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The Riemann ζ-function

ζ(s) =
∑
n≥1

n−s =
∏

p prime

1

1− p−s
(Re(s) > 1)

can be extended to a meromorphic function on C with a simple
pole at s = 1 with residue 1

ζ(2) = π2/6 ζ(3) irrational

ζ(4) = π4/90 ζ(5) ???

ζ(6) = π6/945 ζ(7) ???

...
...
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The ζ-function of a number field

Let k be a number field, i.e., for some f (X ) an irreducible
polynomial in Q[X ] of degree d , and α a root of f (X ) in C,

k = Q(α) = {b0 + b1α + · · ·+ bd−1α
d−1, all bj in Q}

the number field generated by α.
Let O be the ring of algebraic integers of k : x ∈ k is an algebraic
integer if it is the zero of a polynomial

X n + an−1X
n−1 + . . .+ a1X + a0

with all ai in Z.

The ζ-function of k is defined by (for Re(s) > 1)

ζk(s) =
∑

(0) 6=I⊂O
I an ideal of O

(#O/I )−s =
∏

06=P⊂O
P prime ideal

1

1− (#O/P)−s
.

Every non-zero ideal of O is uniquely (up to ordering) the product
of non-zero prime ideals.
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The ζ-function of a number field

ζk(s) can be extended to a meromorphic function on C with a
simple pole at s = 1

Let r1 the number of embeddings k → R, 2r2 the number of
non-real embeddings k → C, so d = r1 + 2r2.
(r1 = #real roots of f (X ), 2r2 = #non-real roots of f (X ))

O∗ ∼= Zr × Z/wZ with r = r1 + r2 − 1 and

w = the number of roots of unity in k

Let σ1, . . . , σr+1 be the embeddings of k into C up to complex
conjugation.

If u1, . . . , ur form a Z-basis of O∗/{roots of unity}, let

R =
2r2

d
| det

1 log |σ1(u1)| . . . log |σ1(ur )|
...

...
...

1 log |σr+1(u1)| . . . log |σr+1(ur )|

 |
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The ζ-function of a number field

Then

Ress=1ζk(s) =
2r1(2π)r2 |Cl(O)|

w
√

∆k
· R

• Cl(O) = the class group of O (a finite Abelian group which
measures (failure of) unique factorization in O)
• w = the number of roots of unity in k = |O∗torsion|
• ∆k the absolute value of the discriminant of k .

This is a statement about algebraic K -theory:

K0(O) ∼= Z⊕ Cl(O) and K1(O) ∼= O∗,

so

|Cl(O)| = |K0(O)torsion| and w = |K1(O)torsion|.
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Algebraic K -theory of a ring: K0

R: a commutative ring with identity 1 6= 0

K0(R) =

free Abelian group on generators [M], M a
finitely generated projective R-module〈

[P]− [P ′]− [P ′′] for each exact
sequence 0→ P ′ → P → P ′′ → 0

〉 .

P projective means every surjection M → P admits a section of
R-modules, e.g., a free R-module.
Therefore P ∼= P ′ ⊕ P ′′ in the above.

Example
• F a field: K0(F ) ∼= Z via the dimension of a vector space
• K0(Z) ∼= Z via rank of a finitely generated Abelian group
• O = ring of integers in a number field: K0(O) ∼= Z⊕ Cl(O)
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Algebraic K -theory of a ring: K1

View GLn(R) ⊂ GLn+1(R) via A 7→
(
A 0
0 1

)
.

Let GL(R) =
⋃

n GLn(R).

Definition K1(R) = GL(R)/[GL(R),GL(R)]

The determinant gives a surjection K1(R)→ R∗, the kernel is
denoted SK1(R)

Example
• F a field: K1(F ) ∼= F ∗

• K1(Z) ∼= Z∗ = {±1}
• O = ring of integers in a number field: K1(O) ∼= O∗
• If, e.g., R = Q[x , y ]/(y2 − x3 − 3) then R∗ = Q∗ but SK1(R) is
infinite
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Algebraic K -theory of a ring: K2

K1(R) (matrices or maps) give relations between generators of
K0(R) (=R-modules). ”So” K2(R) should involve ”relations
among the relations for K1(R)”.

Definition For i , j ≥ 1, i 6= j ,and r in R, let ei ,j(r) be the
elementary matrix with r in position (i , j)

Then
ei ,j(r)ei ,j(s) = ei ,j(r + s)

[ei ,j(r), ej ,l(s)] = ei ,l(rs) if i 6= l

[ei ,j(r), ek,l(s)] = 1 if j 6= k, i 6= l

and the ei ,j(r) generate the subgroup [GL(R),GL(R)] of GL(R).
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Algebraic K -theory of a ring: K2

The Steinberg group St(R) of R is the free group on symbols
xi ,j(r) with i , j ≥ 1, i 6= j , r in R, quotiented out to give the same
three relations for the xi ,j(r) as for the ei ,j(r).

We have a surjective group homomorphism

ϕ : St(R)→ [GL(R),GL(R)]

xi ,j(r) 7→ ei ,j(r)

Definition K2(R) = ker(ϕ)

Proposition K2(R) Abelian. In fact, it is the centre of St(R).
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K2 of a field

If F is a field then K2(F ) is an Abelian group written additively,
with

generators {a, b} for a, b in F ∗

relations {a1a2, b} = {a1, b}+ {a2, b}
{a, b1b2} = {a, b1}+ {a, b2}
{a, 1− a} = 0 if a 6= 0, 1

Then also {a, b} = −{b, a} and {c ,−c} = 0 for a, b, c in F ∗.

If A in St(F ) lifts

a 0 0
0 a−1 0
0 0 1

 and B lifts

b 0 0
0 1 0
0 0 b−1

, then

{a, b} = [A,B] in K2(F ).

Note that K2(F ) ' F ∗ ⊗ F ∗/〈x ⊗ (1− x)〉 with {a, b}
corresponding to the class of a⊗ b.
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An example: K2(Q)

Proposition
K2(Q)

∼→ {±1} × ⊕p prime F∗p
with components

T∞ : K2(Q)→ {±1} with T∞({a, b}) =

{
−1 if a, b < 0

1 otherwise

Tp : K2(Q)→ F∗p with Tp({a, b}) = (−1)vp(a)vp(b) a
vp(b)

bvp(a)
modulo p

where vp(a) ∈ Z is the number of factors p in a
Tp = the tame symbol for p

The proof of the proposition is based on repeated rewriting using
division with remainder: if a = qb + r with a, b, q, r non-zero
integers, then {a/r ,−qb/r} = 0 in K2(Q).
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Quadratic reciprocity

For p > 2 and α ∈ K2(Q) we have Tp(α)
p−1
2 ∈ {±1} ⊆ F∗p.

Define T̃2 : K2(Q)→ {±1} as follows.
Write a = (−1)i2j5k c

d with i , k = 0, 1 and c , d integers congruent

1 mod 8, b = (−1)I2J5K c ′

d ′ similarly. Then

T̃2({a, b}) = (−1)iI+jK+kJ .

Identify {±1} ⊆ F∗p for all primes p > 2.

Theorem T∞({a, b}) = T̃2({a, b})
∏
p>2

p prime

Tp({a, b})
p−1
2 .
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Quadratic reciprocity

This is equivalent with quadratic reciprocity. E.g., let p and q be

distinct odd primes, and put

(
p

q

)
equal to 1 if p is a square

modulo q, and to −1 if not. Equivalently,(
p

q

)
= p

q−1
2 mod q = Tq({p, q})

q−1
2

The theorem says that

1 = T̃2({p, q})Tp({p, q})
p−1
2 Tq({p, q})

q−1
2

= (−1)
p−1
2
· q−1

2

(
q

p

)(
p

q

)
.
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Borel’s theorem

Quillen defined Abelian groups Kn(R) (n ≥ 0) (1969(?)) for a
ring R; later also for an algebraic variety (1973).

Let k be a number field, with r1 real and 2r2 non-real embeddings,
d = r1 + 2r2, and ring of algebraic integers O, and let ∆k be the
absolute value of the discriminant of k

Recall that

• K0(O) ∼= Z⊕ Cl(O)

• K1(O) ∼= O∗ has rank r1 + r2 − 1

Theorem (Quillen, 1973) Kn(O) is finitely generated for all n ≥ 0.
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Borel’s theorem

Theorem (Borel, 1974+1977)
(1) K2n(O) is a finite group if n ≥ 1.
(2) For n ≥ 2, K2n−1(O) has rank m2n−1 = r1 + r2 if n is odd, and
rank m2n−1 = r2 if n is even.
(3) There exists a natural regulator map

K2n−1(O)→ Rm2n−1 (n ≥ 2).

Its image is a lattice with (normalized) volume of a fundamental
domain

Rn(k) = q
ζk(n)

πn(d−m2n−1)
√

∆k

for some q in Q∗.
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Example: the K -theory of Z

ζQ is the Riemann zeta function. For n ≥ 2:

K2n−1(Z) is finite for n even;

K2n−1(Z) has rank 1 for n odd, and Rn(k) = qζ(n) for some
q ∈ Q∗.

n 2 3 4 5 6 7 . . .

m2n−1 0 1 0 1 0 1 . . .

ζ(n) π2/6 irrational π4/90 ??? π6/945 ??? . . .
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The definition of Borel’s regulator map

For R as above, Quillen’s K -groups can be defined as follows.

There is an H-space BGL(R)+ (“topological group up to
homotopy”) with a map BGL(R)→ BGL(R)+ inducing an
isomorphism H∗(BLG (R),Z)

∼→ H∗(BGL(R)+,Z). It satisfies

π1(BGL(R)+) ' GL(R)/[GL(R),GL(R)] ' K1(R)

as [GL(R),GL(R)] = E (R) in π1(BGL(R)) = GL(R) is its own
commutator subgroup.

Then Kn(R) = πn(BGL(R)+) for n ≥ 1.
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The definition of Borel’s regulator map

Borel for 2n− 1 ≥ 1 constructs bn in H2n−1(GL(C),R) (continuous
group cohomology), well-behaved with respect to complex
conjugation. For n = 1, it is log | · | on H1(GL(C),Z) ' C∗.

If σ : k → C is an embedding, the σ-component of Borel’s
regulator map for n ≥ 2 is the composition

K2n−1(k)
σ∗→ K2n−1(C)

Hur−→ H2n−1(GL(C),R)
bn ∩ ·−→ R

with Hur the Hurewicz homomorphism π2n−1(BGL(C)+)→
H2n−1(BGL(C)+,Z) = H2n−1(BGL(C),Z) = H2n−1(GL(C),Z).

Possible motivations

• The volume of a fundamental domain of a suitable symmetric
space is a product of values of ζk -values (cf. Humbert’s
classical formula for an imaginary quadratic field)

• The homology of BGL(O)+ is a wedge algebra on the
primitive elements of the homology, i.e., on the image of the
K -theory of O, so similar to the previous point
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Lichtenbaum conjecture

The functional equation of ζk(s) gives that ζk(s) at s = 1− n has
a zero of order the rank of K2n−1(O) (n ≥ 1). Let ζ∗k (1− n) be its
first non-vanishing coefficient in its Taylor expansion at s = 1− n.
Borel’s theorem then states that ζ∗k (1− n)Rn(k)−1 is in Q∗.

Conjecture (Lichtenbaum, 1973!) For n ≥ 2 we have

ζ∗k (1− n) = ±2?k,n
|K2n−2(O)|

|K2n−1(O)torsion|
Rn(k)

Known consequence of Quillen-Lichtenbaum conjecture For p an
odd prime

K2n−i (O)⊗ Zp
∼→ H i

et(O[1/p],Zp(n))

for i = 1, 2 and n ≥ max(i , 2).

Theorem (based on work of many people)
For n ≥ 2 and k/Q Abelian, the Lichtenbaum conjecture holds.
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Bloch’s work on CM elliptic curves of Q

Let E be a CM elliptic curve over Q.
Let EC be the curve obtained by extending the coefficients to C,
and F the field of meromorphic functions on EC.

There is an exact localization sequence

K2(EC)→ K2(F )
T→ ⊕x∈ECC

∗

where Tx is the tame symbol for x :

Tx : {f , g} 7→ (−1)ordx (f ) ordx (g)
f ordx (g)

gordx (f )
|x

with ordx(f ) the order of vanishing of f at x .
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Bloch’s work on CM elliptic curves of Q

For two non-zero meromorphic functions f and g on EC,
log |f |d arg g − log |g |d arg f is a closed 1-form on some EC \ S
with S finite. Then

log |z | d arg(1− z)− log |1− z |d arg z = dD(z),

where D(z) is a C∞-function on C \ {0, 1}, the Bloch-Wigner
dilogarithm. This gives a homomorphism

reg : K2(F )→ {closed 1-forms on some EC \ S}
{exact 1-forms on some EC \ S}

{f , g} 7→ log |f | d arg g − log |g |d arg f .
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Bloch’s work on CM elliptic curves of Q

This fits into a commutative diagram

K2(E )

��
K2(EC) //

reg

��

K2(F ) //

reg

��

⊕x∈ECC∗

log |·|
��

0 // H1
dR(EC;R) // H1

dR(F ;R)
i ·res

// ⊕x∈ECR

with H1
dR(F ;R) = lim

−→
S⊂EC

H1
dR(EC \ S ;R) where all S are finite.
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Bloch’s work on CM elliptic curves of Q

Theorem (Bloch; Irvine notes, 1978; published in 2000)
Let E be an elliptic curve defined over Q with complex
multiplication. Then there exists an element α in K2(E ) with

L′(E , 0) = q
1

2π

∫
EC

reg(α) ∧ ω

for some q in Q∗, or, using the functional equation for the
L-function:

1

2π
L(E , 2) = q′

∫
EC

reg(α) ∧ ω.

ω is a non-zero holomorphic form on EC with
∫
E(R) ω = 1.

L(E , s) =“ζ-function for H1(E )”
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Beilinson’s conjectures on special values of L-functions

Beilinson (1985) “attempted to understand the work by Borel and
by Bloch”, reinterpreting and vastly generalising their ideas.
Crucially, he uses K -theory and a suitable (co)homology theory
with their properties, rather than single groups, and relates them
using a formalism based on Chern classes (cf. Gillet, 1981). That
makes it possible to define regulators on all K -groups at once.

Let X/Q be smooth and projective. The main ingredients of
Beilinson’s conjectures are:

• A decomposition of Kn(X )⊗Q = ⊕n+dim(X )
i=0 K

(i)
n (X ) with

K
(i)
n (X ) an eigenspace for all Adams operators (Soulé, 1985)

• reg : K
(i)
n (X )→ H2i−n

D (XC,R(i))+ (Deligne cohomology)
constructed using Chern classes
• For n > 1, this conjecturally induces an isomorphism

reg : K
(i)
n (X )int ⊗Q R ∼→ H2i−n

D (XC,R(i))+ with int indicating
a subgroup of elements “coming from over Z instead of Q”
(cf. O∗k ↔ k∗ for a number field k)
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Beilinson’s conjectures on special values of L-functions

• H2i−n
D (XC,R(i))+ is built from H2i−n−1(XC,R(i − 1))+ and

F iH2i−n−1
dR (XR), which identifies ΛH2i−n

D (XC,R(i))+ with

ΛH2i−n−1(XC,R(i − 1))+ ⊗ (ΛF iH2i−n−1
dR (XR))−1

• ΛH2i−n
D (XC,R(i))+ ' R now has two copies of Q inside: one

from using reg and ΛK
(i)
n (X )int, and one from using

H2i−n−1(XC,Q(i − 1))+ and F iH2i−n−1
dR (XQ) in the previous

point; one is obtained by multiplying the other by an element

of R∗/Q∗, the Beilinson regulator Rn,i of K
(i)
n (X )int

• Conjecturally, Rn,i ≡ L∗(H2i−n−1(X ), i − n) in R∗/Q∗.
L(H2i−n−1(X ), s) the L-function associated to H i (X ),
assumed to satisfy a suitable functional equation, ∗ denotes
the first non-vanishing coefficient in the Taylor expansion

• (Also conjectures for n = 0, 1, with slightly different
ingredients.)
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Compatibility of the various regulator maps

• Bloch’s regulator map: X = E , n = i = 2, the cup product in
Deligne cohomology gives Bloch’s regulator map and
Beilinson’s coincide (Beilinson’s regulator map is “normalized
by the logarithm and the whole (co)homology formalism”)

• Borel’s regulator map: X = k , n = 2m − 1, i = m with
m ≥ 2: much harder (done by Beilinson (sketchy, difficult to
follow), Rapoport, in the end by Burgos Gil): the Borel
regulator map is twice the Beilinson regulator map.
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