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The Riemann ζ-function

ζ(s) =
∑
n≥1

n−s =
∏

p prime

1

1− p−s
(Re(s) > 1)

can be extended to a meromorphic function on C with a simple
pole at s = 1 with residue 1

ζ(2) = π2/6 ζ(3) irrational

ζ(4) = π4/90 ζ(5) ???

ζ(6) = π6/945 ζ(7) ???

...
...
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The ζ-function of a number field

Let k be a number field, i.e., for some f (X ) an irreducible
polynomial in Q[X ] of degree d , and α a root of f (X ) in C,

k = Q(α) = {b0 + b1α + · · ·+ bd−1α
d−1, all bj in Q}

the number field generated by α.
Let O be the ring of algebraic integers of k : x ∈ k is an algebraic
integer if it is the zero of a polynomial
X n + an−1X

n−1 + . . .+ a1X + a0 with all ai in Z.

The ζ-function of k is defined by (for Re(s) > 1)

ζk(s) =
∑

(0) 6=I⊂O
I an ideal of O

(#O/I )−s =
∏

06=P⊂O
P prime ideal

1

1− (#O/P)−s
.

Every non-zero ideal of O is uniquely (up to ordering) the product
of non-zero prime ideals.
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The ζ-function of a number field

ζk(s) can be extended to a meromorphic function on C with a
simple pole at s = 1

Let r1 the number of embeddings k → R, 2r2 the number of
non-real embeddings k → C, so d = r1 + 2r2.
(r1 = #real roots of f (X ), 2r2 = #non-real roots of f (X ))

O∗ ∼= Zr × Z/wZ with r = r1 + r2 − 1 and

w = the number of roots of unity in k

Let σ1, . . . , σr+1 be the embeddings of k into C up to complex
conjugation.

If u1, . . . , ur form a Z-basis of O∗/{roots of unity}, let

R =
2r2

d
| det

1 log |σ1(u1)| . . . log |σ1(ur )|
...

...
...

1 log |σr+1(u1)| . . . log |σr+1(ur )|

 |
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The ζ-function of a number field

Then

Ress=1ζk(s) =
2r1(2π)r2R |Cl(O)|

w
√

∆k

• Cl(O) = the class group of O (a finite Abelian group which
measures (failure of) unique factorization in O)
• w = the number of roots of unity in k = |O∗torsion|
• ∆k the absolute value of the discriminant of k .

This is a statement about algebraic K -theory:

K0(O) ∼= Z⊕ Cl(O) and K1(O) ∼= O∗,

so

|Cl(O)| = |K0(O)torsion| and w = |K1(O)torsion|.
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Algebraic K -theory of a ring: K0

R: a commutative ring with identity 1 6= 0

K0(R) =

free Abelian group on generators [M], M a
finitely generated projective R-module〈

[P]− [P ′]− [P ′′] for each exact
sequence 0→ P ′ → P → P ′′ → 0

〉 .

P projective means every surjection M → P admits a section of
R-modules, e.g., a free R-module.
Therefore P ∼= P ′ ⊕ P ′′ in the above.

Example
• F a field: K0(F ) ∼= Z via the dimension of a vector space
• K0(Z) ∼= Z via rank of a finitely generated Abelian group
• O = ring of integers in a number field: K0(O) ∼= Z⊕ Cl(O)
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Algebraic K -theory of a ring: K1

View GLn(R) ⊂ GLn+1(R) via A 7→
(
A 0
0 1

)
.

Let GL(R) =
⋃

n GLn(R).

Definition K1(R) = GL(R)/[GL(R),GL(R)]

Determinant gives a surjection K1(R)→ R∗ with kernel SK1(R)

Example
• F a field: K1(F ) ∼= F ∗

• K1(Z) ∼= Z∗ = {±1}
• O = ring of integers in a number field: K1(O) ∼= O∗
• If, e.g., R = Q[x , y ]/(y2 − x3 − 3) then R∗ = Q∗ but SK1(R) is
infinite
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Algebraic K -theory of a ring: K2

K1(R) (matrices or maps) give relations between generators of
K0(R) (=R-modules). ”So” K2(R) should involve ”relations
among the relations for K1(R)”.

Definition For i , j ≥ 1, i 6= j , and r in R, let ei ,j(r) be the
elementary matrix with r in position (i , j)

Then
ei ,j(r)ei ,j(s) = ei ,j(r + s)

[ei ,j(r), ej ,l(s)] = ei ,l(rs) if i 6= l

[ei ,j(r), ek,l(s)] = 1 if j 6= k, i 6= l

and the ei ,j(r) generate the subgroup [GL(R),GL(R)] of GL(R).
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Algebraic K -theory of a ring: K2

The Steinberg group St(R) of R is the free group on symbols
xi ,j(r) with i , j ≥ 1, i 6= j , r in R, quotiented out to give the same
three relations for the xi ,j(r) as for the ei ,j(r).

We have a surjective group homomorphism

ϕ : St(R)→ [GL(R),GL(R)]

xi ,j(r) 7→ ei ,j(r)

Definition K2(R) = ker(ϕ)

Proposition K2(R) is an Abelian group. It is the centre of St(R).
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K2 of a field

If F is a field then K2(F ) is an Abelian group written additively,
with

generators {a, b} for a, b in F ∗

relations {a1a2, b} = {a1, b}+ {a2, b}
{a, b1b2} = {a, b1}+ {a, b2}
{a, 1− a} = 0 if a 6= 0, 1

Then also {a, b} = −{b, a} and {c ,−c} = 0 for a, b, c in F ∗.

If A in St(F ) lifts

a 0 0
0 a−1 0
0 0 1

 and B lifts

b 0 0
0 1 0
0 0 b−1

, then

{a, b} = [A,B] in K2(F ).

Note that K2(F ) ' F ∗ ⊗ F ∗/〈x ⊗ (1− x)〉 with {a, b}
corresponding to the class of a⊗ b.
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An example: K2(Q)

Proposition
K2(Q)

∼→ {±1} × ⊕p prime F∗p
with components

T∞ : K2(Q)→ {±1} with T∞({a, b}) =

{
−1 if a, b < 0

1 otherwise

Tp : K2(Q)→ F∗p with Tp({a, b}) = (−1)vp(a)vp(b) avp(b)

bvp(a) modulo p

where vp(a) ∈ Z is the number of factors p in a
Tp = the tame symbol for p

The proof of the proposition is based on repeated rewriting using
division with remainder: if a = qb + r with a, b, q, r non-zero
integers, then {a/r ,−qb/r} = 0 in K2(Q).
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Quadratic reciprocity

For p > 2 and α ∈ K2(Q) we have Tp(α)
p−1

2 ∈ {±1} ⊆ F∗p.

Define T̃2 : K2(Q)→ {±1} as follows.
Write a = (−1)i2j5k c

d with i , k = 0, 1 and c , d integers congruent

1 mod 8, b = (−1)I2J5K c ′

d ′ similarly. Then

T̃2({a, b}) = (−1)iI+jK+kJ .

Identify {±1} ⊆ F∗p for all primes p > 2.

Theorem T∞({a, b}) = T̃2({a, b})
∏
p>2

p prime

Tp({a, b})
p−1

2 .
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Quadratic reciprocity

This is equivalent with quadratic reciprocity. E.g., let p and q be

distinct odd primes, and put

(
p

q

)
equal to 1 if p is a square

modulo q, and to −1 if not. Equivalently,(
p

q

)
= p

q−1
2 mod q = Tq({p, q})

q−1
2

The theorem says that

1 = T̃2({p, q})Tp({p, q})
p−1

2 Tq({p, q})
q−1

2

= (−1)
p−1

2
· q−1

2

(
q

p

)(
p

q

)
.
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Borel’s theorem

Quillen defined Abelian groups Kn(R) (n ≥ 0) for rings R, as well
as for algebraic varieties.

Let k be a number field, with r1 real and 2r2 non-real embeddings,
d = r1 + 2r2, and ring of algebraic integers O, and let ∆k be the
absolute value of the discriminant of k

Recall that

• K0(O) ∼= Z⊕ Cl(O)

• K1(O) ∼= O∗ has rank r1 + r2 − 1

Theorem (Quillen) Kn(O) is finitely generated for all n ≥ 0.
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Borel’s theorem

Theorem (Borel)
(1) K2n(O) is a finite group if n ≥ 1.
(2) For n ≥ 2, K2n−1(O) has rank m2n−1 = r1 + r2 if n is odd, and
rank m2n−1 = r2 if n is even.
(3) There exists a natural regulator map

K2n−1(O)→ Rm2n−1 (n ≥ 2).

Its image is a lattice with (normalized) volume of a fundamental
domain

Rn(k) = q
ζk(n)

πn(d−m2n−1)
√

∆k

for some q in Q∗.
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Example: the K -theory of Z

ζQ is the Riemann zeta function. For n ≥ 2:

K2n−1(Z) is finite for n even;

K2n−1(Z) has rank 1 for n odd, and Rn(k) = qζ(n) for some
q ∈ Q∗.

n 2 3 4 5 6 7 . . .

m2n−1 0 1 0 1 0 1 . . .

ζ(n) π2/6 irrational π4/90 ??? π6/945 ??? . . .

Rob de Jeu Bloch groups and tessellations of hyperbolic 3-space



The Lichtenbaum conjecture

Conjecture (Lichtenbaum) Let k be a number field with ring of
algebraic integers O. Then for n ≥ 2 we have

ζ∗k (1− n) = ±2?k,n
|K2n−2(O)|

|K2n−1(O)torsion|
Rn(k)

where ∗ denotes the first non-vanishing coefficient of ζk(s) in the

Taylor expansion at s = 1− n, i.e., 1
m2n−1!ζ

(m2n−1)
k (1− n).

The power of 2 here is still not entirely clear. However, we have

Theorem (based on work of many people)
For n = 2 and k/Q Abelian, we have

ζ∗k (−1) = (−1)r1+r22r2
|K2(O)|

|K3(O)torsion|
R2(k)

where r1 is the number of real embeddings of k , and 2r2 the
number of complex embeddings.
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The Lichtenbaum conjecture

The ingredients of this conjecture are difficult to calculate. For any
number field k we have:

(1) K2(O) = ker(K2(k)
T→ ⊕P6=0 prime(O/P)∗)

(2) For n ≥ 2, we have K2n−1(O) = K2n−1(k)

(3) K3(k) can be described using one subgroup (Milnor K3) and
the resulting quotient, the indecomposable K3 of k , K3(k)ind

(4) There are formulae for the torsion subgroups of those, so one
knows |K3(O)torsion|
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Now for an imaginary quadratic field...

For k imaginary quadratic this means K3(k) ' Z⊕ Z/24Z, and

ζ ′k(−1) = − 1

12
|K2(O)| · R2(k) .

The idea is to find an element in K3(k)/torsion and compute its
regulator by comparison with Humbert’s classical formula:

vol(PGL2(O)\H) =
1

8π2
∆

3
2
k ζk(2)

for the action of PGL2(O) on hyperbolic 3-space H.
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Making K3(k) more explicit

Let k be any number field (for simplicity).

Theorem (Suslin) Let

k∗ ⊗σ k∗ =
k∗ ⊗Z k∗

〈x ⊗ y + y ⊗ x〉

and

p(k) =
Z[k[]

〈[x ]− [y ] + [ yx ] + [ 1−x
1−y ]− [ 1−x−1

1−y−1 ] with x 6= y in k[〉

where k[ = k \ {0, 1}. Then the Bloch group

B1(k) = ker(p(k)→ k∗ ⊗σ k∗)
[x ] 7→ x ⊗ (1− x).

is isomorphic to K3(k)ind/a cyclic group of order 2|O∗torsion|.
• ck = [x ] + [1− x ] is in B1(k) and is independent of x ; 6ck = 0.
• [x ] + [x−1] is annihilated by 2

Rob de Jeu Bloch groups and tessellations of hyperbolic 3-space



Making K3(k) more explicit

Slightly better behaved is the following variation.

Replace k∗ ⊗σ k∗ with ∧̃2k∗ = k∗⊗k∗
〈x⊗(−x)〉

and p(k) with p(k) = p(k)/〈[x ] + [1− x ], [y ] + [y−1]〉.
This gives another Bloch group B2(k) = B1(k)/〈ck〉 as the kernel.
This B2(k) has trivial torsion if k = Q, an imaginary quadratic
field, or a cyclotomic field and for those, we have an isomorphism

K3(k)/torsion
∼→ B2(k)

Remark The 5-term relation here is

0 =
4∑

i=0

(−1)i [cr2(P0, . . . , P̂i , . . . ,P4)]

with cr2 the cross-ratio of 4 points in P1
k .
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The regulator map

Let k ⊂ C be an imaginary quadratic field (for simplicity).
So we have Z ' K3(k)/torsion ' B2(k).

Theorem There is an injection B2(k)→ K3(k)/torsion, such that
the composition with the regulator map K3(C)→ R maps [z ] to
D(z) with D : C \ {0, 1} → R the Bloch-Wigner dilogarithm,

D(z) =

∫ z

1/2
log |w |d arg(1− w)− log |1− w |d arg(w) .

D satisfies some functional equations:

D(z) + D(z−1) = 0 D(z) + D(1− z) = 0 D(z) + D(z) = 0

D(x)− D(y) + D(
y

x
)− D(

1− y

1− x
) + D(

1− y−1

1− x−1
) = 0

Remark So K3(k)/torsion
∼→ B2(k)→ K3(k)/torsion. We know

the composition with the regulator map on the right, not on the
left...
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On to hyperbolic space

Let F be a field, Cn =the free Abelian group on generators
(l0, . . . , ln) with li 6= (0, 0) in F 2 such that if li and lj scale to each
other then they are the same.
Leaving out one of the lj and taking alternating sums of gives the
complex in the top row of the commutative diagram

· · · d // C4
d //

��

C3
d //

f3
��

C2
d //

f2
��

C1
d // C0

0 // p(F ) // ∧̃2F ∗

• f3 and f2 are G -equivariant.
• f3 is 0 on a degenerate generator (not all points distinct) and is
[cr2(l0, l1, l2, l3)] otherwise. Note (l0, l1, l2, l3) ∼PGL2(F ) ( 1

0
0
1

1
1
x
1 ) for

a unique x in F \ {0, 1}, which is the cross-ratio.
• We let f2 be 0 on degenerate generators, and if l0, l1, l2 are
distinct, then (l0, l1, l2) ∼GL2(F ) ( 1

0
0
1
a
b ) for unique a and b in F ∗,

and we map (l0, l1, l2) to a ∧̃b.
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On to hyperbolic space

H∗ = hyperbolic 3-space H ∪ P1
k is acted on by Γ = PGL2(O).

Yasaki and others: there is a tessellation, preserved by Γ. It
consists of 3-cells, 2-cells and 1-cells, vertices in the cusps P1

k .
• Take a sum over representatives Pi under Γ of the 3-cells:

α =
∑
i

24

|StabΓ(Pi )|
[Pi ] .

It has integer coefficients, and the faces (2-cells) formally cancel
under the Γ-action.
• Chop all Pi into tetrahedra, obtaining αT , a formal sum of
tetrahedra. The induced triangulation on the faces may no longer
match, so take some ’flat’ tetrahedra to fix this. We get αT + αF .
• Map a tetrahedron [l0, . . . , l3] (vertices in P1

k) to [cr2(l0, . . . , l3)].
Then αT + αF gives an element β in B2(k) ' Z.
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On to hyperbolic space

• Mapping this to γ in K3(k)indtf ' Z, we can compute the
regulator of γ because D(cr2(l0, . . . , l3))/π = vol[l0, . . . , l3], and
we have Humbert’s formula

vol(PGL2(O)\H) =
1

8π2
∆

3
2
k ζk(2) .

Under the functional equation this relates to ζ ′k(−1) which equals

ζ ′k(−1) = − 1

12
|K2(O)| · R2(k)

by the (in this case known) Lichtenbaum conjecture.
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The end of the game

Theorem
(1) γ generates a subgroup of index |K2(O)| in K3(k)/torsion ' Z.
(2) slightly easier to calculate is γ − γ = 2γ because αF drops out
(the corresponding cross ratios are in Q \ {0, 1}).

Remark • Belabas and Gangl computed K2(O) for quite a few k
(almost all with k with ∆k < 104).
• We divided γ − γ by 2|K2(O)| for various fields. For all fields for
which we computed (with ∆k < 105), we have 1

2 (β − β) in B2(k)
(i.e., just divide all coefficients by 2).

Example For k = Q(
√
−303) one has |K2(O)| = 22, and dividing

γ − γ by 44 was done by finding a suitable element β′ in B2(k),
and then computing using generators and relations that
44β′ = β − β. (That involved about 1650 5-term relations,
symmetrized for the action of S4 on the cross ratio).
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The end of the game

A much simpler example For k = Q(
√
−5) one has |K2(O)| = 1.

There are two 3-cells up to the action of Γ, both triangular prisms.
Then starting with α̃ = 3[P1] + 2[P2], and simply chopping them
into tetrahedra and applying cr2 gives the element

β̃ = 7[

√
−5 + 2

3
]− 3[

−2
√
−5 + 5

3
] + [

3
√
−5 + 5

6
]− 2[

−
√
−5 + 7

6
]

which is not in B2(k), but

β = 4β̃ − 4[3] + 6[5]

is. Its image γ in K3(k)indtf ' Z is a generator because |K2(O)| = 1.
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