Algebraic K-theory, regulators, and cohomology

Rob de Jeu r.m.h.de.jeu@vu.nl

Department of Mathematics Vrije Universiteit Amsterdam The Netherlands http://www.few.vu.nl/~jeu

Xi'an, 20th August 2019

F 4 3 F 4

The Riemann ζ -function

$$\zeta(s) = \sum_{n \ge 1} n^{-s} = \prod_{p \text{ prime}} \frac{1}{1 - p^{-s}} \qquad (\operatorname{Re}(s) > 1)$$

can be extended to a meromorphic function on $\mathbb C$ with a simple pole at s=1 with residue 1

$$\zeta(2) = \pi^2/6$$
 $\zeta(3)$ irrational
 $\zeta(4) = \pi^4/90$ $\zeta(5)$???
 $\zeta(6) = \pi^6/945$ $\zeta(7)$???
:

.

伺 と く ヨ と く ヨ と

э

.

The ζ -function of a number field

Let k be a number field, i.e., for some f(X) an irreducible polynomial in $\mathbb{Q}[X]$ of degree d, and α a root of f(X) in \mathbb{C} ,

$$k = \mathbb{Q}(\alpha) = \{b_0 + b_1\alpha + \dots + b_{d-1}\alpha^{d-1}, \text{ all } b_j \text{ in } \mathbb{Q}\}$$

the number field generated by α .

Let \mathcal{O} be the ring of algebraic integers of $k: x \in k$ is an algebraic integer if it is the zero of a polynomial

$$X^n + a_{n-1}X^{n-1} + \ldots + a_1X + a_0$$

with all a_i in \mathbb{Z} .

The ζ -function of k is defined by (for $\operatorname{Re}(s) > 1$)

$$\zeta_k(s) = \sum_{\substack{(0) \neq I \subset \mathcal{O} \\ I \text{ an ideal of } \mathcal{O}}} (\#\mathcal{O}/I)^{-s} = \prod_{\substack{0 \neq \mathcal{P} \subset \mathcal{O} \\ \mathcal{P} \text{ prime ideal}}} \frac{1}{1 - (\#\mathcal{O}/\mathcal{P})^{-s}}.$$

Every non-zero ideal of \mathcal{O} is uniquely (up to ordering) the product of non-zero prime ideals.

The ζ -function of a number field

 $\zeta_k(s)$ can be extended to a meromorphic function on $\mathbb C$ with a simple pole at s=1

Let r_1 the number of embeddings $k \to \mathbb{R}$, $2r_2$ the number of non-real embeddings $k \to \mathbb{C}$, so $d = r_1 + 2r_2$. ($r_1 = \#$ real roots of f(X), $2r_2 = \#$ non-real roots of f(X)) $\mathcal{O}^* \cong \mathbb{Z}^r \times \mathbb{Z}/w\mathbb{Z}$ with $r = r_1 + r_2 - 1$ and

w = the number of roots of unity in k

Let $\sigma_1, \ldots, \sigma_{r+1}$ be the embeddings of k into \mathbb{C} up to complex conjugation.

If u_1, \ldots, u_r form a \mathbb{Z} -basis of $\mathcal{O}^*/\{\text{roots of unity}\}$, let

$$R = \frac{2^{r_2}}{d} |\det \begin{pmatrix} 1 & \log |\sigma_1(u_1)| & \dots & \log |\sigma_1(u_r)| \\ \vdots & \vdots & & \vdots \\ 1 & \log |\sigma_{r+1}(u_1)| & \dots & \log |\sigma_{r+1}(u_r)| \end{pmatrix}$$

伺下 イヨト イヨト

The ζ -function of a number field

Then

$$\mathsf{Res}_{s=1}\zeta_k(s) = \frac{2^{r_1}(2\pi)^{r_2}|\mathsf{Cl}(\mathcal{O})|}{w\sqrt{\Delta_k}} \cdot R$$

• $Cl(\mathcal{O}) =$ the class group of \mathcal{O} (a finite Abelian group which measures (failure of) unique factorization in \mathcal{O})

- w = the number of roots of unity in $k = |\mathcal{O}^*_{\text{torsion}}|$
- Δ_k the absolute value of the discriminant of k.

This is a statement about algebraic K-theory:

 ${\mathcal K}_0({\mathcal O})\cong {\mathbb Z}\oplus {\mathsf{Cl}}({\mathcal O}) ext{ and } {\mathcal K}_1({\mathcal O})\cong {\mathcal O}^*$,

SO

$$|\mathsf{CI}(\mathcal{O})| = |\mathcal{K}_0(\mathcal{O})_{\mathsf{torsion}}| \text{ and } w = |\mathcal{K}_1(\mathcal{O})_{\mathsf{torsion}}|.$$

Algebraic K-theory of a ring: K_0

R: a commutative ring with identity $1 \neq 0$

$$K_0(R) = \frac{\text{free Abelian group on generators } [M], M \text{ a}}{\left\langle [P] - [P'] - [P''] \text{ for each exact}} \right\rangle}$$

$$\left\langle \begin{array}{c} [P] - [P'] - [P''] \text{ for each exact}}{\left\langle \text{sequence } 0 \to P' \to P \to P'' \to 0 \end{array} \right\rangle} \right\rangle$$

P projective means every surjection $M \rightarrow P$ admits a section of *R*-modules, e.g., a free *R*-module. Therefore $P \cong P' \oplus P''$ in the above.

Example

- *F* a field: $K_0(F) \cong \mathbb{Z}$ via the dimension of a vector space
- $\mathcal{K}_0(\mathbb{Z})\cong\mathbb{Z}$ via rank of a finitely generated Abelian group
- $\mathcal{O} = \text{ring of integers in a number field: } \mathcal{K}_0(\mathcal{O}) \cong \mathbb{Z} \oplus \text{Cl}(\mathcal{O})$

Algebraic K-theory of a ring: K_1

View
$$GL_n(R) \subset GL_{n+1}(R)$$
 via $A \mapsto \begin{pmatrix} A & 0 \\ 0 & 1 \end{pmatrix}$.
Let $GL(R) = \bigcup_n GL_n(R)$.

Definition $K_1(R) = GL(R)/[GL(R), GL(R)]$

The determinant gives a surjection $K_1(R) \to R^*$, the kernel is denoted $SK_1(R)$

Example

•
$$F$$
 a field: $K_1(F) \cong F^*$

•
$$\mathcal{K}_1(\mathbb{Z}) \cong \mathbb{Z}^* = \{\pm 1\}$$

- $\mathcal{O} = \mathsf{ring}$ of integers in a number field: $K_1(\mathcal{O}) \cong \mathcal{O}^*$
- If, e.g., $R = \mathbb{Q}[x, y]/(y^2 x^3 3)$ then $R^* = \mathbb{Q}^*$ but $SK_1(R)$ is infinite

3

 $K_1(R)$ (matrices or maps) give relations between generators of $K_0(R)$ (=*R*-modules). "So" $K_2(R)$ should involve "relations among the relations for $K_1(R)$ ".

Definition For $i, j \ge 1$, $i \ne j$, and r in R, let $e_{i,j}(r)$ be the elementary matrix with r in position (i, j)

Then

$$e_{i,j}(r)e_{i,j}(s) = e_{i,j}(r+s)$$

 $[e_{i,j}(r), e_{j,l}(s)] = e_{i,l}(rs)$ if $i \neq l$
 $[e_{i,j}(r), e_{k,l}(s)] = 1$ if $j \neq k, i \neq l$

and the $e_{i,j}(r)$ generate the subgroup [GL(R), GL(R)] of GL(R).

・ 同 ト ・ ヨ ト ・ ヨ ト

The Steinberg group St(R) of R is the free group on symbols $x_{i,j}(r)$ with $i, j \ge 1$, $i \ne j$, r in R, quotiented out to give the same three relations for the $x_{i,j}(r)$ as for the $e_{i,j}(r)$.

We have a surjective group homomorphism

$$arphi : \operatorname{St}(R) o [GL(R), GL(R)]$$

 $x_{i,j}(r) \mapsto e_{i,j}(r)$

Definition $K_2(R) = \ker(\varphi)$

Proposition $K_2(R)$ Abelian. In fact, it is the centre of St(R).

Т

If F is a field then $K_2(F)$ is an Abelian group written additively, with

generators
$$\{a, b\}$$
 for a, b in F^*
relations $\{a_1a_2, b\} = \{a_1, b\} + \{a_2, b\}$
 $\{a, b_1b_2\} = \{a, b_1\} + \{a, b_2\}$
 $\{a, 1 - a\} = 0$ if $a \neq 0, 1$
Then also $\{a, b\} = -\{b, a\}$ and $\{c, -c\} = 0$ for a, b, c in F^* .
If A in St(F) lifts $\begin{pmatrix} a & 0 & 0 \\ 0 & a^{-1} & 0 \\ 0 & 0 & 1 \end{pmatrix}$ and B lifts $\begin{pmatrix} b & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & b^{-1} \end{pmatrix}$, then
 $\{a, b\} = [A, B]$ in $K_2(F)$.

Note that $K_2(F) \simeq F^* \otimes F^* / \langle x \otimes (1-x) \rangle$ with $\{a, b\}$ corresponding to the class of $a \otimes b$.

Proposition

$${K_2(\mathbb{Q}) \stackrel{\sim}{\rightarrow} \{\pm 1\} \times \oplus_{p \ \mathrm{prime}} \ \mathbb{F}_p^*}$$

with components

$$\mathcal{T}_{\infty}:\mathcal{K}_{2}(\mathbb{Q})
ightarrow\{\pm1\}$$
 with $\mathcal{T}_{\infty}(\{a,b\})=egin{cases} -1 ext{ if } a,b<0\ 1 ext{ otherwise} \end{cases}$

 $T_p: \mathcal{K}_2(\mathbb{Q}) \to \mathbb{F}_p^*$ with $T_p(\{a, b\}) = (-1)^{v_p(a)v_p(b)} \frac{a^{v_p(b)}}{b^{v_p(a)}} \mod p$ where $v_p(a) \in \mathbb{Z}$ is the number of factors p in a T_p = the tame symbol for p

The proof of the proposition is based on repeated rewriting using division with remainder: if a = qb + r with a, b, q, r non-zero integers, then $\{a/r, -qb/r\} = 0$ in $K_2(\mathbb{Q})$.

伺 ト イ ヨ ト イ ヨ

For
$$p > 2$$
 and $\alpha \in K_2(\mathbb{Q})$ we have $T_p(\alpha)^{\frac{p-1}{2}} \in \{\pm 1\} \subseteq \mathbb{F}_p^*$.
Define $\widetilde{T}_2 : K_2(\mathbb{Q}) \to \{\pm 1\}$ as follows.
Write $a = (-1)^i 2^j 5^k \frac{c}{d}$ with $i, k = 0, 1$ and c, d integers congruent 1 mod 8, $b = (-1)^l 2^J 5^k \frac{c'}{d'}$ similarly. Then

$$\widetilde{T}_2(\{a,b\})=(-1)^{iI+jK+kJ}.$$

Identify $\{\pm 1\} \subseteq \mathbb{F}_p^*$ for all primes p > 2.

Theorem
$$T_{\infty}(\{a,b\}) = \widetilde{T}_2(\{a,b\}) \prod_{\substack{p>2\\p \text{ prime}}} T_p(\{a,b\})^{\frac{p-1}{2}}.$$

★ ∃ → ★ ∃

э

This is equivalent with quadratic reciprocity. E.g., let p and q be distinct odd primes, and put $\left(\frac{p}{q}\right)$ equal to 1 if p is a square modulo q, and to -1 if not. Equivalently,

$$\left(\frac{p}{q}\right) = p^{\frac{q-1}{2}} \bmod q = T_q(\{p,q\})^{\frac{q-1}{2}}$$

The theorem says that

$$1 = \widetilde{T}_{2}(\{p,q\})T_{p}(\{p,q\})^{\frac{p-1}{2}}T_{q}(\{p,q\})^{\frac{q-1}{2}} = (-1)^{\frac{p-1}{2}\cdot\frac{q-1}{2}}\left(\frac{q}{p}\right)\left(\frac{p}{q}\right).$$

Quillen defined Abelian groups $K_n(R)$ $(n \ge 0)$ (1969(?)) for a ring R; later also for an algebraic variety (1973).

Let k be a number field, with r_1 real and $2r_2$ non-real embeddings, $d = r_1 + 2r_2$, and ring of algebraic integers \mathcal{O} , and let Δ_k be the absolute value of the discriminant of k

Recall that

- $K_0(\mathcal{O}) \cong \mathbb{Z} \oplus Cl(\mathcal{O})$
- $K_1(\mathcal{O})\cong \mathcal{O}^*$ has rank r_1+r_2-1

Theorem (Quillen, 1973) $K_n(\mathcal{O})$ is finitely generated for all $n \ge 0$.

Theorem (Borel, 1974+1977) (1) $K_{2n}(\mathcal{O})$ is a finite group if $n \ge 1$. (2) For $n \ge 2$, $K_{2n-1}(\mathcal{O})$ has rank $m_{2n-1} = r_1 + r_2$ if n is odd, and rank $m_{2n-1} = r_2$ if n is even. (3) There exists a natural regulator map

$$K_{2n-1}(\mathcal{O}) \to \mathbb{R}^{m_{2n-1}} \qquad (n \ge 2).$$

Its image is a lattice with (normalized) volume of a fundamental domain

$$R_n(k) = q \frac{\zeta_k(n)}{\pi^{n(d-m_{2n-1})}\sqrt{\Delta_k}}$$

for some q in \mathbb{Q}^* .

• • = • • = •

 $\zeta_{\mathbb{Q}}$ is the Riemann zeta function. For $n \geq 2$: $K_{2n-1}(\mathbb{Z})$ is finite for *n* even; $K_{2n-1}(\mathbb{Z})$ has rank 1 for *n* odd, and $R_n(k) = q\zeta(n)$ for some $q \in \mathbb{Q}^*$.

n	2	3	4	5	6	7	
m_{2n-1}	0	1	0	1	0	1	
$\zeta(n)$	$\pi^{2}/6$	irrational	$\pi^{4}/90$???	$\pi^{6}/945$???	

• • = • • = •

For R as above, Quillen's K-groups can be defined as follows.

There is an *H*-space $BGL(R)^+$ ("topological group up to homotopy") with a map $BGL(R) \rightarrow BGL(R)^+$ inducing an isomorphism $H_*(BLG(R), \mathbb{Z}) \xrightarrow{\sim} H_*(BGL(R)^+, \mathbb{Z})$. It satisfies

 $\pi_1(BGL(R)^+) \simeq GL(R)/[GL(R), GL(R)] \simeq K_1(R)$

as [GL(R), GL(R)] = E(R) in $\pi_1(BGL(R)) = GL(R)$ is its own commutator subgroup.

Then $K_n(R) = \pi_n(BGL(R)^+)$ for $n \ge 1$.

・ 同 ト ・ ヨ ト ・ ヨ ト

The definition of Borel's regulator map

Borel for $2n-1 \ge 1$ constructs b_n in $H^{2n-1}(GL(\mathbb{C}), \mathbb{R})$ (continuous group cohomology), well-behaved with respect to complex conjugation. For n = 1, it is $\log |\cdot|$ on $H_1(GL(\mathbb{C}), \mathbb{Z}) \simeq \mathbb{C}^*$.

If $\sigma: k \to \mathbb{C}$ is an embedding, the σ -component of Borel's regulator map for $n \ge 2$ is the composition

$$K_{2n-1}(k) \stackrel{\sigma_*}{\to} K_{2n-1}(\mathbb{C}) \stackrel{\operatorname{Hur}}{\longrightarrow} H_{2n-1}(GL(\mathbb{C}), \mathbb{R}) \stackrel{b_n \cap \cdot}{\longrightarrow} \mathbb{R}$$

with Hur the Hurewicz homomorphism $\pi_{2n-1}(BGL(\mathbb{C})^+) \rightarrow H_{2n-1}(BGL(\mathbb{C})^+, \mathbb{Z}) = H_{2n-1}(BGL(\mathbb{C}), \mathbb{Z}) = H_{2n-1}(GL(\mathbb{C}), \mathbb{Z}).$

Possible motivations

- The volume of a fundamental domain of a suitable symmetric space is a product of values of ζ_k-values (cf. Humbert's classical formula for an imaginary quadratic field)
- The homology of BGL(O)⁺ is a wedge algebra on the primitive elements of the homology, i.e., on the image of the K-theory of O, so similar to the previous point

Lichtenbaum conjecture

The functional equation of $\zeta_k(s)$ gives that $\zeta_k(s)$ at s = 1 - n has a zero of order the rank of $K_{2n-1}(\mathcal{O})$ $(n \ge 1)$. Let $\zeta_k^*(1-n)$ be its first non-vanishing coefficient in its Taylor expansion at s = 1 - n. Borel's theorem then states that $\zeta_k^*(1-n)R_n(k)^{-1}$ is in \mathbb{Q}^* .

Conjecture (Lichtenbaum, 1973!) For $n \ge 2$ we have

$$\zeta_k^*(1-n) = \pm 2^{?_{k,n}} \frac{|K_{2n-2}(\mathcal{O})|}{|K_{2n-1}(\mathcal{O})_{\text{torsion}}|} R_n(k)$$

Known consequence of Quillen-Lichtenbaum conjecture For p an odd prime

$$\mathcal{K}_{2n-i}(\mathcal{O})\otimes\mathbb{Z}_p\stackrel{\sim}{
ightarrow}\mathcal{H}^i_{\mathrm{\acute{e}t}}(\mathcal{O}[1/p],\mathbb{Z}_p(n))$$

for i = 1, 2 and $n \ge \max(i, 2)$.

Theorem (based on work of many people) For $n \ge 2$ and k/\mathbb{Q} Abelian, the Lichtenbaum conjecture holds.

Bloch's work on CM elliptic curves of \mathbb{Q}

Let *E* be a CM elliptic curve over \mathbb{Q} .

Let $E_{\mathbb{C}}$ be the curve obtained by extending the coefficients to \mathbb{C} , and F the field of meromorphic functions on $E_{\mathbb{C}}$.

There is an exact localization sequence

$$K_2(E_{\mathbb{C}}) \to K_2(F) \stackrel{T}{\to} \oplus_{x \in E_{\mathbb{C}}} \mathbb{C}^*$$

where T_x is the tame symbol for x:

$$\mathcal{T}_{x}: \{f,g\} \mapsto (-1)^{\operatorname{ord}_{x}(f)\operatorname{ord}_{x}(g)} \frac{f^{\operatorname{ord}_{x}(g)}}{g^{\operatorname{ord}_{x}(f)}}|_{x}$$

with $\operatorname{ord}_{x}(f)$ the order of vanishing of f at x.

For two non-zero meromorphic functions f and g on $E_{\mathbb{C}}$, log $|f| d \arg g - \log |g| d \arg f$ is a closed 1-form on some $E_{\mathbb{C}} \setminus S$ with S finite. Then

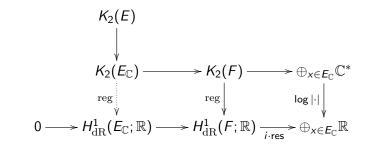
$$\log |z| \operatorname{d} \arg(1-z) - \log |1-z| \operatorname{d} \arg z = \operatorname{d} D(z),$$

where D(z) is a C^{∞} -function on $\mathbb{C} \setminus \{0, 1\}$, the Bloch-Wigner dilogarithm. This gives a homomorphism

$$\operatorname{reg}: \mathcal{K}_2(F) \to \frac{\{\operatorname{closed} \ 1\text{-forms on some } E_{\mathbb{C}} \setminus S\}}{\{\operatorname{exact} \ 1\text{-forms on some } E_{\mathbb{C}} \setminus S\}}$$
$$\{f,g\} \mapsto \log |f| \operatorname{d} \arg g - \log |g| \operatorname{d} \arg f.$$

通 ト イ ヨ ト イ ヨ ト

This fits into a commutative diagram



with $H^1_{\mathrm{dR}}(F;\mathbb{R}) = \lim_{\substack{\longrightarrow\\ S \subset E_{\mathbb{C}}}} H^1_{\mathrm{dR}}(E_{\mathbb{C}} \setminus S;\mathbb{R})$ where all S are finite.

Theorem (Bloch; Irvine notes, 1978; published in 2000) Let E be an elliptic curve defined over \mathbb{Q} with complex multiplication. Then there exists an element α in $K_2(E)$ with

$$L'(E,0) = q rac{1}{2\pi} \int_{E_{\mathbb{C}}} \operatorname{reg}(lpha) \wedge \omega$$

for some q in \mathbb{Q}^* , or, using the functional equation for the *L*-function:

$$\frac{1}{2\pi}L(E,2)=q'\int_{E_{\mathbb{C}}}\operatorname{reg}(\alpha)\wedge\omega.$$

ω is a non-zero holomorphic form on $E_{\mathbb{C}}$ with $\int_{E(\mathbb{R})} ω = 1$. L(E, s) = ``ζ-function for $H^1(E)$ ''

Beilinson's conjectures on special values of L-functions

Beilinson (1985) "attempted to understand the work by Borel and by Bloch", reinterpreting and vastly generalising their ideas. Crucially, he uses K-theory and a suitable (co)homology theory with their properties, rather than single groups, and relates them using a formalism based on Chern classes (cf. Gillet, 1981). That makes it possible to define regulators on all K-groups at once.

Let X/\mathbb{Q} be smooth and projective. The main ingredients of Beilinson's conjectures are:

- A decomposition of K_n(X) ⊗ Q = ⊕^{n+dim(X)}_{i=0} K⁽ⁱ⁾_n(X) with K⁽ⁱ⁾_n(X) an eigenspace for all Adams operators (Soulé, 1985)
 reg : K⁽ⁱ⁾_n(X) → H²ⁱ⁻ⁿ_D(X_C, ℝ(i))⁺ (Deligne cohomology)
- constructed using Chern classes
- For n > 1, this conjecturally induces an isomorphism
 reg : K_n⁽ⁱ⁾(X)_{int} ⊗_Q ℝ → H_D²ⁱ⁻ⁿ(X_C, ℝ(i))⁺ with int indicating a subgroup of elements "coming from over Z instead of Q"
 (cf. O_k^{*} ↔ k^{*} for a number field k)

Beilinson's conjectures on special values of L-functions

- $H_D^{2i-n}(X_{\mathbb{C}}, \mathbb{R}(i))^+$ is built from $H^{2i-n-1}(X_{\mathbb{C}}, \mathbb{R}(i-1))^+$ and $F^i H_{dR}^{2i-n-1}(X_{\mathbb{R}})$, which identifies $\Lambda H_D^{2i-n}(X_{\mathbb{C}}, \mathbb{R}(i))^+$ with $\Lambda H^{2i-n-1}(X_{\mathbb{C}}, \mathbb{R}(i-1))^+ \otimes (\Lambda F^i H_{dR}^{2i-n-1}(X_{\mathbb{R}}))^{-1}$
- ΛH²ⁱ⁻ⁿ_D(X_C, ℝ(i))⁺ ≃ ℝ now has two copies of Q inside: one from using reg and ΛK⁽ⁱ⁾_n(X)_{int}, and one from using H²ⁱ⁻ⁿ⁻¹(X_C, Q(i 1))⁺ and FⁱH²ⁱ⁻ⁿ⁻¹_{dR}(X_Q) in the previous point; one is obtained by multiplying the other by an element of ℝ*/Q*, the Beilinson regulator R_{n,i} of K⁽ⁱ⁾_n(X)_{int}
- Conjecturally, R_{n,i} ≡ L*(H²ⁱ⁻ⁿ⁻¹(X), i − n) in ℝ*/Q*. L(H²ⁱ⁻ⁿ⁻¹(X), s) the L-function associated to Hⁱ(X), assumed to satisfy a suitable functional equation, * denotes the first non-vanishing coefficient in the Taylor expansion
- (Also conjectures for *n* = 0, 1, with slightly different ingredients.)

伺 ト イヨト イヨト

- Bloch's regulator map: X = E, n = i = 2, the cup product in Deligne cohomology gives Bloch's regulator map and Beilinson's coincide (Beilinson's regulator map is "normalized by the logarithm and the whole (co)homology formalism")
- Borel's regulator map: X = k, n = 2m − 1, i = m with m ≥ 2: much harder (done by Beilinson (sketchy, difficult to follow), Rapoport, in the end by Burgos Gil): the Borel regulator map is twice the Beilinson regulator map.

・ 同 ト ・ ヨ ト ・ ヨ