A = 4 red: F not totally real

a d c L*(E,0) Q

0| —23 26.5.7 19.1718016489393019 2-3

1] =31 26. 32 8.95758063575193728 | 273.3°1
21 =23 26.5.11 |—25.4138019939166741 —2-3

3] 72 26.7.13 241.273298483854998 2-1.3

4| 257 206.32.5 | _-2647.23969149488937 —32
5117-41|2°.5.11-17 | 441097.703795075666 | 23.33.5
6| 1489 | 26.7.13-19 |—4149007.28165801473| —27-.32.7
7| 2777 | 26.32.5.7 | 2423760.93043136419 | 2-33.73
8| 4729 |29.11-17-23| 99044008.9977606699 | 27 .32.112
9| 7537 | 20.5.13-19 | 66308672.9214609161 [2°-32.7.41
10(72-233| 26.32.5.7 | 41156246.2610705047 | 2*-33.107
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A new integrality criterion

Proposition

Let C be a regular, projective, geometrically irreducible curve over
a number field F, with regular, flat, proper model C over the ring
of algebraic integers Of. Suppose f,g in F(C)* are such that

(f) = N(P)— N(O), (g) = N(Q) — N(O) for some N > 1 and
distinct F-rational points O, P and Q on C,

and f(Q) = g(P) = 1. Then a = {f, g} is in KJ (C).

Let B be a maximal ideal of Of, with residue field k, fibre F = Cyp.
e If O, P and Q all hit the same irreducible component of F,

then Tp(a) =1 for all D in F.

e If O, P and Q hit two irreducible components of F, then Tp(«)
is a constant function on D for every irreducible component D
of F. If M is the order of the image of e = (—g/f)(O) in k*, M|N
aseN =1, then M is an exponent of Tp(«) for D in a certain part
of F determined by how the points hit the two components.
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A new integrality criterion (continued)

If C is of genus 1 then the ‘certain part’ is always F, so M'« is
in K (E)int with M’ the order of € in OF.

On the elliptic curve over Q defined by y? = x3 + 1,
with P =(2,3), Q= —-P =(2,-3), N =6,

1 (y—2x+1)3 1 (—y—2x+1)3

108 y+1 £ 108 —y+1

€ = —1. The reduction at p = 3 is of type lIl. It has two irreducible
components ( meeting tangentially in one point), A, hit by O, and
B, hit by P and Q. Then T4({f,g}) = —1and Tp({f,g}) =1.
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Second construction

Let E be an elliptic curve over a field F, and P an F-rational point
on E of order N. For 1 <s < N —1, let fpsin F(E)* be a
function with divisor (fps) = N(sP) — N(O).

In K, (E) define

fp.s fp.t
Tpot = : : t
P,S,t { fP7s(tP)’ fP}t(SP) } (s # )

N—-1

Sps = {fP,57 _fP,s} + Z Tpst (1<s<N-1)
t=1,t#s

Sp,s aF 5_p75 is in KQ(F)
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Second construction

Let F be a field and N > 4. A pair (E, P) with E an elliptic curve
over F and an F-rational point P on E of order N has a unique
WeierstraB model Tate normal form

E:yz—l—(l—g)xy—fy:X3—fX2
with f in F*, gin F, and P = (0,0). Parametrised by X;(N):

N f g A

[ t2—t tT(t—1)(t3 - 8t2+5t+1)
2 262—3t+1 (t=1)%(2t—1)*(8t>—~8t+1)

8 2t°—3t+41 == -

10 20534413 2834312t t10(t—1)19(2¢—1)5(4£2—2t-1)
(t2—-3t+1)? t2—3t+1 (t2—3t+1)10

We want X1(N) to have genus 0, and N > 6 to get enough
elements in K,/ (E)int for F non-Abelian. For N =9, 12 the
situation is a bit different from that for N = 7,8, 10.
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Second construction (integrality)

If E = E; is an elliptic curve over a number field F, in Tate normal
form for N = 7,8 or 10, and P = (0,0), then 2P hits the
O-component in each fibre of the minimal regular model over Of if
ot,1—tarein Of, for N =17

° %—1,%—23rein(’),§, for N =8

o+ —1,1—2tarein OF, for N =10

In that case

e each Sp s is in K2T(E);n»c for N =17;

e each N' - Sp s is in Ky (E)int for N = 8,10; N' = gcd(N, #F.%,).

Let F = Q(t), t satisfying the condition. N =7,8: F is cubic if
and only if it is one of the special cubic fields. N = 10: 40 families
(identifications under a dihedral group of order 8: for u=1—2t, u
and ﬁ are in OF); the Galois closure in a family almost always
has group S; (28%), D4 (10x), C4 (1x) simplest quartic fields
(Gras), G x G (1x).
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Table for our special quartic fields

We list b, c, e of the polynomials X% + aX3 4+ bX? 4+ cX + ¢, with
a in Z (sometimes with congruence condition), defining such fields
(with 28 reducible exceptions), as well as the Galois groups Gal of
the splitting field for general a

b c e| Gal b c e | Gal
-2 —az+1 1 S4 0 —a=xl —1| S,
-2 —a=£?2 1 S4 0 —a=£2 -1 5,
-2 —azx4 1 S4 0 —at4 —1| Dy
-2 —a+82a|l|l 5 0 —a+8, 2a —1| 5
-2 |—a+16,4]a|l]| S 0 |—a+16,a=2 (mod4)|—-1| S5,

—2+1 —a 1 D, +1 —a —1] 5,
—242 —a 1 Dy +2 —a 1| S,

2 —a 1 C2 X Cz +4 —a -1 54

—6 —a 1 C4
—2+38 —a,2la |1| Dy +8 —a, 2|a —1| S
—2+16| —a,4la |1| D, ||£16] —a,a=2 (mod4) |-1|5,
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Second construction (integrality and regulator)

Define fields F, with element t, parametrised by an integer a.

@ Let u be a root of an f,(X) defining a special cubic field
F=Q(u), andputt=u(N=T7)ort=1/(u+1) (N=28).
@ Let u be a root of an f,(X) defining a special quartic field
F = Q(u), and put t = 5% for N = 10.
If the Tate normal form for (N, t) defines an elliptic curve E/F,
then, with P = (0, 0):
o thegcd(N,2) - Sps fors=1,...,N —1 are in Ky (E)int;
o for the Beilinson regulator R(a) of the first [ =1 | we have

|det NB3({U}>
3 NTJ1<ij< i)

(B3(X) = X3 — 3X2? + 1X: third Bernoulli polynomial;
{x}: the fractional part of x; G; =1, Cg = Cyp = 4)

(éi) _Cy
|a]—o0 |OgL > | |3|

£0
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Second construction (idea of proof of limit result)

The Bloch-Wigner dilogarithm is the unique continuous function
D: PY{(C) — R with D(z) =im(>_0%, z"/n?) + Arg(1 — z) log |Z|
for|z]| <1, z#0,1, and D(1/z) = —D(z) for every such z.

For g in C* with |g| < 1 Bloch’s elliptic dilogarithm Dy is

Dy: C*/q" — R, zn—>ZD(zq")
neZ

Also define J(z) = log|z|log |1 — z| and J;: C*/q” — R by

= |
= J(zq") ZJ q") |0g | B (og‘2’>,
n=0

log |q|

and Ry: C*/q% — C as Ry = Dy — iJy.

If g = exp(2miT) = e(7) then we get R;, etc., on C/(Z + Zt) by
composing Ry, etc., with C/(Z + Zt) ~ C*/q%.
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Second construction (idea of proof of limit result)

Let o be the path from 0 to 1 in E(C) = C/(Z+ 7Z). Then for ~y
in H1(E(C),Z) and o = Y {f;, g} in KJ (E),

(r0) = —5-im (B STRA(5) (8)):
7o j
with, for any holomorphic 1-form w # 0 on E, Q5 = féw, and
(F) o (g) = >_ minj(ai — by) if (f) = 3 mi(ai), (g) =>_ nj(by).

Then N3
(0, 5p.s) = = 2mim(7)

Fourier expansion: If u=a+ br with0< a,b<1,and 7=x+ iy
with x real and y positive, then

J-(sP).

4 2,2
J-(u) = 7r3y Bs(b) — my Z mnx) e~ 2rlmnly
m,n+beZ ‘ |
m,n#0
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Second construction (idea of proof of limit result)

Then the limit result follows by

e knowing F is totally real for |a| > 0

e knowing which cusps of X;(/N) are approached, corresponding to
the behaviour of t = t(u) under an embedding F — R for |a| > 0
e comparing the limit behaviour of a root u of f,(X) with that of 7
as 7 approaches the corresponding cusp

e understanding complex conjugation on X;(N), as well as on H;
of the universal elliptic curve above a real point of X;(N) (to get a
generator of H;)

e reducing to using only J; in R;, with dominant term given by B3
in the Fourier expansion
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Second construction (numerical results)

N =7, 8: F cubic as in numerical examples of the first
construction F is non-Abelian for a # 3

N = 7: we list the rational number (3 for Sp1,5p2,5p3

N = 8: we list the rational number Q for 25p 1,25p,25p 3

N = 10: F defined by f,(X) = X* +aX3 —aX +1,ain Z\ {£3}
e Galois group of splitting field: Dy for a # 0

e two complex places for a = —2,...,2, otherwise totally real

e we list the rational number Q for 25p 1,25p2,25p 3,25p 4,
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Second construction (numerical results)

Some of our data for N =7 red: F not totally real

al d c L*(E,0) Q
—23 | 23.72 | 3.20759739648506351 776

72 13-29 | 14.5301315201187081 7°°

257 | 23.41 | 235.760168840014734 774

17-41 | 239 | 1671.96067772426875 2.3.5.77°
1489 | 23.13 | 4051.92834496448134 73
2777 83 | —6590.94375552556550| —2-5-77°.11
4729 | 23.41 | 114693.828270615380 23.33.74
7537 | 72-13 | 520366.913326434323 | 2-3.77%.137
72.233|23.127|—1485239.71027494934 | —2.32.774.113
17-977| 1471 | 5790649.98684165696 | 2*.3.52.77>.41
12197 -241|23 . 251 | 17255203.9121322960 | 2*.32.7-%4.131
13| 32009 | 2633 | 28504752.7830982117 | 28.3.77%4.37
14(47-911|23.419| 93361926.2369695039 | 23.3.7-%.3571
15|73 -769| 43-97 | 192572866.057081271 |23.32.774.43.53

=
PEBovo~v~ooprwn
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Second construction (numerical results)

Some of our data for N = 8

a d c L*(E,0) Q

2| —23 5-137 | 5.97110504152047155 221

31 7 7-113 | 31.2948786232840397 218

4| 257 33 25.2202129687784361 2-18.3-1
5|17-41| 11-41 | 3130.70411060858445 2715.3

6| 1489 7-13 | 3377.15438740388289 213

7| 2777 | 33.5.7 |—110191.314028644712| —2710.3
8| 4729 | 17-127 | 806249.659144856084 | 2~13.11.13

9| 7537 | 19-199 |—3399020.63508445448| —2712.257
10]72-233| 33.7-31 | 9860642.47040826474 | 2~'1.3.109
11(17-977| 23-367 |—38313626.2137679483| —2713.4547
12|97 -241| 5-463 | 22214626.7118122391 | 2714.4787
13| 32009 33.7 2759510.81590883242 | 2713.3.7.13
14|47-911| 7-29-97 | —549654076.156923184 | —2—12. 34 . 311
15|73 -769 |17 - 31 - 47| 1205314746.12464172 | 279 .5.1289
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Second construction (numerical results)

Data for N = 10 red: F two complex places blue: F = Q((g)
a d c L*(E,0) Q

—7| 23.41%2 |22.232| 67284.5712909244205 | 2711.575
—6|206.72.37 | 3*.72 | 12809909.2599370080 | 279 .54.13
—5[23.13.172|22.192| 321613.252539691824 | 2710.5-4
—4| 28.17 17° | 1308.96784301967823 | 27 10.5°7

—2| 2%.5 132 | 3.90265959107592883 | 2~14.579
—1| 23.72 |22.11%| 18.1524378610645748 | 27 14.5°8
0 28 3* | 1.29080207928400602 |2~ 14.32.5-8
1 23.72 | 22.72 | 7.41655915683319223 | 2-15.5°8

2 26.5 52 |0.604505751430063810| 2714.5710

4 28.17 72 | 211.227406732423650 | 2~ 1.5°7

5 123.13-17%| 22 | 825.817965343090665 | 2~ 11.5°7
6 | 20.72.37 | 3% |272030.854985666477 | 272.3%.576
7| 23.412 | 22.5% | 111421.646021166774 | 2710.57°
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Second construction (numerical results)

The formula for (0, Sps) is clean, but we also have the Tp g,
and for N =8, 10, elements based on 2P (of order N/2).

One can analyse the integrality obstruction for those along the lines
of the new integrality criterion, and find a subgroup of K2T(E);nt of
rank 3 (N =7,8) or 4 (N = 10) for which the regulator of a basis
gives a rational number that equals @ multiplied by:

e N =7: 7% if F is not totally real, and 7° otherwise

o N =38: 210 o N =10: 2105%
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Are there any questions?
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