Bounding the kernel of the tame symbol on curves

Rob de Jeu

http://www.few.vu.nl/~jeu

Department of Mathematics
VU University Amsterdam
Amsterdam
The Netherlands
K_2 of a field

For a field F let $F^b = F \setminus \{0, 1\}$. Then

$$K_2(F) = F^* \otimes \mathbb{Z} F^*/\langle x \otimes (1 - x) | x \in F^b \rangle$$

is an Abelian group written additively with

- **generators** \{a, b\} = the class of $a \otimes b$
- **relations**
 \[\{a_1 a_2, b\} = \{a_1, b\} + \{a_2, b\}\]
 \[\{a, b_1 b_2\} = \{a, b_1\} + \{a, b_2\}\]
 \[\{a, 1 - a\} = 0 \text{ if } a \text{ is in } F^b\]

Then also \{a, b\} = −\{b, a\} and \{c, −c\} = 0 for a, b, c in F^*.

So if $A + B = C$ with A, B, C in F and $A, B \neq 0$, then

$$\{A, B\} = 0 \text{ if } C = 0 \quad \{A/C, B/C\} = 0 \text{ if } C \neq 0.$$
Here T is the tame symbol, defined by

$$T_p(\{a, b\}) = (-1)^{v_p(a) + v_p(b)} \frac{a^{v_p(b)}}{b^{v_p(a)}} \mod p$$

More precisely, for q prime or -1, let

$$F_q = \langle \{a, b\} \text{ with } a, b \in \{-1, 2, 3, 5, 7, 11, \ldots, q\} \rangle \subseteq K_2(\mathbb{Q})$$

Then

$$F_q/F_{q'} \cong F_q^* \text{ via } T_q \quad (q \geq 2)$$

with q' the subprime of q (= one prime smaller) ($2' = -1$)

Proof Let $q \geq 2$

- surjectivity: $\{i, q\} \mapsto \bar{i} \in F_q^* \quad (i = 1, \ldots, q - 1)$
• injectivity: the kernel of $F_q^T \rightarrow F_q^*$ is $F_q' \subseteq \ker(T_q)$: clear;

if $q = 2$ then $F_2 = F_{-1}$ as $\{2, 2\} = \{2, -1\} = \{-1, 2\} = 0$

if $q > 2$ then F_q/F_q' is generated by the classes of

$\{a, q\} - \{b, q\}$ with $a, b \in M_q \overset{\text{def}}{=} \{-1, 1, 2, 3, 4, 5, \ldots, q - 1\}$

If $a_1, a_2 \in M_q$ then $\{a_1, q\} + \{a_2, q\} \overset{F_q'}{=} \{a_3, q\}$ for $a_3 \in M_q$:

division with remainder gives $a_1a_2 - a_3 = qA$ with

$a_3 = 1, 2, \ldots, q - 1 \in M_q$ and $A = -1, 0, 1, \ldots, q - 2$, and

if $A = 0$: $a_1a_2 = a_3$ so clear;

if $A \neq 0$: $0 = \left\{\frac{a_1a_2}{qA}, \frac{a_3}{-qA}\right\} \overset{F_q'}{=} \{a_3, q\} - \{a_1, q\} - \{a_2, q\}$.

So $F_q/F_q' = \{\{a, q\} - \{b, q\}$ with $a, b \in M_q\}$

Finally, if $T_q(\{a, q\}) = T_q(\{b, q\})$ for $a, b \in M_q$ then

$a - b = 0, \pm q$ and $\{a, q\} \equiv \{b, q\}$ modulo F_q' as before
If \(k \) is a field and \(x \) a variable then one can treat \(K_2(k(x)) \) similarly using division with remainder in \(k[x] \):

If \(d = \text{deg}(f(x)) \geq d' = \text{deg}(g(x)) \) for \(f(x), g(x) \neq 0 \), then

\[
\begin{align*}
\text{Pol}_{\leq 0} \times \text{Pol}_{\leq d-d'} \times \text{Pol}_{\leq d'-1} & \to \text{Pol}_{\leq d} \\
(c, q, r) & \mapsto cf - qg - r
\end{align*}
\]

is a \(k \)-linear map with non-trivial kernel:

\[
1 + (d - d' + 1) + d' > d + 1
\]

If \((c, q, r) \neq 0 \) is in this kernel then \(c \neq 0 \) because of degrees, so the kernel has basis \(\{(1, q/c, r/c)\} \).
A useful lemma

The Euclidean algorithm in \(\mathbb{Z} \) converges faster if we allow negative remainders: \(a = qb + r \) with \(|r| \leq |b|/2 \)

So(?) in \(k[x] \) it “converges faster” if we allow
\[
a(x) = q(x)b(x) + r(x) \quad \text{with} \quad |\deg(r(x))| \leq |\deg(b(x))|/2
\]

This inspired the
\textbf{VW-lemma} Let \(K/k \) be a finite extension of fields, \(V, W \subseteq K \)
\(k \)-subspaces with \(\dim_k(V) + \dim_k(W) > \dim_k(K) = [K : k] \).

Then \(K^* = \{vw^{-1} \mid v \in V^*, w \in W^* \} \) where \(V^* = V \setminus \{0\} \) and \(W^* = W \setminus \{0\} \).

\textbf{Example} \(\mathbb{Q}[^3\sqrt{2}]^* = \left\{ a_1 + a_2^3\sqrt{2} + a_3^3\sqrt{2}^2 \right\}^* = \left\{ \frac{b_1 + b_2^3\sqrt{2}^2}{c_1 + c_2^3\sqrt{2}} \right\} \),

where all \(a_i, b_j, c_l \in \mathbb{Q} \), and \(b_1 + b_2^3\sqrt{2}^2, c_1 + c_2^3\sqrt{2} \neq 0 \)
The Euclidean algorithm in \(\mathbb{Z} \) converges faster if we allow negative remainders: \(a = qb + r \) with \(|r| \leq |b|/2 \)

So (?) in \(k[x] \) it “converges faster” if we allow

\[a(x) = q(x)b(x) + r(x) \] with “\(|\deg(r(x))| \leq |\deg(b(x))|/2 \)”

This inspired the **VW-lemma**

Let \(K/k \) be a finite extension of fields, \(V, W \subseteq K \)

\(-\) subspaces with \(\dim_k(V) + \dim_k(W) > \dim_k(K) = [K : k] \).

Then \(K^* = \{vw^{-1} \text{ with } v \in V^*, w \in W^* \} \) where \(V^* = V \setminus \{0\} \)
and \(W^* = W \setminus \{0\} \).

Example \(\mathbb{Q}[\sqrt[3]{2}]^* = \left\{ a_1 + a_2 \sqrt[3]{2} + a_3 \sqrt[3]{2}^2 \right\}^* = \left\{ \frac{b_1 + b_2 \sqrt[3]{2}^2}{c_1 + c_2 \sqrt[3]{2}} \right\} \),

where all \(a_i, b_j, c_l \in \mathbb{Q} \), and \(b_1 + b_2 \sqrt[3]{2}^2, c_1 + c_2 \sqrt[3]{2} \neq 0 \)

Proof of the VW-lemma

For \(\beta \in K^* \) we have \(V \cap \beta W \neq \{0\} \) because of dimensions.
The tame symbol on a curve

Let C/k be a smooth, proper, geometrically irreducible curve over a number field k, $F = k(C)$, and $g = \text{genus}(C)$. According to Beilinson

$$K_2(F) \xrightarrow{T} \bigoplus_{P \in C^{(1)}} k(P)^* \xrightarrow{\text{Nm}} k^*$$

should become exact after tensoring with \mathbb{Q}. Here

- $C^{(1)} =$ set of closed points in C
- $\text{Nm} = \prod_P \text{Nm}_{k(P)/k}$
- T is the tame symbol, defined via

$$T_P(\{f_1, f_2\}) = (-1)^{\text{ord}_P(f_1)\text{ord}_P(f_2)} \frac{f_1^{\text{ord}_P(f_2)}}{f_2^{\text{ord}_P(f_1)}} |_P$$

Example $E : y^2 = x^3 + x - 1$, $P = \{x = 0\} \cap E \setminus \{O\}$, so $\mathbb{Q}(P) = \mathbb{Q}(i)$. For q a prime number with $q \equiv 1$ modulo 4 write $q = \alpha \bar{\alpha}$ in $\mathbb{Z}[i]$. Then for some $n > 0$, $(\frac{\alpha}{\alpha})^n |_P \in \text{im}(T)$?
Beilinson (Deligne + Bass) also expect: \(\ker(T)/K_2(k) \) is a finitely generated group of rank \([k : \mathbb{Q}] \cdot g + \delta \)
where \(\delta \) depends on the primes of bad reduction of \(C \)

So it would be good to control \(\text{coker}(T) \) and \(\ker(T) \)

Assume \(k \) is an arbitrary field, and \(C/k \) is smooth, proper, geometrically irreducible with genus \(g \).

Assume we have a rational point \(O \in C(k) \) and let

\[
RR_n = L(n(O)) = H^0(C, \mathcal{O}(n(O)))
\]

\[
RR^*_n = RR_n \setminus \{0\}
\]

\[
S = \{O\} \cup \{P \in C^{(1)} \text{ such that } f(P) = 0 \text{ for some } f \in RR^*_{2g}\}
\]

\[
S' = \{O\} \cup \{P \in C^{(1)} \text{ such that } f(P) = 0 \text{ for some } f \in RR^*_{3g}\}
\]
The cokernel of T

Proposition The restriction of the tame symbol

$$K_2(F) \xrightarrow{T_S} \bigoplus_{P \in C(1) \setminus S} k(P)^*$$

is surjective, so $\text{coker}(T)$ is generated by $\bigoplus_{P \in S} k(P)^*$.

Idea of proof Induction on $\deg(P)$. For the initial step: if $P \notin S$, $\deg(P) \leq 2g$, and $\beta \in k(P)^*$, then $RR_{2g} \to k(P)$, $f \mapsto f(P)$ is injective, so there exist f_i in RR_{2g}^* with $f_1(P)/f_2(P) = \beta$ (VW-lemma!), and $T_S(\{f_1/f_2, f_P\}) = \beta|_P$ for a suitable f_P.

Example If E/k is an elliptic curve defined by a Weierstrass equation $y^2 + a_1xy + a_3 = x^3 + a_2x^2 + a_4x + a_6$, then $RR_2 = k \oplus kx$ and $S = \{O\} \cup \{\{x = c\} \text{ for } c \in k\}$
The kernel of T

Controlling the kernel of T is more involved (just as for \mathbb{Q}). Division with remainder in $k[x]$ generalizes to the non-triviality of kernels of the form

$$L(D_1) \times L(D_2) \times L(D_3) \to L(D_4)$$

$$(f_1, f_2, f_3) \mapsto g_1f_1 + g_2f_2 + g_3f_3$$

for suitable divisors D_i on C, where $L(D) = H^0(C, \mathcal{O}(D))$.

Let

$$C^{(1)}_{\leq d} = \{ P \in C^{(1)} \text{ with } \deg(P) \leq d \}$$

and similarly for $C^{(1)}_d$.

Bounding the kernel of the tame symbol on curves – p. 10
Proposition Let $F_d = \langle \{f_1, f_2\} \text{ with } |(f_i)| \subseteq C^{(1)}_{\leq d} \rangle$. If $d \geq 3g + 1$, then $F_d / F_{d-1} \cong \bigoplus_{O \neq P \in C^{(1)}_d} k(P)^*$, and the inclusions give a quasi-isomorphism

$$
\begin{align*}
F_{3g} &\xrightarrow{T} \bigoplus_{P \in \{O\} \cup C^{(1)}_{\leq 3g}} k(P)^* \\
\downarrow & \\
K_2(F) &\xrightarrow{T} \bigoplus_{P \in C^{(1)}_d} k(P)^*
\end{align*}
$$
The kernel and cokernel of T

Proposition Let $F_d = \langle \{f_1, f_2\} \text{ with } |(f_i)| \subseteq C^{(1)}_{\leq d}\rangle$. If $d \geq 3g + 1$, then $F_d/F_{d-1} \cong \bigoplus_{O \neq P \in C^{(1)}_{d}} k(P)^*$, and the inclusions give a quasi-isomorphism

$$F_{3g} \xrightarrow{T} \bigoplus_{P \in \{O \cup C^{(1)}_{\leq 3g}} k(P)^*$$

$$\downarrow$$

$$K_2(F) \xrightarrow{T} \bigoplus_{P \in C^{(1)}} k(P)^*$$

Proposition If $g \geq 1$, and $L_{3g} = \langle \{f_1, f_2\} \text{ with } f_i \in RR_{3g}^*\rangle$. then the inclusions give a quasi-isomorphism

$$L_{3g} \xrightarrow{T} \bigoplus_{P \in S'} k(P)^*$$

$$\downarrow$$

$$K_2(F) \xrightarrow{T} \bigoplus_{P \in C^{(1)}} k(P)^*$$
A computational example

So for an elliptic curve E given by a Weierstrass equation,
ker$(T) \subseteq \langle \{l, m\} \text{ with } l, m \text{ of the form } ax + by + c \ (a, b, c \in k) \rangle$

If $k = \mathbb{Q}$ we only need such $ax + by + c$ with a, b and c in \mathbb{Z}
and $\gcd(a, b, c) = 1$, or $a = b = 0$, $c = -1$ or a prime number.

Example $E : y^2 + xy + y = x^3 + x^2$
with conductor $286 = 2 \cdot 11 \cdot 13$ and $E(\mathbb{Q}) = \{O\}$

E has split multiplicative reduction at 2, 11 and 13 and
conjecturally ker$(T)/K_2(\mathbb{Q})$ is finitely generated of rank 4.

By imposing a boundary condition at the primes of split
multiplicative reduction ("integrality conditions") we expect
to get a subgroup of rank 1 ($\delta = 3$ here)

There is a regulator $R \in \mathbb{R}$ for this subgroup and Beilinson
expects $R/L'(E, 0) \in \mathbb{Q}^*$
Using the "lines"

\[
\begin{align*}
l_1 &= x & l_2 &= x - 1 & l_3 &= x + 1 \\
l_4 &= y & l_5 &= y - 1 & l_6 &= y + 1 \\
l_7 &= y + x & l_8 &= y - x & l_9 &= y - x - 1 \\
l_{10} &= y - x + 1 & l_{11} &= y + x - 1 & l_{12} &= y + x + 1 \\
l_{13} &= y - x - 2 & l_{14} &= y - x + 2 & l_{15} &= y + x - 2 \\
l_{16} &= y + x + 2 & l_{17} &= y - 2x & l_{18} &= y + 2x \\
l_{19} &= y - 2x - 1 & l_{20} &= y - 2x + 1 & l_{21} &= y + 2x - 1 \\
l_{22} &= y + 2x + 1 & l_{23} &= 2
\end{align*}
\]

all elements we get in \(\ker(T) \) are "integral" at 11 and 13.

Using also 11, 13, and suitable lines one can hit all three "integrality obstructions", and \(\ker(T) \) has rank at least 4.
To approximate $\langle \{l_i, l_j\} \rangle \subseteq K_2(\mathbb{Q}(E))$ we use a free Abelian group Gen on generators $\{l_i, l_j\}$ ($i < j$) with relations the kernel Rel of

$$\text{Gen} \rightarrow K_2(\mathbb{Q}(x, y)) \xrightarrow{\tilde{T}} \bigoplus_C \mathbb{Q}(D)^*$$

(where D runs through the irreducible curves in $\mathbb{A}^2_{\mathbb{Q}}$) since $\ker(\tilde{T}) = K_2(\mathbb{Q})$ is torsion. This gives

$$\text{Gen}/\text{Rel} \rightarrow K_2(F)/K_2(\mathbb{Q}) \xrightarrow{T} \bigoplus_{P \in E^{(1)}} \mathbb{Q}(P)^*$$

T+integrality conditions give a kernel in Gen/Rel of rank 31 instead of 1 but numerically all regulators are integral multiples of $\frac{1}{12} L'(E, 0)$.

We ignored torsion in the $\mathbb{Q}(P)^*$ that occur so may have to multiply everything by 12 to be in $\ker(T)$.
For example, the conjectures suggest that, modulo torsion,

- $2\{x, y\} + \{x + 1, y\} + 2\{x, x + y + 1\} + \{x + 1, x + y + 1\} \equiv 0$
- $-2\{x, y + 1\} - 2\{x, y + x\} + \{x + 1, x - 1\} - \{x + 1, y + 1\} - \{x + 1, y + x\} + \{x - 1, y + 1\} + \{x - 1, y + x\} \equiv 0$
For example, the conjectures suggest that, modulo torsion,

- $2\{x, y\} + \{x + 1, y\} + 2\{x, x + y + 1\} + \{x + 1, x + y + 1\} = 0$
- $-2\{x, y + 1\} - 2\{x, y + x\} + \{x + 1, x - 1\} - \{x + 1, y + 1\} - \{x + 1, y + x\} + \{x - 1, y + 1\} + \{x - 1, y + x\} = 0$

Herbert Gangl observed: many relations can be explained using **Steinberg relations** $\{u, 1 - u\} = 0$ coming from **linear triplet relations** $A_1A_2A_3 + B_1B_2B_3 = C_1C_2C_3$ on E with each A_i, B_i and C_i a "line": $u = \frac{A_1A_2A_3}{C_1C_2C_3}$, $1 - u = \frac{B_1B_2B_3}{C_1C_2C_3}$.

E.g., $x^2(x + 1) - y(y + x + 1) = 1$ proves the first relation above (up to 2-torsion) since $\{x^2(x + 1), -y(y + x + 1)\} = 0$.
For example, the conjectures suggest that, modulo torsion,

- \(2\{x, y\} + \{x + 1, y\} + 2\{x, x + y + 1\} + \{x + 1, x + y + 1\} \equiv 0\)
- \(-2\{x, y + 1\} - 2\{x, y + x\} + \{x + 1, x - 1\} - \{x + 1, y + 1\} - \{x + 1, y + x\} + \{x - 1, y + 1\} + \{x - 1, y + x\} \equiv 0\)

Herbert Gangl observed: many relations can be explained using Steinberg relations \(\{u, 1 - u\} = 0\) coming from linear triplet relations \(A_1A_2A_3 + B_1B_2B_3 = C_1C_2C_3\) on \(E\) with each \(A_i, B_i\) and \(C_i\) a "line": \(u = \frac{A_1A_2A_3}{C_1C_2C_3}\), \(1 - u = \frac{B_1B_2B_3}{C_1C_2C_3}\).

E.g., \(x^2(x + 1) - y(y + x + 1) = 1\) proves the first relation above (up to 2-torsion) since \(\{x^2(x + 1), -y(y + x + 1)\} = 0\).

There are about 765 really different linear triplet relations. Replacing \(\text{Rel}\) with the resulting Steinberg relations then gives a kernel of rank 3 for \(T\)-integrality conditions.
An optimistic conjecture

One of the two still unexplained relations is

\[10\{x, y\} + 5\{x + 1, y\} = 3\{x, y\} + 6\{x, y + 1\} - 9\{x, y + x + 1\} + \{x, y - 2x\} - 6\{x + 1, y\} - 3\{x + 1, y - 1\} + 3\{x + 1, y + 1\} - 3\{x - 1, y\} + 3\{x - 1, y - 1\} - 3\{x - 1, y + 1\} - 6\{y - 1, y + x + 1\} + 3\{y - 1, y - 2x\} - 3\{x + y + 1, y - 2x\} \]
An optimistic conjecture

One of the two still unexplained relations is

\[10\{x, y\} + 5\{x + 1, y\} = 3\{x, y\} + 6\{x, y + 1\} - 9\{x, y + x + 1\} \]
\[+ \{x, y - 2x\} - 6\{x + 1, y\} - 3\{x + 1, y - 1\} + 3\{x + 1, y + 1\} \]
\[- 3\{x - 1, y\} + 3\{x - 1, y - 1\} - 3\{x - 1, y + 1\} \]
\[- 6\{y - 1, y + x + 1\} + 3\{y - 1, y - 2x\} - 3\{x + y + 1, y - 2x\} \]

The calculations suggests the Optimistic conjecture

Let \(k \) be any field, \(E/k \) an elliptic curve, \(O \in E(k), F = k(E) \), and \(LF^* = \langle RR^*_3 \rangle \subseteq F^* \ (RR^*_3 = H^0(E, \mathcal{O}(3(O)))) \)

(so the image of \(LF^* \otimes_{\mathbb{Z}} LF^* \) in \(K_2(F) \) is \(L_3 \)).

Then (perhaps up to torsion or so)

\[
L_3 \equiv \frac{LF^* \otimes_{\mathbb{Z}} LF^*}{\langle u \otimes (1 - u) \text{ with } u, 1 - u \text{ from a linear triplet relation} \rangle}
\]
Some theoretical evidence

Proposition If E/k is elliptic with k algebraically closed (so $LF^* = F^*$ and $L_3 = K_2(F)$) then we only need relations $u \otimes (1 - u)$ with $\deg(u) \leq 3$, and those come from linear triplet relations:

- if $\deg(u) = 0$ then $u + (1 - u) = 1$;
- if $\deg(u) = 2$ then from some $l + m = n$;
- if $\deg(u) = 3$ then from some $l_1l_2n_2 + m_1m_2n_1 = n_1n_2N$.

Here all l_i, etc., are in RR_3^* for O the neutral element.

In the last case we have $u = \frac{l_1l_2}{n_1N}$ and $1 - u = \frac{m_1m_2}{n_2N}$.
For $\ast \in \{0, 1, \infty\}$ write $u^{-1}(\ast) = (A_{\ast,1}) + (A_{\ast,2}) + (A_{\ast,3})$. Then explicitly

(l₁) = (A₀,₁) + (A₀,₂) + (−A₀,₁ − A₀,₂) − 3(O)

(l₂) = (A₀,₃) + (A₀,₁ − A₀,₂) + (A₀,₁ + A₀,₂ − A₀,₃) − 3(O)

(m₁) = (A₁,₁) + (A₁,₂) + (−A₁,₁ − A₁,₂) − 3(O)

(m₂) = (A₁,₃) + (A₁,₁ − A₁,₂) + (A₁,₁ + A₁,₂ − A₁,₃) − 3(O)

(n₁) = (−A₀,₁ − A₀,₂) + (A₀,₃) + (A₀,₁ + A₀,₂ − A₀,₃) − 3(O)

(n₂) = (−A₁,₁ − A₁,₂) + (A₁,₃) + (A₁,₁ + A₁,₂ − A₁,₃) − 3(O)

(N) = (A₀,₁) + (A₀,₂) + (−A₀,₁ − A₀,₂) − 3(O)

(N) = (A₀,₁) + (A₀,₂) + (−A₀,₁ − A₀,₂) − 3(O)