Algebraic K-theory, regulators, and cohomology

Rob de Jeu

r.m.h.de. jeu@Gvu.nl

Department of Mathematics
Vrije Universiteit Amsterdam
The Netherlands
http://www.few.vu.nl/~jeu

Xi'an, 20th August 2019

Rob de Jeu Algebraic K-theory, regulators, and cohomology



The Riemann (-function

()= =TI =  (Re(s)>1)

—s
n>1 p prime p

can be extended to a meromorphic function on C with a simple
pole at s = 1 with residue 1

((2)=%/6 ¢(3) irrational
((4) =7*/90 ¢(5) 777
((6) = x°/945 (1) 777
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The (-function of a number field

Let k be a number field, i.e., for some f(X) an irreducible
polynomial in Q[X] of degree d, and « a root of f(X) in C,

k=Q(a) = {bg + bra+ -+ by_1a?7, all b; in Q}

the number field generated by a.
Let O be the ring of algebraic integers of k: x € k is an algebraic
integer if it is the zero of a polynomial

X"+ a,,,lX”_l +...+ a1 X + ag

with all a; in Z.
The (-function of k is defined by (for Re(s) > 1)

s 1
Ck(s) - (0);;0 (#O/I) - 075]7;!@ 1— (#O/'P)fs

I an ideal of O P prime ideal
Every non-zero ideal of O is uniquely (up to ordering) the product
of non-zero prime ideals.
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The (-function of a number field

Ck(s) can be extended to a meromorphic function on C with a
simple pole at s =1

Let r; the number of embeddings kK — R, 2r», the number of
non-real embeddings k — C, so d = r; + 2n.
(r1 = #real roots of f(X), 2r, = #non-real roots of f(X))

O = 7" x Z/wZ with r =, +r —1 and

w = the number of roots of unity in k

Let o1,...,0,41 be the embeddings of k into C up to complex
conjugation.
If u1,...,u, form a Z-basis of O*/{roots of unity}, let
1 logloi(u)l ... logloi(ur)l
2"
R = F| det | : : : ‘
1 loglors1(us)| ... loglorsi(ur)l

Rob de Jeu Algebraic K-theory, regulators, and cohomology



The (-function of a number field

e 21(2n)7|CI(0)|
T
Ress:l(k(s) = ‘R
w+/ Ak
e Cl(O) = the class group of O (a finite Abelian group which
measures (failure of) unique factorization in O)
e w = the number of roots of unity in k = |O*orsion|

e A, the absolute value of the discriminant of k.

This is a statement about algebraic K-theory:
Ko(O) =7 Cl(@) and Kl(O) = OF,
so

‘CI(O)| = |K0(O)torsion| and w = |K1(O)torsion‘-
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Algebraic K-theory of a ring: Kj

R: a commutative ring with identity 1 # 0

free Abelian group on generators [M], M a
__finitely generated projective R-module

Ko(R) =
[P] — [P'] — [P"] for each exact
sequence 0 - P — P — P" — 0

P projective means every surjection M — P admits a section of
R-modules, e.g., a free R-module.
Therefore P =2 P’ & P” in the above.

Example

e F afield: Ko(F) = Z via the dimension of a vector space

e Ko(Z) = 7Z via rank of a finitely generated Abelian group

e O = ring of integers in a number field: Ko(O) = Z & CI(O)
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Algebraic K-theory of a ring: Ki

View GL,(R) C GLy11(R) via A— (’3 (1))
Let GL(R) = U, GLa(R).
Definition K1(R) = GL(R)/[GL(R), GL(R)]

The determinant gives a surjection Ki(R) — R*, the kernel is
denoted SKi(R)

Example

e F afield: Ki(F) = F*

e Ki(2) =7 = {£1}

e O = ring of integers in a number field: K;(O) = O*

e If, g, R=Q[x,y]/(y> — x3 - 3) then R* = Q* but SK1(R) is
infinite
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Algebraic K-theory of a ring: K;

K1(R) (matrices or maps) give relations between generators of
Ko(R) (=R-modules). "So" Kz(R) should involve "relations
among the relations for K1(R)".

Definition For i,j > 1, i # j,and r in R, let e; j(r) be the

elementary matrix with r in position (i, )

Then
eij(r)eij(s) = eij(r +s)
[e;J(r), ej7/(s)] = e;,/(rs) if i 7& /
leiy(r), ena(s)] = Lif j # k,i # 1

and the ¢; j(r) generate the subgroup [GL(R), GL(R)] of GL(R).
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Algebraic K-theory of a ring: K;

The Steinberg group St(R) of R is the free group on symbols
xij(r) with i,j >1,i+# j, rin R, quotiented out to give the same
three relations for the x; j(r) as for the e j(r).

We have a surjective group homomorphism

¢ St(R) — [GL(R), GL(R)]

x;j(r) — eij(r)

Definition Kz(R) = ker(y)
Proposition K»(R) Abelian. In fact, it is the centre of St(R).
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K> of a field

If Fis a field then K3(F) is an Abelian group written additively,
with
generators {a, b} for a,bin F*
relations  {ajap, b} = {a1, b} + {a2, b}
{a, bibo} = {a, b1} + {a, b}
{a,1—a} =0ifa#0,1
Then also {a, b} = —{b, a} and {c,—c} =0 for a, b, c in F*.

a 0 O b 0 O
If Ain St(F) lifts [0 a=* 0| and Blifts [0 1 0 |, then
0 0 1 00 bt

{a, b} = [A, B] in Ka(F).
Note that Kr(F) ~ F*® F*/(x ® (1 — x)) with {a, b}

corresponding to the class of a ® b.
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An example: K>(Q)

Proposition
K2(Q) = {£1} X &p prime F

with components

_ —1lifa,b<0
T« K2(Q) — {£1} with Tx({a, b}) = { 1 otherwise

4vp(b)

Ty : Ka(Q) = F with Tp({a, b}) = (—1)*#(2)() 285 modulo p
where vp(a) € Z is the number of factors p in a
T, = the tame symbol for p

The proof of the proposition is based on repeated rewriting using
division with remainder: if a = gb + r with a, b, g, r non-zero
integers, then {a/r, —qb/r} =0 in K2(Q).
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Quadratic reciprocity

For p > 2 and o € K»(Q) we have Tp(« )pT € {1} CF}.

Define T2 : Ko(Q) — {+1} as follows.
Write a = (—1)'2/5%< with i,k = 0,1 and ¢, d integers congruent
1mod8, b= (— )’2J5K 7 similarly. Then

-,—2({3 b}) ( )II+JK+kJ
Identify {+1} C T}, for all primes p > 2.

Theorem  Too({a, b}) = Ta({a,b}) TI To({a b})".

p>2
p prime
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Quadratic reciprocity

This is equivalent with quadratic reciprocity. E.g., let p and g be
distinct odd primes, and put <p> equal to 1 if p is a square

modulo g, and to —1 if not. Equivalently,

—1 —1
(Z) =p’7 mod g = T,({p,q}) T

The theorem says that

1= T({p, a)) To({p,a})™ To{p,a})™

(30
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Borel's theorem

Quillen defined Abelian groups K,(R) (n > 0) (1969(7)) for a
ring R; later also for an algebraic variety (1973).

Let k be a number field, with r; real and 2, non-real embeddings,
d =+ 2r, and ring of algebraic integers O, and let Ay be the
absolute value of the discriminant of k

Recall that

e Ko(0O)=Z o Cl(0)

e K1(O) =2 O* hasrank i+ —1

Theorem (Quillen, 1973) K,(O) is finitely generated for all n > 0.
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Borel's theorem

Theorem (Borel, 1974+1977)

(1) K2n(O) is a finite group if n > 1.

(2) For n > 2, K2,-1(O) has rank mp,—1 = + rp if nis odd, and
rank mon_1 = r» if nis even.

(3) There exists a natural regulator map

Kgnfl(O) — RM2n-1 (n > 2).
Its image is a lattice with (normalized) volume of a fundamental

domain
Ck(n)

Ra(k) =
(K) =9 om0 B,

for some g in Q*.
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Example: the K-theory of Z

(o is the Riemann zeta function. For n > 2:

Kan—1(Z) is finite for n even;

Kan—1(Z) has rank 1 for n odd, and R,(k) = q{(n) for some

qe Q"
n 2 4 5 6 7
mon—1| O 1 0 1 0 1
¢(n) | w2/6 | irrational | */90 | 7?7 | #°/945 | 777
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The definition of Borel's regulator map

For R as above, Quillen's K-groups can be defined as follows.

There is an H-space BGL(R)™ (“topological group up to
homotopy” ) with a map BGL(R) — BGL(R)* inducing an
isomorphism H,(BLG(R),Z) = H.(BGL(R)*,Z). It satisfies

m1(BGL(R)Y) = GL(R)/[GL(R), GL(R)] ~ Ki(R)

as [GL(R), GL(R)] = E(R) in m1(BGL(R)) = GL(R) is its own
commutator subgroup.

Then K,(R) = mn(BGL(R)™) for n > 1.
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The definition of Borel's regulator map

Borel for 2n — 1 > 1 constructs b, in H>"~1(GL(C),R) (continuous
group cohomology), well-behaved with respect to complex
conjugation. For n =1, it is log| - | on Hi(GL(C),Z) ~ C*.

If 0 : k — C is an embedding, the o-component of Borel's

regulator map for n > 2 is the composition

KQn—l(k) = KZn—l(C) ﬂ H2,-,_1(GL((C)7]R) M R

with Hur the Hurewicz homomorphism m5,_1(BGL(C)") —
Hp—1(BGL(C)*,Z) = Hap—1(BGL(C),Z) = Hap—1(GL(C), Z).

Possible motivations

e The volume of a fundamental domain of a suitable symmetric
space is a product of values of (x-values (cf. Humbert's
classical formula for an imaginary quadratic field)

e The homology of BGL(O)™ is a wedge algebra on the
primitive elements of the homology, i.e., on the image of the
K-theory of O, so similar to the previous point
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Lichtenbaum conjecture

The functional equation of (x(s) gives that (x(s) at s =1 — n has
a zero of order the rank of Kp,_1(O) (n > 1). Let (;(1 — n) be its
first non-vanishing coefficient in its Taylor expansion at s =1 — n.
Borel's theorem then states that (;(1 — n)R,(k)~! is in Q*.

Conjecture (Lichtenbaum, 1973!) For n > 2 we have

|K2n*2((9)| R (k)

*(1 _ p) = i2?k,n n
Gl ) | K2n—1(O)torsion|

Known consequence of Quillen-Lichtenbaum conjecture For p an
odd prime

Kan-i(0) @ Zp = Hy(O[1/p], Zp(n))

for i = 1,2 and n > max(/, 2).

Theorem (based on work of many people)
For n > 2 and k/Q Abelian, the Lichtenbaum conjecture holds.

Rob de Jeu Algebraic K-theory, regulators, and cohomology



Bloch’s work on CM elliptic curves of

Let E be a CM elliptic curve over Q.
Let Ec be the curve obtained by extending the coefficients to C,
and F the field of meromorphic functions on E¢.

There is an exact localization sequence
T
Ka(Ec) = Kao(F) = @xep.C”

where T is the tame symbol for x:

fordx(g)

T {f.g} = (—1)oDordde) |
{ } ( ) gordx(f)|

with ordy(f) the order of vanishing of f at x.
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Bloch’s work on CM elliptic curves of

For two non-zero meromorphic functions f and g on Eg,
log |f|dargg — log|g|dargf is a closed 1-form on some Ec \ S
with S finite. Then

log|z|darg(l —z) —log|l — z|dargz = dD(z),

where D(z) is a C*°-function on C\ {0, 1}, the Bloch-Wigner
dilogarithm. This gives a homomorphism

{closed 1-forms on some Ec \ S}
{exact 1-forms on some Ec \ S}

{f,g} — log|f|dargg — log|g|dargf.

reg : Ko(F) —
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Bloch’s work on CM elliptic curves of

This fits into a commutative diagram

K>(E)

|

K (Ec) K>(F) Byee.C*

reg Tegi log ||
Y

0 > H&R(EC? R) — H(%R(F; R) Tires ®xeecR

with Hig(F;R) = lim Hiz(Ec\ S;R) where all S are finite.

SCEe
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Bloch’s work on CM elliptic curves of

Theorem (Bloch; Irvine notes, 1978; published in 2000)
Let E be an elliptic curve defined over Q with complex
multiplication. Then there exists an element « in Kz(E) with

1
L'(E,0) =qg— [ reg(a)Aw
(.0) = a5 | )

for some g in Q*, or, using the functional equation for the
L-function:

1
—L(E,2) = q’/ reg(a) A w.
27 E,

C
w is a non-zero holomorphic form on Ec with fE(R)w =1
L(E,s) ="C-function for H*(E)"
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Beilinson's conjectures on special values of L-functions

Beilinson (1985) “attempted to understand the work by Borel and
by Bloch”, reinterpreting and vastly generalising their ideas.
Crucially, he uses K-theory and a suitable (co)homology theory
with their properties, rather than single groups, and relates them
using a formalism based on Chern classes (cf. Gillet, 1981). That
makes it possible to define regulators on all K-groups at once.

Let X/Q be smooth and projective. The main ingredients of
Beilinson’s conjectures are:
e A decomposition of K,(X)® Q = EBn+d'm(X)K( (X) with
K,Si)(X) an eigenspace for all Adams operators (Soulé, 1985)
o reg: K,(,i)(X) — H%’.f"(X(C,]R(i))Jr (Deligne cohomology)
constructed using Chern classes
e For n > 1, this conjecturally induces an isomorphism

reg : K,(,i)(X)mt ®g R 5 H3~"(Xc,R(i))* with int indicating
a subgroup of elements “coming from over Z instead of Q"
(cf. Of + k* for a number field k)
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Beilinson's conjectures on special values of L-functions

o HZ™"(Xc,R(i))* is built from H?~"~1(Xc,R(i — 1))* and
F"Hg;';"—l(XR), which identifies ./\HE’_”(XC,R(i))JF with
AHZ=m=1(Xe, R(i — 1)) @ (AFTHA R " H(XR)) ™

o AHZ™"(Xc,R(i))™ ~ R now has two copies of Q inside: one
from using reg and /\K,S')(X)im, and one from using
H?=n=1(Xc, Q(i — 1))* and FTH35 " 1(Xg) in the previous
point; one is obtained by multiplying the other by an element
of R*/Q*, the Beilinson regulator R, ; of K,S')(X)int

e Conjecturally, R,; = L*(H*~""1(X),i — n) in R*/Q*.
L(H?="=1(X), s) the L-function associated to H'(X),
assumed to satisfy a suitable functional equation, * denotes
the first non-vanishing coefficient in the Taylor expansion

e (Also conjectures for n =0, 1, with slightly different
ingredients.)
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Compatibility of the various regulator maps

e Bloch's regulator map: X = E, n =i = 2, the cup product in
Deligne cohomology gives Bloch's regulator map and
Beilinson's coincide (Beilinson's regulator map is “normalized
by the logarithm and the whole (co)homology formalism)

e Borel's regulator map: X =k, n=2m —1, i = m with
m > 2: much harder (done by Beilinson (sketchy, difficult to
follow), Rapoport, in the end by Burgos Gil): the Borel
regulator map is twice the Beilinson regulator map.
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