Beilinson's conjecture for K₂ of certain (hyper)elliptic curves

Dagstuhl, May 2004

Rob de Jeu

University of Durham

email: rob.de-jeu@durham.ac.uk

website: http://maths.dur.ac.uk/~dma0rdj

T. Dokchitser, R. de Jeu and D. Zagier. Numerical verification of Beilinson's conjecture for K_2 of hyperelliptic curves (preprint, 2004).

(Available from http://arXiv.org/abs/math/0405040.)

R. de Jeu. A note on Beilinson's conjecture for K_2 of certain (hyper)elliptic curves (in preparation).

Motivation

k: a number field.

 \mathcal{O}_k : the ring of algebraic integers of k.

 r_1 : the number of embeddings $k \to \mathbb{R}$

 $2r_2$: the number of non-real embeddings $k \to \mathbb{C}$

 $[k:\mathbb{Q}] = r_1 + 2r_2$

 \mathcal{O}_k^* has rank $r = r_1 + r_2 - 1$

Let $\sigma_1, \ldots, \sigma_{r+1}$ be the embeddings of k into \mathbb{C} up to complex conjugation.

If u_1, \ldots, u_r form a \mathbb{Z} -basis of \mathcal{O}_k^* /torsion let

$$R = \frac{2^{r_2}}{[k:\mathbb{Q}]} | \det \begin{pmatrix} 1 & \log |\sigma_1(u_1)| & \dots & \log |\sigma_1(u_r)| \\ \vdots & \vdots & & \vdots \\ 1 & \log |\sigma_{r+1}(u_1)| & \dots & \log |\sigma_{r+1}(u_r)| \end{pmatrix} |$$

$$\zeta_k(s) = \sum_{\substack{(0) \neq I \subset \mathcal{O}_k \\ I \text{ ideal of } \mathcal{O}_k}} (\#\mathcal{O}_k/I)^{-s} = \prod_{\substack{0 \neq \mathcal{P} \subset \mathcal{O}_k \\ \mathcal{P} \text{ prime ideal}}} \frac{1}{1 - (\#\mathcal{O}_k/\mathcal{P})^{-s}}$$

$$\operatorname{Res}_{s=1}\zeta_k(s) = \frac{2^{r_1}(2\pi)^{r_2}R|\operatorname{Cl}(\mathcal{O}_k)|}{w\sqrt{\Delta_k}}$$

 Δ_k = the absolute value of the discriminant of k. $w = |\mathcal{O}_{k,\text{tor}}^*| = \#\text{roots of unity in } k$.

$$K_0(\mathcal{O}_k) \cong \mathbb{Z} \oplus \operatorname{Cl}(\mathcal{O}_k)$$
 $K_1(\mathcal{O}_k) \cong \mathcal{O}_k^*$
 $|\operatorname{Cl}(\mathcal{O}_k)| = |K_0(\mathcal{O}_k)_{\operatorname{tor}}|$
 $w = |K_1(\mathcal{O}_k)_{\operatorname{tor}}|$

If F is a field, then

$$K_0(F) \cong \mathbb{Z}$$
,
 $K_1(F) \cong F^* = F \setminus \{0\}$,
 $K_2(F) \cong F^* \otimes_{\mathbb{Z}} F^* / \langle a \otimes (1-a), a \in F^* \setminus \{1\} \rangle$.

The class of $a \otimes b$ in $K_2(F)$ is denoted $\{a,b\}$, so $K_2(F)$ is generated by symbols $\{a,b\}$ with a,b in F^* , and rules

$${a_1a_2,b} = {a_1,b} + {a_2,b},$$

 ${a,b_1b_2} = {a,b_1} + {a,b_2},$
 ${a,1-a} = 0 \text{ if } a \neq 0,1.$

This implies $\{a, b\} + \{b, a\} = \{c, -c\} = 0$ for a, b and c in F^* .

Example

$$K_2(\mathbb{Q}) \cong \{\pm 1\} \oplus \bigoplus_{p \text{ prime}} (\mathbb{Z}/p\mathbb{Z})^*$$
.

Borel's theorem

k: number field (hence $K_{2n-1}(\mathcal{O}_k) \cong K_{2n-1}(k)$ if $n \geq 2$) $K_n(\mathcal{O}_k)$ is finitely generated for all $n \geq 0$. $m_n = \text{the rank of } K_n(\mathcal{O}_k)$.

Theorem (Borel) $K_{2n}(\mathcal{O}_k)$ is a finite group if $n \geq 1$. For $n \geq 2$, $K_{2n-1}(\mathcal{O}_k)$ has rank $m_{2n-1} = \begin{cases} r_1 + r_2 & \text{if } n \text{ is odd,} \\ r_2 & \text{if } n \text{ is even.} \end{cases}$

Furthermore, there exists a natural regulator map

$$K_{2n-1}(\mathcal{O}_k)/\text{torsion} \to \mathbb{R}^{m_{2n-1}}$$
.

The image is a lattice with volume V_n of a fundamental domain satisfying

$$V_n \sim_{\mathbb{Q}^*} \frac{\zeta_k(n)}{\pi^{n([k:\mathbb{Q}]-m_{2n-1})}\sqrt{\Delta_k}}$$

where Δ_k is the absolute value of the discriminant of k.

[
$$a \sim_{\mathbb{Q}^*} b$$
 means $a = qb$ for some q in \mathbb{Q}^* .]

Example

 $\zeta_{\mathbb{Q}}$ is the Riemann zeta function. For $n \geq 2$:

 $K_{2n-1}(\mathbb{Z})$ is finite for n even;

 $K_{2n-1}(\mathbb{Z})$ has rank 1 for n odd, and $V_n \sim_{\mathbb{Q}^*} \zeta(n)$.

n	2	3	4	5	6	7	
m_{2n-1}	0	1	0	1	0	1	
$\zeta(n)$	$\pi^2/6$	irrat.	$\pi^4/90$???	$\pi^{6}/945$???	

The case of K₂ of a curve over the rationals

Let C/\mathbb{Q} be a (smooth, proper, geometrically irreducible) curve of genus g.

Conjecture (Hasse-Weil) With N the conductor of C, the function

$$L^*(C,s) = \frac{N^{s/2}}{(2\pi)^{gs}} \Gamma(s)^g L(C,s)$$

extends to an entire function of s and satisfies

$$L^*(C,s) = wL^*(C,2-s)$$

with w = +1 or -1.

This conjecture would imply

$$L^{(0)}(C,0) = \cdots = L^{(g-1)}(C,0) = 0$$

and

$$\frac{L^{(g)}(C,0)}{g!} = L^*(C,0) = wL^*(C,2) = \frac{wN}{(2\pi)^{2g}}L(C,2) \neq 0.$$

Tame symbols

Set $F = \mathbb{Q}(C)$ and

$$K_2^T(C) = \operatorname{Ker}\left(K_2(F) \xrightarrow{T} \bigoplus_{x \in C(\overline{\mathbb{Q}})} \overline{\mathbb{Q}}^*\right)$$

where T_x is the tame symbol for x,

$$T_x: \{a,b\} \mapsto (-1)^{\operatorname{ord}_x(a)\operatorname{ord}_x(b)} \frac{a^{\operatorname{ord}_x(b)}}{b^{\operatorname{ord}_x(a)}}(x).$$

Product formula If α is an element of $K_2(F)$ then

$$\prod_{x \in C(\overline{\mathbb{Q}})} T_x(\alpha) = 1.$$

Similarly one can define

$$K_2^T(C_{\overline{\mathbb{Q}}}) = \operatorname{Ker} \left(K_2(\overline{\mathbb{Q}}(C)) \xrightarrow{T} \bigoplus_{x \in C(\overline{\mathbb{Q}})} \mathbb{Q}^* \right),$$

$$K_2^T(C_{\mathbb{R}}) = \operatorname{Ker} \left(K_2(\mathbb{R}(C)) \xrightarrow{T} \bigoplus_{x \in C(\mathbb{C})} \mathbb{C}^* \right)$$

and

$$K_2^T(C_{\mathbb{C}}) = \operatorname{Ker}\left(K_2(\mathbb{C}(C)) \xrightarrow{T} \bigoplus_{x \in C(\mathbb{C})} \mathbb{C}^*\right)$$

and the corresponding product formula holds in each case.

Let \mathcal{C} be a regular proper model of C over \mathbb{Z} and \mathcal{C}_p its fibre above the prime p. For each irreducible component \mathcal{D} of \mathcal{C}_p let $\mathbb{F}_p(\mathcal{D})$ be its field of rational functions over \mathbb{F}_p . Put

$$K_2^T(\mathcal{C}) = \operatorname{Ker} \left(K_2^T(C) \xrightarrow{T} \bigoplus_{p} \bigoplus_{\mathcal{D} \subseteq \mathcal{C}_p} \mathbb{F}_p(\mathcal{D})^* \right)$$

where the map to $\mathbb{F}_p(\mathcal{D})^*$ is given by the tame symbol corresponding to \mathcal{D} ,

$$T_{\mathcal{D}}: \{a,b\} \mapsto (-1)^{v_{\mathcal{D}}(a)v_{\mathcal{D}}(b)} \frac{a^{v_{\mathcal{D}}(b)}}{b^{v_{\mathcal{D}}(a)}} (\mathcal{D}),$$

with $v_{\mathcal{D}}$ the discrete valuation on F given by the order of vanishing along \mathcal{D} . Finally put

$$K_2(C; \mathbb{Z}) = \frac{K_2^T(\mathcal{C})}{\operatorname{torsion}} \subseteq \frac{K_2^T(C)}{\operatorname{torsion}},$$

which is independent of the choice of the model \mathcal{C} of C[We could have defined $K_2^T(\mathcal{C})$ in a single step as

$$K_2^T(\mathcal{C}) = \ker \left(K_2(F) \stackrel{T}{\to} \bigoplus_{\mathcal{D}} \mathbb{F}(\mathcal{D})^* \right)$$

where \mathcal{D} runs through all irreducible curves on \mathcal{C} and $\mathbb{F}(\mathcal{D})$ stands for the residue field at \mathcal{D} .]

Regulator 1-forms

For a and b in F^* put

$$\eta(a, b) = \log |a| \operatorname{d} \operatorname{arg} b - \log |b| \operatorname{d} \operatorname{arg} a$$

a smooth, closed 1-form where a and b have no pole or zero.

- $\eta(a_1a_2,b) = \eta(a_1,b) + \eta(a_2,b)$
- $\eta(a, b_1b_2) = \eta(a, b_1) + \eta(a, b_2)$
- $\eta(a, 1-a) = dD(a)$, where D(z) is the Bloch-Wigner dilogarithm function.

So η induces a map $K_2(F) \to \frac{\text{closed 1-forms}}{\text{exact 1-forms}}$.

And if α is in $K_2^T(C)$ then $\eta(\alpha)$ has trivial residues.

Conjecture (Beilinson) Let C/\mathbb{Q} be a curve of genus g as before and let $X = C(\mathbb{C})$.

- (1) $K_2(C; \mathbb{Z}) \cong \mathbb{Z}^g$.
- (2) Let

$$R = \frac{1}{(2\pi)^g} |\det \begin{pmatrix} \int_{\gamma_1} \eta_1 & \dots & \int_{\gamma_1} \eta_g \\ \vdots & & \vdots \\ \int_{\gamma_g} \eta_1 & \dots & \int_{\gamma_g} \eta_g \end{pmatrix} |$$

where η_1, \ldots, η_g are the regulator 1-forms obtained from a basis of $K_2(C; \mathbb{Z}), \gamma_1, \ldots, \gamma_g$ give a basis of $H_1(X; \mathbb{Z})^-$ and are chosen such that the η_k have no zeroes of poles on them. Then

$$L^*(C,0) \sim_{\mathbb{Q}^*} R$$
.

['-' in $H_1(X; \mathbb{Z})^-$ denotes the anti-invariants of $H_1(X; \mathbb{Z})$ under the action of complex conjugation on X.]

- R does not depend on any choices.
- There is a similar conjecture over an arbitrary number field.
- R makes sense for any g elements of $K_2^T(C)$.

Elements in K₂^T(C) from torsion points

Let P_1 , P_2 and P_3 in $C(\mathbb{Q})$ be distinct and such that all $(P_i) - (P_j)$ are torsion in $Jac(C)(\mathbb{Q})$. Pick f_i in $\mathbb{Q}(C)^*$ with

$$(f_i) = m_i(P_{i+1}) - m_i(P_{i-1})$$

where $m_i = \operatorname{ord}((P_{i+1}) - P(_{i-1}))$ (all indices modulo 3). Put

$$S_i = \left\{ \frac{f_{i+1}}{f_{i+1}(P_{i+1})}, \frac{f_{i-1}}{f_{i-1}(P_{i-1})} \right\},$$

an element of $K_2^T(C)$. Then $\langle S_1, S_2, S_3 \rangle$ in $K_2^T(C)$ /torsion is generated by an element $\{P_1, P_2, P_3\}$.

All this works if we replace \mathbb{Q} with $\overline{\mathbb{Q}}$, \mathbb{R} or \mathbb{C} as well.

We cannot get much more from out torsion points, in the following sense.

Assume $S \subseteq C(\overline{\mathbb{Q}})$ and P_0 in S are such that $(P) - (P_0)$ is torsion for all P in S. Let $V \subseteq K_2(\overline{\mathbb{Q}}(C)) \otimes \mathbb{Q}$ be generated by the $\{f,g\}$ with |(f)| and |(g)| in S. Then

$$V \cap K_2^T(C_{\overline{\mathbb{Q}}}) \otimes \mathbb{Q} = \langle \{P_0, Q, R\} \rangle_{\mathbb{Q}}$$

with $Q \neq R$ in $S \setminus \{P_0\}$.

The case of hyperelliptic curves

Assume C/\mathbb{Q} is hyperelliptic of genus g with a rational ramification point ∞ . Such a C can be defined by

$$y^2 = t(x)$$

with t(x) in $\mathbb{Q}[x]$ of degree 2g + 1 without multiple roots.

Example 1: (2g+1)-torsion

The curve admits an equation

$$y^2 = -x^{2g+1} + f(x)^2/4 = t(x)$$
 or $y^2 + f(x)y + x^{2g+1} = 0$

with f(x) in $\mathbb{Q}[x]$, $\deg(f(x)) \leq g$, and such that t(x) has no multiple roots.

Example 2: (2g+2)-torsion

The curve admits an equation

$$y^2 = -x^{2g+2} + f(x)^2/4 = t(x)$$
 or $y^2 + f(x)y + x^{2g+2} = 0$

with $f(x) = 2x^{g+1} + b_g x^g + \cdots + b_0$ in $\mathbb{Q}[x]$, $b_g \neq 0$, and such that t(x) has no multiple roots.

In both cases we have an equation of the form

$$y^2 + f(x)y + x^d = 0$$

with d = 2g + 1 or 2g + 2 and $t(x) = -x^d + f(x)^2/4$.

Let O = (0,0) and O' = (0,-f(0)), the image of O under the hyperelliptic involution.

 $(O) - (\infty)$ and $(O') - (\infty)$ both have order d in $Jac(C)(\mathbb{Q})$: $(y) = d(O) - d(\infty)$.

Let $T_{\beta} = (\beta, -f(\beta)/2)$ where β is a root in $\overline{\mathbb{Q}}$ of t(x), so $(T_{\beta}) - (\infty)$ has order 2 in $Jac(C)(\overline{\mathbb{Q}})$.

So if $t(\beta) = 0$ then we get in $K_2^T(C_{\overline{\mathbb{Q}}})/\text{torsion}$

$$\{\infty, O, T_{\beta}\} = \{\frac{y}{-f(\beta)/2}, \frac{x-\beta}{\beta}\}.$$

But if m(x) is an irreducible factor of t(x) in $\mathbb{Q}[x]$ then

$$2\sum_{\substack{\beta \text{ with} \\ m(\beta)=0}} \left\{ \infty, O, T_{\beta} \right\} = \left\{ \frac{y^2}{x^d}, \frac{m(x)}{m(0)} \right\} \stackrel{\text{def}}{=} M,$$

an element of $K_2^T(C)$.

Proposition

Let $t(x) = m_1(x) \cdots m_k(x)$ be a factorisation of t(x) into irreducibles in $\mathbb{Q}[x]$ so we have M_1, \ldots, M_k in $K_2^T(C)$.

(1) If d = 2g + 2 and

$$4t(x) = -4x^{2g+2} + f(x)^{2}$$

$$= (b_{g}x^{g} + \dots + b_{0})(4x^{g+1} + b_{g}x^{g} + \dots + b_{0})$$

$$= 4 \cdot m_{1} \cdot \dots \cdot m_{l} \cdot m_{l+1} \cdot \dots \cdot m_{k}$$

then $M_1 + \cdots + M_l = M_{l+1} + \cdots + M_k$ in $K_2^T(C)$.

- (2) If $f(0) = b_0 = \pm 1$ then $\mathbb{M} = \{-f(0)y, -x\}$ is in $K_2^T(C)$ and $2d \mathbb{M} = \sum_{j=1}^k M_j$.
- (3) If $W \subseteq K_2^T(C_{\overline{\mathbb{Q}}}) \otimes \mathbb{Q}$ is generated over \mathbb{Q} by all $\{P, Q, R\}$ with P, Q and R in $\{\infty, O, O', T_{\beta_1}, \dots, T_{\beta_{2g+1}}\}$ then it is already generated by the $\{\infty, O, T_{\beta_j}\}$.
- (4) $K_2^T(C) \otimes \mathbb{Q} = K_2^T(C_{\overline{\mathbb{Q}}})^{\operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})} \otimes \mathbb{Q} \subseteq K_2^T(C_{\overline{\mathbb{Q}}}) \otimes \mathbb{Q}$ and with W as in (3),

$$W \cap K_2^T(C) \otimes \mathbb{Q} = \langle M_1, \dots, M_k \rangle_{\mathbb{Q}}.$$

[So (3) and (4) say that the M_j give essentially everything we can get from the known torsion points.]

So we need $t(x) = -x^d + f(x)^2/4$ as before with many rational factors, e.g.,

$$-3326400^{2}x^{12} + (3326400x^{6} + 149040x^{5} - 150012x^{4} + 188x^{3} + 787x^{2} - 2x + 1)^{2}$$

$$= (22x - 1)(20x - 1)(18x - 1)(12x - 1)(10x - 1)$$

$$(x - 1)(7x + 1)(15x + 1)(18x + 1)(23x + 1)(24x + 1).$$

Integrality

Theorem

Consider either

$$f(x) = b_g x^g + \dots + b_0 \text{ and } d = 2g + 1$$

or

$$f(x) = 2x^{g+1} + b_g x^g + \dots + b_0$$
 with $b_g \neq 0$ and $d = 2g + 2$

with b_0, \ldots, b_g in \mathbb{Z} such that $t(x) = -x^d + f(x)^2/4$ has no multiple root.

Let m(x) be an irreducible factor of t(x) in $\mathbb{Q}[x]$.

- (1) If m(x)/m(0) is in $\mathbb{Z}[x]$ then the class of $\{y^2/x^d, m(x)/m(0)\}$ is in $K_2(C; \mathbb{Z})$.
- (2) If $gcd(b_0, ..., b_g) = 1$ and m(x)/m(0) is not in $\mathbb{Z}[x]$ then no non-trivial multiple of the class of $\{y^2/x^d, m(x)/m(0)\}$ is in $K_2(C; \mathbb{Z})$.
- (3) If $b_0 = \pm 1$ then

$$\mathbb{M} = \{-b_0 y, -x\} \text{ is in } K_2(C; \mathbb{Z}) \text{ if } d = 2g + 1,$$

 $2\mathbb{M} = \{y^2, x\} \text{ is in } K_2(C; \mathbb{Z}) \text{ if } d = 2g + 2.$

Limit results

Theorem

Let $g \geq 1$ and fix $v_1 < \cdots < v_{g-1}$ in \mathbb{R}^* . If $v_g = a \gg 0$ and

$$f(x) = 2x^{g+1} + \prod_{j=1}^{g} (v_j x + 1)$$

then

$$4t(x) = (4x^{g+1} + \prod_{j=1}^{g} (v_j x + 1)) \prod_{j=1}^{g} (v_j x + 1)$$

has 2g + 1 distinct real roots. If that is the case then for the curve C/\mathbb{R} of genus g defined by

$$y^2 + f(x)y + x^{2g+2} = 0$$

the elements

$$M_l = \left\{ \frac{y^2}{x^{2g+2}}, v_l x + 1 \right\} \qquad (l = 1, \dots, g)$$

in $K_2^T(C)$ have Beilinson regulator R=R(a) satisfying

$$\lim_{a \to \infty} \frac{R(a)}{(2\log a)^g} = g + 1.$$

Corollary

With the same notation but $v_1 < \cdots < v_{g-1}$ in \mathbb{N} fixed, if $v_g \gg 0$ in \mathbb{N} then the classes of M_1, \ldots, M_g are independent in $K_2(C; \mathbb{Z})$.

Remark

- In this situation with g > 1, the two curves corresponding to $0 < v_1 < \cdots < v_g$ and $0 < \tilde{v}_1 < \cdots < \tilde{v}_g$ are isomorphic over \mathbb{Q} precisely when either $\tilde{v}_j = v_j$ for $j = 1, \ldots, g$, or g is odd and $\tilde{v}_j = v_g v_{g-j}$ for $j = 1, \ldots, g-1$ and $\tilde{v}_g = v_g$.
- The map from the open part of $\overline{\mathbb{Q}}^{*g}$ where t(x) has no multiple roots to the set of isomorphism classes over $\overline{\mathbb{Q}}$ of hyperelliptic curves over $\overline{\mathbb{Q}}$ is finite to one, so we get infinitely many isomorphism classes over $\overline{\mathbb{Q}}$ of curves C/\mathbb{Q} for which the rank of $K_2(C; \mathbb{Z})$ is at least g.

Explicit example:

For the curves $C_{a,b}$ defined by

$$y^{2} + (2x^{3} + (ax + 1)(bx + 1))y + x^{6} = 0$$

with integers $a \equiv 1$ and $b \equiv 2$ modulo 3, and $a \gg 0$ or $b \gg 0$:

- (1) the two elements $\{y^2/x^6, ax+1\}$ and $\{y^2/x^6, bx+1\}$ give classes in $K_2(C_{a,b}; \mathbb{Z})$;
- (2) the Jacobian of $C_{a,b}$ does not split over $\overline{\mathbb{Q}}$;

(3)

$$\lim_{a \to \infty} \frac{R(C_{a,b})}{(2\log a)^2} = 3.$$

Proposition

Let k be a real quadratic field and let \mathcal{O}_k be its ring of algebraic integers. Fix $v \neq \pm 1$ in \mathcal{O}_k^* as well as p and q in \mathcal{O}_k satisfying pq = 4. If $pv^n \neq \pm 2$

$$y^{2} + (2x^{2} + (pv^{n} + qv^{-n})x + 1)y + x^{4} = 0$$

defines an elliptic curve C over k. The classes of

$$\left\{\frac{y^2}{x^4}, pv^n x + 1\right\}$$

and

$$\left\{\frac{y^2}{x^4}, qv^{-n}x + 1\right\}$$

are in $K_2(C; \mathbb{Z})$ and their Beilinson regulator R = R(n) satisfies

$$\lim_{n \to \infty} \frac{R(n)}{n^2} = 4 \left| \log |v| \right|^2.$$

Here |v| is the absolute value using either embedding of k into \mathbb{R} , $|\log |v||$ being independent of the embedding.

Moreover, if the norm of p in \mathbb{Q} does not have absolute value 4 (e.g., when p=1 and q=4), then for $n\gg 0$ the j-invariant is neither rational nor an algebraic integer. Therefore, for $n\gg 0$ those curves cannot be obtained from curves over \mathbb{Q} by enlarging the base field, nor do they admit complex multiplication over $\overline{\mathbb{Q}}$.

Some interesting questions

(1) In our tables we often find an integer for $L^*(C,0)/R(\Lambda)$ so

$$\frac{L^*(C,0)}{R(K_2(C;\mathbb{Z}))} = (K_2(C;\mathbb{Z}):\Lambda) \frac{L^*(C,0)}{R(\Lambda)}$$

might always be an integer. For this we may need more elements in $K_2(C; \mathbb{Z})$. It would be interesting to try and do this, especially for the curve defined by

$$y^2 + (5x^3 - 13x^2 + 7x - 1)y + x^7 = 0$$

where $L^*(C, 0)/R(\Lambda) \stackrel{?}{=} 1/19$.

- (2) If C/\mathbb{Q} is a curve and $F = \mathbb{Q}(C)$, can we decide in an algorithmic way if an element in $K_2(F)$ is trivial or not? More specifically we can consider the following questions.
 - (a) Can we decide if the relations in the tables as suggested by the computer calculations are true in $K_2(F)$ or not?
 - (b) The element

$$\{(x-1)^2, (y+1)^3(y+2x-3)\}$$

is trivial in $K_2(F)$ where $F = \mathbb{Q}(E)$ and E is defined by

$$y^2 = x^3 - 2x^2 + 1.$$

How do we write explicitly

$$(x-1)^2 \otimes [(y+1)^3(y+2x-3)] = \sum_i m_i (f_i \otimes (1-f_i))$$

in $F^* \otimes F^*$ for some m_i in \mathbb{Z} and f_i in $F \setminus \{0,1\}$?