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Abstract. We study travelling wave solutions for a class of fourth order parabolic equations.
Travelling wave fronts of the form u(x, t) = U(x + ct), connecting homogeneous states, are proven
to exist in various cases: connections between two stable states, as well as connections between an
unstable and a stable state, are considered.
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1. Introduction. Fourth order parabolic equations of the form

ut = −γuxxxx + uxx + f(u), γ > 0,(1.1)

where x ∈ R, t > 0, occur in many physical models such as the theory of phase-
transitions [9], nonlinear optics [1], shallow water waves [7], etc. Usually the potential
F (u) =

∫
f(s)ds has at least two local maxima (stable state) and one local minimum

(unstable state).1 A prototypical example is fa(u) = (u+a)(1−u2) with −1 < a < 1.
For a thorough understanding of (1.1), the stationary problem is of great impor-

tance. An extensive literature on this subject exists (see, e.g., [3, 29, 7, 16, 17, 18,
25, 22, 23, 24]). Typically, depending on the parameter γ, the stationary problem
displays a multitude of periodic, homoclinic, and heteroclinic solutions. The station-
ary equation is Hamiltonian, which restricts the possible connections between the
equilibrium points. As an example we mention that when the maximum of F is at-
tained in two points, e.g., F (u) = − 1

4 (u
2 − 1)2, a solution connecting these maxima

exists for all γ > 0. One could regard this solution as a standing wave. The hetero-
clinic solution is unique (modulo the obvious symmetries) for small values of γ, say,
γ ≤ γ1(f) [28, 29, 19]. On the other hand, for large γ, say, γ > γ2(f), there is a mul-
titude of (multibump/transition) solutions connecting the two maxima [17, 18, 24].
This is due to the fact that as γ crosses the critical value γ = γ2(f), the eigenvalues
of the linearized stationary equation around the two maxima of F become complex.

In the special case f(u) = u− u3, corresponding to F (u) = − 1
4 (u

2 − 1)2, it holds
that γ1(f) = γ2(f) = 1

8 . Although in many simple cases equality holds, generally
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there will be a gap between γ1(f) and γ2(f). The critical value γ1 is not necessarily
small, and a lower bound on γ1 can in general be explicitly determined (see [29] for
more details).

For the time-dependent problem travelling fronts of the form u(x, t) = U(x +
ct), connecting extrema of the potential F , play a prominent role in most models.
Results on travelling waves for (1.1) have previously been obtained in [6], where
nonlinearities of the form f(u) = fa(u) = (u + a)(1 − u2), a ≈ 0, are considered
using transversality arguments and perturbing near a standing wave. Moreover, in [2]
singular perturbations techniques were applied near γ = 0. In both cases travelling
waves between local maxima (stable states) are studied. A recent work [27] deals
with singular perturbations techniques for travelling waves connecting an unstable
and a stable state; the stability of these waves for very small γ is also established.
Furthermore, in the context of singular perturbation theory, travelling waves for higher
order parabolic equations have been studied in [15].

The objective of this paper is to obtain existence results for a large range of pa-
rameter values. We therefore study travelling waves of (1.1) via topological arguments
rather than perturbation methods. To illustrate the underlying ideas of the method,
let us consider the related second order parabolic equation, i.e., γ = 0. Such equations
arise as models in, for example, population genetics and combustion theory [4]. In the
special case where f(u) = fa(u), (1.1) with γ = 0 admits a travelling wave solution

u(x, t) = tanh
(
x+a

√
2t√

2

)
. This travelling wave connects the two stable homogeneous

states u = −1 and u = +1. The literature on this problem is extensive and we will not
attempt to give a complete list. However, a few key references are of importance for
explaining the similarities of the second and fourth order problems. In the case γ = 0
the equation for travelling waves u(x, t) = U(x+ ct) is given by cU ′ = U ′′ + f(U). A
phase plane analysis for both 0 < c� 1 and c� 1 shows two topologically different
phase portraits, from which the conclusion may be drawn that a global bifurcation
has to take place for some intermediate c-value(s). In this way a wave speed c0 can be
found for which a travelling wave exists which connects the two local maxima of F .
In this context we mention the work by Fife and McLeod [13] based on an analytic
approach and Conley’s more topological approach [8].

From the second order problem we learn that for the present problem it is sensible
to look for topologically different phase portraits (in R

4) for small and large values
of c. A big part of our analysis will be to do just that.

In order to simplify the exposition of the main results we reformulate (1.1) as

ut = −uxxxx + αuxx + f(u),(1.2)

via the rescaling x �→ γ
1
4x, with α = 1√

γ . Notice that (1.2) also has meaning for

α ≤ 0.
Let us start now with the hypotheses on the nonlinearity:

(H0)




• F ′(u) = f(u) ∈ C1(R);
• f(u) = 0 ⇔ u∈{±1,−a} for some a∈(−1, 1), and f ′(±1) �=0, f ′(−a) �=0;
• F (−1) < F (+1);
• F (u) → −∞ as u→ ±∞;
• for some M > 0 it holds that f ′(u) ≤M for all u ∈ R.2

Of course, the prototypical example fa(u) = (u+a)(1−u2) satisfies (H0). We remark
that the third condition excludes the existence of a standing wave which connects

2Note that f ′(u) may be unbounded from below.
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two different equilibria. The last condition is a technical one, which we use to obtain
certain a priori bounds. Without loss of generality we set

F (u) =

∫ u

1

f(s)ds,

so that F (1) = 0.
Denote the wave speed by c, and, searching for a travelling wave, we set u(x, t) =

U(x + ct), which, switching to lower case again, reduces (1.2) to the ordinary differ-
ential equation

cu′ = −u′′′′ + αu′′ + f(u).(1.3)

An important ingredient of our analysis is a conserved quantity for (1.3) when c = 0,
which is a Lyapunov function when c �= 0. Define

E(u, u′, u′′, u′′′) def
= −u′u′′′ + 1

2
u′′2 +

α

2
u′2 + F (u).(1.4)

Multiplying (1.3) by u′ we find that

E ′(u, u′, u′′, u′′′) = cu′2,(1.5)

so that E , which will be referred to as the energy of the solution, is increasing along
orbits if c > 0, constant if c = 0, and decreasing if c < 0. When we are looking for a
solution of (1.3) connecting u = −1 to u = 1, we see that we can restrict our attention
to c > 0.

The first theorem deals with the connection between the two stable states u = −1
and u = +1. This connection is nongeneric with respect to the wave speed c. Noting
that F (u) ≤ 0 for all u ∈ R if f satisfies hypothesis (H0), we define

σ(f)
def
= min

−1<u<−a

−F (u)
2f(u)2

.(1.6)

Theorem 1.1. Let f satisfy hypothesis (H0) and let α > 1√
σ(f)

. Then, for some

wave speed c = c0(f) > 0, there exists a travelling wave solution of (1.2) connecting
u = −1 to u = +1.

The analogous condition on γ for (1.1) reads 0 < γ < σ(f).

At the minimum in (1.6) the equality −F (u)
2f(u)2 = −1

4f ′(u) holds. We easily derive that

for our model nonlinearity fa we have σ(fa) >
1

8(1−a) for all 0 < a < 1. Although

this estimate is sharp for a→ 0, it is not sharp at all for larger values of a.
For general nonlinearities f(u) satisfying (H0), a lower bound on σ is

σ ≥ min
{ −1

4f ′(u)

∣∣∣ u ∈ (−1,−a) and f ′(u) < 0
}
.(1.7)

This estimate is often easier to compute than σ itself, but it is in general a rather
blunt estimate. Finally, we remark that the critical value σ is also encountered in
the study of homoclinic orbits for c = 0 (see [22, Theorem B]). This originates from
the similarity of that problem with the proof of Lemma 5.1, which is in fact the only
instance in our analysis where γ is required to be smaller than σ.
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We do not obtain much insight in the shape of the travelling wave from Theo-
rem 1.1. Because Theorem 1.1 does not give information about the wave speed, it is
not known whether the connected equilibrium points are approached monotonically or
in an oscillatory manner. The linearized equation around the equilibrium points leads
to the following characteristic equation for the eigenvalues: cλ = −λ4 + αλ+ f ′(±1).
A few conclusions can be drawn from analyzing this equation. It follows that for
α ≥√−4f ′(1) the travelling wave tends to +1 monotonically as x→ ∞. Besides, for

α ≤ √−4f ′(−1) the travelling wave tends to −1 in an oscillatory way as x → −∞.
For other cases the behavior in the limits depends on the value of c.

The travelling wave solution found in Theorem 1.1 connects the two maxima
of F . Theorem 1.1 can be extended to potentials F having many local extrema,
i.e., f(u) having many zeros. In that case we find a travelling wave connecting the
global maximum and the second largest local maximum of F . The other conditions
on F remain the same, but we also need that f(u)u < 0 for large values of |u|. The
definition of σ in this case is, setting maxu∈R F (u) = 0,

σ(f)
def
= inf

{
−F (u)
2f(u)2

∣∣∣ u ∈ R and f(u)f ′(u) > 0

}
.

The travelling wave solution found in Theorem 1.1 connects the two stable states.
The following theorems deal with travelling waves connecting the unstable state u =
−a to one of the stable states u = ±1. These theorems also apply to the parameter
regime where α ≥ 0, but for these parameter values we need an additional condition
on f :

(H1) f satisfies (H0) and lim
|u|→∞

f(u)

u
= −∞.

Theorem 1.2. Let α ∈ R and let f satisfy hypothesis (H0) if α < 0 and (H1)
if α ≥ 0.3 Then for every c > 0 there exists a travelling wave solution of (1.2)
connecting u = −a to u = −1.

The limiting behavior of the travelling waves can be determined from the char-
acteristic equations. For α ≥√−4f ′(−1) the solution tends to −1 monotonically for

x → ∞ regardless of the speed c. On the other hand, for α <
√−4f ′(−1) the limit

behavior is oscillatory for small c and monotonic for large c. The limit behavior near
u = −a as x → −∞ is more complicated. For small c the behavior is generically
oscillatory, while for large c the solutions generically tends to −a monotonically. We
do not know whether the behavior is indeed generic. However, for α >

√
12f ′(−a)

there is an intermediate range of c-values for which the travelling wave certainly tends
to −a monotonically.

For general potentials F this result applies to any pair of consecutive nonde-
generate extrema u− (a minimum) and u+ (a maximum), for which the interval(
F (u−), F (u+)

)
contains no critical values and either u− or u+ is the only criti-

cal point at level F (u±). The other conditions on F remain the same. The method
of proof of Theorem 1.2 requires only one of the two extrema −1 or −a to be nonde-
generate.

The next theorem deals with the case of travelling waves from −a to +1.
Theorem 1.3. Let α ∈ R and let f satisfy hypothesis (H0) if α < 0 and (H1) if

α ≥ 0. Then there exists a constant c∗(f) > 0, such that for every c > c∗ there exists
a travelling wave solution of (1.2) connecting u = −a to u = +1.

3The result also holds when F (−1) = F (+1).
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Theorem 1.3 extends to general potentials, giving travelling waves between any
pair of consecutive nondegenerate extrema u− (a minimum) and u+ (a maximum),
provided the local minimum ũ− on the other side of u+, if it exists, satisfies F (ũ−) >
F (u−). Of course, if the opposite inequality holds then one can exchange u− and ũ−.
If equality holds, i.e., F (ũ−) = F (u−), then one obtains for every c > c∗ a travelling
wave connecting either u− or ũ− to u+. Again, the other conditions on F remain the
same.

In certain cases one obtains information about the constant c∗ in Theorem 1.3.
In that case the situation is very much analogous to the second order equation.

Corollary 1.4. Let f satisfy hypothesis (H0) and let α > 1√
σ(f)

. Then there

exists a c∗(f) > 0, such that c∗ is the largest speed for which there exists a travelling
wave solution of (1.2) connecting u = −1 to u = +1. Moreover, for all c > c∗ there
exists a travelling wave solution of (1.2) connecting u = −a to u = +1.

Finally, we discuss nonlinearities with different behavior for u → ±∞. Assume
that f has two zeros and satisfies

(H2)




• F ′(u) = f(u) ∈ C1(R);
• f(u) = 0 ⇔ u ∈ {0, 1}, and f ′(0) �= 0, f ′(1) �= 0;
• for some D < 0 it holds that F (u) > F (1) for all u < D;
• F (u) → −∞ as u→ ∞;
• if α ≥ 0, then lim|u|→∞

f(u)
u = −∞.

A typical example is f(u) = u(1 − u). The following theorem is analogous to Theo-
rem 1.2.

Theorem 1.5. Let α ∈ R and let f satisfy hypothesis (H2). Then for every c > 0
there exists a travelling wave solution of (1.2) connecting u = 0 to u = 1.

This last theorem is just an example of how the methods in this paper can also
be applied when F (u) does not tend to −∞ as u → ±∞. The theorem holds under
weaker conditions, but we leave this to the interested reader.

Of the results in this paper, the proof of Theorem 1.1 is by far the most involved.
This is caused by the fact that connections between local maxima are nongeneric with
respect to the wave speed c. Hence, part of the problem is to determine the wave speed
c. The idea behind the proof is that one can detect a change in the phase portrait
(in R

4) of (1.3) as c goes from small values to large values. In particular, looking for
a travelling wave which connects −1 to +1, we investigate the global behavior of the
orbits in the stable manifold W s(1) of the equilibrium point u = +1.

The analysis for c > 0 large is based on a continuation argument deforming the
nonlinearity f(u) into a function which is linear on some interval containing u = 1.

For c > 0 small the analysis is much more involved. A crucial step is that for
c = 0 all orbits in W s(1) are unbounded. A first result in this direction was already
proved in [29]. There it was shown that, for γ not too large, the bounded stationary
solutions of (1.1) correspond exactly to the bounded stationary solutions of the second
order equation (γ = 0). This excludes the existence of bounded orbits in W s(1).
However, since the analysis comprises all bounded solutions, this result is limited to
a restricted parameter regime. In particular, the equilibrium points u = ±1 need to
be real saddles. In the present situation we want to exclude bounded solutions in the
stable manifold of u = 1, i.e., we can restrict the analysis to the energy level E = 0.
This allows us to cover a larger range of α-values; to be precise, α > 1√

σ(f)
. This

parameter regime includes cases where both equilibrium points u = ±1 are saddle-foci.
To give an example, for our model nonlinearity fa = (u+ a)(1− u2) with 0 < a < 1
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the result from [29] holds for α ≥ √
8(1 + a). The equilibrium points u = 1 and

u = −1 become saddle-foci for α <
√
8(1 + a) and α <

√
8(1− a), respectively. One

may compare this to the estimate σ(fa) >
1

8(1−a) . Notice that this estimate, although

sharp for a→ 0, is very blunt for a close to 1.
For the description of unbounded orbits we use a modified Poincaré transforma-

tion which we believe is of independent interest. We investigate the unbounded orbits,
and we will show that, in an appropriate compactification of the phase space, these
orbits must converge to a unique periodic orbit lying at infinity in the phase space.
The analysis at infinity largely relies on a global analysis of bounded and unbounded
solutions of the family of equations

u′′′′ + us = 0 with the convention that us = |u|s−1u, s ≥ 1.

This equation is invariant under the scaling u(t) �→ κu(κ
s−1
4 t) for all κ > 0. The

analysis of this equation is in particular used in the proof of finite time blow-up of
unbounded solutions, and, more importantly, to determine the behavior of unbounded
orbits for 0 ≤ c� 1.

From this analysis we conclude that the phase portrait for c positive but small
is different from the phase portrait for c large, which in turn is used to prove the
existence of a connection between −1 and +1 for some intermediate wave speed c0.

The organization of the paper is as follows. We start with some a priori bounds
in section 2. In section 3 we give the proof of Theorem 1.1, and in sections 4 to 6 the
details of this proof are filled in. In particular, in section 4 we perform an analysis of
the flow “at infinity.” Sections 5 and 6 deal with the analysis of the orbits inW s(1) for
small c and large c, respectively. Section 7 discusses the existence of travelling waves
connecting u = −a to u = ±1; Theorems 1.2 to 1.5 are proved here. We conclude
with some remarks on open problems in section 8.

2. A priori estimates. We establish a priori bounds on the wave speed c and
the profile u for any travelling wave connecting −1 and +1. The bound on the wave
speed c holds for all α ∈ R.

Lemma 2.1. Let f satisfy hypothesis (H0) and let α ∈ R. There exists a constant
c0, depending only on α, F (−1), F (−a), and the upper bound M for f ′(u), such
that when c > 0 is a speed for which there exists a travelling wave solution of (1.3)
connecting −1 to +1, then c ≤ c0.

Proof. Suppose u is a solution of (1.3) connecting −1 to +1. Integrating (1.5),
we have

−F (−1) = F (1)− F (−1) = c

∫ ∞

−∞
u′2.(2.1)

Multiplying (1.3) by u′′ and integrating (by parts) we obtain

∫ ∞

−∞
u′′′2 + α

∫ ∞

−∞
u′′2 =

∫ ∞

−∞
(f(u))′u′ =

∫ ∞

−∞
f ′(u)u′2 ≤M

∫ ∞

−∞
u′2 =M

−F (−1)

c
.

(2.2)

Let u1 ∈ (−a, 1) be defined by

F (u1) =
F (−a) + F (−1)

2
.
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There must be points t0, t1 ∈ R, t0 < t1, such that u(t0) = −a, u(t1) = u1, and
u(t) ∈ [−a, u1] for t ∈ [t0, t1]. The length of this interval is estimated from below by

(u1 + a)
2 =

(∫ t1

t0

u′(t)dt

)2

≤ (t1 − t0)2
∫ t1

t0

u′(t)2dt ≤ (t1 − t0)2−F (−1)

c
.

On the one hand, because the energy E increases along orbits, we have∫ t1

t0

(
−u′′′(t)u′(t) + 1

2
u′′(t)2 +

α

2
u′(t)2

)
dt

≥
∫ t1

t0

(
F (−1)− F (u(t)))dt

≥ (F (−1)− F (u1))(t1 − t0) = F (−1)− F (−a)
2

(t1 − t0)

≥ F (−1)− F (−a)
2

(u1 + a)

√
c

−F (−1)
.(2.3)

We now first restrict to the case that α > 0, and come back to the other case later
on. Using (2.1) and (2.2), we obtain the estimate

∫ t1

t0

(
−u′′′(t)u′(t) + 1

2
u′′(t)2 +

α

2
u′(t)2

)
dt

≤
∫ t1

t0

(
1

2

(
u′′′(t)2 + u′′(t)2

)
+

1 + α

2
u′(t)2

)
dt

≤
(
M max

{
1

α
, 1

}
+ 1 + α

)−F (−1)

2c
.(2.4)

By combining (2.3) and (2.4) we obtain

F (−1)− F (−a)
2

(u1 + a)

√
c

−F (−1)
≤
(
M max

{
1

α
, 1

}
+ 1 + α

)−F (−1)

2c
.

Since also

F (−1)− F (−a)
2

= F (u1)− F (−a) ≤ M
2
(u1 + a)

2,

it follows that

c ≤M 1
3

(
M max

{
1

α
, 1

}
+ 1 + α

) 2
3 −F (−1)

F (−1)− F (−a) .

This completes the proof of the lemma for the case that α > 0.
We now deal with the case α ≤ 0. The first part of estimate 2.4 is replaced by∫ t1

t0

(
−u′′′(t)u′(t) + 1

2
u′′(t)2 +

α

2
u′(t)2

)
dt

≤
∫ ∞

−∞

(
1

2
u′′′(t)2 +

1

2
u′′(t)2 +

1

2
u′(t)2

)
dt
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=

∫ ∞

−∞

(
u′′′(t)2 + αu′′(t)2 +

(
1

2
− α

)
u′′(t)2 − 1

2
u′′′(t)2 +

1

2
u′(t)2

)
dt

≤
∫ ∞

−∞

(
u′′′(t)2 + αu′′(t)2 +

4α2 − 4α+ 5

8
u′(t)2

)
dt,

where we have used that
∫∞
−∞ u

′′2 ≤ λ
∫∞
−∞ u

′′′2 + 1
4λ

∫∞
−∞ u

′2 for all λ > 0. The
remainder of the proof is the same as above.

The L∞-bound on the profile u holds for α > 0, or equivalently, for all γ > 0.
Lemma 2.2. Let f satisfy hypothesis (H0) and let α > 0. There exists a constant

C1, depending only on α, F (−1), F (−a), and the upper bound M for f ′(u), such that
when u is, for some c > 0, a travelling wave solution of (1.3) connecting −1 to +1,
then F (u) ≥ C1.

Proof. We may suppose that there is a connection u with range not contained in
the bounded interval {u ∈ R |F (u) ≥ F (−a)}, otherwise we already have our desired
uniform bound. Therefore, without loss of generality we may assume that

F (u(0)) = min
t∈R

F (u(t)) < F (−a).(2.5)

We consider the case where u(0) < −1 (the case u(0) > 1 is completely analogous).
Since

E(u, u′, u′′, u′′′)(t) ∈ (F (−1), F (1)
)
=
(
F (−1), 0

)
for all t ∈ R,(2.6)

we clearly have that

u(0) < −1, u′(0) = 0, 0 <
√

2
(
F (−1)− F (u(0))) < u′′(0) <√−2F (u(0)).

We now consider two cases: u′′′(0) ≥ 0 and u′′′(0) < 0. We start with the latter case.
Since u(t) tends to an equilibrium point as t → −∞, there exists a t1 < 0 such that
u′′′(t) < 0 for t1 < t < 0 and u′′′(t1) = 0, (1.5) implies that

−u′(t)u′′′(t)+F (u(t))−F (u(0)) = −1

2

(
u′′(t)2−u′′(0)2)−α

2
u′(t)2+c

∫ t

0

u′(s)2ds.(2.7)

By (2.5) we know that F (u(t1)) ≥ F (u(0)), so that

1

2

(
u′′(t1)2 − u′′(0)2

)
+
α

2
u′(t1)2 ≤ −c

∫ 0

t1

u′(s)2ds.

Since u′′(t) decreases on (t1, 0) and α is positive, this implies that c < 0, a contradic-
tion.

We now deal with the case that u′′′(0) ≥ 0. Since u′′′′(0) > 0 by the differential
equation, and since u(t) tends to an equilibrium point as t → ∞, there exists a
t2 > 0 such that u′′′(t) > 0 for 0 < t < t2 and u′′′(t2) = 0. By (2.5) we know that
F (u(t2)) ≥ F (u(0)). Since α > 0, it follows from (2.7) that

α

2
u′(t2)2 ≤ c

∫ t2

0

u′(s)2ds ≤ c
∫ ∞

−∞
u′(s)2ds ≤ −F (−1).(2.8)

Furthermore, from the fact that u′′(t) increases on (0, t2) we infer that

u′′(0)t ≤ u′(t) ≤ u′(t2) for t ∈ [0, t2].(2.9)
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On the one hand it follows from (2.8) and (2.9) that α
2 u

′(t2)2 ≤ c
∫ t2
0
u′(s)2ds ≤

cu′(t2)2t2, hence

t2 ≥ α

2c
.(2.10)

On the other hand it follows from (2.8) and (2.9) that −F (−1) ≥ c
∫ t2
0
u′(s)2ds ≥

1
3ct

3
2u

′′(0)2. Combining with (2.10) we thus obtain that

u′′(0)2 ≤ −24c2F (−1)

α3
.

This gives a bound on u′′(0)2, because it follows from Lemma 2.1 that the wave speed
c is bounded above by a constant c0

(
α,M,F (−a), F (−1)

)
.

Finally, by (2.5) and (2.6) we have

F (u(t)) ≥ F (u(0)) ≥ F (−1)− 1

2
u′′(0)2 for all t ∈ R.

This completes the proof of Lemma 2.2.

3. Proof of Theorem 1.1. In this section we give the proof of Theorem 1.1.
Some of the major steps, which require a quite involved analysis, are only stated as a
proposition in this section and are proved in subsequent sections.

We first use the a priori bounds of section 2 to reduce our analysis to nonlinearities
f(u) of the form f(u) = −u3+g(u), where g(u) has compact support. The advantage
of such nonlinearities is that they behave nicely as u → ±∞, and it will thus be
possible to analyze the flow near/at infinity.

Let f(u) satisfy hypothesis (H0). Lemma 2.2 implies that there exists a constant
C0 such that any travelling wave solution u connecting −1 to +1 satisfies ‖u‖∞ < C0.
Define the cut-off function φ ∈ C∞

0 with 0 ≤ φ ≤ 1, φ(y) = 1 for |y| ≤ C0, and
φ(y) = 0 for |y| > C0 + 1. We now consider the modified nonlinearity f̃(u) =
φ(u)f(u) − u3(1 − φ(u)). Lemma 2.2 ensures that u is a travelling wave solution for
nonlinearity f(u) if and only if u is a travelling wave solution for nonlinearity f̃(u).
Besides, σ(f) = σ(f̃). This shows that we may restrict our analysis to nonlinearities
f(u) such that

f(u)=−u3+g(u) with g compactly supported, and f satisfies hypothesis (H0).(3.1)

The purpose of the reduction to nonlinearities f which satisfy (3.1) is that it makes
it possible to analyze the orbits which are unbounded. An important property of
unbounded solutions, which we will need in the following, is formulated in the next
lemma.

Lemma 3.1. Let f satisfy hypothesis (3.1) and let α, c ∈ R. Then any unbounded
solution of (1.3) blows up in finite time.

This lemma is proved in section 4.5, Theorem 4.8(b), and is based on the analysis
of the flow near/at infinity.

As already discussed in the introduction, denote the wave speed by c. For finding
a travelling wave we set u(x, t) = U(x + ct), which reduces (1.1) to the ordinary
differential equation (1.3). Written as a four-dimensional system, (1.3) becomes

u′ = v; v′ = w; w′ = z; z′ = αw − cv + f(u).(3.2)
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F (u)

u

�1 �a 1

E0

Fig. 3.1. The potential F (u) and the energy level E0 separating u = −a from u = ±1.

The equilibria of this system are (u, v, w, z) = (−1, 0, 0, 0), (u, v, w, z) = (−a, 0, 0, 0),
and (u, v, w, z) = (1, 0, 0, 0) (for short: u = −1, u = −a, and u = 1). To prove
Theorem 1.1 we look for a c �= 0 and a corresponding heteroclinic orbit of (3.2)
connecting u = −1 to u = 1. Linearizing around u = ±1 we find that, irrespective
of c, both u = −1 and u = 1 have two-dimensional stable and unstable manifolds,
denoted by W s(±1) and Wu(±1). Generically W s(1) and Wu(−1) will not intersect
but varying c we expect to pick up a nonempty intersection.

We recall that the energy is defined as

E(u, v, w, z) def
= −vz + 1

2
w2 +

α

2
v2 + F (u),

where the potential F (u) =
∫ u

1
f(s)ds is depicted in Figure 3.1. Since we are looking

for a solution of (1.3) which connects u = −1 to u = 1, we see from (1.5) that we can
restrict our attention to c > 0. The energy E thus increases along orbits.

To separate the equilibrium point u = −a from u = ±1, we choose an energy
level E0 such that (see also Figure 3.1)

F (−a) < E0 < F (−1) < 0,

and we define the set

K
def
= {(u, v, w, z) ∈ R

4 | E(u, v, w, z) ≥ E0}.(3.3)

This allows us to formulate the following lemma.
Lemma 3.2. Let f satisfy hypothesis (3.1) and let α ∈ R. If c > 0 is such that

W s(1) ∩Wu(−1) = ∅, then every orbit in W s(1) enters K through its boundary δK
and Γ̂ = W s(1) ∩ δK is a simple closed curve. The set of positive c for which this
property holds is open and Γ̂ varies continuously with c.

Proof. In view of (1.5) the intersection of W s(1) and δK must be transversal.
Assume thatW s(1)∩Wu(−1) = ∅. We need to show that every orbit inW s(1) can be
traced back to δK, for then there is bijection betweenW s(1)∩δK and a smooth simple
closed curve in W s

loc(1) winding around u = 1 (in W s
loc(1)). Arguing by contradiction

we assume that there is an orbit in W s(1) which is completely contained in K. Let
u(t) be a solution representing this orbit. Then u(t) exists on some maximal time
interval (tmin,∞). Since u(t) has energy larger than E0, it follows from (1.5) and
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Fig. 3.2. The projection (in grey) of δK onto the (u, z)-plane. The closed curves which form
the boundary of the grey area are given by (3.6). The other two curves depict Γ (i.e., the projection
of W s(1) ∩ δK onto the (u, z)-plane) for small c and large c.

(3.3) that

∫ ∞

tmin

u′2 ≤ F (1)− E0

c
=

−E0

c
,(3.4)

so that u(t) remains bounded on (tmin,∞) if tmin is finite. Thus tmin = −∞ and,
by Lemma 3.1, u(t) is bounded. It follows from standard arguments that the orbit
converges to a limit as t → −∞. Because u = −1 is the only equilibrium in K with
energy less than the energy of u = 1, we infer that u(t) ∈ Wu(−1). This contradicts
the assumption that W s(1) ∩Wu(−1) = ∅. The second statement is an immediate
consequence of the (topological) transversality of W s(1) ∩ δK.

It now suffices to show that there is a c > 0 for which the assumption of Lemma 3.2
fails. Again arguing by contradiction, we assume that Lemma 3.2 applies to all c > 0
and search for a topological obstruction. This requires a description of δK that allows
us to form a global picture of this set. To this end we write δK as (with α > 0)

δK =

{
(u, v, w, z) ∈ R

4
∣∣∣ α
2

(
v − 1

α
z

)2

+
1

2
w2 = E0 − F (u) + 1

2α
z2

}
.(3.5)

In Figure 3.2 we have plotted the projection of δK onto the (u, z)-plane. For (u, z)
lying inside one of the two closed curves (see Figure 3.2) defined by

E0 − F (u) + 1

2α
z2 = 0,(3.6)

every (u, v, w, z) belongs to K, hence there are no points in δK with (u, z) lying inside
these two closed curves. For (u, z) lying outside the two closed curves we have that

(u, v, w, z) is in K if (v, w) is outside the ellipse defined by α
2

(
v − 1

αz
)2

+ 1
2w

2 = 0.
We conclude that the projection of δK onto the (u, z)-plane is the region outside the
two closed curves defined by (3.6); see Figure 3.2.
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The projection of δK onto the (u, z)-plane maps Γ̂ = W s(1) ∩ δK, which by
assumption exists for all c > 0, to a closed but not necessarily simple curve Γ in the
(u, z)-plane for which the winding numbers4 n(Γ,−1) and n(Γ, 1) around (u, z) =
(−1, 0) and (u, z) = (1, 0), respectively, are well defined and independent of c (by
continuity). However, the following proposition establishes the configuration depicted
in Figure 3.2, contradicting the assumption that W s(1) ∩Wu(−1) = ∅ for all c > 0,
and thereby completing the proof of Theorem 1.1.

Proposition 3.3. Let f satisfy hypothesis (3.1).
(a) Let α > 1√

σ(f)
. Then there exists a c∗ > 0 such that n(Γ,−1) = 1 and

n(Γ, 1) = 1 for all 0 < c < c∗.
(b) Let α ∈ R. Then there exists a c∗ > 0 such that n(Γ,−1) = 0 and n(Γ, 1) = 1

for all c > c∗.
Part (a) of Proposition 3.3 will be proved in Theorem 5.3 in section 5, while part

(b) is proved in section 6, Theorem 6.1.

4. Classification of unbounded solutions. In this section we investigate the
behavior of unbounded solutions, or in other words, we analyze the flow at infinity.
This analysis is relevant both for the proof of finite time blow-up of unbounded so-
lutions, and to determine the behavior of unbounded orbits for 0 ≤ c � 1. We have
argued in section 3 that we may restrict our attention to nonlinearities of the form
f(u) = −u3 + g(u), where g(u) has compact support. It turns out that the flow for
large u is governed by the reduced equation u′′′′ + u3 = 0, i.e., only the highest order
derivative and the highest order term in the nonlinearity play a role at infinity. In
the following sections we investigate the reduced equation, and in section 4.5 we come
back to the full equation.

4.1. A modified Poincaré transformation. We analyze the reduced equation

u′′′′ + us = 0 with the convention that us = |u|s−1u, s ≥ 1,(4.1)

and we use this notational convention throughout. Written as a system, (4.1) reads

x′1 = x2; x′2 = x3; x′3 = x4; x′4 = −xs1,(4.2)

where x1, x2, x3, and x4 correspond to u, u′, u′′, and u′′′. Note that for this system
the energy (or Hamiltonian)

H(x1, x2, x3, x4)
def
= −x2x4 +

x2
3

2
− |x1|s+1

s+ 1
(4.3)

is a conserved quantity.
Introduce five new dependent variables X1, X2, X3, X4, and X5 > 0 by setting

xi =
Xi

Xai
5

(i = 1, 2, 3, 4),(4.4)

where the exponents ai are to be chosen shortly. Unbounded orbits of (4.2) will
correspond to orbits in the new variables with X5 approaching zero. By substituting

4We may choose the orientation of the simple closed curve in W s
loc(1) winding around u = 1 in

such a way that its projection onto the (u, z)-plane has winding number equal to +1.
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(4.4) in (4.2) we obtain the equations

X5X
′
1 − a1X1X

′
5 = X2X

1+a1−a2
5 ;(4.5a)

X5X
′
2 − a2X2X

′
5 = X3X

1+a2−a3
5 ;(4.5b)

X5X
′
3 − a3X3X

′
5 = X4X

1+a3−a4
5 ;(4.5c)

X5X
′
4 − a4X4X

′
5 = −Xs

1X
1+a4−sa1
5 ,(4.5d)

with a fifth equation pending. We choose the exponents in such a way that all the
exponents in the right-hand sides of (4.5) are the same, i.e.,

b
def
= 1 + a1 − a2 = 1 + a2 − a3 = 1 + a3 − a4 = 1 + a4 − sa1.

Solving for a1, a2, a3, a4, and b we find

a1 = 4λ; a2 = (s+ 3)λ; a3 = (2s+ 2)λ; a4 = (3s+ 1)λ; b = 1− (s− 1)λ,(4.6)

where λ is still free and, for the moment, positive. We close system (4.5) by imposing
as a fifth equation

Xs
1X

′
1 +X2X

′
2 +X3X

′
3 +X4X

′
4 = 0.(4.7)

If we multiply (4.5a)–(4.5d) by Xs
1 , X2, X3, and X4 respectively, and add up the

resulting equations, we obtain

PX ′
5 = − 1

λ
QXb

5.(4.8)

Here we have set

P
def
= 4|X1|s+1 + (3 + s)X2

2 + (2 + 2s)X2
3 + (1 + 3s)X2

4 ,(4.9)

which is nonnegative, and

Q
def
= Xs

1(X2 −X4) +X3(X2 +X4).

Introducing a new independent variable, we write

Ẋ5 = PX
(s−1)λ
5 X ′

5 = − 1

λ
QX5,(4.10)

where the dot denotes derivation with respect to this new independent variable from
which the old one may be recovered by integration. Thus, combining (4.10) and (4.5),
we arrive at the system

Ẋ1 = X2P − 4X1Q ;(4.11a)

Ẋ2 = X3P − (3 + s)X2Q ;(4.11b)

Ẋ3 = X4P − (2 + 2s)X3Q ;(4.11c)

Ẋ4 = −Xs
1P − (1 + 3s)X4Q .(4.11d)

Note that X5 has been decoupled from the equations. By construction the system
(4.11) leaves the surfaces

Σ
def
=

{
(X1, X2, X3, X4)

∣∣∣ |X1|s+1

s+ 1
+
X2

2

2
+
X2

3

2
+
X2

4

2
= C0

}
∼= S3(4.12)
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invariant for all C0 > 0. The free parameter λ appears only in (4.10) and may be
discarded.

The Poincaré transformation (4.4) is used here to blow up the flow near “infinity.”
As will be explained in section 4.4 this is equivalent to blowing up the flow near the
equilibrium point u = 0. This blowing-up technique is frequently used in the study of
flows in the neighborhood of nonhyperbolic equilibrium points (see, e.g., [10, 11, 21]).
The transformation defined by (4.4) and (4.12) is a variant of the standard Poincaré
transformation, which has a1 = a2 = a3 = a4 = 1 and imposes as fifth equation that
X2

1 +X2
2 +X2

3 +X2
4 +X2

5 be constant, so that the transformed problem is situated
on the Poincaré sphere. The modification presented above, in particular the choice
of exponents, is needed to obtain a nontrivial vector field at infinity from which we
may derive the qualitative properties of the flow of the system (4.2) near infinity.
The values of the exponents are derived from the invariance of (4.1) under the scaling

u(t) �→ κu(κ
s−1
4 t).

In (4.7) we have chosen not to include a term X5X
′
5 and to modify the exponent of

X1. This simplifies the new vector field and allows the decoupling of the Ẋ5-equation.
Note that instead of a Poincaré sphere we now have a Poincaré cylinder Π, namely,
the topological product of the deformed sphere Σ and the positive X5-axis:

Π
def
= {(X1, X2, X3, X4, X5) | (X1, X2, X3, X4) ∈ Σ, X5 ≥ 0} ∼= S3 × [o,∞).

The flow of (4.2) is completely determined by the flow of (4.11) on Σ. Therefore, we
have a reduction from dimension 4 for (4.2) to dimension 3 for (4.11). The role of
X5 = 0 and X5 = ∞ can be reversed by changing from positive to negative λ at the
expense of a minus sign in (4.10).

Remark 4.1. The choice of C0 > 0 in (4.12) is arbitrary, because the flows on
all spheres Σ are C1-conjugated (modulo the introduction of the new independent
variable in (4.10)). This is in fact the very idea of Poincaré transformations, namely,
that we divide out the invariance of (4.1) and focus on the resulting flow. From
a more abstract point of view one can construct a flow on the quotient manifold(
R

4\{0})/R+ ∼= S3 via the scaling invariance u(t) �→ κu(κ
s−1
4 t) (R+-action); see [20]

for more details. Our construction involves explicit choices of coordinates, for which
the flows, by general theory, are all related by conjugation.

To be explicit, let Xi and Yi be two sets of Poincaré coordinates, i.e.,

xi =
Xi

Xai
5

=
Yi
Y ai

5

for i = 1, 2, 3, 4,

with constraints

|X1|s+1

s+ 1
+
X2

2

2
+
X2

3

2
+
X2

4

2
= C0,(4.13a)

|Y1|s+1

s+ 1
+
Y 2

2

2
+
Y 2

3

2
+
Y 2

4

2
= C1.(4.13b)

When we define µ = X5

Y5
, then the two sets of coordinates are related by

X5 = µY5 and Xi = µ
aiYi for i = 1, 2, 3, 4.(4.14)

Substituting this into (4.13a) we obtain

G(Y1, Y2, Y3, Y4, µ) ≡ µ(s+1)a1
|Y1|s+1

s+ 1
+ µ2a2

Y 2
2

2
+ µ2a3

Y 2
3

2
+ µ2a4

Y 2
4

2
= C0.
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Since ∂G
∂µ > 0 for all Yi that obey (4.13b), it follows from the implicit function theorem

that µ(Y1, Y2, Y3, Y4) is a differentiable function. It is now easily seen from (4.14) that
Xi and Yi are related by a C1-conjugacy. Therefore, we may choose the constant C0

according to our liking to obtain a description of the flow that is most suitable to our
needs.

4.2. The flow at infinity. For the analysis of (4.11) we first observe the follow-
ing.

Lemma 4.2. System (4.11) has no stationary points on Σ for any C0 > 0.
Proof. Since X1 = X2 = X3 = X4 = 0 is excluded we have that P , defined by

(4.9), is positive. Equating the right-hand sides of (4.11) to zero and considering the
resulting equations as linear equations in P and Q, it follows that we can only have
solutions if every determinant of every pair of two equations vanishes. This would
give, for instance, that

0 ≤ (2 + 2s)X2
3 = (3 + s)X2X4;

0 ≤ 4|X1|s+1 = −(1 + 3s)X2X4.

We conclude that X2X4 = 0 and with any of the Xi = 0 the others thus follow
immediately.

We next use the conserved quantity to obtain a further reduction from dimension
3 to dimension 2 for the limit sets of orbits of (4.5) which approach infinity (X5 → 0)
or the origin (X5 → ∞). In the new variables the Hamiltonian is

H =

(
−X2X4 +

X2
3

2
− |X1|s+1

s+ 1

)
X

−4λ(s+1)
5 .(4.15)

Denote the first factor of H by H0:

H0
def
= −X2X4 +

X2
3

2
− |X1|s+1

s+ 1
.(4.16)

Since H is a conserved quantity, we conclude that for λ > 0

X5 → 0 ⇔ H0 → 0.(4.17)

For the classification of unbounded orbits we have to analyze the flow restricted to
the invariant set given by

T
def
=
{
(X1, X2, X3, X4) ∈ Σ

∣∣ H0 = 0
}

=

{
(X1, X2, X3, X4)

∣∣∣ |X1|s+1

s+ 1
+
X2

2

2
+
X2

3

2
+
X2

4

2
= C0,

X2
3

2
= X2X4 +

|X1|s+1

s+ 1

}
.

This set is a topological torus as can be seen by setting

X1 = ξ1; X2 =
ξ2 + ξ4√

2
; X3 = ξ3; X4 =

ξ2 − ξ4√
2
,(4.18)

so that, in terms of the ξ-variables,

T =

{
(ξ1, ξ2, ξ3, ξ4)

∣∣∣ 2

s+ 1
|ξ1|s+1 + ξ22 = ξ23 + ξ24 = C0

}
∼= S1 × S1.(4.19)
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Clearly we have that T is the product of two topological circles, one in the (ξ1, ξ2)-
plane, the other in the (ξ3, ξ4)-plane.

Lemma 4.3. Let s ≥ 1 and fix the constant C0 > 0. Then there exist precisely
two periodic orbits Λ− and Λ+ of (4.11) on the torus T .

Proof. The proof is based on the observation that the coefficient Q in (4.10),
which after transforming by (4.18) reads

Q =
√
2(ξs1ξ4 + ξ2ξ3),(4.20)

plays a double role. Obviously it determines which parts of infinity attract solutions
toward X5 = 0, in forward and in backward time. We begin by showing that Q can
also be seen as minus the divergence of the vector field restricted to the invariant
torus T . From (4.11) and (4.18) we derive

ξ̇1 =
ξ2 + ξ4√

2
P − 4ξ1Q ;(4.21a)

ξ̇2 =
ξ3 − ξs1√

2
P − ((2 + 2s)ξ2 + (1− s)ξ4)Q ;(4.21b)

ξ̇3 =
ξ2 − ξ4√

2
P − (2 + 2s)ξ3Q ;(4.21c)

ξ̇4 =
ξ3 + ξ

s
1√

2
P − ((1− s)ξ2 + (2 + 2s)ξ4)Q .(4.21d)

We parametrize T by “polar coordinates”

ξ1 = f1(φ); ξ2 = g1(φ); ξ3 = f2(θ); ξ4 = g2(θ),(4.22)

satisfying

f ′1 = −g1; g′1 = fs1 ; f ′2 = −g2; g′2 = f2.(4.23)

Note that when C0 = 1 and s = 1 we just have

ξ1 = cosφ; ξ2 = sinφ; ξ3 = cos θ; ξ4 = sin θ.

From (4.21a), (4.21c), (4.22), and (4.23) we derive that on T the flow is given by

φ̇ =
P√
2

(
−1− g2

g1

)
+ 4Q

f1
g1

≡ w1(φ, θ);(4.24a)

θ̇ =
P√
2

(
1− g1

g2

)
+ 2(s+ 1)Q

f2
g2

≡ w2(φ, θ),(4.24b)

where in terms of f1, g1, f2, g2,

P = 4(s+ 1)C0 + 2(1− s)g1g2, and Q =
√
2(fs1g2 + f2g1).

The functions w1 and w2, defined in (4.24), appear to have singularities, but us-
ing (4.19) they can be written as

w1(φ, θ) =
√
2
[−2(s+ 1)C0 − (s+ 3)g1g2 + (s− 1)g22 + 4f1f2

]
,

w2(φ, θ) =
√
2
[
2(s+ 1)C0 − (3s+ 1)g1g2 + (s− 1)g21 + 2(s+ 1)fs1f2

]
.
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Fig. 4.1. A fundamental domain of the torus, in which T−, T+, and T0 are indicated (sche-
matically).

Taking the divergence of the vector field w we obtain (using (4.23),

∇ · w =
∂w1

∂φ
+
∂w2

∂θ
=

√
2(−5− 3s)(fs1g2 + f2g1) = −(3s+ 5)Q.

Next, we split T into

T+ = {(X1, X2, X3, X4) |Q > 0} and T− = {(X1, X2, X3, X4) |Q < 0}.

These two sets share the boundary

T0 = {(X1, X2, X3, X4) |Q = 0},

which, in view of (4.19) and (4.20), consists of two topological circles, which both wind
once around the two homotopically distinct simple loops on the torus (see Figure 4.1).
We will show in Lemma 4.4 that, when C0 is chosen properly, an orbit can only pass
through T0 from T− to T+. It then follows from the negativity of ∇ · w in T+ and
the winding properties of T0 on T that T+ contains precisely one periodic orbit. The
same statement holds for T− with respect to the backward flow on T .

To be precise, we deduce from (4.22), (4.23), and (4.19) that we may choose
ξ3 = f2(θ) =

√
C0 cos θ. Define the set S

def
= {(θ, φ) ∈ T | θ = π

2 }, and it follows that

θ̇
∣∣∣
S
=

√
2
[
2(s+ 1)C0 − (3s+ 1)

√
C0g1 + (s− 1)g21

]
.

Since |g1| ≤
√
C0, it is easy to check that θ̇

∣∣
S

≥ 0, and equality holds only when

g1 =
√
C0. By continuity arguments the orbit through this point crosses S also in

the direction of increasing θ. Thus S is a global section for the flow on T . Moreover,
the return map is well defined, since there is no point in T for which the forward
orbit is contained in T \ S. Indeed, such a forward orbit would either be contained
in T− or eventually be in T+, because T+ is positively invariant and orbits can only
pass through T0 from T− to T+. In the absence of equilibrium points (Lemma 4.2) its
ω-limit set would be a periodic orbit. However, there would have to be an equilibrium
point inside this periodic orbit, contradicting Lemma 4.2. Hence the return map is
well defined. The intersection S ∩ (T+ ∪ T0) consists of the line segment {(θ, φ) ∈
T | θ = π

2 , f1(φ) ≥ 0}. The return map maps this line segment into itself, which
implies the existence of a periodic orbit in T+. Similarly, there exists a periodic orbit
in T−. The return map is contracting in T+ and expanding in T−, since the divergence
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of the vector field is negative in T+ and positive in T−. This proves the uniqueness
of the two period orbits and shows that all other orbits on the torus T have Λ− as
α-limit set and Λ+ as ω-limit set.

We remark that the same conclusion can be reached by combining the Poincaré–
Bendixson theorem for flows on the torus and the Morse theory for Morse–Smale
flows.

Finally, note that, although the preceding proof needs C0 to have a particular
value (see Lemma 4.4 and (4.27)), the statement in Lemma 4.3 is true for any choice
of C0 > 0 (see Remark 4.1).

Another observation is that the linear case s = 1 may be treated by direct com-
putation, i.e., by transforming the general solution of the then linear equation (4.1)
to the X-variables.

We still have to show that an orbit can only pass through T0 from T− to T+.
Lemma 4.4. Let s > 1. There exists a C0 > 0 such that orbits on T can only

pass through T0 in the direction from T− to T+.
Proof. We deduce from (4.20) and (4.21) that

Q̇
∣∣∣
Q=0

= P
(
|ξ1|2s + ξ22 + ξ23 + ξ24 + (s|ξ1|s−1 − 1)(ξ2 + ξ4)ξ4

)
.(4.25)

Notice that for s = 1, P is positive on T (see (4.9)), thus Q̇
∣∣
Q=0

> 0 on T . For s > 1

we define R as the second factor in the right-hand side of (4.25) and simplify it using
the expression (4.19) for T :

R
def
= |ξ1|2s + ξ22 + ξ23 + ξ24 + (s|ξ1|s−1 − 1)(ξ2 + ξ4)ξ4

= 2C0 + |ξ1|2s − 2

s+ 1
|ξ1|s+1 − (1− s|ξ1|s−1)(ξ2 + ξ4)ξ4.(4.26)

From (4.19) we infer that

(ξ2+ξ4)ξ4 ≤
((
C0 − 2

s+ 1
|ξ1|s+1

)1
2

+C
1
2
0

)
C

1
2
0 = C0

(
1+

(
1− 2

C0(s+ 1)
|ξ1|s+1

)1
2

)
.

Fix

C0 =
2

s+ 1

(1
s

) s+1
s−1

,(4.27)

and set

|ξ1| = x
(1
s

) 1
s−1

, where 0 ≤ x ≤ 1.

It follows that

R ≥ 2

s+ 1

(1
s

) s+1
s−1
(
2 +

s+ 1

2s
x2s − xs+1 − (1− xs−1)(1 + (1− xs+1)

1
2 )
)

=
2

s+ 1

(1
s

) s+1
s−1
(
1 +

s+ 1

2s
x2s − xs+1 + xs−1 − (1− xs−1)(1− xs+1)

1
2

)

=
2

s+ 1

(1
s

) s+1
s−1
(
(1− xs+1)

1
2

(
(1− xs+1)

1
2 − (1− xs−1)

1
2

)
+ xs−1 +

s+ 1

2
x2s
)
.

Since 0 ≤ x ≤ 1 we see that R > 0 unless x = 0. Looking at (4.26) we infer that
R can only be zero if ξ1 = ξ3 = 0 and ξ2 = ξ4 = ±√

C0, or, in terms of the Xi, if
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X1 = X3 = X4 = 0. By continuity arguments it follows that also in these two points
the orbits go from T− to T+. Thus, with the particular choice of C0 given by (4.27)
we have indeed that T+ is positively invariant and T− is negatively invariant.

Having proven the existence of precisely two periodic orbits, Λ− and Λ+, on the
torus T , we analyze some of their properties.

Lemma 4.5. The three nontrivial Floquet multipliers of Λ+ are contained in the
interval (0, 1), and the three nontrivial Floquet multipliers of Λ− are contained in the
interval (1,∞).

Proof. Restricted to T the nontrivial Floquet multiplier of Λ+ equals (see, e.g., [26,
p. 198])

exp

(∮
Λ+

∇ · w
)

= exp

(∮
Λ+

−(3s+ 5)Q

)
.

Since Q is uniformly positive on Λ+, this Floquet multiplier is in (0, 1). Close to
the periodic orbit Λ+ we choose φ, θ, X5, and H0 as coordinates on the Poincaré

cylinder Π, where H0 given by (4.16). SinceH = H0X
−4λ(s+1)
5 is a conserved quantity

on Π, it follows from (4.10) that

Ḣ0 = −4(s+ 1)QH0.

Together with (4.10) this implies that the other Floquet multipliers are

exp

(∮
Λ+

−4(s+ 1)Q

)
and exp

(∮
Λ+

− 1

λ
Q

)
,

which are in (0, 1) as before. Thus Λ+ is exponentially stable. The statement for Λ−
is obtained by time reversal.

Lemma 4.6. Every orbit (other than Λ±) on the sphere Σ has Λ− as α-limit set
and Λ+ as ω-limit set.

Proof. We have already dealt with the flow on the torus T in Lemma 4.3. Orbits of
the flow on the complement Σ\T of the torus T on the sphere Σ correspond to solutions
with nonzero Hamiltonian H. Since X5 does not appear in (4.10), the motion on Σ
is independent of X5. Let X5 �= 0, then the dynamics of X5 are governed by (4.11),
and the motion takes place in the part of the Poincaré cylinder Π that corresponds
to the finite part of phase space in the x-variables. In other words, orbits of the flow
on the set Σ \ T correspond to solutions of (4.2) with nonzero Hamiltonian.

Since H = H0X
−4λ(s+1)
5 and H0 is bounded on Σ (because Σ is compact), it

follows that for such orbits X5 remains bounded, i.e., in x-variables the solution stays
away from the origin. Thus orbits in Σ \T are bounded in the X-variables and hence
have nonempty invariant α- and ω-limit sets. We have to show that these limit sets
can only be the two periodic orbits Λ− and Λ+ provided by Lemma 4.3. To this end
it suffices to show that all solutions of (4.1) with H �= 0 are unbounded in forward
and backward time, i.e., X5 → 0 along a sequence of points in forward and backward
time.

Postponing the proof of the unboundedness of solutions with H �= 0, we first show
how unboundedness in backward and forward time implies that Λ− and Λ+ are the
α- and ω-limit sets. By (4.17) X5 → 0 implies that also H0 → 0. An unbounded orbit
thus comes arbitrary close to the torus T . We choose an open tubular neighborhood
Λε
− of Λ− in T , such that Q < 0 in Λε

−. Clearly all orbits starting in T \ Λε
− tend to
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Λ+ in forward time. Note that T0 ∪ T+ ⊂ T \ Λε
−. By compactness of T and since

Λ+ is asymptotically stable (see Lemma 4.5), there exists an open neighborhood T ε

of T \ Λε
− in Π such that all orbits starting in T ε tend to Λ+ in forward time. Since

an orbit which comes close to X5 = 0 (and thus close to T ) can only do so with
nonnegative Q, it enters T ε and hence tends to Λ+. The statement for Λ− follows by
time reversal.

We still have to prove that any solution of (4.1) with nonzero Hamiltonian is
unbounded in forward and backward time. We recall that solutions with H �= 0 stay
away from the origin. If an orbit would be bounded in backward or forward time, then
its (nonempty) α- or ω-limit set would consist of bounded orbits, i.e., orbits which are
bounded for all time. However, this is not possible, because it has been proved in [19]
that (4.1) admits no bounded solutions except u ≡ 0. Here we present a different
proof of the fact that (4.1) admits no bounded solutions except u ≡ 0, because we
need to extend this result to more general situations (see Remark 4.7).

Assume, by contradiction, that u �≡ 0 is a bounded solution of (4.1). First observe
that if u tends to a limit as t→ ±∞, then this limit can only be 0. It follows that u
attains at least one positive maximum or one negative minimum. Switching from u
to −u if necessary, we may suppose that u attains a positive maximum at t0:

u(t0) > 0, u′(t0) = 0, u′′(t0) ≤ 0.

Changing from t to −t if necessary, we may assume that u′′′(t0) ≤ 0 and apply an
oscillation argument from [29] which we repeat here for the sake of completeness.
There exists a t∗ > t0 such that u′′′(t) < 0 for t0 < t < t

∗ and u′′′(t∗) = 0. Using the
fact that

H = −u′u′′′ + 1

2
u′′2 − 1

s+ 1
|u|s+1

is constant, it follows that u(t∗) < −u(t0) and that the next minimum must occur at
t1 > t

∗ with u(t1) < u(t
∗) < −u(t0) and both u′′(t1) and u′′′(t1) positive. Repeating

this argument we obtain a sequence t1 < t2 < t3 < . . ., in which u(t) has nondegen-
erate extrema with |u(t1)| < |u(t2)| < |u(t3)| < . . .. By assumption these extrema
remain bounded, say limi→∞ |u(ti)| = a ∈ R

+, and the derivatives are bounded as
well. A compactness argument now shows that there must be a solution ũ of (4.2) in
the ω-limit set of u with

ũ(t0) = a, ũ′(t0) = 0, ũ′′(t0) < 0, and ũ′′′(t0) ≤ 0 at some t0 ∈ R,

and such that |ũ(t)| ≤ a for all t ∈ R. However, when we apply the above argument
to ũ we obtain that ũ < −a at the first minimum to the right of t0, a contradiction.
This completes the proof of Lemma 4.6.

Remark 4.7. The oscillation argument above will be applied several times in this
paper to differential equations that differ from the present one. It holds that any
solution of (1.3) with c = 0 and β ≥ 0 which does not have its range contained in

{u ∈ R |F (u) ≥ F (−a)}

oscillates toward infinity either in forward or in backward time in exactly the way
described above (the additional second order term does not cause any difficulties).
For more details we refer to [29].
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4.3. The reduced system in the linear limit. We have shown in the previous
section that for any s ≥ 1 the flow of (4.1) is basically governed by two periodic orbits
at infinity. For the linear equation (s = 1) this was already observed (in a broader
setting) by Palis [21]. The analysis thus shows that the behavior for all s > 1 is
largely analogous to the linear equation. In this section we make some observations
about the limit s ↓ 1.

Let us rewrite this system as

Ẋ = V (X; s), X = (X1, X2, X3, X4).(4.28)

Then the vector field V (·, s) is continuously differentiable for every s ≥ 1 and the first
order partial derivatives are bounded on compact sets, uniformly in s ≥ 1. We do not
have that V (·, s) → V (·, 1) in C1

loc because of the term Xs
1 appearing in V , but we do

have that V (·, s) → V (·, 1) uniformly on compact sets. Therefore the orbits of (4.28)
with s > 1, which are bounded uniformly in s in view of (4.12), converge to orbits
of (4.28) with s = 1 as s→ 1. More precisely, the solution map

(τ, ξ, s) → X(τ ; ξ, s),

where X(τ ; ξ, s) is the solution X(τ) of (4.28) with X(0) = ξ, is continuous on R ×
R

4× [1,∞). In particular, this implies that the two periodic orbits Λ− and Λ+ depend
continuously on s for s ∈ [1,∞).

In the limit case s = 1 the two periodic orbits on

T = {(ξ1, ξ2, ξ3, ξ4)| ξ21 + ξ22 = ξ23 + ξ24 = C0}
are given by

ξ1ξ3 − ξ2ξ4 = 0,(4.29)

or in terms of (4.22), by φ + θ = ±π
2 . This can be seen from a second conservation

law that exists in the linear case: multiplying u′′′′ + u = 0 by u′′′ we have that
1
2u

′′′2 + uu′′ − 1
2u

′2 is constant. In particular, after transforming to the X-variables,

1

2
X2

4 +X1X3 − 1

2
X2

2 = 0

is invariant, whence (4.29), which defines two circles on the torus T .

4.4. Small solutions. We observed in section 4.1 that the role of X5 = 0 and
X5 = ∞ may be reversed. This is a direct consequence of the scaling invariance
of (4.1). Thus we may also use (4.4) for the analysis of small solutions to (4.1).
The situation is depicted schematically in Figure 4.2. We simply apply (4.4) with
a negative λ so that X5 → 0 corresponds to u → 0. This changes only the sign in
(4.10) for X5 and means that the orbit Λ+ now lies in the part of X5 = 0 which repels
solutions with X5 > 0. Hence the stable manifold of Λ+ is contained in Π∩{X5 = 0}.
The unstable manifold of Λ+ is given by the direct product Λ+ × {X5 |X5 > 0} and
has dimension 2. In the original variables it is the unstable manifold of u = 0 if s = 1
and the center-unstable manifold if s > 1. Likewise, the stable manifold of Λ− is
Λ− × {X5 |X5 > 0}, i.e., the direct product of Λ− and the positive X5-axis. As we
have seen in section 4.3, the limit s→ 1 is well behaved in the X-variables.

We will use this analysis of the behavior near the equilibrium point u = 0 in
section 5 to perform a continuous deformation of the stable manifold for s = 1 to
the center-stable manifold for s > 1. We remark that, based on the similarity of the
linear and nonlinear problem, the equilibrium point u = 0 of (4.1) for s > 1 can be
considered as the nonlinear equivalent of a saddle-focus.
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X5 = 0

X5 =1

�
�

�+

b b

b b

Fig. 4.2. A schematic view of the flow on the Poincaré cylinder Π for the equation u′′′′+us = 0.
The role of X5 = 0 and X5 = ∞ is reversed when λ is negative.

4.5. The full system. Applying the Poincaré transformation (4.4) with expo-
nents (4.6) to the differential equation (1.3), or, more generally, to

x′1 = x2; x′2 = x3; x′3 = x4; x′4 = Φ(x1, x2, x3, x4),

we arrive at

Ẋ1 = X2P − 4X1Q ;(4.30a)

Ẋ2 = X3P − (3 + s)X2Q ;(4.30b)

Ẋ3 = X4P − (2 + 2s)X3Q ;(4.30c)

Ẋ4 = ΨP − (1 + 3s)X4Q ;(4.30d)

Ẋ5 = − 1

λ
X5Q ,(4.30e)

where

Q = Xs
1X2 +X4Ψ+X3(X2 +X4)(4.31)

and

Ψ = X4λs
5 Φ

(
X1

X4λ
5

,
X2

X
(3+s)λ
5

,
X3

X
(2+2s)λ
5

,
X4

X
(1+3s)λ
5

)
.(4.32)

In the case of (1.3) we have

Φ(x1, x2, x3) = αx3 − cx2 + f(x1),

where f(x1) = −x3
1 + g(x1) with g(x1) compactly supported. With s = 3 and λ = 1

2
we thus obtain

Ψ = −X3
1 + αX3X

2
5 − cX2X

3
5 + g

(
X1

X2
5

)
X6

5 .(4.33)

The last term in (4.33) is C2 and has its derivatives up to second order vanishing in
X5 = 0. The extra terms are thus at least quadratic in X5 for small X5. Therefore
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the local analysis near X5 = 0 and in particular the Floquet multipliers of Λ± in the
previous section are completely unaffected. The flow on the sphere Σ (at infinity) is
identical to the flow for the reduced equation (4.2). Only the flow on Π\Σ is different.
Note that in this analysis it is essential that the exponent s is larger than 1. We have
the following theorem (compare Lemmas 4.3, 4.5 and 4.6).

Theorem 4.8. Let f satisfy hypothesis (3.1) and let α, c ∈ R.
(a) The stable periodic orbit Λ+ of (4.11) is an asymptotically stable periodic orbit

of (4.30) with nontrivial Floquet multipliers in (0, 1). Every solution of (1.3)
which is unbounded in forward time corresponds to a solution of (4.30) having
Λ+ as ω-limit set. A similar statement holds for solutions unbounded in
backward time and Λ−.

(b) Unbounded solutions of (1.3) blow up oscillatorily in finite time.
(c) If c �= 0, the energy E also blows up.
Proof. By Lemma 4.6 all solutions of (4.30) which lie in the invariant set Π∩{X5 =

0} \ Λ− ⊂ Π tend to Λ+ in forward time. Reminiscent of the proof of Lemma 4.6 we
choose a small negatively invariant open tubular neighborhood Λε

− of Λ− in Π. By
compactness of Π ∩ {X5 = 0} there exists an open neighborhood Σε of Π ∩ {X5 =
0}\Λε

− in Π such that all orbits with starting point in Σε tend to Λ+ in forward time.
Clearly every unbounded solution of (1.3) enters Σε and thus tends to Λ+.

For part (b) we observe that the exponent b in (4.8) is smaller than 1 so that
in the old time variable X5 can only go to zero in finite time. Finally we have that
the energy E can remain bounded only if its derivative is integrable. For c �= 0 this
implies that u′ is square integrable (see (1.5)) and thus u itself is (locally) bounded,
which prohibits finite time blow-up, a contradiction.

Remark 4.9. Theorem 4.8 establishes that large solutions of (1.3) are really
described by oscillating solutions of u′′′′ + u3 = 0. Thus large solutions do not “see”
the other terms in (1.3) as they oscillate away to infinity. This is not only true for
perturbations of the form−u3+g(u) with g compactly supported and smooth, but also
for global lower order perturbations. For such lower order perturbations Theorem 4.8
applies as well.

5. The winding number for small speeds. In this section we prove part
(a) of Proposition 3.3. Before we can prove this theorem we first need a description
of the global behavior of W s(1) for c = 0. In the following lemma we show that
for α > 1√

σ(f)
all orbits in the stable manifold W s(1) are unbounded, and, after

transforming to the X-variables in section 4, they all have Λ− as α-limit set. Because
all the nontrivial Floquet multipliers of Λ− lie in (1,∞) (see Theorem 4.8(a)), this
remains true for c > 0 sufficiently small.

Lemma 5.1. Let f satisfy hypothesis (3.1), let α > 1√
σ(f)

, and let c = 0. Then

W s(1) consists of unbounded orbits only, all of which connect Λ− to u = 1.
Proof. The proof is a combination of arguments also used in [25]. Any bounded

solution must have its range in the set

V = {u ∈ R |F (u) ≥ F (−a)}
because a solution reaching outside this interval oscillates away toward infinity, as
mentioned in Remark 4.7. Besides, any bounded solution must have at least one
minimum below the line u = −a, again basically by the same oscillation argument
as in the proof of Lemma 4.5. We now assume, arguing by contradiction, that u is a
bounded orbit in W s(1). We will show that the range of u is not contained in V , so
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u
00

u
�1 �a 1

u
00
=

p
�2F (u)

V

Fig. 5.1. The (u, u′′)-plane with the curve u′′ =
√−2F (u). We have sketched the orbit of u

for t ≥ t0, which is discussed in the proof of Lemma 5.1. We have also indicated the set V , in which
every bounded solution has its range.

that u is in fact unbounded. It then follows from Theorem 4.8 that u tends to Λ− as
t→ −∞.

Thus, suppose that u is a bounded solution in W s(1). Changing from t to −t if
necessary we have that in such a minimum (using the fact that E(u, u′, u′′, u′′′) = 0)

u(t0) ≤ −a, u′(t0) = 0, u′′(t0) =
√

−2F (u(t0)) > 0, u′′′(t0) ≥ 0.(5.1)

We will show that u(t) increases to a value outside V for t > t0, which immediately
leads to a contradiction.

Define an auxiliary function

G(t)
def
= u′′(t)−

√
−2F (u(t)).

The following line of reasoning is depicted in Figure 5.1. First, G(t0) = 0 and we
show that G(t) > 0 in a right neighborhood of t0. It is seen from the condition on α
and the observation that f(u) > 0 on (−∞,−1) ∪ (−a, 1) that

f(u) > −
√
−α

2

2
F (u) for u < 1.(5.2)

If u′′′(t0) > 0, then clearly G′(t0) > 0, whereas when u′′′(t0) = 0, then G′(t0) = 0,
and (since u′(t0) = 0)

G′′(t0) = u′′′′(t0) +
f(u(t0))√−2F (u(t0))

u′′(t0) = α
√

−2F (u(t0)) + 2f(u(t0)) > 0

by the differential equation, and (5.1) and (5.2). Thus G(t) > 0 in a right neighbor-
hood of t0.

Second, we show that G(t) > 0 as long as u(t) < 1. We define t1 > t0 as the first
maximum of u(t) and t2 > t0 as the first point where G(t2) = 0 (a priori, both t1 and
t2 may be ∞). Then t2 < t1 since u′′(t) > 0 as long as G(t) > 0. It now follows from
the expression (1.4) for the energy and by (5.2) that

G′(t) = u′′′(t) +
f(u(t))√−2F (u(t))

u′(t)
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=
1
2u

′′2(t) + F (u(t))
u′(t)

+

(
α

2
+

f(u(t))√−2F (u(t))

)
u′(t)

> 0

as long as G(t) > 0 and u(t) < 1. Since G(t) > 0 in a right neighborhood of t0 this
implies that G(t) > 0 and G′(t) > 0 as long as u(t) < 1, and thus u(t2) ≥ 1.

Finally, we define t3 > t0 as the first point where u(t) = −a. It is easily seen
that t3 < t2. By the energy expression we have that u′′′(t) > 0 as long as G(t) > 0,
thus u′′(t2) > u′′(t3) >

√−2F (−a). Combining the inequalities u(t2) ≥ 1 and

F (u(t2)) = − 1
2u

′′2(t2) < F (−a), we infer that u(t2) lies outside V , so that u is
unbounded. By Theorem 4.8 all these unbounded orbits converge to Λ−.

Remark 5.2. Because all the nontrivial Floquet multipliers of Λ− lie in (1,∞)
(see Theorem 4.8(a)), Lemma 5.1 remains true for c > 0 sufficiently small.

The following theorem is equivalent to Proposition 3.3(a). We recall that K is
defined in (3.3), and that its boundary δK is a level set of the energy.

Theorem 5.3. Let f satisfy hypothesis (3.1) and let α > 1√
σ(f)

. For F (−a) <
E0 < F (−1) let K be defined by (3.3) and let W s(1) be the stable manifold of the
equilibrium u = 1. Then, provided c > 0 is sufficiently small, W s(1) ∩ δK is a
topological circle. Its projection Γ on the (u, u′′′)-plane winds exactly once around

a disk containing both closed curves defined by E0 − F (u) + 1
2αu

′′′2 = 0 (see also
Figure 3.2), i.e., n(Γ,−1) = n(Γ, 1) = 1.

Proof. Our strategy is to deform f(u) in several steps to the pure cubic −u3 and
let α go to zero. We have to do this in such a way that for each intermediate f the
conclusion of Lemma 5.1 remains valid. All orbits in the stable manifold W s(1) thus
tend to Λ− in backward time, and this remains true during the entire deformation
process. At the end of the deformation process we arrive at the reduced equation
u′′′′ + u3 = 0. We then use the analysis performed in section 4 to find a precise
description of the orbits in W s(1). Finally, we obtain the results of Theorem 5.3 for
the original equation (1.3) via continuation arguments.

Recall that f(u) = −u3 + g(u) with g having compact support, say, g(u) = 0 for
all |u| ≥ C0. Taking C0 sufficiently large, define the cut-off function φ ∈ C∞

0 with
0 ≤ φ ≤ 1, φ(y) = 1 for |y| ≤ C0, and φ(y) = 0 for |y| > C0 + 1.

Step 1. First deform f(u) to a function which changes sign at u = 1 only. Let

fλ(u) = f(u)− λ(u− 1)φ(u).

For λ large enough, say, λ > λ0, the function fλ(u) has a zero at u = 1 only.
Lemma 5.4. Let α > 1√

σ(f)
and replace f(u) by fλ(u). Then for all λ ∈ [0, λ0]

the stable manifold W s(1) consists of unbounded orbits only, all of which connect Λ−
to u = 1.

Proof. Let λ1 = inf{λ | fλ(u) > 0 for all u < 1}. For any λ < λ1 the argument is
exactly the same as in the proof of Lemma 5.1, where we use the following generalized
definition of σ:

σ(fλ) = min

{−F (u)
2f(u)2

∣∣∣ u < 1 and f(u) < 0

}
.

Note that σ(fλ) ≤ σ(f0) for 0 < λ < λ1 since fλ(u) and −Fλ(u) are increasing
in λ for all u < 1. For λ ≥ λ1 the result also holds, but by a different and less
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restrictive oscillation argument, which applies to any f(u) with a single zero at which
it goes from positive to negative, and all α ≥ 0. We already used this in the proof of
Lemma 4.6; the argument showing that every solution u �≡ 1 oscillates toward infinity
is almost identical (for α ≥ 0 the second order term does not cause any difficulties).
This completes the proof of the lemma.

Continuing with the proof of Theorem 5.3, we change f to f1 def
= fλ0

by letting λ
go from 0 to λ0. This leaves the local structure near X5 = 0, and in particular near
Λ−, unaffected (see section 4.5).

Step 2. We change f1(u) = −u3 + g1(u) with g1(u) = g(u) − λ0(u − 1)φ to
f2(u)

def
= −u3(1− φ)− (u− 1)φ. Using the deformation functions

fλ(u) = −u3(1− φ(u)) + (1− λ)(−u3φ(u) + g1(u))− λ(u− 1)φ(u),

we let λ go from 0 to 1, thus continuously deforming f1 into f2. All orbits inW s(1) are
still unbounded and tend to Λ− as t→ −∞ during this deformation, since fλ(u) has
a single zero at which it goes from positive to negative (see the proof of Lemma 5.4).

Step 3. It is now easy to shift the zero to the origin. Define

fλ(u) = −u3(1− φ(u))− (u− (1− λ))φ(u).

Letting λ change from 0 to 1 deforms f2 into f3 def
= −u3(1− φ)− uφ. Since we have

shifted the origin we now have W s(0) instead of W s(1). All orbits in W s(0) are still
unbounded and tend to Λ− as t→ −∞.

Step 4. Next we let α go to zero. The stable manifold W s(0) changes smoothly
and the local structure near Λ− again remains unaffected because α only appears in
terms quadratic in X5. For α = 0 we have arrived at the equation

u′′′′ − f3(u) = 0, with f3(u) = −u3(1− φ)− uφ.

Step 5. We change f3 using a family of functions

fs(u) = −u3(1− φ)− usφ.

Letting s increase from s = 1 to s = 3 we obtain a function f4(u)
def
= u3. We note (see

section 4.4) that for s > 1 the manifold W is the center-stable manifold of 0. Here
we use section 4.3 to conclude that in this process W changes continuously, with the
orbits in manifold W =W cs(0) still tending to Λ− in backward time.

By sections 4.1 and 4.4 we have that, after going through Steps 1–5, W is the
product of Λ− and the X5-axis. In view of the nontrivial Floquet multipliers of Λ−
being in (1,∞), it holds that for any small ε > 0 there exists a negatively invariant
tubular neighborhood Λε

− of Λ− in Π with

Λε
− ⊂ {X = (X1, X2, X3, X4, X5) ∈ Π | d(X,Λ−) < ε}.

We can choose this neighborhood such that

Λε− ∩ {X5 = ε} = {(X1, X2, X3, X4) ∈ Λ−, X5 = ε}.(5.3)

Besides, we can choose Λε such that the flow for our final equation u′′′′ + u3 = 0 is
transversal to δΛε

−. Moreover, for ε > 0 sufficiently small, we can choose Λε such
the flow is transversal to δΛε

− for every intermediate f(u) and α in the deformation
process of Steps 1–5 above, hence also for the original equation (1.3) with c = 0.
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For any given r > 0 we can choose ε > 0 so small that the projection Γε of
W ∩ δΛε

− on the (x1, x4)-plane (or, equivalently, on the (u, u′′′)-plane) is a curve with
minimal distance to the origin at least r. To see this, we observe that the solution
of (4.1) represented by Λ− cannot have a point where u = u′′′ = 0, for in such a
point also u′′ = 0 in view of the energy E being zero. This would contradict the fact
that Q < 0 on Λ−. Thus in the X-variables Λ− is uniformly bounded away from
(X1, X4) = (0, 0), so that for any r > 0 we can find an ε > 0 such that the projection
of Λε

− on the (u, u′′′)-plane has a distance larger than r from the origin. Therefore, the
winding numbers around u = ±1 of the projection Γε ofW ∩δΛε

− on the (u, u′′′)-plane
are well defined for ε sufficiently small.

It follows from (5.3) that for our final equation u′′′′ + u3 = 0 we have

W ∩ δΛε
− = {(X1, X2, X3, X4, X5) | (X1, X2, X3, X4) ∈ Λ−, X5 = ε},

so that, choosing r large, n(Γε,−1) = n(Γε, 1) = 1. By continuity the winding num-
bers of Γε do not change if we reverse Steps 1–5, and again by continuity arguments
and Remark 5.2 this remains true for c > 0 sufficiently small.

Finally, for our original equation (1.3) we know that, tracing back orbits inW s(1)
until they hit δΛε

−, their energy E remains close to 0, provided we keep c > 0 suf-
ficiently small. Thus W s(1) ∩ δK is contained in Λε

− for small c > 0. Following
W s(1) ∩ δΛε

− backwards along the flow to W s(1) ∩ δK (which is a transversal inter-
section for c > 0), we see that the winding numbers n(Γ,±1) of the projection of
W s(1) ∩ δK are also 1. This completes the proof of Theorem 5.3.

6. The winding number for large speeds. In this section we proof part (b)
of Proposition 3.3.

Theorem 6.1. Let f satisfy hypothesis (3.1) and let α ∈ R. For c > 0 sufficiently
large the intersection of the stable manifold W s(1) of u = 1 and the boundary δK of K
is a smooth simple closed curve which projects on a closed curve Γ in the (u, z)-plane
with n(Γ,−1) = 0 and n(Γ, 1) = 1.

Proof. We first prove the theorem for a deformation of f(u). We choose the
nonlinearity f̃(u) to satisfy

f̃(u) = f ′(1)(u− 1) in a neighborhood Bε(1) of u = 1.

For this deformed nonlinearity f̃ we compute the energy Ẽ on a closed curve in W̃ =
W s(1) winding once around u = 1 with u-values contained in Bε(1). The equation is
now linear near u = 1, and the characteristic equation

−µ4 + αµ2 + f ′(1) = cµ

has two eigenvalues −µ1 and −µ2 with negative real part (recall that f ′(1) < 0). For
c > 0 large enough µ1 and µ2 are real, and asymptotically

µ1 ∼ c 1
3 and µ2 ∼ −f ′(1)

c
as c→ ∞.(6.1)

Since the equation is linear, W̃ is given by (for c large enough)

W̃ = {(u, v, w, z) |u = u(t) = 1+A1e
−µ1t+A2e

−µ2t, v = u′(t), w = u′′(t), z = u′′′(t)}.
(6.2)
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We may choose a curve S1 ⊂ W̃ around u = 1 parametrized by φ ∈ [0, 2π) by taking
t = 0 and A1 = r cosφ, A2 = r sinφ in (6.2) for some fixed r > 0. The projection of
S1 on the (u, u′′′)-plane is given by

{(u, z) |u = 1 + r(cosφ+ sinφ), z = −r(µ3
1 cosφ+ µ

3
2 sinφ), 0 ≤ φ < 2π}.

The energy on S1 is given by

−E =

∫ ∞

0

cu′(t)2dt = c
∫ ∞

0

(A1µ1e
−µ1t +A2µ2e

−µ2t)2dt

= c

(
A2

1µ1

2
+

2A1A2µ1µ2

µ1 + µ2
+
A2

2µ2

2

)
= cµ2

(
A2

1µ1

2µ2
+

2A1A2µ1

µ1 + µ2
+
A2

2

2

)
.(6.3)

Using (6.1) and estimating (6.3) from below we have, for c sufficiently large,

E ≤ f
′(1)
4
r2 < 0 on S1.

Thus, choosing an energy level 0 > Ẽ0 >
f ′(1)

4 r2, we have that S1 lies in the com-

plement of K. Let S̃ = W̃ ∩ δK̃. Then S̃ lies inside S1 and is obtained by tracing
solutions in (6.2) of the linear equation forwards in time until they enter K̃. It follows
that S̃ winds around u = 1 in W̃ exactly once and therefore its projection Γ̃ on the
(u, z)-plane winds once around (u, z) = (1, 0).

The calculations above involve only u-values between 1− r√2 and 1+ r
√
2 so we

may change the definition of f̃(u) outside this range. In particular, taking r small,
we may choose f̃(u) such that F̃ (u) has a minimum F̃ (−a) < Ẽ0 and a maximum
F̃ (−1) ∈ (Ẽ0, F̃ (1)), with −1 < −a < 1 − r√2. Clearly Γ̃ does not wind around the
point (u, z) = (−1, 0).

We continue f̃ to f and Ẽ0 to E0, taking c large enough as to stay within a
class of nonlinearities for which there does not exist a connection between u = −1
and u = 1 (see Lemma 2.1). By continuity we still have that n(Γ,−1) = 0 and
n(Γ, 1) = 1.

7. Travelling waves connecting an unstable to a stable state. In this
section we focus on travelling waves that connect the unstable state u = −a to one of
the two stable states u = ±1. As in the proof of Theorem 1.1 in section 3 we begin
by reducing to nonlinearities f which satisfy (3.1).

To obtain the necessary bound for α > 0 we fix c > 0 and simply follow the
argument in the proof of Lemma 2.2 with F (−1) replaced by F (−a) (for connections
from −a to +1), or by F (−1)− F (−a) (for connections from −a to −1).

By different methods it is also possible to prove a priori bounds in the case
that α ≤ 0. Applying a result by Gallay [14] to the present context we obtain

the following. Let f satisfy (H1), i.e., lim|u|→∞
f(u)
u = −∞. Then for any α ∈ R

there exists a constant C0 such that any travelling wave solution u(t, x) = U(x+ ct)
of (1.1) satisfies ‖u‖∞ ≤ C0. The constant C0 will thus depend only on α and

m
def
= sup

{|u| : f(u)
u ≥ −Dα

}
, where Dα > 0 is a constant which depends on α only.

The idea is to consider Φy(t) =
∫∞
−∞ hy(x)u

2(t, x)dx, where hy(x) = 1
1+(x−y)2 .

Using the differential equation (1.1) one obtains an estimate of the form
dΦy

dt ≤ A0−Φy

for some constant A0 independent of y and t, hence Φy(t) ≤ A0 +Φy(0)e
−t. Defining

Ψ(t) = supy∈R
Φy(t) one derives that for travelling waves, Ψ is independent of t, hence
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Ψ ≤ A0. Combining this with the fact that
∫∞
−∞(dudx )

2dx = F (±1)−F (−a)
c , one then

obtains an L∞-bound on u.
Thus, for every c > 0 there exists a constant C0 > 0 such that any solution of (1.3)

connecting −a to ±1 satisfies ‖u‖ < C0. This a priori estimate implies that we may
replace f by f̃(u) = φ(u)f(u) − u3(1 − φ(u)), where the cut-off function φ ∈ C∞

0 is
such that 0 ≤ φ ≤ 1, φ(y) = 1 for |y| ≤ C0, and φ(y) = 0 for |y| > C0 + 1. As in
section 3 it holds that u is a travelling wave solution with speed c for nonlinearity
f(u) if and only if u is a travelling wave solution with speed c for nonlinearity f̃(u).

The above argument shows that, looking for travelling waves, we may as well
assume that f satisfies (3.1). The next theorem thus proves Theorem 1.2.

Theorem 7.1. Let f satisfy hypothesis (3.1) and let α ∈ R. For every c > 0
there exists a solution of (1.3) connecting u = −a to u = −1.

Proof. For all c > 0 we have that the three equilibria are hyperbolic and

dimW s(±1) = dimWu(±1) = 2, dimWu(−a) = 3, dimW s(−a) = 1.

Travelling wave solutions connecting u = −a and u = −1 correspond to a nonempty
intersection of Wu(−a) and W s(−1). Recall that

E(u, u′, u′′, u′′′) = −u′u′′′ + 1

2
u′′2 +

α

2
u′2 + F (u), where F (u) =

∫ u

1

f(s)ds,

satisfies (1.5). We take F (−1) < E1 < F (1) and consider the set

K̃ =

{
(u, v, w, z) |E(u, v, w, z) = −vz + 1

2
w2 +

α

2
v2 + F (u) ≤ E1

}
.

Now suppose that for some c > 0 the theorem is false. Then all orbits in Wu(−a)
have to leave K̃ through δK̃, because an orbit with bounded energy has no other choice
than to converge to an equilibrium (see the proof Lemma 3.2) and u = −1, the only
equilibrium in K̃ with energy larger than E(−a), is excluded by assumption. Thus
we have that the intersection of Wu(−a) and δK̃ is homeomorphic to a 2-sphere S2.

For the moment we consider the case that α > 0. Since δK̃ is given by

α

(
v − z

α

)2

+ w2 = 2E1 − 2F (u) +
z2

α
,(7.1)

we may deform it smoothly into

{(u, v, w, z) |u2 + z2 = 1 + v2 + w2},
which defines a 3-manifold homeomorphic to R

2 × S1. As deformations we use

(λα+ 1− λ)
(
v − λ z

α

)2

+ w2 = G(u, λ) +

(
1− λ+ λ

α

)
z2,

with λ running from 1 to 0, and G(u, 1) = 2E1 − 2F (u) and G(u, 0) = −1 + u2.
Singularities can only appear in points on these manifolds where Gu = v = w = z = 0
and can thus be avoided by the choice of E1.

It follows that δK̃ is homeomorphic to R
2×S1, or, equivalently, to the open solid

torus. The intersection Wu(−a) ∩ δK̃, being homeomorphic to S2, divides δK̃ into
two components, one bounded and homeomorphic to an open ball in R

3, the other
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unbounded. This division is in fact not completely straightforward. One needs to
lift (a neighborhood of) Wu(−a) ∩ δK̃ to the universal covering space R

3 of K̃ and
show that the unbounded part of the complement of the countable union of lifts is
path-connected. Using the fact that the intersection Wu(−a) ∩ δK̃ is induced by a
flow, one can invoke the generalized Schoenflies theorem (see [5, Theorem 19.11]) to
conclude that a lift of Wu(−a) ∩ δK̃ divides R

3 into an unbounded and a bounded
component, which is homeomorphic to an open ball, in R

3. Besides, the bounded com-
ponents of the countable infinity of lifts can be contracted to points. The unbounded
component (the complement of the countable union of bounded components) is thus
homeomorphic to R

3 \ Z, hence path-connected.5

Now consider the piecewise smooth 3-manifold formed by the disjoint union of the
point (−a, 0, 0, 0), Wu(−a)∩ K̃ and the bounded component of δK̃ \ (Wu(−a)∩ δK̃).
This 3-manifold is homeomorphic to two closed balls in R

3 sharing an S2, namely,
Wu(−a)∩ δK̃, as boundary and is therefore homeomorphic to an S3. By the Jordan–
Brouwer theorem this 3-manifold divides R

4 to two components, one bounded, the
other unbounded. We notice that the bounded component is negatively invariant.
Clearly both components contain exactly one of the two orbits which together form
W s(−a). Now consider the orbit in W s(−a) contained in the bounded component
(which is negatively invariant). Since its energy is bounded we may, again by the
argument in the proof of Lemma 3.2, conclude that, tracing it backwards, it must
go to an equilibrium with energy less than the energy of u = −a. Since such an
equilibrium does not exist, we have arrived at a contradiction.

The cases α < 0 and α = 0 are similar, the only changes being that we deform
δK̃, given by (7.1), to u2 + v2 = 1 + z2 + w2 if α < 0, and that for α = 0 we rewrite
δK̃ as −2vz + w2 = 2E1 − 2F (u), which deforms into −2vz + w2 = −1 + u2 or
1
2 (v+ z)

2 + u2 = 1
2 (v− z)2 +w2 +1. This completes the proof of the theorem.

Remark 7.2. In the proof of Theorem 7.1 above we have used the nondegeneracy
of the equilibrium point u = −a, while u = −1 may degenerate (i.e., f ′(−1) = 0). The
theorem also holds when u = −a is degenerate but u = −1 is nondegenerate; in this
case the argument in the proof of Theorem 7.3 below can be used. If F (−1) = F (1)
one also applies the proof of Theorem 7.3; see Remark 7.4.

Next we prove Theorem 1.3. Let

c∗ def
= inf{c̃ > 0 | there is no connection from −1 to +1 for c > c̃}.

From Lemma 2.1 we see that c∗ is well defined, and c∗ > 0 for α > 1√
σ(f)

by

Theorem 1.1. The argument at the beginning of this section shows that, in order
to prove Theorem 1.3, we may restrict to nonlinearities f which satisfy (3.1). If
c∗ > 0, then it follows from Lemma 3.2 that for c = c∗ there exists a solution of (1.3)
which connects −1 to +1. The following theorem thus proves both Theorem 1.3 and
Corollary 1.4.

Theorem 7.3. Let f satisfy hypothesis (3.1) and let α ∈ R. For every c > c∗

there exists a solution of (1.3) connecting u = −a to u = 1.
Proof. We consider the stable manifold W = W s(1) of u = 1. We have shown in

Theorem 6.1 that for c > 0 large enough the intersection of the stable manifold W
of u = −1 and the boundary δK of K (defined in (3.3)) is a smooth simple closed

5We gratefully acknowledge several discussions with H. Geiges. He showed us that, via the
Jordan–Brouwer separation theorem and an inductive Mayer–Vietoris argument, the division of δK̃
into two components can also be derived without using the extra information provided by the flow.
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curve which projects on a closed curve Γ in the (u, z)-plane with n(Γ,−1) = 0 and
n(Γ, 1) = 1. It follows from the definition of c∗ and Lemma 3.2 that, by continuity,
this remains true for all c > c∗. Now fix c > c∗.

Let us assume by contradiction that there is no connection between u = −a and
u = 1. The intersection between W and δK depends continuously on the energy
level E as long as we do not encounter an equilibrium point. Assuming there is no
connection between u = −a and u = 1, we let E decrease from F (−1) > E0 > F (−a)
to E2 < F (−a). The projection Γ in the (u, z)-plane then depends continuously
on E, as do the winding numbers, so that n(Γ,−1) = 0 and n(Γ, 1) = 1 for all
E0 ≤ E ≤ E2. However, for the energy level E2 we have that (−1, 0) and (1, 0) lie in
the same component of the complement of the projection of δK onto the (u, z)-plane.
Therefore n(Γ,−1) = n(Γ, 1), a contradiction.

Remark 7.4. When F (−1) = F (+1), then the same method shows that there
exist travelling waves connecting u = −a to u = ±1 for all c > 0 and all α ∈ R.
Besides, as already noted in Remark 7.2, the method in the proof of Theorem 7.3 can
be used to obtain an alternative proof of Theorem 7.1.

Finally, we prove Theorem 1.5 which deals with nonlinearities with two zeros (and
a different behavior for u→ ±∞).

Theorem 7.5. Let α ∈ R and let f satisfy hypothesis (H2). For every c > 0
there exists a solution of (1.3) connecting u = 0 to u = 1.

Proof. Since the shape of the nonlinearity differs significantly from the one con-
sidered so far, we cannot invoke Lemma 3.2 directly. Besides, we find a priori bounds
via a slightly different method.

Let D
def
= sup{ũ < 0 |F (u) > 0 on (−∞, ũ)}. Travelling wave solutions connecting

0 to 1 satisfy u ≥ D, since it follows from (1.4) and (1.5) that u can have no extremum
in the range u < D (at an extremum one would have E > F (1), which is impossible).
Therefore, we may without loss of generality replace f by any function f1 for which
f1(u) = f(u) for u ≥ D, and f1(u) < 0 for u < D. We choose f1 such that f1(u) = u
for u < D − 1.

Now that we have a bound from below, we can also obtain a bound from above.
A connecting solution of (1.3) is also a solution of (1.3) with f1 replaced by any f2
for which f2(u) = f1(u) for all u ≥ D − 1. We choose f2(u) = −u3 for u < D − 2,
and argue as at the beginning of this section to conclude that there exists a uniform
bound ‖u‖∞ ≤ C0 on all travelling wave solutions. We may thus replace f1 by a
function f3 for which f3(u) = f1(u) for u ≤ C0 and f3(u) = −u3 for u ≥ C0 + 1. We
conclude that u is a travelling wave solution with speed c for nonlinearity f(u) if and
only if u is a travelling wave solution with speed c for nonlinearity f3(u).

In the following we therefore assume, without loss of generality, that f(u) = u for
u ≤ D − 1, and f(u) = −u3 for u ≥ C0 + 1.

We now follow the argument in the proof of Lemma 3.2. However, we cannot
use Lemma 3.1 to show that orbits in W s(1), which are completely contained in K,
are bounded. Instead, we argue as follows. Suppose, by contradiction, that an orbit
u(t) in W s(1) is completely contained in K and is unbounded. As in the proof of
Lemma 3.2 it follows from (3.4) that u(t) exists for all t ∈ R. There are now two
possibilities: either u(t) ≥ D − 1 for all t ∈ R or there exists some t0 ∈ R such that
u(t0) < D − 1. First we deal with the latter case.

Since (see above) u(t) cannot attain an extremum in the range u < D, it follows
that u(t) is increasing for t ≤ t0. Hence u(t) obeys, for t ≤ t0, the linear equation
cu′ = −u′′′′ + αu′′ + u. Since u is unbounded as t → −∞, it follows that u =
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−a0e−a1t + o(1) for some a0, a1 > 0 as t → −∞. By substituting this into (3.4) a
contradiction is reached.

Next we deal with the case where u(t) ≥ D − 1 for all t ∈ R. Clearly u(t) is
a solution of (1.3) with f replaced by any function f̃ for which f̃(u) = f(u) for all
u ≥ D−1. We choose f̃(u) = −u3 for u < D−2, and it follows from Lemma 3.1 that
u blows up in finite time, a contradiction.

Having circumvented the problem in the proof of Lemma 3.2 we conclude that
for F (0) < E0 < F (−1) the intersection of the stable manifold W of u = −1 and the
boundary δK of K (defined in (3.3)) is a smooth simple closed curve which projects
on a closed curve Γ in the (u, z)-plane with n(Γ, 1) = 1.

The rest of the argument is analogous to the proof of Theorem 7.3. Assuming
that there is no connection between u = 0 and u = 1, the final contradiction is now
obtained by the fact that n(Γ, 1) = 0 for E2 < F (0).

8. Concluding remarks. The most apparent open problem concerns the range
of α-values for which a travelling wave connecting −1 to +1 exists. For some examples
it can be shown that such a travelling wave does not exist for all α ∈ R. The more
general question whether for any nonlinearity satisfying (H1) a bound α∗ exists such
that there are no travelling waves for α < α∗ remains open.

Regarding the uniqueness of the various travelling wave solutions not much is
known. For large α (i.e., γ ≈ 0) the travelling wave connecting −1 to +1 may be
expected to be unique (analogous to the limiting second order case). The results
in [6] show that uniqueness does not hold for fa(u) = (u + a)(1 − u2) with a small
when α <

√
8. Equation (1.1) with f(u) = u − u3 admits an abundance of standing

wave solutions for 0 ≤ α < √
8. It has been proved in [6] that these solutions can

be perturbed to travelling waves for fa(u) with small a and small c = c(a). Since
this can be done for any standing wave, an infinite family of curves in the (a, c)-plane
passing through the origin is thus obtained.

The method used in this paper does not give any information about the shape of
the solution. For example, we would like to know for which values of α the solution is
monotone. Since we do not know the value of c for which a traveling wave occurs, we
do not in general even know whether the connected equilibrium points are approached
monotonically or in an oscillatory manner.

Finally, the question arises to what extent the travelling wave solution is of im-
portance to the dynamics of the PDE. It might be a limit profile for a broad class
of initial conditions as is the case for the second order equation [13]. Since travelling
waves connecting u = −a to u = ±1 exist for large ranges of c, it would be inter-
esting to know which of these waves is generally encountered. In [9, 12] the wave
selection mechanism has been investigated for a propagating front which is formed
from localized initial data (i.e., u + a is localized). Using the physically motivated
assumption that the linearized equation (around u = −a) drives the system, it is
argued that for α >

√
12f ′(−a) one of the travelling waves is selected (and the wave

speed is calculated), while for α <
√
12f ′(−a) the propagating front is argued not

to have a fixed profile. However, the only rigorous stability result that we know of is
of a perturbative nature [27] (i.e., α very large) and moreover it does not answer the
question of the selection of the wave speed.
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