Bloch groups and tessellations of hyperbolic 3-space

Rob de Jeu r.m.h.de.jeu@vu.nl

Department of Mathematics Vrije Universiteit Amsterdam The Netherlands http://www.few.vu.nl/~jeu

Joint work with David Burns, Herbert Gangl, Alexander Rahm, and Dan Yasaki

Nanjing, 26th August 2019

The Riemann ζ -function

$$\zeta(s) = \sum_{n \ge 1} n^{-s} = \prod_{p \text{ prime}} \frac{1}{1 - p^{-s}} \qquad (\text{Re}(s) > 1)$$

can be extended to a meromorphic function on $\mathbb C$ with a simple pole at s=1 with residue 1

$$\zeta(2) = \pi^2/6$$
 $\zeta(3)$ irrational
 $\zeta(4) = \pi^4/90$ $\zeta(5)$???
 $\zeta(6) = \pi^6/945$ $\zeta(7)$???

.

• • = • • = •

3

.

The ζ -function of a number field

Let k be a number field, i.e., for some f(X) an irreducible polynomial in $\mathbb{Q}[X]$ of degree d, and α a root of f(X) in \mathbb{C} ,

$$k = \mathbb{Q}(\alpha) = \{b_0 + b_1\alpha + \dots + b_{d-1}\alpha^{d-1}, \text{ all } b_j \text{ in } \mathbb{Q}\}$$

the number field generated by α .

Let \mathcal{O} be the ring of algebraic integers of $k: x \in k$ is an algebraic integer if it is the zero of a polynomial

 $X^n + a_{n-1}X^{n-1} + \ldots + a_1X + a_0$ with all a_i in \mathbb{Z} .

The ζ -function of k is defined by (for $\operatorname{Re}(s) > 1$)

$$\zeta_k(s) = \sum_{\substack{(0) \neq I \subset \mathcal{O} \\ I \text{ an ideal of } \mathcal{O}}} (\#\mathcal{O}/I)^{-s} = \prod_{\substack{0 \neq \mathcal{P} \subset \mathcal{O} \\ \mathcal{P} \text{ prime ideal}}} \frac{1}{1 - (\#\mathcal{O}/\mathcal{P})^{-s}}.$$

Every non-zero ideal of \mathcal{O} is uniquely (up to ordering) the product of non-zero prime ideals.

The ζ -function of a number field

 $\zeta_k(s)$ can be extended to a meromorphic function on $\mathbb C$ with a simple pole at s=1

Let r_1 the number of embeddings $k \to \mathbb{R}$, $2r_2$ the number of non-real embeddings $k \to \mathbb{C}$, so $d = r_1 + 2r_2$. ($r_1 = \#$ real roots of f(X), $2r_2 = \#$ non-real roots of f(X)) $\mathcal{O}^* \cong \mathbb{Z}^r \times \mathbb{Z}/w\mathbb{Z}$ with $r = r_1 + r_2 - 1$ and

w = the number of roots of unity in k

Let $\sigma_1, \ldots, \sigma_{r+1}$ be the embeddings of k into $\mathbb C$ up to complex conjugation.

If u_1, \ldots, u_r form a \mathbb{Z} -basis of $\mathcal{O}^*/\{\text{roots of unity}\}$, let

$$R = \frac{2^{r_2}}{d} |\det \begin{pmatrix} 1 & \log |\sigma_1(u_1)| & \dots & \log |\sigma_1(u_r)| \\ \vdots & \vdots & & \vdots \\ 1 & \log |\sigma_{r+1}(u_1)| & \dots & \log |\sigma_{r+1}(u_r)| \end{pmatrix}$$

The ζ -function of a number field

Then

$$\mathsf{Res}_{s=1}\zeta_k(s) = \frac{2^{r_1}(2\pi)^{r_2}R \; |\mathsf{CI}(\mathcal{O})|}{w\sqrt{\Delta_k}}$$

• $Cl(\mathcal{O}) =$ the class group of \mathcal{O} (a finite Abelian group which measures (failure of) unique factorization in \mathcal{O})

- w = the number of roots of unity in $k = |\mathcal{O}^*_{\text{torsion}}|$
- Δ_k the absolute value of the discriminant of k.

This is a statement about algebraic K-theory:

 ${\mathcal K}_0({\mathcal O})\cong {\mathbb Z}\oplus {\mathsf{Cl}}({\mathcal O}) ext{ and } {\mathcal K}_1({\mathcal O})\cong {\mathcal O}^*$,

SO

$$|\mathsf{CI}(\mathcal{O})| = |\mathcal{K}_0(\mathcal{O})_{\mathsf{torsion}}| \text{ and } w = |\mathcal{K}_1(\mathcal{O})_{\mathsf{torsion}}|.$$

Algebraic K-theory of a ring: K_0

R: a commutative ring with identity $1 \neq 0$

$$K_0(R) = \frac{\text{free Abelian group on generators } [M], M \text{ a}}{\left\langle [P] - [P'] - [P''] \text{ for each exact}} \right\rangle}$$

P projective means every surjection $M \rightarrow P$ admits a section of *R*-modules, e.g., a free *R*-module. Therefore $P \cong P' \oplus P''$ in the above.

Example

- F a field: $K_0(F) \cong \mathbb{Z}$ via the dimension of a vector space
- $\mathcal{K}_0(\mathbb{Z})\cong\mathbb{Z}$ via rank of a finitely generated Abelian group
- $\mathcal{O} = \text{ring of integers in a number field: } \mathcal{K}_0(\mathcal{O}) \cong \mathbb{Z} \oplus \text{Cl}(\mathcal{O})$

Algebraic K-theory of a ring: K_1

View
$$GL_n(R) \subset GL_{n+1}(R)$$
 via $A \mapsto \begin{pmatrix} A & 0 \\ 0 & 1 \end{pmatrix}$.
Let $GL(R) = \bigcup_n GL_n(R)$.

Definition $K_1(R) = GL(R)/[GL(R), GL(R)]$

Determinant gives a surjection $K_1(R) \rightarrow R^*$ with kernel $SK_1(R)$

Example

- F a field: $K_1(F) \cong F^*$
- $K_1(\mathbb{Z}) \cong \mathbb{Z}^* = \{\pm 1\}$
- $\mathcal{O} = \mathsf{ring}$ of integers in a number field: $K_1(\mathcal{O}) \cong \mathcal{O}^*$
- If, e.g., $R = \mathbb{Q}[x, y]/(y^2 x^3 3)$ then $R^* = \mathbb{Q}^*$ but $SK_1(R)$ is infinite

伺 ト イ ヨ ト イ ヨ ト

 $K_1(R)$ (matrices or maps) give relations between generators of $K_0(R)$ (=*R*-modules). "So" $K_2(R)$ should involve "relations among the relations for $K_1(R)$ ".

Definition For $i, j \ge 1$, $i \ne j$, and r in R, let $e_{i,j}(r)$ be the elementary matrix with r in position (i, j)

Then

$$e_{i,j}(r)e_{i,j}(s) = e_{i,j}(r+s)$$

 $[e_{i,j}(r), e_{j,l}(s)] = e_{i,l}(rs)$ if $i \neq l$
 $[e_{i,j}(r), e_{k,l}(s)] = 1$ if $j \neq k, i \neq l$

and the $e_{i,j}(r)$ generate the subgroup [GL(R), GL(R)] of GL(R).

伺 ト イヨト イヨト

The Steinberg group St(R) of R is the free group on symbols $x_{i,j}(r)$ with $i, j \ge 1$, $i \ne j$, r in R, quotiented out to give the same three relations for the $x_{i,j}(r)$ as for the $e_{i,j}(r)$.

We have a surjective group homomorphism

$$arphi : \operatorname{St}(R) o [GL(R), GL(R)]$$

 $x_{i,j}(r) \mapsto e_{i,j}(r)$

Definition $K_2(R) = \ker(\varphi)$

Proposition $K_2(R)$ is an Abelian group. It is the centre of St(R).

Т

If F is a field then $K_2(F)$ is an Abelian group written additively, with

generators
$$\{a, b\}$$
 for a, b in F^*
relations $\{a_1a_2, b\} = \{a_1, b\} + \{a_2, b\}$
 $\{a, b_1b_2\} = \{a, b_1\} + \{a, b_2\}$
 $\{a, 1 - a\} = 0$ if $a \neq 0, 1$
Then also $\{a, b\} = -\{b, a\}$ and $\{c, -c\} = 0$ for a, b, c in F^* .
If A in St(F) lifts $\begin{pmatrix} a & 0 & 0 \\ 0 & a^{-1} & 0 \\ 0 & 0 & 1 \end{pmatrix}$ and B lifts $\begin{pmatrix} b & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & b^{-1} \end{pmatrix}$, then
 $\{a, b\} = [A, B]$ in $K_2(F)$.

Note that $K_2(F) \simeq F^* \otimes F^* / \langle x \otimes (1-x) \rangle$ with $\{a, b\}$ corresponding to the class of $a \otimes b$.

Proposition

$${K_2(\mathbb{Q}) \stackrel{\sim}{\rightarrow} \{\pm 1\} \times \oplus_{p \ \mathrm{prime}} \ \mathbb{F}_p^*}$$

with components

$$\mathcal{T}_\infty:\mathcal{K}_2(\mathbb{Q}) o \{\pm 1\}$$
 with $\mathcal{T}_\infty(\{a,b\})=egin{cases} -1 ext{ if } a,b<0\ 1 ext{ otherwise} \end{cases}$

 $T_p: \mathcal{K}_2(\mathbb{Q}) \to \mathbb{F}_p^*$ with $T_p(\{a, b\}) = (-1)^{v_p(a)v_p(b)} \frac{a^{v_p(b)}}{b^{v_p(a)}} \mod p$ where $v_p(a) \in \mathbb{Z}$ is the number of factors p in a T_p = the tame symbol for p

The proof of the proposition is based on repeated rewriting using division with remainder: if a = qb + r with a, b, q, r non-zero integers, then $\{a/r, -qb/r\} = 0$ in $K_2(\mathbb{Q})$.

For
$$p > 2$$
 and $\alpha \in K_2(\mathbb{Q})$ we have $T_p(\alpha)^{\frac{p-1}{2}} \in \{\pm 1\} \subseteq \mathbb{F}_p^*$.
Define $\widetilde{T}_2 : K_2(\mathbb{Q}) \to \{\pm 1\}$ as follows.
Write $a = (-1)^i 2^j 5^k \frac{c}{d}$ with $i, k = 0, 1$ and c, d integers congruent 1 mod 8, $b = (-1)^l 2^j 5^k \frac{c'}{d'}$ similarly. Then

$$\widetilde{T}_2(\{a,b\})=(-1)^{iI+jK+kJ}.$$

Identify $\{\pm 1\} \subseteq \mathbb{F}_p^*$ for all primes p > 2.

Theorem
$$T_{\infty}(\{a,b\}) = \widetilde{T}_2(\{a,b\}) \prod_{\substack{p>2\\p \text{ prime}}} T_p(\{a,b\})^{\frac{p-1}{2}}.$$

< ∃ →

This is equivalent with quadratic reciprocity. E.g., let p and q be distinct odd primes, and put $\left(\frac{p}{q}\right)$ equal to 1 if p is a square modulo q, and to -1 if not. Equivalently,

$$\left(\frac{p}{q}\right) = p^{\frac{q-1}{2}} \bmod q = T_q(\{p,q\})^{\frac{q-1}{2}}$$

The theorem says that

$$1 = \widetilde{T}_{2}(\{p,q\})T_{p}(\{p,q\})^{\frac{p-1}{2}}T_{q}(\{p,q\})^{\frac{q-1}{2}} = (-1)^{\frac{p-1}{2}\cdot\frac{q-1}{2}}\left(\frac{q}{p}\right)\left(\frac{p}{q}\right).$$

Quillen defined Abelian groups $K_n(R)$ $(n \ge 0)$ for rings R, as well as for algebraic varieties.

Let k be a number field, with r_1 real and $2r_2$ non-real embeddings, $d = r_1 + 2r_2$, and ring of algebraic integers \mathcal{O} , and let Δ_k be the absolute value of the discriminant of k

Recall that

- $K_0(\mathcal{O}) \cong \mathbb{Z} \oplus Cl(\mathcal{O})$
- $K_1(\mathcal{O}) \cong \mathcal{O}^*$ has rank $r_1 + r_2 1$

Theorem (Quillen) $K_n(\mathcal{O})$ is finitely generated for all $n \ge 0$.

Theorem (Borel) (1) $K_{2n}(\mathcal{O})$ is a finite group if $n \ge 1$. (2) For $n \ge 2$, $K_{2n-1}(\mathcal{O})$ has rank $m_{2n-1} = r_1 + r_2$ if n is odd, and rank $m_{2n-1} = r_2$ if n is even. (3) There exists a natural regulator map

$$K_{2n-1}(\mathcal{O}) \to \mathbb{R}^{m_{2n-1}} \qquad (n \ge 2).$$

Its image is a lattice with (normalized) volume of a fundamental domain

$$R_n(k) = q \frac{\zeta_k(n)}{\pi^{n(d-m_{2n-1})}\sqrt{\Delta_k}}$$

for some q in \mathbb{Q}^* .

 $\zeta_{\mathbb{Q}}$ is the Riemann zeta function. For $n \geq 2$: $K_{2n-1}(\mathbb{Z})$ is finite for n even; $K_{2n-1}(\mathbb{Z})$ has rank 1 for n odd, and $R_n(k) = q\zeta(n)$ for some $q \in \mathbb{Q}^*$.

n	2	3	4	5	6	7	
m_{2n-1}	0	1	0	1	0	1	
$\zeta(n)$	$\pi^{2}/6$	irrational	$\pi^4/90$???	$\pi^6/945$???	

- A 🗄 🕨

The Lichtenbaum conjecture

Conjecture (Lichtenbaum) Let k be a number field with ring of algebraic integers O. Then for $n \ge 2$ we have

$$\zeta_k^*(1-n) = \pm 2^{?_{k,n}} \frac{|K_{2n-2}(\mathcal{O})|}{|K_{2n-1}(\mathcal{O})_{\text{torsion}}|} R_n(k)$$

where * denotes the first non-vanishing coefficient of $\zeta_k(s)$ in the Taylor expansion at s = 1 - n, i.e., $\frac{1}{m_{2n-1}!}\zeta_k^{(m_{2n-1})}(1-n)$.

The power of 2 here is still not entirely clear. However, we have

Theorem (based on work of many people) For n = 2 and k/\mathbb{Q} Abelian, we have

$$\zeta_{k}^{*}(-1) = (-1)^{r_{1}+r_{2}} 2^{r_{2}} \frac{|K_{2}(\mathcal{O})|}{|K_{3}(\mathcal{O})_{\text{torsion}}|} R_{2}(k)$$

where r_1 is the number of real embeddings of k, and $2r_2$ the number of complex embeddings.

The ingredients of this conjecture are difficult to calculate. For any number field k we have:

$$(1) \hspace{0.1 cm} \mathcal{K}_{2}(\mathcal{O}) = \ker(\mathcal{K}_{2}(k) \xrightarrow{T} \oplus_{\mathcal{P} \neq 0} _{\mathsf{prime}}(\mathcal{O}/\mathcal{P})^{*})$$

(2) For
$$n \geq 2$$
, we have $K_{2n-1}(\mathcal{O}) = K_{2n-1}(k)$

(3) $K_3(k)$ can be described using one subgroup (Milnor K_3) and the resulting quotient, the *indecomposable* K_3 of k, $K_3(k)^{\text{ind}}$

(4) There are formulae for the torsion subgroups of those, so one knows $|K_3(\mathcal{O})_{torsion}|$

For k imaginary quadratic this means ${\it K}_3(k)\simeq \mathbb{Z}\oplus \mathbb{Z}/24\mathbb{Z},$ and

$$\zeta'_k(-1) = -\frac{1}{12} |K_2(\mathcal{O})| \cdot R_2(k).$$

The idea is to find an element in $K_3(k)$ /torsion and compute its regulator by comparison with Humbert's classical formula:

$$\operatorname{vol}(\operatorname{PGL}_2(\mathcal{O})ackslash\mathbb{H}) = rac{1}{8\pi^2}\Delta_k^{rac{3}{2}}\zeta_k(2)$$

for the action of $PGL_2(\mathcal{O})$ on hyperbolic 3-space \mathbb{H} .

Making $K_3(k)$ more explicit

Let k be any number field (for simplicity). Theorem (Suslin) Let

$$k^* \otimes_\sigma k^* = rac{k^* \otimes_{\mathbb{Z}} k^*}{\langle x \otimes y + y \otimes x
angle}$$

and

$$\mathfrak{p}(k) = \frac{\mathbb{Z}[k^{\flat}]}{\langle [x] - [y] + [\frac{y}{x}] + [\frac{1-x}{1-y}] - [\frac{1-x^{-1}}{1-y^{-1}}] \text{ with } x \neq y \text{ in } k^{\flat} \rangle}$$

where $k^{\flat} = k \setminus \{0,1\}$. Then the Bloch group

$$egin{aligned} B_1(k) &= \ker(\mathfrak{p}(k) o k^* \otimes_\sigma k^*) \ &[x] \mapsto x \otimes (1-x) \end{aligned}$$

is isomorphic to $K_3(k)^{\text{ind}}/a$ cyclic group of order $2|\mathcal{O}^*_{\text{torsion}}|$.

• $c_k = [x] + [1 - x]$ is in $B_1(k)$ and is independent of x; $6c_k = 0$. • $[x] + [x^{-1}]$ is annihilated by 2

Making $K_3(k)$ more explicit

Slightly better behaved is the following variation.

Replace $k^* \otimes_{\sigma} k^*$ with $\tilde{\wedge}^2 k^* = \frac{k^* \otimes k^*}{\langle x \otimes (-x) \rangle}$ and $\mathfrak{p}(k)$ with $\overline{\mathfrak{p}}(k) = \mathfrak{p}(k)/\langle [x] + [1-x], [y] + [y^{-1}] \rangle$. This gives another Bloch group $B_2(k) = B_1(k)/\langle c_k \rangle$ as the kernel. This $B_2(k)$ has trivial torsion if $k = \mathbb{Q}$, an imaginary quadratic field, or a cyclotomic field and for those, we have an isomorphism

$$\mathit{K}_3(k)/\mathsf{torsion} \stackrel{\sim}{
ightarrow} B_2(k)$$

Remark The 5-term relation here is

$$0 = \sum_{i=0}^{4} (-1)^{i} [\operatorname{cr}_{2}(P_{0}, \ldots, \widehat{P}_{i}, \ldots, P_{4})]$$

with cr_2 the cross-ratio of 4 points in \mathbb{P}^1_k .

The regulator map

Let $k \subset \mathbb{C}$ be an imaginary quadratic field (for simplicity). So we have $\mathbb{Z} \simeq K_3(k)/\text{torsion} \simeq B_2(k)$.

Theorem There is an injection $B_2(k) \to K_3(k)/\text{torsion}$, such that the composition with the regulator map $K_3(\mathbb{C}) \to \mathbb{R}$ maps [z] to D(z) with $D : \mathbb{C} \setminus \{0, 1\} \to \mathbb{R}$ the Bloch-Wigner dilogarithm,

$$D(z)=\int_{1/2}^z \log |w| d rg(1-w) - \log |1-w| d rg(w)$$
 .

D satisfies some functional equations:

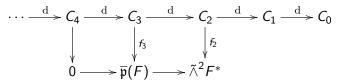
$$D(z) + D(z^{-1}) = 0 \qquad D(z) + D(1 - z) = 0 \quad D(z) + D(\overline{z}) = 0$$
$$D(x) - D(y) + D(\frac{y}{x}) - D(\frac{1 - y}{1 - x}) + D(\frac{1 - y^{-1}}{1 - x^{-1}}) = 0$$

Remark So $K_3(k)/\text{torsion} \xrightarrow{\sim} B_2(k) \to K_3(k)/\text{torsion}$. We know the composition with the regulator map on the right, not on the left...

On to hyperbolic space

Let *F* be a field, C_n =the free Abelian group on generators (I_0, \ldots, I_n) with $I_i \neq (0, 0)$ in F^2 such that if I_i and I_j scale to each other then they are the same.

Leaving out one of the I_j and taking alternating sums of gives the complex in the top row of the commutative diagram



• f_3 and f_2 are *G*-equivariant.

• f_3 is 0 on a degenerate generator (not all points distinct) and is $[\operatorname{cr}_2(I_0, I_1, I_2, I_3)]$ otherwise. Note $(I_0, I_1, I_2, I_3) \sim_{\operatorname{PGL}_2(F)} \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$ for a unique x in $F \setminus \{0, 1\}$, which is the cross-ratio.

• We let f_2 be 0 on degenerate generators, and if l_0, l_1, l_2 are distinct, then $(l_0, l_1, l_2) \sim_{\operatorname{GL}_2(F)} \begin{pmatrix} 1 & 0 & a \\ 0 & 1 & b \end{pmatrix}$ for unique a and b in F^* , and we map (l_0, l_1, l_2) to $a \wedge b$.

On to hyperbolic space

 $\mathbb{H}^* =$ hyperbolic 3-space $\mathbb{H} \cup \mathbb{P}^1_k$ is acted on by $\Gamma = \mathrm{PGL}_2(\mathcal{O})$. Yasaki and others: there is a tessellation, preserved by Γ . It consists of 3-cells, 2-cells and 1-cells, vertices in the cusps \mathbb{P}^1_k . • Take a sum over representatives P_i under Γ of the 3-cells:

$$\alpha = \sum_{i} \frac{24}{|\mathsf{Stab}_{\mathsf{\Gamma}}(P_i)|} [P_i] \,.$$

It has integer coefficients, and the faces (2-cells) formally cancel under the Γ -action.

Chop all P_i into tetrahedra, obtaining α_T, a formal sum of tetrahedra. The induced triangulation on the faces may no longer match, so take some 'flat' tetrahedra to fix this. We get α_T + α_F.
Map a tetrahedron [l₀,..., l₃] (vertices in P¹_k) to [cr₂(l₀,..., l₃)]. Then α_T + α_F gives an element β in B₂(k) ≃ Z.

• Mapping this to γ in $K_3(k)_{\rm tf}^{\rm ind} \simeq \mathbb{Z}$, we can compute the regulator of γ because $D(\operatorname{cr}_2(I_0,\ldots,I_3))/\pi = \operatorname{vol}[I_0,\ldots,I_3]$, and we have Humbert's formula

$$\operatorname{\mathsf{vol}}(\operatorname{PGL}_2(\mathcal{O})ackslash\mathbb{H}) = rac{1}{8\pi^2}\Delta_k^{rac{3}{2}}\zeta_k(2)\,.$$

Under the functional equation this relates to $\zeta'_k(-1)$ which equals

$$\zeta_k'(-1) = -\frac{1}{12}|\mathcal{K}_2(\mathcal{O})| \cdot \mathcal{R}_2(k)$$

by the (in this case known) Lichtenbaum conjecture.

Theorem

(1) γ generates a subgroup of index $|K_2(\mathcal{O})|$ in $K_3(k)/\text{torsion} \simeq \mathbb{Z}$. (2) slightly easier to calculate is $\gamma - \overline{\gamma} = 2\gamma$ because α_F drops out (the corresponding cross ratios are in $\mathbb{Q} \setminus \{0, 1\}$).

Remark • Belabas and Gangl computed $K_2(\mathcal{O})$ for quite a few k (almost all with k with $\Delta_k < 10^4$).

• We divided $\gamma - \overline{\gamma}$ by $2|K_2(\mathcal{O})|$ for various fields. For all fields for which we computed (with $\Delta_k < 10^5$), we have $\frac{1}{2}(\beta - \overline{\beta})$ in $B_2(k)$ (i.e., just divide all coefficients by 2).

Example For $k = \mathbb{Q}(\sqrt{-303})$ one has $|K_2(\mathcal{O})| = 22$, and dividing $\gamma - \overline{\gamma}$ by 44 was done by finding a suitable element β' in $B_2(k)$, and then computing using generators and relations that $44\beta' = \beta - \overline{\beta}$. (That involved about 1650 5-term relations, symmetrized for the action of S_4 on the cross ratio).

(人間) システレ イテレ

A much simpler example For $k = \mathbb{Q}(\sqrt{-5})$ one has $|K_2(\mathcal{O})| = 1$. There are two 3-cells up to the action of Γ , both triangular prisms. Then starting with $\tilde{\alpha} = 3[P_1] + 2[P_2]$, and simply chopping them into tetrahedra and applying cr₂ gives the element

$$\tilde{\beta} = 7[\frac{\sqrt{-5}+2}{3}] - 3[\frac{-2\sqrt{-5}+5}{3}] + [\frac{3\sqrt{-5}+5}{6}] - 2[\frac{-\sqrt{-5}+7}{6}]$$

which is not in $B_2(k)$, but

$$\beta = 4\tilde{\beta} - 4[3] + 6[5]$$

is. Its image γ in $K_3(k)_{\mathrm{tf}}^{\mathrm{ind}} \simeq \mathbb{Z}$ is a generator because $|K_2(\mathcal{O})| = 1$.