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Ancient solutions

Short time existence: M∗ smooth immersed hypersurface of Rn+1

=⇒ ∃T > 0 ∃ smooth solution {Mt : 0 ≤ t < T } with M0 = M∗.

Solutions immediately become real analytic hypersurfaces

Ba�ward nonexistence: for most M0 there is no solution for t < 0.

Ancient Solution: a solution {Mt} that is de�ned for all t < 0.

Examples: minimal surfaces (H = 0)
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Examples: shrinking solitons

Shrinking Spheres: Snr(t) ⊂ R
n+1

with radius r(t) =
√
−2nt

Shrinking Cylinders: Skr(t) × R
n−k

with radius r(t) =
√
−2kt.

Shrinking Donuts: Mt =
√
−t ·M∗, with M∗ ≈ S1 × Sn−1 ⊂ Rn+1

And many more!
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A non convex shrinking soliton in R3

Existence suggested by Tom Ilmanen ∼ 1994

Rigorous construction by Xuan Hien Nguyen, and also

Kleen-Møller-Kapouleas ∼ 2012



Curve Shortening–ancient solitons

Curve Shortening is MCF with n = 1: V = k
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Translating solitons

�e Grim Reaper

y − ct = −
1

c
log cos cx

Bowl Soliton

For n + 1 ≥ 3 in Rn+1

translators are like

paraboloids

(no nice formula for

translators when n ≥ 2)
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Curve Shortening–non self similar ancient solutions

kt = k2kθθ + k3

�e Paper Clip

k(θ , t) =
√
cos 2θ − coth 2t

Ancient Sine

k(θ , t + π
2
i) =

√
cos 2θ − tanh 2t

Paperclip: A-1992 (Gregynog)

Paperclip&Ancient Sine Curve: Wadati, Iizuki, Nakayama-1994

“Curve Lengthening”

Galaktionov found similar solutions for ut = upuxx + uq in the 1980ies
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Classi�cation of Ancient Solutions of Curve Shortening

�eorem (Daskalopoulos, Hamilton, Sesum–2012).
�e only ancient solutions of plane Curve Shortening that are:

compact, embedded, and convex,
are:

the circle and the paper clip.



Other ancient solutions to plane Curve Shortening

Qian You (�esis, Madison 2014)

Ancient Trombones
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I self shrinkers (circle, Abresch-Langer curves)
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Proof ingredient

A(t) : unsigned area between the two curves C1(t) and C2(t)

dA
dt
≤

∫
C1(t)∪C2(t)

|V − k |ds



Unbounded total curvature

Compact, embedded, not convex

existence proof: Zhang, Olson, Khan, & A. (2019)



Higher dimensions



MCF: ancient convex solutions

Mn
t ⊂ R

n+1
evolves by V = H for t < 0.

Parabolic blow-up Nτ of Mt :

Mt =
√
−t Nτ , τ = − log(−t).

Nτ evolves by V = H + 1

2
〈X ,ν〉 (rescaled MCF).

�eorem. (Huisken, 1986). If Mt0 is compact and convex then Mt shrinks to
a point and Nτ converges to the sphere as τ →∞. Moreover,

d
dτ

{
1

(4π )n/2

∫
Nτ

e−‖X ‖
2/4dA

}
≤ 0

H(N n)
def

= 1

(4π )n/2

∫
N n

e−‖X ‖
2/4dA
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Convex self similar solutions

H(Nn)
def

= 1

(4π )n/2
∫
N e−‖X ‖

2/4dA

In general there is no classi�cation of self similar solutions to MCF:

For convex embedded shrinkers Huisken showed that the only ones are

Sn Sn−1 × R Sn−2 × R2 · · · S1 × Rn−1 S0 × Rn

where each sphere Sk has radius

√
2k.

Note: H(N × Rk) = H(N ).

also: S0 = ∂[−1, 1] = {−1,+1}
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MCF analogs of the Paper Clip

Sn Sn−1 × R Sn−2 × R2 · · · S1 × Rn−1 S0 × Rn

Shrinking disks of type S0 ×Rn— the Bourni-Langford-Tinaglia pancakes

Height is π

Radius shrinks according to

dR
dt
= −1 −

n − 1

R
R(t) = −t − (n − 1) log(−t) + O(1)



All ancient convex solutions in R3
�



White; Haslhofer-Hershkovitz

in R4



Solutions with O(p) × O(q) symmetry

�eorem. (White, Haslhofer-Hershkovitz) �ere is a compact convex solution
of rescaled MCF that connects Sp × Rn−p with Sn.

Q: how many are there, what do they look like?

Assume double rotational symmetry.

Nτ = {(x, Y ) ∈R × Rn :

‖Y ‖ = u(x,τ )}

uτ =
uxx

1 + u2

x
−
x
2

ux +
u
2

−
q − 1

u

.



Asymptotics of the WHH ancient ovals

Formal asymptotics



Asymptotics of the WHH ancient ovals

Formal asymptotics

In the parabolic region:

uτ =
uyy

1 + u2

y
−
yuy

2

+
u
2

−
n − 1

u

u =
√

2(n − 1)(1 + v) =⇒ vτ = vyy −
y
2

vy + v −
1

2

v2 + · · ·

=⇒ v =
y2 − 2

4τ
+ o

(
|τ |−1

)



Asymptotics of the WHH ancient ovals

Formal asymptotics

In the intermediate region:

y =
z√
|τ |
=⇒

∂u
∂τ
=

uzz
|τ | + u2

z
−
z
2

(
1 −

1

τ

)
uz +

u
2

−
n − 1

u
.

=⇒ u =
√
n − 1

√
2 − z2 + o(1) (τ → −∞)

Most of the surface is an ellipsoid!



Asymptotics of the WHH ancient ovals

Formal asymptotics

In the tip region: pt = tip of Mt ⊂ R
n+1

,

λt
(
Mt − pt

)
−→ B

where λt := H (pt , t) = Hmax(t) and B is unique Bowl Soliton, i.e. the unique

rotationally symmetric translating soliton with velocity one.



Asymptotics and Uniqueness of WHH ancient ovals

Asymptotics �eorem (Daskalopoulos, Sesum, A–2015) Every convex
rotationally symmetric ancient solution that converges to the cylinder as
τ → −∞ satis�es the formal asymptotic description.

Uniqueness �eorem (Daskalopoulos, Sesum, A–2019) Every convex
ancient solution that converges to the cylinder is rotationally symmetric.

Two convex ancient solutions that converge to the cylinder as τ → −∞ di�er
only by a translation in time, and a parabolic rescaling in space time.
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All ancient convex solutions in R3
�



Proof ingredients

incomplete self shrinkers



Proof ingredients

�e minimizing foliation for the Huisken functional

div

(
e−‖X ‖

2/4®ν
)
= 0.



0 =

∫
...

®∇ ·
(
e−‖X ‖

2/4®ν
)
dA

= −

∫
ΣL∞

e−‖X ‖
2/4dA +

∫
ΓL∞

e−‖X ‖
2/4( ®N · ®ν )dA +

∫
∆L

e−‖X ‖
2/4dA.

On the other hand : H(Σ) ≥ H(Γ), i.e.

∫
Σ
e−‖X ‖

2/4dA ≥
∫
Γ
e−‖X ‖

2/4dA


