K_4 of curves and syntomic regulators

R. de Jeu

University of Durham

email: rob.de-jeu@durham.ac.uk

website: http://www.maths.dur.ac.uk/~dmaOrdj

The goal of this talk is to describe joint work with Amnon Besser regarding the syntomic regulator on a particular subspace of $K_4^{(3)}(C)$ (conjecturally all of $K_4^{(3)}(C)$) for a smooth, geometrically irreducible curve C over a number field k.

C smooth geometrically irreducible curve over a number field k.

Fix
$$k \subset \mathbb{C}$$

Let
$$F = k(C)$$
, $\mathbb{C}(C) = \mathbb{C}(C_{\mathbb{C}})$

Define

$$K_{2}(F) \to H^{1}_{\mathrm{dR}}(\mathbb{C}(C), \mathbb{R}(1)) = \lim_{\substack{U \subset C_{\mathbb{C}} \\ C_{\mathbb{C}} \setminus U \text{ finite}}} H^{1}_{\mathrm{dR}}(U; \mathbb{R}(1))$$

$$\{f, g\} \mapsto \log |f| \operatorname{d} i \operatorname{arg} g - \log |g| \operatorname{d} i \operatorname{arg} f$$

This works as

$$\log |z| \operatorname{d} i \operatorname{arg}(1-z) - \log |1-z| \operatorname{d} i \operatorname{arg} z = \operatorname{d} P_2(z),$$

$$P_2(z)$$
 a C^{∞} -function on $\mathbb{C} \setminus \{0,1\}$

For ω in $H^0(C_{\mathbb{C}}, \Omega^1)$, the composition

$$K_2(C) \longrightarrow H^1_{\mathrm{dR}}(\mathbb{C}(C), \mathbb{R}(1)) \xrightarrow{\int_{C_{\mathbb{C}}} \cdot \wedge \omega} \mathbb{C}$$

is given by

$$\{f,g\}\mapsto \int_{C_{\mathbb{C}}}(\log|f|\mathrm{d}i\arg g-\log|g|\mathrm{d}i\arg f)\wedge\omega,$$

which extends over the map $K_2(C) \to K_2(F)$.

Let C be a complete, smooth, geometrically irreducible curve over a number field kF = k(C).

 $\widetilde{\mathcal{M}}_{(3)}(F)$ is the cohomological complex

$$\widetilde{M}_3(F) \xrightarrow{\mathrm{d}} \widetilde{M}_2(F) \otimes_{\mathbb{Q}} F_{\mathbb{O}}^* \xrightarrow{\mathrm{d}} \bigwedge^3 F_{\mathbb{O}}^*$$

in degrees 1, 2, 3 $d[f]_3 = [f]_2 \otimes f$ $d([f]_2 \otimes g) = (1 - f) \wedge f \wedge g$

[For any field F of characteristic zero, $\widetilde{M}_j(F)$ is a \mathbb{Q} -vector space generated by symbols $[z]_j$ with z in F^* , and unknown relations (which include $[z]_n + (-1)^n[z^{-1}]_n = 0$) and so $[1]_2 = 0$.]

 $\widetilde{\mathcal{M}}_{(3)}(C)$: the total complex associated to the double complex

[coproduct over all (closed) points x in C] with the top row being $\widetilde{\mathcal{M}}_{(3)}(F)$ d[z]₂ = $(1-z) \wedge z$ $\partial_{1,x}([f]_2 \otimes g) = \operatorname{ord}_x(g) \cdot [f(x)]_2$ (with $[0]_2 = [\infty]_2 = 0$) $\partial_{2,x}$ determined by $(\pi$ a uniformizer at x, u_j units at x): $\pi \wedge u_1 \wedge u_2 \mapsto u_1(x) \wedge u_2(x)$ $u_1 \wedge u_2 \wedge u_3 \mapsto 0$

Similar complexes $\mathcal{M}_{(3)}(F)$

$$M_3(F) \xrightarrow{\mathrm{d}} M_2(F) \otimes_{\mathbb{Q}} F_{\mathbb{Q}}^* \xrightarrow{\mathrm{d}} F_{\mathbb{Q}}^* \otimes \bigwedge^2 F_{\mathbb{Q}}^*$$

$$d[f]_3 = [f]_2 \otimes f$$

$$d([f]_2 \otimes g) = (1 - f) \otimes f \wedge g$$

$$\widetilde{M}_n(F) = M_n(F) / \langle [f]_n + (-1)^n [f^{-1}]_n \rangle$$

 $\mathcal{M}_{(3)}(C)$ is the total complex associated to the double complex

[coproduct over all (closed) points x in C]

 $\mathcal{M}_{(3)}(F)$ in top row

vertical maps induced from quotient map $\mathcal{M}_{(3)}(F) \to \widetilde{\mathcal{M}}_{(3)}(F)$

There are maps:

$$K_4^{(3)}(C) \longleftarrow K_4^{(3)}(C) \oplus K_3^{(2)}(k) \cup F_{\mathbb{Q}}^* \longrightarrow K_4^{(3)}(F)$$

$$\uparrow \qquad \qquad \uparrow \qquad \qquad \uparrow$$

$$H^2(\mathcal{M}_{(3)}(C)) \longrightarrow H^2(\mathcal{M}_{(3)}(F))$$

$$\downarrow \cong \qquad \qquad \downarrow \cong$$

$$H^2(\widetilde{\mathcal{M}}_{(3)}(C)) \longrightarrow H^2(\widetilde{\mathcal{M}}_{(3)}(F))$$

Fix embedding $k \subset \mathbb{C}$, and ω in $H^0(C \otimes_k \mathbb{C}, \Omega^1_{/\mathbb{C}})$. Then the regulator for Deligne cohomology

$$K_4^{(3)}(C) \to H_{\mathcal{D}}^2(C_{\mathbb{C}}, \mathbb{R}(3)) \cong H_{\mathrm{dR}}^1(C_{\mathbb{C}}; \mathbb{R}(2))$$

followed by

$$\int \cdot \wedge \ \omega : H^1_{\mathrm{dR}}(C_{\mathbb{C}}; \mathbb{R}(2)) o \mathbb{C}$$

extends over

$$K_4^{(3)}(C) \to K_4^{(3)}(F).$$

The resulting map

$$H^2(\widetilde{\mathcal{M}}_{(3)}(F)) \longrightarrow \mathbb{C}$$

is induced by

$$\widetilde{M}_2(F) \otimes F_{\mathbb{Q}}^* \to \mathbb{C}$$

$$[g]_2 \otimes f \mapsto \pm \frac{8}{3} \int_{C_{\mathbb{C}}} P_2 \circ g \, \operatorname{d} \log |f| \wedge \omega$$

Coleman integration

 $\mathbb{C}_p = \hat{\overline{\mathbb{Q}}}_p$

 $|\cdot|$: p-adic valution with $|p| = p^{-1}$

 \mathcal{O} : ring of integers of \mathbb{C}_p

 $\overline{\mathbb{F}}_p$: residue field

 X/\mathcal{O} : smooth curve over \mathcal{O}

(=smooth projective surjective scheme of relative dimension 1)

For x in $X(\overline{\mathbb{F}}_p)$, put

 U_x = residue disc of x = {all pts in $X(\mathbb{C}_p)$ reducing to x}, a copy of the maximal ideal of \mathcal{O} .

 $Y \subseteq X_{\overline{\mathbb{F}}_p}$ nonempty open affine subscheme, smooth over $\overline{\mathbb{F}}_p$, so $X(\overline{\mathbb{F}}_p) = Y(\overline{\mathbb{F}}_p) \coprod \{e_1, \ldots, e_n\}.$

 $U_r = \text{rigid space obtained by removing discs of radius } r < 1$ from $X(\mathbb{C}_p)$ for all e_i : e_i locally given by $\overline{h} = 0$, so leave out $|h| \leq r$.

U "=" $\lim_{\stackrel{\longleftarrow}{r\uparrow 1}} U_r$ is independent of the choices, a basic wide open

in the sense of Coleman (i.e. for \cdots on U work in $\lim_{\substack{r \to r \\ r \uparrow 1}} \cdots (U_r)$)

Make a choice of logarithm $\log : \mathbb{C}_p^* \to \mathbb{C}_p$ such that

- (1) $\log ab = \log a + \log b$
- (2) $\log(1+z) = \text{usual powerseries expansion for } |z| \text{ small.}$ (I.e., fix a choice of $\log p$.)

For
$$x \in Y(\overline{\mathbb{F}}_p)$$
, put

$$A(U_x) = \{\sum_{n=0}^{\infty} a_n z^n \text{ conv. for } |z| < 1\}$$

$$A_{\log}(U_x) = A(U_x)$$

$$\Omega_{\log}(U_x) = A_{\log}(U_x) dz$$

 $[z=z_x \text{ is a local parameter on } U_x.]$

For
$$x \notin Y(\overline{\mathbb{F}}_p)$$
 (i.e., $x = e_1, \ldots, e_n$, the ends), put

$$A(U_x) = \{\sum_{n=-\infty}^{\infty} a_n z^n \text{ conv. for } r < |z| < 1, \text{ some } r < 1\}$$

$$A_{\log}(U_x) = A(U_x)[\log z]$$

$$\Omega_{\log}(U_x) = A_{\log}(U_x) \mathrm{d}z$$

Put

$$A_{\mathrm{loc}}(U) = \prod_{x \in X(\overline{\mathbb{F}}_p)} A_{\mathrm{log}}(U_x)$$

(locally analytic functions, with choice of logs around the e_i)

$$\Omega_{\mathrm{loc}}(U) = \prod_{x \in X(\overline{\mathbb{F}}_p)} \Omega_{\mathrm{log}}(U_x)$$

(locally analytic forms, with choice of log around the e_i)

$$0 \longrightarrow \prod_{x \in X(\overline{\mathbb{F}}_p)} \mathbb{C}_p \longrightarrow A_{\mathrm{loc}}(U) \stackrel{\mathrm{d}}{\longrightarrow} \Omega_{\mathrm{loc}}(U) \longrightarrow 0$$

is exact by reduction formulae for $\int z^n \log^k z dz$ as $d \log z = \frac{dz}{z}$.

If $X_{\overline{\mathbb{F}}_p}$ is defined over \mathbb{F}_q , so $X' \times_{\mathbb{F}_q} \overline{\mathbb{F}}_p$ for some X'/\mathbb{F}_q , let ϕ be the geometric Frobenius of X'/\mathbb{F}_q .

Coleman:

- (1) There exists a lift φ of ϕ to U (coming from a rigid analytic map $\phi: U_r \to U_s$ for some s < r < 1).
- (2) There exists a subspace $A_{\text{Col}}(U)$ of $A_{\text{loc}}(U)$, containing the rigid analytic functions A(U) on U, such that with $\Omega_{\text{Col}}(U) = A_{\text{Col}}(U) \cdot \Omega^{1}(U)$

$$0 \longrightarrow \mathbb{C}_p \longrightarrow A_{\operatorname{Col}}(U) \stackrel{\mathrm{d}}{\longrightarrow} \Omega_{\operatorname{Col}}(U) \longrightarrow 0$$

is exact.

Denote $\int : \Omega_{\operatorname{Col}}(U) \to A_{\operatorname{Col}}(U) \mod \mathbb{C}_p$ by $\omega \mapsto \int \omega$ or $\omega \mapsto F_{\omega}$. Then

- (a) $dF_{\omega} = \omega$
- (b) $\int \varphi^*(\omega) = \varphi^*(\int \omega)$

 $[A_{\mathrm{Col}} \text{ is independent of } \varphi.]$

Let P and Q be in U, ω in $\Omega_{\text{Col}}(U)$, and F_{ω} in $A_{\text{Col}}(U)$ with $dF_{\omega} = \omega$. Put $\int_{P}^{Q} \omega = F_{\omega}(Q) - F_{\omega}(P)$.

More generally, if $D = \sum_i a_i P_i$ with all P_i in U and $\sum_i a_i = 0$, put $\int_D \omega = \sum_i a_i F(P_i)$.

Example

$$X = \mathbb{P}^1_{\mathbb{C}_p}$$
 $Y = \mathbb{P}^1_{\overline{\mathbb{F}}_p} \setminus \{1, \infty\}$
 U "=" $\mathbb{P}^1_{\mathbb{C}_p} \setminus U_1 \coprod U_{\infty}$
 $\phi(z) = z^p \text{ (working over } \mathbb{F}_p)$
 $\varphi(z) = (z-1)^p + 1$

Put $Li_{n+1}(z) = \int_0^z Li_n(z) d\log z$ starting with $Li_0(z) = \frac{z}{1-z}$.

$$Li_n(z) = \sum_{k=1}^{\infty} \frac{z^k}{k^n}$$
 for $|z| < 1$.

[In fact, $Li_n(z)$ extends naturally to $\mathbb{C}_p \setminus \{1\}$.]

$$L_2(z) = Li_2(z) + \log z \cdot \log(1 - z)$$
$$L_{2,\text{mod}}(z) = Li_2(z) + \frac{1}{2}\log z \cdot \log(1 - z)$$

 L_2 does not satisfy a nice functional equation for z versus z^{-1} , but

$$L_{2,\text{mod}}(z) + L_{2,\text{mod}}(z^{-1}) = 0.$$

Use Coleman integration for regulators in the following context:

K complete discrete valuation subfield of \mathbb{C}_p

C smooth, complete, geometrically irreducible curve over number field $k \subset K$ with good reduction at the corresponding valuation ideal.

 $\begin{array}{l} \mathcal{O}_{\scriptscriptstyle{k}} \ \text{valuation ring in} \ k \\ \mathcal{C} \ \text{smooth proper model of} \ C \ \text{over} \ \mathcal{O}_{\scriptscriptstyle{k}} \\ \omega \ \text{in} \ H^0(C,\Omega^1_{/K}) \end{array}$

Theorem (Besser) With reg_{syn} the syntomic regulator, the composition

$$K_2^{(2)}(C) \cong K_2^{(2)}(\mathcal{C}) \xrightarrow{\mathrm{reg}_{\mathrm{syn}}} H^2_{\mathrm{syn}}(\mathcal{C}, (2)) \cong H^1_{\mathrm{dR}}(C/K) \xrightarrow{\mathrm{Tr}(\cdot \cup \, \omega)} K$$

factorizes through

$$K_2^{(2)}(C) \to K_2^{(2)}(F),$$

and then is induced by

$$K_2^{(2)}(F) \to K$$

$$\{f, g\} \mapsto \int_{(f)} \log(g)\omega.$$

 $\int \log(g)\omega(x)$ is given by the constant term at x: if $\int \log(g)\omega = \sum_{j} f_{j}(z_{x}) \log^{j} z_{x}$, the constant term is $f_{0}(0)$.

For $\int \log(g)\omega$, the result is independent of the choice of a uniformizing parameter z_x at x: fix $\int \log(g)\omega$, fix F_{ω} such that $F_{\omega}(x) = 0$, and define $\int F_{\omega} d \log(g)$ via $\int \log(g)\omega = \log(g)F_{\omega} - \int F_{\omega} d \log(g)$. Then $\log(g)F_{\omega}$ has constant term zero for any z_x , and $F_{\omega} d \log(g)$ is holomorphic at x, so its integral can be evaluated at x to give the constant term.

Theorem (Besser+RdJ)

$$H^2(\mathcal{M}_{(3)}(C)) \longrightarrow K_4^{(3)}(C) \cong K_4^{(3)}(C) \longrightarrow$$

$$\longrightarrow H^2_{\mathrm{syn}}(\mathcal{C},(3)) \cong H^1_{\mathrm{dR}}(C/K) \xrightarrow{\mathrm{Tr}(\cdot \cup \omega)} K$$

is given by

$$\sum_{i} [g_i]_2 \otimes f_i \mapsto 2 \sum_{i} \int_{(f_i)} L_2(g_i) \omega,$$

provided that none of the f_i , g_i and $1 - g_i$ have a zero or pole along the special fibre of C.

[The Coleman integral is carried out on a wide open space U on which f_i , g_i and $1 - g_i$ are holomorphic.]

 $(\int L_2(g)\omega)(x)$ is given by the constant term.

For $\int L_2(g)\omega$ that is again independent of the choice of local parameter z_x .

Back to a single residue disc, an end e. For three functions F, G, H in $A(U_e) + K \cdot \log z$, fix for each two functions R and S out of F, G, H a choice of $\int RdS$ (i.e., a function in $A_{\log}(U_e)$ whose differential is RdS) and of $\int SdR$ in such a way that

$$\int RdS + \int SdR = RS .$$

Denote all this data (including the auxiliary data $\int F dG$ etc.) by (F, G; H).

Proposition (Besser+RdJ)

There exists a unique function $(F, G; H) \to \langle F, G; H \rangle$, called the triple index on the end e, from data as above to K, satisfying

- (1) Multilinearity the triple index is linear in each of the three variables (with linear choices of $\int R dS$ etc.).
- (2) Symmetry we have $\langle F, G; H \rangle = \langle G, F; H \rangle$ (the $\int F dG$ etc. must also be swapped).
- (3) Triple identity We have, again with the obvious additional choices,

$$\langle F, G; H \rangle + \langle F, H; G \rangle + \langle G, H; F \rangle = 0.$$

- (4) Some compatibility for changing the auxiliary data.
- (5) Reduction to double index if G is in $A(U_e)$, then

$$\langle F,G;H
angle = \left\langle F,\int GdH
ight
angle,$$

where $\int GdH$ is from the auxiliary data and is in $A(U_e)+K\cdot \log z$ because by assumption GdH is in $A(U_e)\cdot dz$.

The double index

$$\langle \cdot, \cdot \rangle : (A(U_e) + K \cdot \log z) \times (A(U_e) + K \cdot \log z) \to K$$

is the unique alternating K-linear map such that

$$\langle F, G \rangle = \mathrm{Res} F \mathrm{d} G$$

if F is in $A(U_e)$ and G is in $A(U_e) + K \cdot \log z$.

Furthermore, if F, G and H are Coleman functions on a basic wide open U, such that dF and dG are holomorphic on U, dH is holomorphic on each end U_{e_j} , and we use Coleman integrals for $\int F dG$ etc., then the global index

$$\langle F, G; H \rangle_{\text{gl}} = \sum_{e \in \text{Ends(U)}} \langle F, G; H \rangle_{e}$$

depends only on F, G and H and not on the auxiliary data.

Theorem (Besser+RdJ)

If we allow ω to be a form of the second kind on C_K in the previous Theorem, then the composition is given by

$$\sum_{i} [g_i]_2 \otimes f_i \mapsto \left\langle \log(f_i), \log(g_i); \int F_{\omega} d\log(1 - g_i) \right\rangle_{\mathrm{gl}},$$

where F_{ω} is any Coleman integral of ω and the sum of triple indices is done with respect to a wide open space U on which all f_i , g_i , $1 - g_i$ as well as ω are holomorphic.