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1 Hilbert spaces: selfadjoint operators

In many applications it is important to understand the spectral properties of
a linear operator T : X → X , where X is some vector space over IR or IC.
In the finite dimensional (complex) case linear operators may be characterised
as matrices and the Jordan normal form theorem applies, providing a basis of
generalised eigenvectors. If, in addition, T is normal (i.e. T and T ∗ commute)
with respect to an inner product, then the basis is orthogornal and consists of
eigenvectors only.

For spectral theory it is often convenient to work in complex spaces. For
symmetric operators however the real numbers are just fine. The simplest theo-
rem for the infinite dimensional case may be formulated and proved in the real
setting.

Theorem 1.1 Let H be a real Hilbert space, T : H → H a compact sym-
metric linear operator. Then T has a finite or infinite sequence of eigen-
vectors {x1, x2, . . .} with (xi, xj) = δij, corresponding to nonzero eigenvalues
λ1, λ2, λ3, . . . ∈ IR with, if the sequence is infinite,

|λ1| ≥ |λ2| ≥ |λ3| ≥ . . . ↓ 0.

Moreover

|λ1| = max
06=x∈H

|
(Tx, x)

(x, x)
| = |(Tx1, x1)|,

and, more generally,

|λn+1| = max
06=x∈H

(x,x1)=···=(x,xn)=0

|
(Tx, x)

(x, x)
| = |(Txn+1, xn+1)|.

The null space N(T ) of T is the orthoplement of the (closed) subspace generated
by the xj’s.

Proof. The proof we give here closely resembles a proof of the finite dimen-
sional case. It is based on the symmetry of T (i.e. (Tx, y) = (x, T y)) and the
observation that the supremum

s = sup
06=x∈H

|
(Tx, x)

(x, x)
|
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is attained because (i): the operator is compact, which means that bounded sets
are mapped to precompact sets, and (ii): bounded sequences in H have weakly
convergent subsequences.

To see that the supremum is a maximum we choose a sequence yn ∈ H with
(yn, yn) = 1 and (Tyn, yn) → ±s. Then there is a subsequence, denoted again
by yn, such that yn ⇀ y ∈ H , meaning that (x, yn) → (x, y) for all x ∈ H . This
is called weak convergence of yn to y.

Remark. We do not go into the details of weak topologies here but it is
good to recall that in reflexive Banach spaces bounded sequences have weakly
convergent subsequences. If in addition the space is separable, the relative weak
topology on the closed ball is a metric topology, so that there is no difference
between compact and sequentially compact. Our Hilbert space is not assumed
to be separable, but the convergent subsequence argument is still valid. This
can be seen by first restricting attention to the the closed subspace spanned by
the sequence xn.

Continuing with the proof, there is a further subsequence such that Tyn →
Ty because T is compact. Hence

(Tyn, yn) = (Ty, yn) + (Tyn − Ty, yn) → (Ty, y).

Thus s is attained.
The rest of the proof is as the “finite dimensional” proof. If s = 0 then it is

easily seen that T = 0 so suppose s > 0. Changing to −T if necessary we may
assume that

s = max
06=x∈H

(Tx, x)

(x, x)
= (Tx1, x1),

with (x1, x1) = 1. For x1 we can take the weak limit y above. We claim that
Tx1 = sx1. Indeed, Tx1 = (Tx1, x1)x1 + Tx1 − (Tx1, x1)x1 = sx1 + y, and
y = Tx1 − (Tx1, x1)x1 satisfies (y, x1) = 0 whence zε = x1 + εy has (zε, zε) =
1 + ε2(y, y). But (Tzε, zε) = (Tx1, x1) + ε(Tx1, y) + ε(y, Tx1) + ε2(Ty, T y) =
(Tx1, x1)+2ε(Tx1, y)+ε2(Ty, T y) with (Tx1, y) = (sx1+y, y) = (y, y). If y 6= 0
we can thus make the quotient smaller than s by varying ε, a contradiction.

Thus Tx1 = sx1 and s is an eigenvalue of T (or −T if we changed to −T ).
This provides us with λ1. We then repeat the argument with the restriction of T
to {x ∈ H : (x, x1) = 0}, which is invariant under T because T is symmetric. In
this fashion we either get a finite sequence of real nonzero eigenvalues λ1, . . . , λn

with orthogornal eigenvectors x1, . . . xn and s = 0 in the (n + 1)-th step, or we
get an infinite sequence. In the latter case the compactness of T implies that
λj → 0. This completes the proof.

The formulation and proof of a generalisation of this theorem to general un-
bounded closed or bounded operators are more difficult. The following exercices
are intended to indicate what’s going on.

Exercise 1 Let T be a bounded operator on a real or complex Hilbert space.
If T is symmetric, i.e. (Tx, y) = (x, T y) for all x, y ∈ H , show that (Tx, x) is
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always real and that

||T || = sup
||x||=||y||=1

|(Tx, y)| = sup
||x||=1

|(Tx, x)|.

Hint: consider (T (x+y), x+y)−(T (x−y), x−y) and use ||x+y||2 + ||x−y||2 =
2||x||2 + 2||y||2.

Exercise 2 Let T be a bounded symmetric operator on a real or complex
Hilbert space. Show that distinct eigenvalues have mutually orthogornal eigen-
vectors. If M ⊂ H is an invariant subspace (TM ⊂ M), show that also
M⊥ = {x ∈ H : ∀y ∈ M (x, y) = 0} is an invariant subspace.

Exercise 3 Let T be a compact symmetric operator on a real or complex
Hilbert space. If λ 6= 0 is an eigenvalue of T , show that N(T − λ) = {x ∈
H : Tx = λx} is finite dimensional. Explain why in Theorem 1.1, if the se-
quence is infinite, λn → 0.

Exercise 4 Let T be a symmetric bounded operator on a real or complex
Hilbert space and let V (T ) be the closure of {(Tx, x); x ∈ H, ||x|| = 1}. Show
that λ − T is invertible if λ 6∈ V (T ) and give an estimate for the norm of the
inverse. Hint: |λ − (Tx, x)| ≤ ||λx − Tx|| gives that λ − T : H → R(λ − T ) is a
linear homeomorphism and R(λ−T ) = H because otherwise λ̄ is an eigenvalue.
(In fact you can do this without the symmetry assumption.)

Exercise 5 Let T be a symmetric bounded operator on a real or complex
Hilbert space and let m(T ) and M(T ) be defined by Let

m(T ) = inf
x∈H, ||x||=1

(Tx, x) and M(T ) = sup
x∈H, ||x||=1

(Tx, x). (1.1)

Then
σ(T ) = {λ ∈ IC : (λ − T )−1 is not a bijection}

is contained in [m(T ), M(T )] and both endpoints of this interval are contained
in σ(T ). Hint: for the last statement, assume m(T ) = 0 and show that T cannot
have a bounded inverse (and therefore not be a bijection).

Exercise 6 State and prove Theorem 1.1 for complex Hilbert spaces.

Exercise 7 In the context of Theorem 1.1, show that

Tx =
∑

k

λk(x, xk)xk. (1.2)

Give a similar representation of (µ − T )−1 if µ 6∈ σ(T ) = {0, λ1, λ2, . . .}.

Exercise 8 In the context of Theorem 1.1, let

Eλx =
∑

k,λk≤λ

(x, xk)xk for λ < 0,
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and
Eλx = x −

∑
k,λk>λ

(x, xk)xk for λ ≥ 0.

Show that the orthogornal projections Eλ have

λ ≥ µ ⇒ EλEµ = EµEλ = Eµ,

and
λ ↓ µ ⇒ Eλx ↓ Eµx.

Explain the formula

Tx =

∫
λdEλx, (1.3)

and give similar formulas for (µ − T )−1x if µ 6∈ σ(T ) and for p(T )x where p is
a polynomial. From this exercise you can guess a general theorem for bounded
symmetric operators, see Theorem VI-6.1 in [5].

The spectral theory of symmetric operators may be formulated in both the
complex and the real setting. The more general theory for normal operators
needs a complex formulation because the spectrum is no longer real. A treat-
ment of normal operators employing representation theory of C∗-algebra’s may
be found in [4] or in [5]. In many applications however the operators are not
normal. Then there is no reason to restrict to Hilbert spaces (which exclude
most of the standard function spaces). Therefore we will leave the Hilbert space
setting and see what can be done in the (complex) Banach space setting. The
main reference here is [5], which is also the source of the exercises above.

2 Banach spaces: spectra of bounded operators

Unless stated otherwise from here on X is always a complex Banach space,
X 6= {0}. The dual (Banach) space of bounded linear functionals f : X → IC is
denoted by X∗, the norm on X∗ being given by

||f || = sup
06=x∈X

|f(x)|

||x||
.

Also, T : X → X is always a bounded linear operator, and the Banach space of
bounded linear operators on X is denoted by B(X), with norm

||T || = sup
06=x∈X

||Tx||

||x||
.

Finally, Ω is always an open subset of IC.
In [5] the concepts below are discussed for general unbounded operators.
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Definition 2.1 The resolvent set ρ(T ) is the set of all complex λ such that
λ − T = λI − T : X → X is a bijection. By the bounded inverse theorem
(λ − T )−1 is bounded if it exists. The operator Rλ = (λ − T )−1 is called the
resolvent of T . The complement of ρ(T ) in IC is called the spectrum of T ,
notation σ(T ).

Theorem 2.2 Since

λ, µ ∈ ρ(T ) ⇒ Rλ − Rµ = (µ − λ)RλRµ, (2.1)

Rλ and Rµ commute. In view of

|λ − µ| <
1

||Rµ||
⇒ Rλ =

∞∑
n=0

(µ − λ)nRn+1
µ ,

ρ(T ) is open and the resolvent λ → Rλ is analytic on ρ(T ). Finally,

|λ| > ||T || ⇒ λ ∈ ρ(T ), Rλ =

∞∑
n=1

λ−nT n−1 and ||Rλ|| ≤
1

|λ| − ||T ||
.

so the spectrum σ(T ) is compact.

This theorem is easily proved manipulating the “geometric series”

(I − T )−1 = I + T + T 2 + T 3 + · · · (||T || < 1). (2.2)

We recall that a function F : Ω → X is called analytic if

F ′(λ0) = lim
λ→λ0

F (λ) − F (λ0)

λ − λ0

exists for every λ0 ∈ Ω. This is equivalent to λ → f(F (λ)) ∈ IC being analytic
on Ω for every f ∈ X∗. A function F : Ω → X which is analytic has the same
nice properties as an ordinary IC-valued analytic function: Coursat’s theorem,
Cauchy formula’s for F and its derivatives, local powerseries representation,
maximum modulus theorem, Liouville’s theorem, etc. Liouville gives:

Theorem 2.3 σ(T ) 6= ∅.

Proof. Otherwise ρ(T ) = IC. By Theorem 2.2 the resolvent Rλ goes to zero at
infinity. For any f in B(X)∗, the dual of the Banach space of bounded operators,
f(Rλ) ≡ 0 by an application Liouville’s theorem. Thus Rλ ≡ 0 ∈ B(X), a
contradiction.

Theorem 2.4 σ(p(T )) = p(σ(T )) for every polynomial p.

Proof. If p(λ) = λn + αn−1λ
n−1 + · · · + α0, then, for fixed µ in IC,

p(λ) − µ = (λ − β1) · · · (λ − βn),

which also holds if λ is replaced by T . Thus p(T )−µI is a bijection if and only
if all T − βjI are bijections. Since p(βj) = µ the theorem follows.
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Theorem 2.5 The representation of Rλ as a power series in 1
λ

in Theorem 2.2
is valid for all |λ| > r(T ), where

r(T ) = sup{|λ| : λ ∈ σ(T )} = lim
n→∞

||T n||
1

n (2.3)

is the spectral radius of T .

Proof. By the formula for the radius of convergence (2.3) holds with lim sup.

Theorem 2.4 implies ||T n|| ≥ r(T n) = r(T )n, whence r(T ) ≤ lim infn→∞ ||T n||
1

n

and (2.3) follows.

3 Banach spaces: compact operators

Definition 3.1 A linear operator T : X → X is called compact if the closure
of the image of the unit ball is compact.

Proposition 3.2 The compact linear operators on X form a closed two-sided
ideal K(X) in the Banach algebra B(X) of bounded linear operators.

Theorem 3.3 If T is a compact bounded operator then σ(T ) is a countable set,
including λ = 0, having no accumulation points except possibly λ = 0. Every
nonzero λ ∈ σ(T ) is an eigenvalue with a finite dimensional space of generalized
eigenvectors.

We need some preparations for the proof.

Lemma 3.4 Let T ∈ K(X) and λ ∈ IC with λ 6= 0. Then N(T − λ)n is finite
dimensional.

Proof. Let n = 1. It is no restriction to assume λ = 1. If N(T − I) has
infinite dimension, its unit ball is not compact (this easily follows from Riesz’
Lemma below), so there exists a sequence xn = Txn ∈ N(T − I), ||xn|| ≤ 1,
having no convergent subsequence, contradicting T ∈ K(X). For n > 1 we
write (T − I)n = T n − nT n−1 + · · · − I = S − I, then S is compact (why?) and
the conclusion follows from the case n = 1.

Lemma 3.5 Let T ∈ K(X) and λ ∈ IC with λ 6= 0. If M is a closed subspace of
X such that M ∩N(T −λ) = {0}, then the restriction T −λ : M → (T −λ)(M)
has a bounded inverse and (T − λ)(M) is closed.

Proof. Again it is no restriction to assume λ = 1. Clearly the inverse exists.
Suppose it is not bounded, then there exists a sequence xn ∈ M , ||xn|| = 1, such
that ||Txn − xn|| → 0. But T being compact we may extract a subsequence,
again denoted by xn, such that Txn converges to a limit y. Then also xn → y,
y ∈ M because M is closed, ||y|| = 1 and (T − I)y = lim(Txn − xn) = 0,
contradicting M ∩ N(T − I) = {0}. Thus T − I : M → (T − I)(M) has a
bounded inverse. Hence it is a linear homeomorphism. Since M is closed it is
Banach, so (T − I)(M) is Banach and therefore closed in X .
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Corollary 3.6 Let T ∈ K(X) and λ ∈ IC with λ 6= 0. Then R((T − λ)n) is
closed.

Proof. Take n = 1 and λ = 1. Since N(T − I) is finite dimensional there
is a closed subspace M such that X is the direct product of N(T − I) and M .
Thus M ∩N(T − I) = {0} so by Lemma 3.5, R(T − I) is closed. The case n > 1
follows as above writing T n − I = S − I with S ∈ K(X).

In the next definition and theorem we only need the vector space structure.

Definition 3.7 Let T : X → X be linear. Observing that always N(T n) ⊂
N(T n+1) and R(T n) ⊃ R(T n+1), the ascent α(T ) is the smallest integer n
such that N(T n) = N(T n+1) (if no such n exists α(T ) = ∞) and the descent
δ(T ) is the smallest integer n such that R(T n) = R(T n+1) (if no such n exists
δ(T ) = ∞).

Theorem 3.8 Let T : X → X be linear. If α(T ) and δ(T ) are finite then
α(T ) = δ(T ) = p and X is the direct vector space product of R(T p) and N(T p),
both of which are invariant under T .

Proof. The proof follows from two observations. First, consider, for any
positive integers i, j,

T i : N(T i+j) → R(T i) ∩ N(T j).

This map is surjective and has kernel N(T i), so

N(T i+j)/N(T i) ∼= R(T i) ∩ N(T j). (3.1)

Second, if
Q : R(T j) → R(T j)/R(T i+j)

is the quotient map, then

QT j : X → R(T j)/R(T i+j)

is surjective and N(QT j) = R(T i) + N(T j), so

R(T j)/R(T i+j) ∼= X/(R(T i) + N(T j)). (3.2)

If i ≥ α(T ) the spaces in (3.1) are trivial and the same holds for (3.2) if j ≥ δ(T ).
Consequently

X = R(T i) ⊕ N(T j) if i ≥ α(T ) and j ≥ δ(T ).

It follows that α(T ) = δ(T ) (why?) and the proof is complete.

Theorem 3.9 Let T ∈ K(X) and λ ∈ IC with λ 6= 0. Then α(T − λ) and
δ(T −λ) are finite. Thus Lemma 3.8 applies with T replaced by T −λ, and both
factors of the product are closed and invariant under T :

X = R((T − λ)p) ⊕ N((T − λ)p), p = α(T − λ) = δ(T − λ). (3.3)
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Proof. Restricting again to λ = 1 we only have to show that α(T − I) and
δ(T − I) are finite. Hereto we need

Lemma 3.10 (Riesz’ Lemma) Let X be a normed space and M ⊂ X, M 6= X,
a closed subspace. For every θ ∈ (0, 1) there exists xθ ∈ X with ||xθ || = 1 such
that d(xθ , M) = inf{||x − xθ|| : x ∈ M} > θ.

Now suppose α(T − I) is not finite, then, for every positive integer n, us-
ing Riesz, we may choose xn ∈ N((T − I)n) with ||xn|| = 1 and such that
d(xn, N((T −I)n−1)) ≥ θ. Then Txn−xn ∈ N((T −I)n−1), so, with 1 ≤ m < n,

||Txn − Txm|| = ||xn − xm + (xm − Txm) + (Txn − xn)|| ≥ θ.

Thus Txn cannot have a convergent subsequence, contradicting T ∈ K(X).
Hence α(T − I) is finite.

Exercise 9 Prove that also δ(T − I) is finite.

Proof of Theorem 3.3. Let λ ∈ IC with λ 6= 0. Let p = α(T − λ) = δ(T − λ).
If p = 0 then N(T − λ) = N(I) = {0} and R(T − λ) = R(I) = X . Thus
T − λ : X → X is bijective and λ ∈ ρ(T ).

If p > 0, then

X = N((T − λ)p) ⊕ R((T − λ)p) = X1 ⊕ X2,

with X1 finite dimensional. Clearly X1 and X2 are invariant under T . Denoting
the restriction of T to Xi by Ti, we have σ(T1) = {λ} (why?). Moreover,
T2 − λ : X2 → X2 is bijective. This implies that λ belongs to ρ(T2), and
hence the same holds for a neighbourhood N of λ. Finally, for every µ 6= λ,
T1 − µ : X1 → X1 is a bijection, so for µ ∈ N\{λ} both T1 − µ and T2 − µ are
bijective and hence so is T − µ, i.e. µ ∈ ρ(T ).

This completes the proof of the spectral theorem for compact linear oper-
ators. We note that the essential result is really (3.3). In Sections 5 and 6
we develop machinery which allows to decide whether or not (3.3) holds for
λ ∈ σ(T ) when T ∈ B(X) is not assumed to be compact.

Exercise 10 Let T ∈ K(X) and consider, for given y ∈ X , the equation x −
Tx = y. Deduce the Fredholm alternative: either there exists a unique solution
x for all y, or the homogeneous equation x − Tx = 0 has nontrival solutions.

Exercise 11 In the context of Theorem 3.8, show that N(T p) and R(T p) are
closed if X is a Banach space and T is bounded. Hint: take p = 1 and consider
T̃ : X → X/N(T ) defined by T̃ x = [Tx] = Tx + N(T ) and show that the Open
Mapping Theorem applies to T̃ .
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4 Quasi-nilpotent or not quasi-nilpotent?

It may happen that T ∈ K(X) is quasi-nilpotent, i.e.

r(T ) = lim
n→∞

||T n|| = 0.

In that case there is no information from Theorem 3.3. This raises two questions.

(i) can we still say something in the quasi-nilpotent case?

(ii) how can we conclude that T ∈ K(X) is not quasi-nilpotent?

We state two theorems in this context.

Theorem 4.1 (Lomonosov) If 0 6= T ∈ K(X) is quasi-nilpotent then T has a
nontrivial closed invariant subspace.

Theorem 4.2 (de Pagter, [2], Thm 4.2.2) If X is a Banach lattice and 0 6= T ∈
K(X) is quasi-nilpotent and positive then T has a nontrivial closed invariant
order ideal.

To explain the last theorem we first restrict to the case of real spaces. A
real Banach lattice X is a Banach space which is also a vector lattice. A vector
lattice or Riesz space is a real vector space endowed with a partial order ≥, such
that, in addition to the partial order axioms,

x ≥ x; x ≥ y and y ≥ x ⇒ x = y; x ≥ y and y ≥ z ⇒ x ≥ z,

for all x, y, z ∈ X , also

x ≥ y ⇒ x + z ≥ y + z and αx ≥ αy,

for all x, y, z ∈ X and 0 < α ∈ IR, and, finally, for every pair x, y ∈ X there
exist a lowest upper bound and a largest lower bound of x and y. The positive
cone in X is X+ = {x ∈ X : x ≥ 0}. T ∈ B(X) is called positive, notation
T ≥ 0, if T (X+) ⊂ X+. An order ideal in X is a subspace I with the additional
property that

x ∈ I, y ∈ X, |x| ≥ |y| ⇒ y ∈ I.

Here |x| is the lowest upper bound of x and −x.
Theorem 4.2 is really a result for real Banach lattices. It can be used if

the operator has a stronger positivity property which we will not formulate in
the abstract setting. In applications to elliptic boundary value problems one
typically has results of the form

−Lu = f ≥ 0 ⇒ u ≥ 0,

and u > 0 (everywhere or almost everywhere, depending on the choice of func-
tion spaces, see [1], chapter 5, for classical maximum principles). This prevents
the (usually compact) solution operator T : f → u from having a nontrivial
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closed invariant order ideal. We note that in X = C([0, 1]), or, more generally,
in X = C(Y ), where Y is a compact normal topological space, the closed ideals
are of the form {f ∈ X : f ≡ 0 on M}, where M is closed in Y . A similar char-
acterisation holds in Lp-spaces in the a.e. sense with M measurable, provided
1 ≤ p < ∞. The Lp setting is discussed in [3].

The complex version follows by complexification and puts us back into our
framework for the analysis of σ(T ). In particular we have

Theorem 4.3 (Krein-Rutman, [2], Thm 4.1.4) If X is a Banach lattice and
T ∈ K(X) is positive and has r(T ) > 0, then r(T ) is an eigenvalue corre-
sponding to an eigenvector in X+. Moreover, r(T ) is a pole of the resolvent of
maximal order on {λ ∈ IC : |λ| = r(T )}.

Note that the assumption r(T ) > 0 is essential (it is not stated in [2]).

Exercise 12 Consider X = C([0, 1]) and the operators K and G defined by

(Kf)(x) =
∫ x

0
f(y) dy and (Gf)(x) =

∫ 1

0
g(x, y)f(y) dy, where g(x, y) is the

Green’s function for the problem

−u′′(x) = f(x) − 1 ≤ x ≤ 1, u(−1) = u(1) = 0.

Compute g and evaluate the theorems above for K and G.

Exercise 13 (Hilden’s proof of Thm 4.1) Let A = {A ∈ B(X) : AK = KA}.
(i) Show that Ay = {Ay : A ∈ A} is invariant under A and thus also under K
for each y ∈ H .

Arguing by contradiction assume that Ay = X for all 0 6= y ∈ H .

(ii) Show that for any 0 6= x0 ∈ X with Kx0 6= 0 there exists an open ball B
centered at x0 with 0 6∈ B̄ and 0 6∈ KB.

(iii) Show that for every y ∈ KB there exists an A ∈ A and an open neighbour-
hood U of y such that AU ⊂ B.

(iv) Use compactness to conclude that finitely many U1, . . . , Un cover KB.

Let A1, . . . , An be the corresponding elements of A.

(v) (ping-pong) Jump back and forth between B and KB to construct a sequence

xn = Ain
K · · ·Ai0Kx0

in B and derive a contradiction using ||Kn|| → 0.

5 Functional calculus

We recall that X is always a complex Banach space, X 6= {0}, T : X → X a
bounded linear operator and Ω an open subset of IC.
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The formula (2.2) is a first example of f(T ) making sense for a fixed complex
analytic function f and a bounded operator T . Clearly, if

f(λ) =
∞∑

n=0

anλn, λ ∈ IC, |λ| < R,

then we may define

f(T ) =

∞∑
n=0

anT n, T ∈ B(X), ||T || < R.

The following theorem defines f(T ) for fixed T and f analytic on a neighbour-
hood of σ(T ).

Theorem 5.1 Let X be a Banach space, T ∈ B(X), σ(T ) ⊂ Ω, f : Ω → IC
analytic and γ a contour in Ω \ σ(T ) winding once (counterclockwise) around
σ(T ) (and containing no holes of Ω). Define

f(T ) =
1

2πi

∮
γ

f(λ)Rλ dλ =
1

2πi

∮
γ

f(λ)(λ − T )−1 dλ.

Then f(T ) is a bounded linear operator on X and σ(f(T )) = f(σ(T )). The
definition is independent of the particular choice of γ and thus only depends on
the values of f in a neighbourhood of σ(T ). If f(λ) =

∑∞
n=0 anλn has radius

of convergence larger than r(T ), then f(T ) =
∑∞

n=0 anT n. Any bounded linear
operator on X which commutes with T also commutes with f(T ). Moreover, if
g : Ω → IC is another analytic function, then

f(T ) + g(T ) = (f + g)(T ) and f(T )g(T ) = (fg)(T ).

If fg ≡ 1 in a neighbourhood of σ(T ) in Ω then g(T ) = f(T )−1. Finally, the
choice f(λ) = λn (n = 0, 1, 2, . . .) gives

T n =
1

2πi

∮
γ

λnRλ dλ =
1

2πi

∮
γ

λn(λ − T )−1 dλ.

Proof. We will prove the product formula for f(T ) and g(T ). Choose con-
tours γ for f and Γ for g such that γ = δDγ , Γ = δDΓ, Dγ ⊂ DΓ ⊂ DΓ ⊂ Ω.
Then

f(T )g(T ) =
1

2πi

∮
γ

f(λ)Rλ dλ
1

2πi

∮
Γ

g(µ)Rµ dµ =

1

2πi

∮
γ

f(λ)
1

2πi

∮
Γ

g(µ)RλRµ dµdλ =

(using the resolvent formula (2.1) and exchanging the order of integration in the
second term below))

1

2πi

∮
γ

f(λ)
1

2πi

∮
Γ

g(µ)

µ − λ
dµ Rλ dλ +

1

2πi

∮
Γ

1

2πi

∮
γ

f(λ)

µ − λ
dλ g(µ)Rµ dµ =
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1

2πi

∮
γ

f(λ)g(λ)Rλ dλ + 0 = (fg)(T ).

The rest of the theorem is left as an exercise. Note that f(T ) is invertible
if and only if f 6= 0 on σ(T ). Since f(T ) − µI = (f − µ)(T ) this implies
σ(f(T )) = f(σ(T )).

Thus f(T ) is defined for every IC-valued function f defined and analytic
in a neighbourhood of σ(T ). See [5] for a generalisation to unbounded closed
operators with σ(T ) 6= IC and f analytic in a neighbourhood of σ(T ) ∪ {∞}
having a well defined limit f(∞).

Exercise 14 Suppose that in the context of Theorem 5.1 the IC-valued function
is analytic on a neighbourhood of f(σ(T )) = σ(f(T )). Show that g(f(T )) =
(g ◦ f)(T ).

6 Spectral projections; poles of the resolvent

We recall that X is always a complex Banach space, X 6= {0}, T : X → X a
bounded linear operator. Using Theorem 5.1 we wish to establish when (3.3)
holds for λ ∈ σ(T ).

Suppose first that σ(T ) is disconnected. Then

σ(T ) = σ1 ∪ σ2 σ1 ∩ σ2 = ∅,

with σi nonempty and compact. Thus there exist disjoint open sets Ω1, Ω2 such
that σi ⊂ Ωi and we may take contours γi in Ωi around σi to apply Theorem
5.1 with γ = γ1 ∪ γ2:

f(T ) =
1

2πi

∮
γ1

f(λ)Rλdλ +
1

2πi

∮
γ2

f(λ)Rλdλ.

If we choose χi to be the characteristic function of Ωi and define fi(λ) = λχi(λ),
we obtain, using the algebraic properties of the mapping f → f(T ), a splitting

I = χ1(T ) + χ2(T ) = E1 + E2, T = f1(T ) + f2(T ) = T1 + T2,

where

Ei = χi(T ), Ti = fi(T ) = TEi = EiT, E1E2 = E2E1 = 0, E2
i = Ei,

and
N(E1) = R(E2), N(E2) = R(E1), X = R(E1) ⊕ R(E2).

The projections E1 and E2 are called spectral projections and the sets σ1 and
σ2 are called spectral sets.

It may happen that σ1 = {µ} is a singleton (if the reader wishes he may set
µ = 0 in the reasoning below). The resolvent Rλ is then analytic in a punctured
neighbourhood of µ and we may write its Laurent series as

Rλ = (λ − T )−1 =

∞∑
n=−∞

(λ − µ)nAn, An ∈ B(X). (6.1)
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If this series has only finitely many nonzero terms with n negative we say that
Rλ has a pole in λ = µ of order p where A−p is the first nonzero An. If this is
not the case, Rλ has an essential singularity in λ = µ. In what follows, whenever
we say that Rλ has a pole in µ, it is implicitly understood that µ is an isolated
point of σ(T ).

Theorem 6.1 Let µ be an isolated point of σ(T ). Then Rλ is given by (6.1)
in a punctured neighbourhood of µ and the coefficients satisfy

n 6= 0 ⇒ (T − µ)An = An−1,

(T − µ)A0 = A−1 − I,

and A−1 is the spectral projection corresponding to {µ}. In particular

n < 0 ⇒ An = (T − µ)1−nA−1.

Proof. We retrieve the coefficients An from Rλ by

An =
1

2πi

∮
γ1

(λ − µ)−n−1Rλ dλ.

Using Theorem 5.1 and the notation above we rewrite An as

An = Fn(T ), (6.2)

where
Fn(λ) = (λ − µ)−n−1χ1(λ), n ≤ −1, (6.3)

and
Fn(λ) = −(λ − µ)−n−1χ2(λ), n ≥ 0. (6.4)

To see this for n ≥ 0 observe that

An − Fn(T ) =
1

2πi

∮
γ1

(λ − µ)−n−1Rλ dλ +
1

2πi

∮
γ2

(λ − µ)−n−1Rλ dλ =

(for r > r(T ))

=
1

2πi

∮
|λ|=r

(λ − µ)−n−1Rλ dλ → 0 as r → ∞.

We now have, using the algebra again,

n 6= 0 ⇒ Fn−1(λ) = (λ − µ)Fn(λ) ⇒ An−1 = (T − µ)An, (6.5)

F−1(λ) = χ1(λ) ⇒ A−1 = E1, (6.6)

and

(λ − µ)F0(λ) = −χ2(λ) ⇒ (T − µ)A0 = −E2 = E1 − I = A−1 − I. (6.7)
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Proposition 6.2 If, in Theorem 6.1, the range of the spectral projection A−1

is finite then µ is a pole of the resolvent (of finite rank).

Theorem 6.3 If Rλ = (T − λ)−1 has a pole of order p ≥ 1 in λ = µ, then µ is
an eigenvalue and

X = R((T − µ)p) ⊕ N((T − µ)p) and p = α(T − µ) = δ(T − µ). (6.8)

Exercise 15 Prove Theorem 6.3.

Theorem 6.4 If µ ∈ σ(T ) is such that α(T − µ) and δ(T − µ) are both finite,
then µ is a pole of Rλ.

Exercise 16 Prove Theorem 6.4. Use Theorem 3.8 to conclude that (6.8) holds
and show that both factors are closed. Then reason as in the proof of Theorem
3.3 to show that µ is an isolated point of σ(T ).

Exercise 17 Show that µ is a pole of finite rank of Rλ if T ∈ K(X) and
0 6= µ ∈ σ(T ).

Exercise 18 Show that µ is a pole of finite rank of Rλ if T ∈ B(X), 0 6= µ ∈
σ(T ) and T n ∈ K(X) for some positive integer.
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