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Examples: shrinking solitons

Cylinder

SkX Rn-k
Shrinking
Doughnut

Sphere S" (Gregynog)

Shrinking Spheres: S;’( y C R™! with radius r(t) = V-2nt
Shrinking Cylinders: Sf( 5 X Rk with radius r(t) = V-2kt.
Shrinking Donuts: M; = V—t - M., with M, ~ §! x §"! c R"*!

And many more!



A non convex shrinking soliton in R3

Existence suggested by Tom Ilmanen ~ 1994
Rigorous construction by Xuan Hien Nguyen, and also
Kleen-Mgller-Kapouleas ~ 2012



Curve Shortening—-ancient solitons

Curve Shortening is MCF withn=1: V = k



Curve Shortening—-ancient solitons

Curve Shortening is MCF withn=1: V = k

/

translating soliton

shrinkers

Circle Abresch-Langer

rotating soliton



Translating solitons
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Translating solitons

The Grim Reaper Bowl Soliton
1 Forn+1 >3 inR"!
y-et=-1 log cos cx translators are like
paraboloids

|
Width = /¢

< >

Velocity = ¢

(no nice formula for
translators when n > 2)




Curve Shortening—non self similar ancient solutions
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The Paper Clip
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Curve Shortening—non self similar ancient solutions
ki = k? koo + K3

The Paper Clip Ancient Sine

k(0,t) = Vcos 20 — coth 2t U U U

kO, t+ Zi) =
Vecos 20 — tanh 2t
Paperclip: A-1992 (Gregynog)
Paperclip&Ancient Sine Curve: WADATI, [1zUK1, NAKAYAMA-1994
“Curve Lengthening”

GaLakTIioNovV found similar solutions for u; = uPuy, + ud in the 1980ies



Classification of Ancient Solutions of Curve Shortening

Theorem (Daskalopoulos, Hamilton, Sesum-2012).
The only ancient solutions of plane Curve Shortening that are:
compact, embedded, and convex,
are:
the circle and the paper clip.



Other ancient solutions to plane Curve Shortening
Qian You (Thesis, Madison 2014)
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Other ancient solutions to plane Curve Shortening
Qian You (2014)
AY
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Conjecture: the only ancient solutions of plane Curve Shortening with finite
total curvature are:

> self shrinkers (circle, Abresch-Langer curves)

» Ancient Trombones.



Proof ingredient

A(t) : unsigned area between the two curves C;(t) and Cy(t)

dA
— < / |V — k|ds
dt = Jenue



Unbounded total curvature

Compact, embedded, not convex

existence proof: Zhang, Olson, Khan, & A. (2019)

t = 0.000




Higher dimensions
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Convex self similar solutions
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Convex self similar solutions

def ~IX
HINY = (47:1)"/2 eI 4aa

In general there is no classification of self similar solutions to MCF:

For convex embedded shrinkers Huisken showed that the only ones are
s" SIxR SP2 x R? e St x R1 SO x R"

where each sphere S* has radius V2k.
Note: H(N x R¥) = H(N).
also: 8° = 9[-1,1] = {-1,+1}



MCF analogs of the Paper Clip

s" S"IxR O S"EIxRE .. SIxRMT SOxR™

Shrinking disks of type S° X R"— the BOURNI-LANGFORD-TINAGLIA pancakes

@ .

Height is 7

R n—1
Radius shrinks according to — = -1 —

dt R
R(t) = -t — (n— 1) log(~t) + O(1)




All ancient convex solutions in R3 ??
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White; Haslhofer-Hershkovitz

in R*
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Solutions with O(p) X O(q) symmetry
Theorem. (White, Haslhofer-Hershkovitz) There is a compact convex solution
of rescaled MCF that connects S X R"™P with S".

Q: how many are there, what do they look like?

Assume double rotational symmetry.

<
y=u(x,t) N; ={(x,Y) ERxXR":
p-1

—2 , 1Yl = u(x,7)}
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Asymptotics of the WHH ancient ovals

Formal asymptotics
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Asymptotics of the WHH ancient ovals

Formal asymptotics

In the parabolic region:
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Asymptotics of the WHH ancient ovals

Formal asymptotics v

V=2t10g(~1)

In the intermediate region:

y:—:} = - = U, + - —

z ou Uyz z 1 u n-—1
7] or  |r|+u: 2 2 u

T

= u=Vn—-1V2 - 22+ o(1) (r = —o0)

Most of the surface is an ellipsoid!



Asymptotics of the WHH ancient ovals

Formal asymptotics
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In the tip region: p; = tip of M; C R"1,
At(Mt - Pt) — B

where A, := H(p;, t) = Hpax(f) and B is unique Bowl Soliton, i.e. the unique
rotationally symmetric translating soliton with velocity one.



Asymptotics and Uniqueness of WHH ancient ovals

Asymptotics Theorem (Daskalopoulos, Sesum, A-2015) Every convex
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Asymptotics and Uniqueness of WHH ancient ovals

Asymptotics Theorem (Daskalopoulos, Sesum, A-2015) Every convex
rotationally symmetric ancient solution that converges to the cylinder as
T — —oo satisfies the formal asymptotic description.

Uniqueness Theorem (Daskalopoulos, Sesum, A-2019) Every convex
ancient solution that converges to the cylinder is rotationally symmetric.

Two convex ancient solutions that converge to the cylinder as T — —oo differ
only by a translation in time, and a parabolic rescaling in space time.



All ancient convex solutions in R3 ??
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Proof ingredients

incomplete self shrinkers
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Proof ingredients

The minimizing foliation for the Huisken functional

div(e”WI*/45) = o,
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On the other hand : H(Z) > H(T), i.e. /eillxllz/‘ldA > /e7||X||2/4dA
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