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Introduction

– The elastic quasi-static deformation of a fluid saturated porous
medium received much attention in the civil engineering literature
because of its relevance to many problems of practical interest.
– In the framework of consolidation in soil mechanics: the physical
loading of soil layers or the effect of soil subsidence due to
groundwater withdrawal for drinking water supply or industrial and
agricultural purposes. See monographs by Coussy, Lewis and
Schrefler and Verruijt. They build on the classical theory of
Terzaghi and the pioneering approach of Biot.
— Recently, other examples of elastic deformation of porous media
arise in the context of industrial and biomedical applications, such
as paper printing, bone regeneration, blood flow and car filters.
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A simple linear model

In its simplest form, assuming both the fluid and the porous
material (grains) to be incompressible and assuming the porous
medium to be homogeneous and linear elastic with small strains,
the mathematical formulation reads

div ∂tu + div
(K
ηf

(ρf g −∇p)
)

= q (1)

and

− div σ = F, (2)

where

σ = Ge(u)− αpI, (3)

with

GE = 2µE + λTr(E )I, for symmetric matrices E . (4)
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Glossary

In these equations, u [m] denotes skeleton displacement, K [m2]
intrinsic permeability (a symmetric positive definite rank−2
tensor), ηf [Pa s] fluid viscosity, p [Pa] fluid pressure and q [ 1/s ]
sources/sinks. Further, σ [Pa] is the total stress, F a given body
force (generally linked to gravitational effects), G the symmetric,
positive-definite, rank-4 Gassmann tensor, e(u) the linearized
strain tensor and α ∈ (0, 1] Biot’s effective stress parameter.
Finally, µ [Pa] and λ [Pa] are Lamé’s parameters. Using for G the
specific form (4), i.e. Hooke’s law, assumes that the skeleton is
mechanically isotropic.

The linear quasi-static Biot system, as well as its dynamical
analogue, was also derived by means of a multiscale approach,
where the starting point is the linear fluid-structure interaction at
the pore level.
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Nonlinear mixture of two incompressible phases

In the engineering literature one writes α = 1− K/Kg , where K is
the drained bulk modulus of the porous skeleton and Kg the bulk
modulus of the grains. Since it is assumed that Kg = +∞, we will
set α = 1 in (3).

Equations (1)-(4) were studied by Ženǐsek 1984, who was one of
the first to demonstrate existence and uniqueness, and by
Showalter 2000 in the dynamic case.

Later, Cao et al (DCDS Ser. B, 2013) considered a nonlinear
extension of (1), by replacing the permeability tensor K by the
product Kk(div u). The function k(·) is a relative permeability
depending on the volumetric strain div u.

The quasi-static equations= lack of the time derivatives.
Some authors circumvent this by introducing a time dependence in
(2)-(4) as well. For instance Bociu L, Guidoboni G et al (ARMA
2016) replace u in (3) by u + δ∂tu, (δ > 0), i.e. introduce a
viscoelastic effect.
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A general nonlinear fluid phase mass balance

A regularization proposed by Murad and Cushman (Internat. J
Engrg Sci., 1996):

σ = 2µe(u) + (λdiv u + λ∗div ∂tu− αp)I, (5)

with λ∗ > 0. This form arises in the non-equilibrium theory, where
the fluid pressure and the solid pressure differ by λ∗ div ∂tu.

OUR MODEL

We propose to study the quasi-static formulation in which we
replace equation (1) by the nonlinear fluid phase mass balance
based on the mixture theory of Bedford and Drumheller, see the
monograph by Lewis and Schrefler 1998:

n∂tρ+ ρdiv ∂tu + div j = Q, (6)

where j denotes the Darcy mass flux

j =
Kk(n)ρ

ηf
(ρg −∇p). (7)
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Nonlinear coefficients

n denotes porosity, ρ = ρf [kg/m3] fluid density, k relative
permeability and Q [kg/m3 s] sources/sinks.
In equations (6)-(7), the porosity n is a given function of the
volumetric strain: i.e.

n = n(div u). (8)

Next, assuming weak compressibility we write

ρ = ρ(p) = ρ0(1 + β(p − p0)). (9)

Further the relative permeability k depends the porosity k = k(n).
The relative permeability in satisfies

k ∈ C 1[0, 1], k(0) > 0 and k ′ > 0 in ([0, 1). (10)

A well-known example is the Kozeny-Carman formula

k(n) = k0
n3

(1− n)2
(k0 > 0), (11)

in a realistic porosity interval, bounded away from n = 0 and n = 1.
C.J. van Duijn Darcy Center Eindhoven-Utrecht



Problem formulation

– Let Ω ⊂ Rm (m=2,3) denote a bounded domain, occupied by a
linear elastic skeleton. The skeleton material (grains) is assumed
incompressible: i.e. the bulk modulus of the grains is infinitely
large. The voids in the porous structure are completely filled with
a slightly compressible fluid, in the sense that the fluid pressure p
and density ρ are related by (9).

– For given ξ ∈ Ω, let x(ξ, t) denote the location of a solid particle
at time t > 0, that started at x(ξ, 0) = ξ,. Then the skeleton
velocity vs is given by vs = ∂tx|ξ.

– Restricting themselves to small displacements u (within the
elastic regime), Rutquist et al and Lewis and Schrefler argue that
in the mass balance equation for the fluid and solid, the material

derivative
D

Dt
= ∂t + vs · ∇ can be replaced by the partial

derivative ∂t . This is made explicit by a scaling argument in van
Duijn et al [**].
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Balance equations

The resulting mass balances reads:

n∂tρ+ ρdiv vs + div j = Q (fluid phase) (12)

and

∂t(1− n) + (1− n)div vs = 0 (solid phase), (13)

where j is mass flux (7).
Within the same approximation one may write

div vs = ∂tdiv u⇒

n∂tρ+ ρ∂tdiv u + div j = Q (14)

and

∂t(1− n) + (1− n)div ∂tu = 0. (15)

Integrating (15) in time from t = 0, say, to t > 0, we have

1− n = (1− n0)e−div (u−U0) for t > 0.. (16)

C.J. van Duijn Darcy Center Eindhoven-Utrecht



Summary of the equations

For small displacements u−U0, expression (16) is approximated by

n = n0 + (1− n0)div (u−U0). (17)

We set
u := u−U0, (18)

where U0 ∈ H1
0 (Ω)m ∩ H2(Ω)m is the initial displacement. With

F := F + div (Ge(U0)), (19)

we obtain for the fluid pressure p and the skeleton displacement u

n∂tρ+ ρ div ∂tu + div
(Kk(n)ρ

ηf
(ρg −∇p)

)
= Q, (20)

− div (Ge(u)− pI) = F, (21)

ρ = ρ(p) = ρ0(1 + β(p − p0)), (22)

n = n(div u) = 1− (1− n0)e−div u (23)

≈ n0 + (1− n0)div u (small strains). (24)
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Negative porosity

We consider a simplified version of the linear problem (1)-(4) and
show that div u can attain values for which the porosity from
(23)-(24) becomes negative.

Let Ω = (0, L)2 for some L > 0. We suppose, as in the rest of this
paper, that div u|t=0 = 0. Further we set F = 0 in (21). Then

H = (2µ+ λ)div u− p

is harmonic in Ω. We prescribe{
{x1 = 0, L} : u2 = 0, σ11 = Σ1,0 (or resp. Σ1,L), p = 0;

{x2 = 0, L} : u1 = 0, σ22 = Σ2,0 (or resp. Σ2,L), p = 0;
(25)

Then H|∂Ω = Σb and we have

Proposition 1 Let E = div u denote the volumetric stress and
let n(E) be given by (23). Suppose there exists a constant Σ > 0
such that Σb ≤ −Σ. Then for Σ sufficiently large, there exists a
Tp = Tp(Σ) > 0 such that

n(E(x , t)) < 0 for t > Tp and x ∈ Ω. (26)
C.J. van Duijn Darcy Center Eindhoven-Utrecht



Modification of balance equations

In a number of steps we modify equation (20) so that it becomes
well-posed in a mathematical sense and reduces to its original form
in the physical range of the unknowns.
First, to satisfy the natural bounds, we replace the porosity
approximation (24) by a smooth increasing function n : R→ R
such that

n(E) =


lim
E→+∞

n(E) = 1,

n0 + (1− n0)E , for E∗ ≤ E ≤ E∗;
lim
E→−∞

n(E) = δ0 > 0.
(27)

Next we set

p = p(ρ) := p0 +
ρ− ρ0

βρ0
. (28)

When considering (20), one clearly has in mind that ρ takes values
near the reference ρ0. However the mathematical nature of the
equations does not guarantee this behaviour.
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2nd modification of balance equations

Hence a second modification is needed, now for ρ in the second
and third term of the left-hand side of (20). Disregarding gravity,
we replace (20) by the modified fluid mass balance equation

n(E)∂tρ+ d(ρ)∂tE − div
(
k(E)D(ρ)K∇ρ

)
= Q, (29)

where n(E) is given by (27) and k(E) = k(n(E)). Further,
d , D : R→ R are chosen such that

d(ρ) = ρ,

D(ρ) =
ρ

ηf βρ0
,

}
for |ρ− ρ0| ≤ ρ0 − ρ∗, (30)

where ρ∗ ∈ (0, ρ0) is a small constant. Outside this range we take
for d and D extensions that suit the mathematical analysis. We
clarify this at a later point.
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Summary of the modified equations

The balance of forces (21) is modified by adding the regularizing
term λ∗∂tE , as in the expression (5). This gives

− div
(
Ge(u) + (λ∗∂tE − αp)I

)
= F, (31)

where we have λ∗ ≥ 0.
As initial conditions we have

E|t=0 = 0 and ρ|t=0 = ρ0 in Ω, (32)

where ρ0 : Ω→ (0,+∞) is taken near the reference value ρ0.
Along the boundary we prescribe

u|∂Ω = 0, ∇ρ · ν|∂Ω = 0, for 0 < t ≤ T . (33)

where ν is the outward unit normal at ∂Ω.
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Energy equality

Now we derive an expression for the free energy which acts as a
Lyapunov functional for system (29), (31). This a generalization of
the free energy introduced originally by Biot.

Let {u, ρ} be a smooth solution of equations (29), (31) that
satisfies conditions (32) and (33). Further, let g : R→ R be a
smooth, strictly increasing and globally Lipschitz function
satisfying g(ρ0) = 0. We set G (ρ) =

∫ ρ
ρ0
g(z) dz .

We first multiply equation (31) by ∂tu and integrate the result in
Ω. Next we multiply (29) by g(ρ) and integrate the result in Ω.
Adding the resulting expressions yields

d

dt

∫
Ω

(
1

2
Ge(u) : e(u) + n(E)G (ρ)− F · u

)
dx + λ∗

∫
Ω

(∂tE)2 dx

+

∫
Ω
k(E)D(ρ)g ′(ρ)K∇ρ · ∇ρ dx −

∫
Ω
Qg(ρ) dx+∫

Ω

{
d(ρ)g(ρ)− n′(E)G (ρ)− p(ρ)

}
∂tE dx =

∫
Ω
∂tF · u dx . (34)

C.J. van Duijn Darcy Center Eindhoven-Utrecht



Lyapunov functional in the linear setting

Before considering the general nonlinear case described by this
expression, we first show its implication for the simplified linear
setting. Then we use in (29) and (34)

n(E) = n0, d(ρ) = ρ0, k(E) = 1 and D =
1

ηf β
.

After simplifications due to the linearization, (34) yields

d

dt

∫
Ω

{1

2
Ge(u) : e(u) +

n0

βρ2
0

(ρ− ρ0)2 − F · u
}
dx + λ∗

∫
Ω

(∂tE)2 dx+∫
Ω

1

ηf β2ρ2
0

K∇ρ · ∇ρ dx =

∫
Ω
Qg(ρ) dx −

∫
Ω
∂tF · u dx . (35)

Hence

L(u, ρ) =

∫
Ω

(
1

2
Ge(u) : e(u) +

n0

2βρ2
0

(ρ− ρ0)2 − F · u
)

dx (36)

acts as a Lyapunov functional for the linear form of system (29),
(31). Expression (36) coincides with Biot’s original free energy.
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Lyapunov functional in the nonlinear setting

Next we return to the nonlinear case (34). We need that∫
Ω

{
d(ρ)g(ρ)− (1− n0)G (ρ)− p(ρ)

}
∂tE dx = 0.

In the interval |ρ− ρ0| < ρ := ρ0 − ρ∗ where d(ρ) = ρ, it gives

g(ρ) =
1

βn0ρ0

(
1− (

ρ0

ρ
)n0
)
. (37)

G (ρ) =

∫ ρ

ρ0

g(ξ) dξ =
1

βn0(1− n0)ρ0

(
(1− n0)ρ− ρn0

0 ρ
1−n0 + n0ρ0

)
.

(38)

When |ρ− ρ0| > ρ, the function d(ρ) has not yet been defined. We
do this by first extending g(ρ) for |ρ− ρ0| > ρ and then by setting

d(ρ) =
(1− n0)G (ρ) + p(ρ)− p0

g(ρ)
. (39)
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Construction of the free energy

Clearly, (37) cannot be used for ρ ≤ 0. Instead we extend (37) in a
linear C 1−manner for |ρ− ρ0| > ρ. With ρ̃ = ρ0 + ρ = 2ρ0 − ρ∗.
G (ρ) will now be quadratic in ρ. the desired extension for d(ρ)
when |ρ− ρ0| > ρ. Thus

d(ρ) =

{
ρ for |ρ− ρ0| ≤ ρ,
(39) with g and G given by the extension for |ρ− ρ0| > ρ.

(40)
Hence with the triple {g(ρ),G (ρ), d(ρ)} constructed above, the
cross-term drops from expression (34).

Next we introduce a second modification to deal with a porosity
satisfying (27). Again we search to cancel the cross-term. This
integral vanishes if

d(ρ)g(ρ)− n′(E)G (ρ) = p(ρ)− p0. (41)
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2nd modification in the construction of the free
energy

Keeping g and G as above, we now modify d(ρ), calling it
D(ρ, E), such that

D(ρ, E) =
n′(E)

g(ρ)
G (ρ) +

p(ρ)− p0

g(ρ)
. (42)

Using (39) in this expression gives

D(ρ, E) = d(ρ) + (n′(E)− (1− n0))
G (ρ)

g(ρ)
. (43)

Clearly, for |ρ− ρ0| < ρ and E∗ < E < E∗, this expression reduces
to

D(ρ, E) = ρ.

Finally we use in the Darcy term from equation (29)

D(ρ) =
1

ηf ρ0β


ρ̃, for ρ > ρ̃;
ρ, for ρ∗ < ρ < ρ̃;
ρ∗, for ρ < ρ∗.

(44)
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Summary of the Lyapunov functional

Thus in the end we consider the ”second” modified fluid mass
balance

n(div u)∂tρ+ D(ρ, div u) div ∂tu = div
(
k(n(div u))D(ρ)K∇ρ

)
+ Q.

(45)

The function D(ρ, E) in (45) generalizes the fluid density. It is
chosen so that

J(u, ρ) =
1

2

∫
Ω
Ge(u) : e(u) dx +

∫
Ω
n(div u)G (ρ) dx −

∫
Ω

F · u dx

(46)
acts as a Lyapunov functional for the system. The function
G : R→ R satisfies G (ρ0) = 0, G (ρ) > 0 if ρ 6= ρ0 and G is
strictly convex, with quadratic behavior for large values of |ρ|.
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Graphs of the free energy in the linear and the
nonlinear models
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Figure: Sketch of the free energy βG (ρ/ρ0). The linear case is in blue.
The nonlinear case with n0 = 1/3 and ρ∗/ρ0 = 0.01, is in black.
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Summary of equations and weak formulation

The problem describing the nonlinear poroelastic behavior of a
fluid saturated porous medium is to find the displacement
u : QT → Rm and the fluid density ρ : QT → R satisfying

(i) the balance equations

n(E)∂tρ+ D(ρ, E)∂tE = div
(
k(E)D(ρ)K∇ρ

)
+ Q, (47)

− div
(
Ge(u) + λ∗∂tEI− p(ρ)I

)
= F, (48)

in QT = (0,T )× Ω and

(ii) the initial-boundary conditions (32)-(33).
The coefficients in equations (47)-(48) were introduced in this
section. Specifically,
n(E) and k(E) satisfy (27),
D(ρ, E), D(ρ) and p(ρ) are given by (42), (44) and (28),
and λ∗ ≥ 0.
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A weak free energy formulation

We recast this classical formulation in the following weak form.
Definition 1 We call a triple (u, E , ρ) ∈
L∞(0,T ;H1(Ω)m)× L∞(0,T ;H1

loc(Ω))×
(
L2(0,T ;H1(Ω))

∩L∞(0,T ; L2(Ω))
)
, ∂tE ∈ L2(QT ) ∩ L∞(0,T ;H1

loc(Ω)) a weak
free energy solution if
(i)

−
∫ T

0

∫
Ω
ρn(E)∂tΦ dxdt −

∫
Ω
n0ρ

0(x)Φ(x , 0) dx+∫ T

0

∫
Ω
∂tE
(
D(ρ, E)− ρn′(E)

)
Φ dxdt+∫ T

0

∫
Ω
k(E)D(ρ)K∇ρ · ∇Φ dxdt

=

∫ T

0

∫
Ω
QΦ dxdt, ∀Φ ∈ H1(QT ), Φ|t=T = 0; (49)

(ii) E = div u;
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A weak free energy formulation, 2nd part

(iii)∫
Ω
Ge(u) : e(ξ) dx + λ∗∂t

∫
Ω
E div ξ dx −

∫
Ω
p(ρ)div ξ dx =∫

Ω
F · ξ dx , ∀ξ ∈ H1

0 (Ω)3 and for almost all t ∈ (0,T ]; (50)

(iv) E|t=0 = 0 in Ω.
(v) For every t1, t2 ∈ [0,T ], t1 < t2,∫

Ω

(
1

2
Ge(u(t2)) : e(u(t2)) + n(E)(t2))G (ρ(t2))− F(t2) · u(t2)

)
dx+∫ t2

t1

∫
Ω

(
λ∗(∂tE)2 + k(E)D(ρ)g ′(ρ)K∇ρ · ∇ρ− Qg(ρ) + ∂tF · u

)
dxdt ≤∫

Ω

(
1

2
Ge(u(t1)) : e(u(t1)) + n(E(t1))G (ρ(t1))− F(t1) · u(t1)

)
dx .

(51)

Here ρ0 ∈ L2(Ω), Q ∈ C ([0,T ]; L2(Ω)) and F ∈ H1(0,T ; L2(Ω)m).
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Weak free energy solutions

In Definition 1 we explicitly incorporate energy inequality (51).
When dealing with classical solutions, equations (47)-(48) imply
the energy balance

∂tJ(u, ρ) +

∫
Ω
λ∗(∂tE)2 dx +

∫
Ω
k(E)D(ρ)g ′(ρ)K∇ρ · ∇ρ dx =∫

Ω
Qg(ρ) dx −

∫
Ω
∂tF · u dx . (52)

However, in the weak formulation (49)-(50) we cannot use
Φ = g(ρ) and ξ = ∂tu, due to lack of smoothness. Therefore (v)
has to be added explicitly. Hence we consider only those weak
solutions satisfying additionally (51). Therefore they are called
weak free energy solutions.
In a number of steps we prove existence of weak solutions when
λ∗ > 0. We achieve this by first considering the incremental
formulation. In this approximation, we obtain existence results
which hold for all λ∗ ≥ 0.
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The ”entropy” unknown

Now we study in this section the time discretized form of (47),
(48).
In doing so we use the function g = g(ρ) as the primary unknown.
This is allowed since g : R→ R is smooth and strictly increasing.
The switch to g is done for mathematical convenience, because it
allows us to obtain Lyapunov functional estimates in a
straightforward way. Let

p(g) := p(ρ(g)) and D(g) := D(ρ(g))ρ′(g). (53)

Further,

G (ρ(z)) =

∫ ρ(z)

ρ0

g(ξ) dξ =

∫ z

0
ζρ′(ζ) dζ, z ∈ R, (54)

G (g) :=

∫ g

0
ζρ′(ζ) dζ, D(g , E) =

n′(E)

g
G (g) +

p(g)− p0

g
. (55)

D(g , E) is bounded with respect to E and grows linearly in g for
large |g |.
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The time discretization

Using these definitions in (47) and (48), we find in terms of g

n(E)∂tρ(g) + D(g , E)∂tE = div
(
k(E)D(g)K∇g

)
+ Q, (56)

− div
(
Ge(u) + λ∗∂tEI− p(g)I

)
= F, (57)

in QT .
Next we turn to the time discretized form of equations (56)-(57).

Let τ ∈ (0, 1) denote the time discretization step and N ∈ N a
large integer such that Nτ = T . At each discrete time tj = jτ ,
with j = 0, 1, . . . ,N, we set

Fj(x) = F(x , jτ), Q j(x) = Q(x , jτ), x ∈ Ω.

uj−1(x) = u(x , tj−1), g j−1(x) = g(x , tj−1), x ∈ Ω.

Then u and g at time tj are obtained as solutions of the
incremental problem (writing U = uj−1, Ξ = g j−1 and
V = H1

0 (Ω)m × H1(Ω)) :
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The incremental problem

Problem (PD): Given (U, Ξ) ∈ V , find (u, g) ∈ V such that∫
Ω

n(div U)

τ
(ρ(g)− ρ(Ξ))ψ dx +

∫
Ω
Dτ (g , div u, div U) div

u−U

τ
ψdx

+

∫
Ω
k(div u)D(g)K∇g · ∇ψ dx =

∫
Ω
Q jψdx , ∀ψ ∈ H1(Ω);

(58)∫
Ω
Ge(u) : e(ξ) dx +

λ∗

τ

∫
Ω

div (u−U) div ξ dx−∫
Ω
p(g)div ξ dx =

∫
Ω

Fj · ξ dx , ∀ξ ∈ H1
0 (Ω)m. (59)

The coefficient Dτ in equation (58) is given by

Dτ (g , div u, div U) =
n( div u)− n( div U)

div u− div U

G (g)

g
+

p(g)− p0

g
.

(60)
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The regularized incremental problem nonlinearities

This expression results from D(g , E) in (55), when the derivative

n′(E) is replaced by the finite difference
n( div u)− n( div U)

div u− div U
.

The specific choice of (60) appears convenient in the estimates
concerning the time discrete Lyapunov functional.

Using the weak topology of the space H1
0 (Ω)m × H1(Ω), serious

difficulties arise with the coefficients n, Dτ and k depending on div
u. To remedy this, we introduce a Friedrichs mollifier Υε, where ε
is a small positive parameter, and replace div u in the nonlinearities
by the convolution div u ?Υε = −u ?∇Υε. Using this substitution
one can treat nonlinear coefficients containing div u as lower order
terms in the equations. This allows us to use the theory of
pseudo-monotone operators.
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The regularized incremental problem

Applying this convolution, the regularized form of problem (PD)
reads:

Problem (PD)ε: Given (U, Ξ) ∈ V , find (uε, gε) ∈ V such that,
with Eε = −uε ?∇Υε,∫

Ω

n(div U)

τ
(ρ(gε)− ρ(Ξ))ψ dx +

∫
Ω

(
n(Eε)− n(div U)

τgε
G (gε)+

p(gε)− p0

τgε

)
div (uε −U)ψ dx

+

∫
Ω
k(Eε)D(gε)K∇gε · ∇ψ dx =

∫
Ω
Q jψdx , ∀ψ ∈ H1(Ω), (61)∫

Ω
Ge(uε) : e(ξ) dx +

λ∗

τ

∫
Ω

div (uε −U) div ξ dx−∫
Ω
p(gε)div ξ dx =

∫
Ω

Fj · ξ dx , ∀ξ ∈ H1
0 (Ω)m. (62)
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Existence of a solution to the incremental problem

Proposition 2 Let ε > 0 be a small positive constant. Under the
assumptions of Definition 1, problem (PD)ε admits at least one
solution (uε, gε) ∈ V .

Proof: Following e.g. monograph Roubiček T, Nonlinear Partial
Differential Equations with Applications , Springer 2005 we
establish the pseudo monotonicity of the corresponding operator.
Furthermore, using the Lyapunov functional property the operator
is coercive and applying Brézis thm we conclude existence of at
least one solution for problem (PD)ε. For details we refer to [*].

Theorem 1 Problem (PD) admits at least one solution
(u, g) ∈ V .
Proof: From the coercivity part of the proof of Proposition 2, it
follows that

||uε||H1
0 (Ω)m + ||gε||H1(Ω) ≤ C , (63)
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The discretized Lyapunov functional

Since p(gε) is bounded in H1(Ω), uniformly with respect to ε, we
conclude that

||uε||H2(Ω)m ≤ C . (64)

Using the weak compactness, we get a solution for Problem (PD).

To complete the study of the incremental problem, we need to
estimate the behavior of solutions after at least O(1/τ) times
steps.
In problem (PD), where the discrete time step τ enters as
parameter, one finds after one step (u1, g1) from the initial values
(div u, ρ)|t=0 = (0, ρ0). The idea is to repeat this procedure for an
arbitrary number of steps. If M ∈ N, M ≤ N = T/τ , then
(uM , gM) denotes the time discretized approximation of the
original quasi-static equation, at t = tM = Mτ .
The corresponding Lyapunov functional at t = tM reads

JM =

∫
Ω

(
1

2
Ge(uM) : e(uM)− FM · uM + n(div uM)G (gM)

)
dx .
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The Lyapunov functional property

Theorem 2 For each M ∈ N, M ≤ N = T/τ, we have

JM + τ

M∑
j=1

∫
Ω

(
λ∗
(div (uj − uj−1)

τ

)2
+

Fj − Fj−1

τ
· uj−1+

k(div uj)D(g j)K∇g j · ∇g j − Q jg j

)
dx ≤ J0. (66)

Here

J0 = n0

∫
Ω
G (g0) dx , g0 = g(ρ0).

Proof: At time t = tj , with j = 1, . . . ,N, the equations in
problem (PD) read∫

Ω
Ge(uj) : e(ξ) dx +

λ∗

τ

∫
Ω

div (uj − uj−1) div ξ dx−∫
Ω
p(g j)div ξ dx =

∫
Ω

Fj · ξ dx , ∀ξ ∈ H1
0 (Ω)m, (67)
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Proof of the Lyapunov property

∫
Ω

(
n(div uj−1)

τ
(ρ(g j)− ρ(g j−1))+

n(div uj)− n(div uj−1)

τg j
G (g j)

)
ψ dx

+

∫
Ω

p(g j)− p0

τg j
div (uj − uj−1)ψ dx+∫

Ω
k(div uj)D(g j)K∇g j · ∇ψ dx

=

∫
Ω
Q jψ dx , ∀ψ ∈ H1(Ω). (68)

We take ξ = (uj − uj−1)/τ in (67) and ψ = g j in (68). The
resulting two equalities are added and summed-up with respect to
j up from j = 1 to j = M.
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A priori estimates, uniform in the time step τ

Having established existence for the discrete problem (PD) in
Theorem 1 and a Lyapunov estimate in Theorem 2, we are now in
a position to obtain estimates that are uniform in the time step τ .

Proposition 3 There exists a constant C > 0 such that

||uM ||2H1(Ω)m + ||gM ||2L2(Ω) ≤ C , (69)

τ

M∑
j=1

∫
Ω

(
λ∗
(div (uj − uj−1)

τ

)2
+ |∇g j |2

)
dx ≤ C , (70)

for all M and τ such that 1 ≤ M ≤ N = T/τ , with τ sufficiently
small.
Proof: We combine expression (65) for JM and inequality
(66)and for δ and τ sufficiently small, we obtain for the
combination

Uj = ||uj ||2H1(Ω)m + ||g j ||2L2(Ω), j = 0, . . . ,M,
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proof of the a priori estimates, uniform in the time
step

the inequality

UM ≤ C1 + C2τ

M−1∑
j=0

Uj ,

where C1 and C2 do not dependent on τ and M. Next we apply
the discrete Gronwall inequality to find

UM ≤ C1e
C2(M−1)τ < C1e

C2T for all 1 ≤ M ≤ N.

The second estimate follows directly from Theorem 2.

However, to pass to the limit τ → 0 in the nonlinearities, one
needs more information on the behavior of the ratios { div
(uj − uj−1)/τ} and {(g j − g j−1)/τ}. In fact, we must establish
relative compactness of the sequences {div uj} and {g j}.
We start with a local H1-estimate for E j = div uj .

C.J. van Duijn Darcy Center Eindhoven-Utrecht



A priori estimates, uniform in the time step for the
volumetric strain

Lemma 1 Let ϕ ∈ C∞0 (Ω) and τ > 0 sufficiently small. Then
there exists a constant C = C (ϕ) such that

τ

N∑
j=1

||ϕE j ||2H1(Ω) +
λ∗

2µ+ λ
max

1≤M≤N
||ϕEM ||2H1(Ω) ≤ C . (71)

Proof: We use that

Lj = (2µ+ λ)E j − p(g j) + λ∗
div (uj − uj−1)

τ
, j = 1, . . .M. (72)

satisfies
−∆Lj = div Fj in Ω. (73)

Then using the interior elliptic regularity and previous estimates we
obtain (71).
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A priori estimates, uniform in the time step for the
density

Finally, we look for an estimate for N j = n(E j)ρ(g j). With the
results of Proposition 3 and Lemma 1, the space-time compactness
of N will imply the same property of g .
Proposition 4 For given τ > 0 and j = 1, . . . ,N,, let
(uτ (tj), gτ (tj)) ∈ V denote a solution of problem (PD). Then

max
1≤j≤N

(
||uτ (tj)||H1(Ω)m + ||gτ (tj)||L2(Ω)

)
≤ C , (74)

τ

N∑
j=1

∫
Ω

(
λ∗
(div (uτ (tj)− uτ (tj−1))

τ

)2
+ |∇gτ (tj)|2

)
dx ≤ C , (75)

τ
N∑
j=1

||ϕ div uτ (tj)||2H1(Ω) + λ∗ max
1≤j≤N

||ϕdiv uτ (tj)||2H1(Ω) ≤ C , (76)

τ

N∑
j=1

(
||N

j −N j−1

τ
||2H−2(Ω) + ||ϕN j ||2H1(Ω)

)
≤ C , (77)
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Existence for continuous time problem with λ∗ > 0

where N j = n(div uτ (tj))ρ(gτ (tj)) and where ϕ ∈ C∞0 (Ω).

Existence for continuous time problem

In Proposition 4, where the time step τ enters as a parameter, one
finds {(uτ (tj), gτ (tj))}j=1,...,N from the ”initial value” div u(0) = 0
and g(0) = g0. Here N = O(1/τ) and g0 = g(ρ0). This
procedure yields a time discretized approximation of the original
quasi-static equations.

Now we investigate the limit τ ↘ 0. Here a crucial role is played
by the parameter λ∗, which is needed to control the behaviour in
time of E = div u.
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Existence for continuous time problem with λ∗ > 0:
a priori estimates

Using the discrete solution (uτ (tj), gτ (tj)), we construct two
approximations that hold for all 0 ≤ t ≤ T . The first is the
piecewise constant approximation

(uτ (t), g τ (t)) = (uτ (tj), gτ (tj)) for jτ ≤ t < (j + 1)τ. (78)

The second is the Rothe interpolant, which is the piecewise linear
time-continuous approximation

(ũτ (t), g̃τ (t)) =
(
j + 1− t

τ

)
(uτ (tj), gτ (tj))+( t

τ
− j
)
(uτ (tj+1), gτ (tj+1)),

for jτ ≤ t ≤ (j + 1)τ. (79)

In (78) and (79) the index j runs from j = 0 to j = N − 1.
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Existence for continuous time problem with λ∗ > 0:
summary of a priori estimates

Applying Proposition 4, yields for both approximations, with
\ ∈ {−,∼ },

max
0≤t≤T

(
||u\τ (t)||2H1(Ω)m + ||g \τ (t)||2L2(Ω)

)
dt ≤ C , (80)∫ T

0

∫
Ω
|∇g \τ (t)|2 dxdt ≤ C , (81)∫ T

0
||ϕ E\τ (t)||2H1(Ω) dt ≤ C , (82)

λ∗ max
0≤t≤T

||ϕE\τ (t)||2H1(Ω) ≤ C , (83)∫ T

0
||ϕN \

τ (t)||2
W 1,3/2(Ω)

)
≤ C , (84)

where E\τ = div u\τ , N τ = n(Eτ )ρ(g τ ) and
Ñτ (t) = (j + 1− t/τ)N j + (t/τ − j)N j+1 .
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Existence for continuous time problem with λ∗ > 0:
summary of a priori estimates no 2

Further we have

∂tÑτ =
N j+1 −N j

τ
and ∂t Ẽτ =

E j+1 − E j

τ
,

for tj ≤ t ≤ tj+1 and j = 0, . . . ,N − 1.

∫ T

0

∫
Ω
λ∗|∂t Ẽτ (t)|2 dxdt +

∫ T

0
||∂tÑτ (t)||2H−2(Ω) dt ≤ C . (85)

Since the piecewise constant approximation (uτ (t), g τ (t)) is
discontinuous in time, its time derivative is only a measure.

||∂tEτ ||M(0,T ;L2(Ω)) + ||∂tN τ ||M(0,T ;H−2(Ω)) ≤ C , (86)

where M(0,T ;H−2(Ω)) is the dual space of C ([0,T ];H2
0 (Ω)).
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Existence for continuous time problem with λ∗ > 0:
weak convergences no 1

From estimates (80)-(85) and the well-known weak and weak∗

compactness theorems, we conclude that there exists a quadruple
{ũ, g̃ , Ẽ , Ñ } such that along a subsequence τ ↘ 0 we have

ũτ → ũ weak∗ in L∞(0,T ;H1
0 (Ω)m), (87)

g̃τ ⇀ g̃ weakly in L2(0,T ;H1(Ω)), (88)

Ẽτ ⇀ Ẽ weakly in L2(0,T ;H1(ω)), (89)

∂t Ẽτ ⇀ ∂t Ẽ weakly in L2(0,T ; L2(Ω)), (90)

Ñτ ⇀ Ñ weakly in L2(0,T ;W 1,3/2(ω)), (91)

∂tÑτ ⇀ ∂tÑ weakly in L2(0,T ;H−2(Ω)). (92)
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Existence for continuous time problem with λ∗ > 0:
weak convergences no 2

Concerning the convergence of (uτ , g τ ), we use estimates
(80)-(84), now combined with (86). We use that the spaces

W 1,2,M(0,T ;H1(ω), L2(ω)) = {z ∈ L2(0,T ;H1(ω)) | dz
dt
∈M(0,T ; L2(ω))}

and W 1,2,M(0,T ;W 1,3/2(ω),H−2(ω)) are compactly embedded in
L2(0,T ; L2(ω)), for any smooth bounded subset ω of Ω. The
result is that there exists (u, g , , E ,N ) such that along a
subsequence τ ↘ 0 one has the same convergence as in (87)-(89)
and (91). The convergence in (90) and (92) is now replaced by
weak−∗ convergence in M(0,T ; L2(Ω)) for ∂tEτ and in
M(0,T ;H−2(Ω)) for ∂tN τ .
Furthermore, the estimates allow us to conclude

Eτ → E strongly in L2((0,T )× ω) and (a.e) on (0,T )× ω, (93)

N τ → N strongly in L2((0,T )× ω) and (a.e) on (0,T )× ω. (94)
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Existence for continuous time problem with λ∗ > 0:
strong convergences

As a consequence

ρ(g τ ) =
N τ

n(Eτ )
→ N

n(E)
(95)

g τ = ρ−1
( N τ

n(Eτ )

)
→ ρ−1

( N
n(E)

)
= g . (96)

strongly in L2((0,T )× ω) and a.e. on (0,T )× ω. ⇒{
ρ(g τ )→ ρ(g) strongly in L2((0,T )× ω);
D(g τ )→ D(g) strongly in L2((0,T )× ω).

(97)

Inherited from Eτ= div uτ , the convergence properties imply

E = div u a.e. in (0,T )× Ω. (98)

Finally,∫ T

0
||Eτ (t)− Ẽτ (t)||2L2(Ω) dt +

∫ T

0
||N τ (t)− Ñτ (t)||2H−2(Ω) dt = Cτ2.
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Existence theorem with λ∗ > 0

From this point on we denote the limit, as τ ↘ 0, by the
quadruple (u, g , E ,N ), where E = div u and N = n(E)ρ(g).
We are now in a position to prove the main existence result for a
weak solution of the time continuous case.

Theorem 3 Let λ∗ > 0. Then there exists at least one weak free
energy solution (u, E , ρ) satisfying Definition 1.

Proof: We first consider the momentum balance equation (59).
For any ξ ∈ H1

0 (Ω)m∫
Ω
Ge(uτ ) : e(ξ) dx =

∫
Ω
Ge(uj) : e(ξ) dx = −λ

∗

τ

∫
Ω

(E j − E j−1) div ξ dx

=

∫
Ω
p(g j)div ξ dx +

∫
Ω

Fj · ξ dx = −λ∗
∫

Ω
∂t Ẽτ (t − τ) div ξ dx+∫

Ω
p(g τ )div ξ dx +

∫
Ω

Fτ · ξ dx (100)

Passing to the limit τ ↘ 0 is without difficulties.
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Proof of the existence theorem with λ∗ > 0

In the second step we write the discretization of problem (PD),
for any ψ ∈ C∞0 (Ω) and α ∈ C∞[0,T ], as∫ T

τ

∫
Ω

(
∂tÑτ (t − τ)− ∂t ν̃τ (t − τ)

(
ρ(g τ )− G (g τ )

g τ

)
+

∂t Ẽτ (t − τ)
p(g τ )− p0

g τ

)
ψ(x)α(t) dxdt −

∫ T

τ

∫
Ω
Qτψ(x)α(t) dxdt+∫ T

τ

∫
Ω
k(Eτ )D(g τ )K∇g τ · ∇ψ(x)α(t) dxdt = 0, (101)

where

ν̃τ (t) =
(
j + 1− t

τ

)
n(E j) +

( t
τ
− j
)
n(Ej+1),

and

Qτ (t) = Q(tj) = Q j

for jτ ≤ t < (j + 1)τ. (102)
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Proof of the existence theorem with λ∗ > 0, no 2

Next

∂t ν̃τ ⇀ ∂tn(E) weakly in L2((0,T )× Ω) (103)

and

ν̃τ → n(E) strongly in L2((0,T )× ω) and a.e. in (0,T )× ω.
(104)

We are now in position to pass to the limit τ ↘ 0 in (101) and
obtain

∂t

(
n(E)ρ(g)

)
− ∂tn(E)ρ(g) + D(ρ, E)∂tE − div

(
k(E)D(g)K∇g

)
= Q in D′((0,T )× Ω), (105)

In the final step we justify the initial and boundary conditions and
the energy inequality (51).
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Some open questions

Nonisothermal nonlinear poroelasticity.

Unsaturated nonlinear poroelasticity

Multiphase nonlinear poroelasticity

Is it possible to obtain equations of the nonlinear
poroelasticity by upscaling the fluid-structure problem at the
microscopic (pore) level?
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