On the K-theory of curves over number fields

Rob de Jeu r.m.h.de.jeu@vu.nl http://www.few.vu.nl/~jeu

> Department of Mathematics Vrije Universiteit Amsterdam

31st October 2024, Mainz, Germany

Quillen defined Abelian groups $K_n(R)$ $(n \ge 0)$ for rings R, as well as for algebraic varieties.

Let k be a number field, with r_1 real and $2r_2$ non-real embeddings, $d = r_1 + 2r_2$, and ring of algebraic integers \mathcal{O} , and Δ_k the absolute value of the discriminant of k

Then

- $K_0(\mathcal{O}) \simeq \mathbb{Z} \oplus \mathsf{Cl}(\mathcal{O})$
- $\mathcal{K}_1(\mathcal{O})\simeq \mathcal{O}^*$ has rank $\mathit{r}_1+\mathit{r}_2-1$

Classically

$$\mathsf{Res}_{s=1}\zeta_k(s) = rac{2^{r_1}(2\pi)^{r_2}R \ |\mathsf{CI}(\mathcal{O})|}{w\sqrt{\Delta_k}}$$

with R the regulator of \mathcal{O}^* , which has lots of K-theory in it.

Theorems of Quillen and Borel

Theorem (Quillen)

 $K_n(\mathcal{O})$ is finitely generated for all $n \ge 0$.

Theorem (Borel)

(1) $K_{2n}(\mathcal{O})$ is a finite group if $n \ge 1$. (2) For $n \ge 2$, $K_{2n-1}(\mathcal{O})$ has rank $m_{2n-1} = r_1 + r_2$ if n is odd, and rank $m_{2n-1} = r_2$ if n is even. (3) There exists a natural regulator map

$$K_{2n-1}(\mathcal{O}) \to \mathbb{R}^{m_{2n-1}} \qquad (n \ge 2).$$

Its image is a lattice with volume of a fundamental domain

$$V_n = q_n \frac{\zeta_k(n)}{\pi^{n(d-m_{2n-1})}\sqrt{\Delta_k}}$$

with q_n in \mathbb{Q}^* .

 $\zeta_{\mathbb{Q}}$ is the Riemann zeta function. For $n \ge 2$: $K_{2n-1}(\mathbb{Z})$ is finite for n even;

 $K_{2n-1}(\mathbb{Z})$ has rank 1 for *n* odd, and $V_n = q_n \zeta(n)$ with q_n in \mathbb{Q}^* .

n	2	3	4	5	6	7	
m_{2n-1}	0	1	0	1	0	1	
$\zeta(n)$	$\pi^{2}/6$	irrational	$\pi^{4}/90$???	$\pi^6/945$???	

• • = • • = •

Generalisation: curves (continued)

If k is a field then $K_2(k)$ is an Abelian group written additively, with

generators
$$\{a, b\}$$
 for a, b in k^*
relations $\{a_1a_2, b\} = \{a_1, b\} + \{a_2, b\}$
 $\{a, b_1b_2\} = \{a, b_1\} + \{a, b_2\}$
 $\{a, 1 - a\} = 0$ if $a \neq 0, 1$
Then also $\{a, b\} = -\{b, a\}$ and $\{c, -c\} = 0$ for a, b, c in k^* .

Let C be a regular curve over a field F. There is an exact

localisation sequence

$$\cdots \to \oplus_{P \in C} \mathcal{K}_2(F(P)) \to \mathcal{K}_2(C) \to \mathcal{K}_2(F(C)) \xrightarrow{T} \oplus_{P \in C} F(P)^* \to \ldots$$

where T_P is the tame symbol for P:

$$\mathcal{T}_{\mathcal{P}}: \{f,g\} \mapsto (-1)^{\operatorname{ord}_{\mathcal{P}}(f)\operatorname{ord}_{\mathcal{P}}(g)} \frac{f^{\operatorname{ord}_{\mathcal{P}}(g)}}{g^{\operatorname{ord}_{\mathcal{P}}(f)}}|_{\mathcal{P}}$$

with $\operatorname{ord}_P(f)$ the order of vanishing of f at $P_{:}$

<=> = √Q(~

Now assume C is a curve over \mathbb{C} . For two non-zero meromorphic functions f and g on C, $\log |f| \operatorname{darg} g - \log |g| \operatorname{darg} f$ is a closed 1-form on some Zariski open U. Because

$$\log |z| \operatorname{d} \arg(1-z) - \log |1-z| \operatorname{d} \arg z = \operatorname{d} P_2(z),$$

where $P_2(z)$ is a C^∞ -function on $\mathbb{C}\setminus\{0,1\}$, we get a map

$$\operatorname{reg}: \mathcal{K}_2(F) \to \frac{\{\operatorname{closed} \ 1\text{-forms on some } U\}}{\{\operatorname{exact} \ 1\text{-forms on some } U\}}$$
$$\{f,g\} \mapsto \log |f| \operatorname{d} \arg g - \log |g| \operatorname{d} \arg f.$$

This fits into a commutative diagram

• • = • • = • = •

Theorem (Bloch)

Let E be an elliptic curve defined over \mathbb{Q} with complex multiplication. Then there exists α in $K_2(E)$ with

$$L'(E,0) = q rac{1}{2\pi} \int_{E_{\mathbb{C}}} \operatorname{reg}(lpha) \wedge \omega$$

for some q in \mathbb{Q}^* , or, using the functional equation for the *L*-function:

$$rac{1}{2\pi}L(E,2)=q'\int_{E_{\mathbb{C}}}\operatorname{reg}(lpha)\wedge\omega.$$

 ω is the non-zero holomorphic form on $E_{\mathbb{C}}$ with $\int_{E(\mathbb{R})} \omega = 1$.

Beilinson proposed conjectures that include vast generalisations of this result, and Borel's theorem.

'Integrality'; choice of model

Fix a regular, flat, proper model C/O_F of C/F, with O_F the ring of algebraic integers in a number field F. Then we define

$$\mathcal{K}_2^{\mathcal{T}}(\mathcal{C})_{\mathrm{int}} = \mathrm{ker}igg(\mathcal{K}_2(\mathcal{F}(\mathcal{C})) \stackrel{T_\mathcal{C}}{
ightarrow} \oplus_\mathcal{D} \mathbb{F}(\mathcal{D})^{ imes}igg),$$

where \mathcal{D} runs through all irreducible curves on \mathcal{C} , and $\mathbb{F}(\mathcal{D})$ is the residue field at \mathcal{D} . The component of $\mathcal{T}_{\mathcal{C}}$ for \mathcal{D} is given by the tame symbol corresponding to \mathcal{D} ,

$$\{\mathsf{a},\mathsf{b}\}\mapsto (-1)^{\mathsf{v}_{\mathcal{D}}(\mathsf{a})\mathsf{v}_{\mathcal{D}}(\mathsf{b})}rac{\mathsf{a}^{\mathsf{v}_{\mathcal{D}}(\mathsf{b})}}{\mathsf{b}^{\mathsf{v}_{\mathcal{D}}(\mathsf{a})}}(\mathcal{D})\,,$$

where $v_{\mathcal{D}}$ is the valuation on F corresponding to \mathcal{D} . $K_2^{\mathsf{T}}(C)_{\text{int}}$ is the subgroup of $K_2^{\mathsf{T}}(C)$ consisting of integral elements.

Theorem (Liu-dJ, 2015)

 $K_2^T(C)_{int}$ is independent of C, and is equal to the image of $K_2(C)$ in $K_2(k(C))$ under localisation.

Beilinson regulator for K_2 of curves

For starters,

- C/\mathbb{C} a regular, proper curve,
- $\alpha = \sum_{j} \{f_j, g_j\}$ in $K_2^T(C)$
- γ in $H_1(C(\mathbb{C}),\mathbb{Z})$
- their regulator pairing is (well-)defined by

$$\langle \gamma, \alpha \rangle = \frac{1}{2\pi} \int_{\gamma} \sum_{j} \eta(f_j, g_j)$$

with $\eta(f,g) = \log |f| \operatorname{darg}(g) - \log |g| \operatorname{darg}(f)$ for non-zero functions f and g on C; we use a representative of γ that avoids all zeroes and poles of the functions involved.

As main course,

• C a regular, proper, geometrically irreducible curve over a number field k of degree m, of genus g; let n = mg

• X the Riemann surface consisting of all \mathbb{C} -valued points of C, a disjoint union of the complex points of m curves C^{σ} , indexed by the embeddings σ of k into \mathbb{C} . Complex conjugation acts on X through its action on \mathbb{C} , and $H_1(X, \mathbb{Z})^- \simeq \mathbb{Z}^n$

• Define a pairing

$$H_1(X,\mathbb{Z}) \times K_2^{\mathcal{T}}(\mathcal{C}) \to \mathbb{R}$$
$$(\gamma, \alpha) \mapsto \langle \gamma, \alpha \rangle_X = \sum_{\sigma} \langle \gamma_{\sigma}, \alpha^{\sigma} \rangle$$

if $\gamma = (\gamma_{\sigma})_{\sigma}$ in $H_1(X, \mathbb{Z}) = \bigoplus_{\sigma} H_1(C^{\sigma}(\mathbb{C}), \mathbb{Z})$, α^{σ} the pullback of α to C^{σ} .

Beilinson's conjecture for K_2 of curves (continued)

Assume L(C, s) can be analytically continued to the complex plane and satisfies a functional equation for s versus 2 - s as in the Hasse-Weil conjecture.

Then L(C, s) should have a zero of order n at s = 0, and we let $L^*(C, 0) = (n!)^{-1}L^{(n)}(C, 0)$ be the first non-vanishing coefficient in its Taylor expansion in s at 0.

Conjecture

• Let $\gamma_1, \ldots, \gamma_n$ and $\alpha_1, \ldots, \alpha_n$ form \mathbb{Z} -bases of $H_1(X, \mathbb{Z})^$ and $K_2^T(C)_{int}$ modulo torsion respectively Let the Beilinson regulator of the α_j be $R = |\det(\langle \gamma_i, \alpha_j \rangle_X)_{i,j}|$. Then

$$L^*(C,0)=Q\cdot R$$

for some Q in \mathbb{Q}^{\times}

We borrowed finite generation of $K_2^T(C)_{int}$ from Bass's conjecture

Proposition

Let C be a regular, projective, geometrically irreducible curve over a number field F, with regular, flat, proper model C over the ring of algebraic integers \mathcal{O}_F . Suppose f, g in $F(C)^{\times}$ and $N \ge 1$ satisfy (f) = N(P) - N(O), (g) = N(Q) - N(O) for some distinct F-rational points O, P and Q on C, and f(Q) = g(P) = 1. Then $\alpha = \{f, g\}$ is in $K_2^T(C)$.

Let \mathfrak{P} be a maximal ideal of \mathcal{O}_F , with fibre $\mathcal{F} = \mathcal{C}_{\mathfrak{P}}$, and let \mathcal{D} be an irreducible component of \mathcal{F} . Then

• $T_{\mathcal{D}}(\alpha) = 1$ if O and P, or O and Q, hit the same irreducible component of \mathcal{F}

• $T_{\mathcal{D}}(\alpha) = T_{\mathcal{D}}(\{f, \varepsilon\}) = T_{\mathcal{D}}(\{g, \varepsilon\})$ if P and Q hit the irreducible component \mathcal{B} and O hits the irreducible component $\mathcal{A} \neq \mathcal{B}$; $T_{\mathcal{D}}(\alpha) = 1$ if \mathcal{D} is not in the connected component of $\cup_{\mathcal{D}' \neq \mathcal{B}} \mathcal{D}'$ that contains \mathcal{A} . Here $\varepsilon = (-g/f)(O)$, an Nth root of unity.

< ロ > < 同 > < 回 > < 回 > .

A new integrality criterion (continued)

With $e_N(\cdot, \cdot)$ the Weil pairing on the *N*-torsion in the Jacobian of *C* over an algebraic closure of *F*, we have (Mazo, 2005)

$$\varepsilon = (-1)^{N+1} e_N((P) - (O), (Q) - (O)).$$

Example

On the elliptic curve over \mathbb{Q} defined by $y^2 = x^3 + 1$, with P = (2,3), Q = -P = (2,-3), N = 6,

$$f = rac{1}{108} rac{(y-2x+1)^3}{y+1}$$
 $g = rac{1}{108} rac{(-y-2x+1)^3}{-y+1},$

 $\varepsilon = -1$. The reduction at p = 3 is of type III. It has two irreducible components A, hit by O, and B, hit by P and Q. Then $T_{\mathcal{A}}(\{f,g\}) = -1$ and $T_{\mathcal{B}}(\{f,g\}) = 1$.

Joint work with Brunault, Liu, Villegas

Let *E* be an elliptic curve over a field *F*, and *P* an *F*-rational point on *E* of order *N*. For $1 \le s \le N - 1$, let $f_{P,s}$ in $F(E)^{\times}$ be a function with divisor $(f_{P,s}) = N(sP) - N(O)$.

In $K_2^T(E)$ define

$$T_{P,s,t} = \left\{ \frac{f_{P,s}}{f_{P,s}(tP)}, \frac{f_{P,t}}{f_{P,t}(sP)} \right\} \quad (s \neq t)$$
$$S_{P,s} = \{f_{P,s}, -f_{P,s}\} + \sum_{t=1, t \neq s}^{N-1} T_{P,s,t} \quad (1 \le s \le N-1)$$

Remark

$$S_{P,s}+S_{P,N-s}=0$$

(b) a (B) b (a (B) b)

Let F be a field and $N \ge 4$. A pair (E, P) with E an elliptic curve E over F and an F-rational point P of order N admits a unique Weierstraß model Tate normal form

$$E: y^2 + (1 - g)xy - fy = x^3 - fx^2$$

with f in F^{\times} , g in F, and where P = (0, 0).

Ν	f	g	Δ
7	$t^3 - t^2$	$t^2 - t$	$t^{7}(t-1)^{7}(t^{3}-8t^{2}+5t+1)$
8	$2t^2 - 3t + 1$	$\frac{2t^2-3t+1}{t}$	$rac{(t-1)^8(2t-1)^4(8t^2-8t+1)}{t^4}$
10	$rac{2t^5 - 3t^4 + t^3}{(t^2 - 3t + 1)^2}$	$\frac{-2t^3+3t^2-t}{t^2-3t+1}$	$rac{t^{10}(t-1)^{10}(2t-1)^5(4t^2-2t-1)}{(t^2-3t+1)^{10}}$

If $E = E_t$ is an elliptic curve over a number field F, in Tate normal form for N = 7, 8 or 10, and P = (0,0), then 2P hits the 0-component in each fibre of the minimal regular model over \mathcal{O}_F if • t, 1 - t are in \mathcal{O}_F^{\times} , for N = 7• $\frac{1}{t} - 1, \frac{1}{t} - 2$ are in \mathcal{O}_F^{\times} , for N = 8• $\frac{1}{t} - 1, 1 - 2t$ are in \mathcal{O}_F^{\times} , for N = 10In that case: • each $S_{P,s}$ is in $K_2^T(E)_{int}$ for N = 7; • $2S_{e}$ is in $K_2^T(E)_{int}$ for N = 7;

• $2S_{P,s}$ is in $K_2^T(E)_{int}$ for N = 8, 10.

Lemma

For every integer a, and all $\varepsilon, \varepsilon'$ in $\{\pm 1\}$

$$f_{a}(X) = X^{3} + aX^{2} - (a + \varepsilon + \varepsilon' + 1)X + \varepsilon$$

is irreducible in $\mathbb{Q}[X]$.

A cubic field F has an element u such that $F = \mathbb{Q}(u)$ and both u and 1 - u are in \mathcal{O}_F^{\times} precisely when u is a root of some $f_a(X)$. F/\mathbb{Q} is cyclic if and only if $\varepsilon = \varepsilon' = 1$ or $|2a - \varepsilon + \varepsilon' + 3| = 7$.

• For $\varepsilon = \varepsilon' = 1$ we get the simplest cubic fields (Shanks).

• $u \mapsto 1 - u$ and $u \mapsto u^{-1}$ generate some identifications; we end up with two 'half' families.

• There are similarly 40 families of quartic fields $\mathbb{Q}(u)$ with both uand $\frac{u-1}{u+1}$ units (identifications under a dihedral group of order 8); the Galois closure in a family almost always has group S_4 (28×), D_4 (10×), C_4 (1×) simplest quartic fields (Gras), $C_2 \times C_2$ (1×).

Theorem

Define fields F, with element t, parametrised by an integer a.

- Let u be a root of an $f_a(X)$ defining a special cubic field $F = \mathbb{Q}(u)$, and put t = u (N = 7) or t = 1/(u+1) (N = 8).
- Let u be a root of an $f_a(X)$ defining a special quartic field $F = \mathbb{Q}(u)$, and put $t = \frac{1-u}{2}$ for N = 10.

If the Tate normal form for (N, t) defines an elliptic curve E/F, then, with P = (0, 0):

- the $gcd(2, N) \cdot S_{P,s}$ for s = 1, ..., N 1 are in $K_2^T(E)_{int}$;
- for the Beilinson regulator R(a) of the first $\lfloor \frac{N-1}{2} \rfloor$ we have

$$\lim_{|a|\to\infty} \frac{R(a)}{\log^{\lfloor\frac{N-1}{2}\rfloor}|a|} = C_N \cdot \left| \det\left(\frac{N^4}{3}B_3\left(\left\{\frac{ij}{N}\right\}\right)_{1\le i,j\le \lfloor\frac{N-1}{2}\rfloor}\right) \right| \neq 0$$

$$(B_2(X) = X^3 - \frac{3}{2}X^2 + \frac{1}{2}X: \text{ third Bernoulli polynomial:}$$

$$x$$
}: the fractional part of x; $C_7 = 1$, $C_8 = C_{10} = 4$)

- d: discriminant of F
- c: conductor norm c of E

N = 7, 8: F defined by $f_a(X) = X^3 + aX^2 - (a+1)X + 1$, $a \ge 0$ F is cubic non-Abelian for $a \ne 3$

- N = 7: we list the rational number \widetilde{Q} for $S_{P,1}, S_{P,2}, S_{P,3}$
- N = 8: we list the rational number \widetilde{Q} for $2S_{P,1}, 2S_{P,2}, 2S_{P,3}$
- N = 10: F defined by $f_a(X) = X^4 + aX^3 aX + 1$, a in $\mathbb{Z} \setminus \{\pm 3\}$
- Galois group of splitting field: D_4 for $a \neq 0$
- two complex places for $a = -2, \ldots, 2$, otherwise totally real
- we list the rational number Q for $2S_{P,1}, 2S_{P,2}, 2S_{P,3}, 2S_{P,4}$,

Some of our data for N = 7 red: F not totally real

а	d	с	L*(E,0)	\widetilde{Q}
2	-23	$2^3 \cdot 7^2$	3.20759739648506351	7 ⁻⁶
3	7 ²	13 · 29	14.5301315201187081	7 ⁻⁵
4	257	2 ³ · 41	235.760168840014734	7 ⁻⁴
5	$17 \cdot 41$	239	1671.96067772426875	$2 \cdot 3 \cdot 5 \cdot 7^{-5}$
6	1489	$2^{3} \cdot 13$	4051.92834496448134	7 ⁻³
7	2777	83	-6590.94375552556550	$-2\cdot 5\cdot 7^{-5}\cdot 11$
8	4729	2 ³ · 41	114693.828270615380	$2^3 \cdot 3^3 \cdot 7^{-4}$
9	7537	$7^{2} \cdot 13$	520366.913326434323	$2\cdot 3\cdot 7^{-4}\cdot 137$
10	$7^2 \cdot 233$	$2^{3} \cdot 127$	-1485239.71027494934	$-2\cdot 3^2\cdot 7^{-4}\cdot 113$
11	17 · 977	1471	5790649.98684165696	$2^4\cdot 3\cdot 5^2\cdot 7^{-5}\cdot 41$
12	97 · 241	$2^{3} \cdot 251$	17255203.9121322960	$2^4\cdot 3^2\cdot 7^{-4}\cdot 131$
13	32009	2633	28504752.7830982117	$2^8 \cdot 3 \cdot 7^{-4} \cdot 37$
14	47 · 911	$2^{3} \cdot 419$	93361926.2369695039	$2^3 \cdot 3 \cdot 7^{-4} \cdot 3571$
15	73 · 769	43 · 97	192572866.057081271	$2^3\cdot 3^2\cdot 7^{-4}\cdot 43\cdot 53$

Some of our data for N = 8

а	d	С	L*(E,0)	\widetilde{Q}
2	-23	5 · 137	5.97110504152047155	2 ⁻²¹
3	7 ²	7 · 113	31.2948786232840397	2^{-18}
4	257	3 ³	25.2202129687784361	$2^{-18} \cdot 3^{-1}$
5	$17 \cdot 41$	$11 \cdot 41$	3130.70411060858445	$2^{-15} \cdot 3$
6	1489	7 · 13	3377.15438740388289	2^{-13}
7	2777	$3^3 \cdot 5 \cdot 7$	-110191.314028644712	$-2^{-10} \cdot 3$
8	4729	$17 \cdot 127$	806249.659144856084	$2^{-13}\cdot 11\cdot 13$
9	7537	$19 \cdot 199$	-3399020.63508445448	$-2^{-12} \cdot 257$
10	$7^2 \cdot 233$	$3^3 \cdot 7 \cdot 31$	9860642.47040826474	$2^{-11}\cdot 3\cdot 109$
11	17 · 977	23 · 367	-38313626.2137679483	$-2^{-13} \cdot 4547$
12	97 · 241	5 · 463	22214626.7118122391	$2^{-14} \cdot 4787$
13	32009	3 ³ · 7	2759510.81590883242	$2^{-13}\cdot 3\cdot 7\cdot 13$
14	47 · 911	7 · 29 · 97	-549654076.156923184	$-2^{-12} \cdot 3^4 \cdot 311$
15	73 · 769	$17 \cdot 31 \cdot 47$	1205314746.12464172	$2^{-9} \cdot 5 \cdot 1289$

Data for N = 10 red: F one complex place blue: $F = \mathbb{Q}(\zeta_8)$

а	d	с	L*(E,0)	\widetilde{Q}
-7	$2^3 \cdot 41^2$	$2^2 \cdot 23^2$	67284.5712909244205	$2^{-11} \cdot 5^{-5}$
-6	$2^6 \cdot 7^2 \cdot 37$	$3^{4} \cdot 7^{2}$	12809909.2599370080	$2^{-9} \cdot 5^{-4} \cdot 13$
-5	$2^3\cdot 13\cdot 17^2$	$2^2 \cdot 19^2$	321613.252539691824	$2^{-10} \cdot 5^{-4}$
-4	$2^{8} \cdot 17$	17 ²	1308.96784301967823	$2^{-10} \cdot 5^{-7}$
-2	2 ⁶ · 5	13 ²	3.90265959107592883	$2^{-14} \cdot 5^{-9}$
-1	$2^{3} \cdot 7^{2}$	$2^2 \cdot 11^2$	18.1524378610645748	$2^{-14} \cdot 5^{-8}$
0	2 ⁸	3 ⁴	1.29080207928400602	$2^{-14} \cdot 3^{-2} \cdot 5^{-8}$
1	$2^{3} \cdot 7^{2}$	$2^2 \cdot 7^2$	7.41655915683319223	$2^{-15} \cdot 5^{-8}$
2	2 ⁶ · 5	5 ²	0.604505751430063810	$2^{-14} \cdot 5^{-10}$
4	2 ⁸ · 17	7 ²	211.227406732423650	$2^{-11} \cdot 5^{-7}$
5	$2^3\cdot 13\cdot 17^2$	2 ²	825.817965343090665	$2^{-11} \cdot 5^{-7}$
6	$2^6 \cdot 7^2 \cdot 37$	3 ⁴	272030.854985666477	$2^{-9} \cdot 3^2 \cdot 5^{-6}$
7	$2^3 \cdot 41^2$	$2^2 \cdot 5^4$	111421.646021166774	$2^{-10} \cdot 5^{-5}$

K-theory of a curve

Let C be an irreducible regular curve over a field k and F = k(C). We have the exact localisation sequence

$$\cdots \to \coprod_{P \in C} K_4(k(P)) \to K_4(C) \to K_4(F) \to \coprod_{P \in C} K_3(k(P)) \to K_3(C) \to K_3(F) \to \coprod_{P \in C} K_2(k(P)) \to K_2(C) \to K_2(F) \to \coprod_{P \in C} k(P)^* \to K_1(C) \to F^* \to \coprod_{P \in C} \mathbb{Z} \to K_0(C) \to \mathbb{Z} \to 0$$

with the tame symbol $T : K_2(F) \to \coprod_{P \in C} k(P)^*$ given by $T_P(\{f, g\}) = (-1)^{\operatorname{ord}_P(f)\operatorname{ord}_P(g)} \frac{f^{\operatorname{ord}_P(g)}}{g^{\operatorname{ord}_P(f)}}|_P$

K_4 of a curve

We try to approximate $K_2(C)$ as ker(T) and $K_4(C)$ as ker(∂) using

$$\cdots \to \coprod_{P \in C} \mathcal{K}_2(k(P)) \to \mathcal{K}_2(C) \to \mathcal{K}_2(F) \xrightarrow{T} \coprod_{P \in C} k(P)^* \to \cdots$$

$$\cdots \rightarrow \coprod_{P \in C} \mathcal{K}_4(k(P)) \rightarrow \mathcal{K}_4(C) \rightarrow \mathcal{K}_4(F) \stackrel{\partial}{\rightarrow} \coprod_{P \in C} \mathcal{K}_3(k(P)) \rightarrow \cdots$$

Fact If k is a number field then (1) all $K_{2n}(k(P))$ $(n \ge 1)$ are infinite torsion groups; (2) $K_3(k(P))$ is torsion if and only if k(P) is totally real.

Conjecture (Beilinson)

If C is complete, regular and geometrically irreducible, and k is a number field, then

(a) dim_Q $K_4(C)_Q = [k : Q] \cdot genus(C) \stackrel{\text{def}}{=} r$ no integrality condition (b) $R_4(C) = qL^{(r)}(C, -1) \neq 0$, where $q \in Q^*$, $R_4(C)$ is a Beilinson regulator of $K_4(C)_Q$ and we assume L(C, s) satisfies the expected functional equation. After tensoring the exact localisation sequence with \mathbb{Q} , it decomposes as a direct sum of exact sequences (j = 0, 1, 2, ...)

$$\cdots \rightarrow \coprod_{P \in C} \mathcal{K}_{4}^{(j-1)}(k(P)) \rightarrow \mathcal{K}_{4}^{(j)}(C) \rightarrow \mathcal{K}_{4}^{(j)}(F) \rightarrow \coprod_{P \in C} \mathcal{K}_{3}^{(j-1)}(k(P)) \rightarrow \mathcal{K}_{3}^{(j)}(C) \rightarrow \mathcal{K}_{3}^{(j)}(F) \rightarrow \coprod_{P \in C} \mathcal{K}_{2}^{(j-1)}(k(P)) \rightarrow \mathcal{K}_{2}^{(j)}(C) \rightarrow \mathcal{K}_{2}^{(j)}(F) \rightarrow \coprod_{P \in C} \mathcal{K}_{1}^{(j-1)}(k(P)) \rightarrow \mathcal{K}_{1}^{(j)}(C) \rightarrow \mathcal{K}_{1}^{(j)}(F) \rightarrow \coprod_{P \in C} \mathcal{K}_{0}^{(j-1)}(k(P)) \rightarrow \mathcal{K}_{0}^{(j)}(C) \rightarrow \mathcal{K}_{0}^{(j)}(F) \rightarrow 0$$

In particular, $0 \to K_2^{(2)}(C) \to K_2^{(2)}(F) \to \coprod_P K_1^{(1)}(k(P))$ and $\coprod_P K_4^{(2)}(k(P)) \to K_4^{(3)}(C) \to K_4^{(3)}(F) \to \coprod_P K_3^{(2)}(k(P))$ are exact, where one expects $K_4^{(2)}(L) = 0$ for any field L.

Let F be a field of characteristic zero (for simplicity). There exist \mathbb{Q} -vector spaces $\widetilde{M}_{(n)}(F)$ ($n \ge 2$) generated by symbols $[f]_n$ with f in $F^{\flat} = F \setminus \{0, 1\}$, satisfying certain (unknown) relations, such that (1) for the cohomological complex in degrees 1, 2

$$\widetilde{\mathcal{M}}_{(2)}(F): \widetilde{M}_{(2)}(F) \xrightarrow{\mathrm{d}} \bigwedge^{2} F^{*}_{\mathbb{Q}}$$
$$[f]_{2} \mapsto (1-f) \wedge f$$

there exist

• an injective homomorphism $H^1(\widetilde{\mathcal{M}}_{(2)}(F)) \to K_3^{(2)}(F)$ an isomorphism if F is a number field

• an isomorphism $H^2(\widetilde{\mathcal{M}}_{(2)}(F)) o K^{(2)}_2(F)$

(2) for the cohomological complex in degrees 1, 2, 3

$$\widetilde{\mathcal{M}}_{(3)}(F): \widetilde{M}_{(3)}(F) \stackrel{d}{\to} \widetilde{M}_{(2)}(F) \otimes F_{\mathbb{Q}}^* \stackrel{d}{\to} \bigwedge^3 F_{\mathbb{Q}}^*$$

$$[f]_2 \otimes g \mapsto (1-f) \wedge f \wedge g$$

$$[f]_3 \mapsto [f]_2 \otimes f$$

there exist

- ullet an isomorphism $H^1(\widetilde{\mathcal{M}}_{(3)}(F)) o K_5^{(3)}(F)$ if F is a number field
- a homorphism $H^2(\widetilde{\mathcal{M}}_{(3)}(F)) \to K_4^{(3)}(F)$
- an isomorphism $H^3(\widetilde{\mathcal{M}}_{(3)}(F)) o K_3^{(3)}(F)$

A B F A B F

Let C be a regular curve over a number field k and F = k(C). For P in C there exists

$$\delta_P : \widetilde{M}_{(2)}(F) \otimes F^*_{\mathbb{Q}} \to \widetilde{M}_{(2)}(k(P))$$

 $[f]_2 \otimes g \mapsto \operatorname{ord}_P(g)[f(P)]_2$
 $[0]_2 = [1]_2 = [\infty]_2 = 0$

 $\delta = \prod_{P} \delta_{P}$ induces a commutative (up to a universal sign) diagram

$$\begin{array}{c|c} H^{2}(\widetilde{\mathcal{M}}_{(3)}(F)) & \longrightarrow & \mathcal{K}_{4}^{(3)}(F) \\ & & & & \downarrow^{\partial} \\ & & & \downarrow^{\partial} \\ & & & \coprod_{P \in C} H^{1}(\widetilde{\mathcal{M}}_{(2)}(k(P))) & \longrightarrow & \coprod_{P \in C} \mathcal{K}_{3}^{(2)}(k(P)) \end{array}$$

< ロ > < 同 > < 三 > < 三 >

э

Some examples (elliptic curves over \mathbb{Q})

Simple example 1 For
$$E: (y - \frac{1}{2})^2 = x^3 + \frac{1}{4}$$
 $(N = 27)$ we have
 $y(1 - y) = (-x)^3$ so for $\beta = [y]_2 \otimes (1 - x) - 3[x]_2 \otimes y$
 $d(\beta) = (1 - y) \wedge y \wedge (1 - x) - (1 - x) \wedge x^3 \wedge y = 0$.
 $\delta(\beta)$ is supported in $E(\mathbb{Q}(\sqrt{5}))$ so is trivial. So β gives $\tilde{\beta}$ in
 $K_4^{(3)}(E)$. Numerically, $R_4(\tilde{\beta}) = -\frac{6}{5}L'(E, -1)$.
Simple example 2 For $E: (y - \frac{1}{2})^2 = x^3 - x^2 + \frac{1}{4}$ $(N = 11)$ we
have $y(1 - y) = x^2(1 - x)$ and $\beta = [x]_2 \otimes y + [y]_2 \otimes x$ satisfies
 $d(\beta) = 0$. $\delta(\beta)$ is supported in $E(\mathbb{Q})$ so is trivial. So β gives $\tilde{\beta}$ in
 $K_4^{(3)}(E)$. Numerically, $R_4(\tilde{\beta}) = -3L'(E, -1)$.
François Brunault (preprint 2022) used Siegel modular units to
construct, for each elliptic curve E over \mathbb{Q} , elements in
 $H^2(\widetilde{\mathcal{M}}_{(3)}(\mathbb{Q}(E)))$; if E has conductor at most 50, there is an
element such that, numerically, it is the kernel of δ , and has
non-zero regulator that relates as expected in Beilinson's conjecture
to $L'(E, -1)$. Triệu Thu Hà (2024) provided some isolated

examples for elliptic curves over \mathbb{Q} (related to Mahler measures).