
1. Harmonic functions

Throughout this section, Ω ⊂ Rn is a bounded domain.

1.1 Definition A function u ∈ C2(Ω) is called subharmonic if ∆u ≥ 0 in Ω, harmonic if
∆u ≡ 0 in Ω, and superharmonic if ∆u ≤ 0 in Ω.

1.2 Notation The measure of the unit ball in Rn is

ωn = |B1| = |{x ∈ Rn : x2
1 + ...+ x2

n ≤ 1}| =
∫

B1

dx =
2πn/2

nΓ(n/2)
.

The (n− 1)-dimensional measure of the boundary ∂B1 of B1 is equal to nωn.

1.3 Mean Value Theorem Let u ∈ C2(Ω) be subharmonic, and

BR(y) = {x ∈ Rn : |x− y| ≤ R} ⊂ Ω.

Then
u(y) ≤ 1

nωnRn−1

∫
∂BR(y)

u(x)dS(x),

where dS is the (n− 1)-dimensional surface element on ∂BR(y). Also

u(y) ≤ 1
ωnRn

∫
BR(y)

u(x)dx.

Equalities hold if u is harmonic.

Proof We may assume y = 0. Let ρ ∈ (0, R). Then

0 ≤
∫

Bρ

∆u(x)dx =
∫

∂Bρ

∂u

∂ν
(x)dS(x) =

∫
∂Bρ

∂u

∂r
(x)dS(x) =

(substituting x = ρω)∫
∂B1

∂u

∂r
(ρω)ρn−1dS(ω) = ρn−1

∫
∂B1

(
∂

∂ρ
u(ρω))dS(ω) = ρn−1 d

dρ

∫
∂B1

u(ρω)dS(ω)

(substituting ω = x/ρ)

= ρn−1 d

dρ

1
ρn−1

∫
∂Bρ

u(x)dS(x),

which implies, writing

f(ρ) =
1

nωnρn−1

∫
∂Bρ

u(x)dS(x),
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that f ′(ρ) ≥ 0. Hence

u(0) = lim
ρ↓0

f(ρ) ≤ f(R) =
1

nωnRn−1

∫
∂BR

u(x)dS(x),

which proves the first inequality. The second one follows from∫
BR

u(x)dx =
∫ R

0

{∫
∂Bρ

u(x)dS(x)
}
dρ ≥

∫ R

0

nωnρ
n−1u(0)dρ = ωnR

nu(0).

This completes the proof.

1.4 Corollary (Strong maximum principle for subharmonic functions) Let u ∈ C2(Ω) be
bounded and subharmonic. If for some y ∈ Ω, u(y) = supΩ u, then u ≡ u(y).

Proof Exercise (hint: apply the mean value theorem to the function ũ(x) = u(x)− u(y),
and show that the set {x ∈ Ω : ũ(x) = 0} is open).

1.5 Corollary (weak maximum principle for subharmonic functions) Suppose u ∈ C2(Ω)∩
C(Ω) is subharmonic. Then

sup
Ω
u = max

Ω
u = max

∂Ω
u.

Proof Exercise.

1.6 Corollary Let u ∈ C2(Ω) ∩ C(Ω) be subharmonic. If u ≡ 0 on ∂Ω, then u < 0 on Ω,
unless u ≡ 0 on Ω.

Proof Exercise.

1.7 Corollary Let ϕ ∈ C(∂Ω). Then there exists at most one function u ∈ C2(Ω)∩C(Ω)
such that ∆u = 0 in Ω and u = ϕ on ∂Ω.

Proof Exercise.

1.8 Theorem (Harnack inequality) Let Ω′ ⊂⊂ Ω (i.e. Ω′ ⊂ Ω′ ⊂ Ω) be a subdomain.
Then there exists a constant C which only depends on Ω′ and Ω, such that for all harmonic
nonnegative functions u ∈ C2(Ω),

sup
Ω′

u ≤ C inf
Ω′
u.
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Proof Suppose that B4R(y) ⊂ Ω. Then for any x1, x2 ∈ BR(y) we have

BR(x1) ⊂ B3R(x2) ⊂ B4R(y) ⊂ Ω,

so that by the mean value theorem,

u(x1) =
1

ωnRn

∫
BR(x1)

u(x)dx ≤ 3n

ωn(3R)n

∫
B3R(x2)

u(x)dx = 3nu(x2).

Hence, x1, x2 being arbitrary, we conclude that

sup
BR(y)

u ≤ 3n inf
BR(y)

u.

Thus we have shown that for Ω′ = BR(y), with B4R(y) ⊂ Ω, the constant in the inequality
can be taken to be 3n. Since any Ω′ ⊂⊂ Ω can be covered with finitely many of such balls,
say

Ω′ ⊂ BR1(y1) ∪BR2(y2) ∪ . . . ∪BRN
(yN ),

we obtain for Ω′ that C = 3nN .

Next we turn our attention to radially symmetric harmonic functions. Let u(x) be a
function of r = |x| alone, i.e. u(x) = U(r). Then u is harmonic if and only if

0 = ∆u(x) =
n∑

i=1

(
∂

∂xi
)2u =

n∑
i=1

∂

∂xi
(U ′(r)

∂r

∂xi
) =

n∑
i=1

∂

∂xi
(
xi

r
U ′(r))

=
n∑

i=i

(1
r
U ′(r) +

xi

r
U ′′(r)

∂r

∂xi
− xiU

′(r)
∂

∂xi
(
1
r
)
)

=
n

r
U ′(r) +

n∑
i=1

x2
i

r
U ′′(r)−

n∑
i=1

xiU
′(r)

xi

r3
=

U ′′(r) +
n− 1
r

U ′(r) =
1

rn−1
(rn−1U ′(r))′,

implying
rn−1U ′(r) = C1,

so that

U(r) =


C1r + C2 n = 1;
C1 log r + C2 n = 2;
C1

2− n

1
rn−2

+ C2 n > 2.

(1.1)
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We define the fundamental solution by

Γ(x) =



1
2
|x| n = 1

1
2π

log |x| n = 2

1
nωn(2− n)

1
|x|n−2

n > 2,

(1.2)

i.e. C1 = 1/nωn and C2 = 0 in (1.1). Whenever convenient we write Γ(x) = Γ(|x|) = Γ(r).

1.9 Theorem The fundamental solution Γ is a solution of the equation ∆Γ = δ in the
sense of distributions, i.e.∫

Rn

Γ(x)∆ψ(x)dx = ψ(0) ∀ψ ∈ D(Rn).

Proof First observe that for all R > 0, we have Γ ∈ L∞(BR) if n = 1, Γ ∈ LP (BR) for all
1 ≤ p <∞ if n = 2, and Γ ∈ LP (BR) for all 1 ≤ p < n

n−2 if n > 2, so for all ψ in D(Rn),
choosing R large enough, we can compute∫

Rn

Γ(x)∆ψ(x)dx =
∫

BR

Γ(x)∆ψ(x)dx = lim
ρ↓0

∫
AR,ρ

Γ(x)∆ψ(x)dx =

(here AR,ρ = {x ∈ BR : |x| > ρ})

lim
ρ↓0

{∫
∂AR,ρ

Γ
∂ψ

∂ν
−

∫
AR,ρ

∇Γ∇ψ
}

= lim
ρ↓0

{∫
∂AR,ρ

(Γ
∂ψ

∂ν
− ∂Γ
∂ν
ψ) +

∫
AR,ρ

ψ∆Γ
}

=

lim
ρ↓0

∫
∂Bρ

{ −∂ψ/∂ν
nωn(2− n)ρn−2

+
ψ

nωnρn−1

}
= ψ(0).

For n = 1, 2 the proof is similar.

Closely related to this theorem we have

1.10 Theorem (Green’s representation formula) Let u ∈ C2(Ω) and suppose ∂Ω ∈ C1.
Then, if ν is the outward normal on ∂Ω, we have

u(y) =
∫

∂Ω

{u(x) ∂
∂ν

Γ(x− y)− Γ(x− y)
∂u

∂ν
(x)}dS(x) +

∫
Ω

Γ(x− y)∆u(x)dx.

Here the derivatives are taken with respect to the x-variable.
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Proof Exercise (Hint: take y = 0, let Ωρ = {x ∈ Ω : |x| > ρ}, and imitate the previous
proof).

If we want to solve ∆u = f on Ω for a given function f , this representation formula strongly
suggests to consider the convolution∫

Ω

Γ(x− y)f(x)dx

as a function of y, or equivalently,

(Γ ∗ f)(x) =
∫

Ω

Γ(x− y)f(y)dy (1.3)

as a function of x. This convolution is called the Newton potential of f .

For any harmonic function h ∈ C2(Ω) we have∫
Ω

h∆u =
∫

∂Ω

(h
∂u

∂ν
− u

∂h

∂ν
),

so that, combining with Green’s representation formula,

u(y) =
∫

∂Ω

{u∂G
∂ν

−G
∂u

∂ν
}+

∫
Ω

G∆u, (1.4)

where G = Γ(x− y) + h(x). The trick is now to take instead of a function h(x) a function
h(x, y) of two variables x, y ∈ Ω, such that h is harmonic in x, and for every y ∈ Ω,

G(x, y) = Γ(x− y) + h(x, y) = 0 ∀x ∈ ∂Ω.

This will then give us the solution formula

u(y) =
∫

∂Ω

u
∂G

∂ν
+

∫
Ω

G∆u.

In particular, if u ∈ C2(Ω) is a solution of

(D)

{
∆u = f in Ω;
u = ϕ on ∂Ω,

then

u(y) =
∫

∂Ω

ϕ(x)
∂G(x, y)
∂ν

+
∫

Ω

G(x, y)f(x)dx. (1.5)
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The function G(x, y) = Γ(x − y) + h(x, y) is called the Green’s function for the Dirich-
letproblem. Of course h(x, y) is by no means trivial to find. The function h is called the
regular part of the Green’s function. If we want to solve{

∆u = 0 in Ω;
u = ϕ on ∂Ω,

(1.5) reduces to

u(y) =
∫

∂Ω

ϕ(x)
∂G(x, y)
∂ν

dS(x). (1.6)

We shall evaluate (1.6) in the case that Ω = B = B1(0) = {x ∈ Rn : |x| < 1}. Define the
reflection in ∂B by

S(y) =
y

|y|2
if y 6= 0; S(0) = ∞; S(∞) = 0. (1.7)

Here ∞ is the point that has to be added to Rn in order to construct the one-point
compactification of Rn. If 0 6= y ∈ B, then y = S(y) is uniquely determined by asking
that 0, y and y lie (in that order) on one line l, and that the boundary ∂B of B is tangent
to the cone C with top y spanned by the circle obtained from intersecting the ball B with
the plane perpundicular to l going through y (you’d better draw a picture here). Indeed
if x lies on this circle, then the triangles 0yx and 0xy are congruent and

|y| = |y − 0|
|x− 0|

=
|x− 0|
|y − 0|

=
1
|y|
,

so that y = S(y). It is also easily checked that

∂B = {x ∈ Rn; |x− y| = |y||x− y|}.

But then the construction of h(x, y) is obvious. We simply take

h(x, y) = −Γ(|y|(x− y)),

so that
G(x, y) = Γ(x− y)− Γ(|y|(x− y)). (1.8)

Note that since |y||y| = 1, and since y → 0 implies y →∞, we have, with a slight abuse of
notation, that G(x, 0) = Γ(x)− Γ(1). It is convenient to rewrite G(x, y) as

G(x, y) = Γ(
√
|x|2 + |y|2 − 2xy)− Γ(

√
|x|2|y|2 + |y|2|y|2 − 2|y|2xy)

= Γ(
√
|x|2 + |y|2 − 2xy)− Γ(

√
|x|2|y|2 + 1− 2xy),

which shows that G is symmetric in x and y. In particular G is also harmonic in the y
variables.
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Next we compute ∂G/∂ν on ∂B. We write

r = |x− y|; r = |x− y|; ∂

∂ν
= ν · ∇ =

n∑
i=1

νi
∂

∂xi
;

∂r

∂xi
=
xi − yi

r
;

∂r

∂xi
=
xi − yi

r
,

so that since G = Γ(r)− Γ(|y|r),

∂Γ(r)
∂ν

= Γ′(r)
∂r

∂ν
=

1
nωnrn−1

n∑
i=1

xi
xi − yi

r
=

1− xy

nωnrn
,

and

∂Γ(|y|r|)
∂ν

= Γ′(|y|r)|y|∂r
∂ν

=
1

nωn|y|n−2rn−1

∂r

∂ν
=

1
nωn|y|n−2rn−1

n∑
i=1

xi
xi − yi

r

=
1
nωn

|y|2−nr−n
n∑

i=1

xi(xi − yi) = (substituting r = |y|r)

1
nωn

|y|2−n(
|y|
r

)n
n∑

i=1

(x2
i − xiyi) =

1
nωnrn

{|y|2 − xy},

whence
∂G(x, y)
∂ν(x)

=
1

nωnrn
(1− |y|2) =

1− |y|2

nωn|x− y|n
. (1.9)

1.11 Theorem (Poisson integration formula) Let ϕ ∈ C(∂B). Define u(y) for y ∈ B by

u(y) =
1− |y|2

nωn

∫
∂B

ϕ(x)
|x− y|n

dS(x),

and for y ∈ ∂B, by u(y) = ϕ(y). Then u ∈ C2(B) ∪ C(B), and ∆u = 0 in B.

Proof First we show that u ∈ C∞(B) and that ∆u = 0 in B. We have

u(y) =
1− |y|2

nωn

∫
∂B

ϕ(x)
|x− y|n

dS(x) =
∫

∂B

K(x, y)ϕ(x)dS(x),

where the integrand is smooth in y ∈ B, and K(x, y) is positive, and can be written as

K(x, y) =
∂G(x, y)
∂ν(x)

=
n∑

i=1

xi
∂G(x, y)
∂xi

.
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Thus u ∈ C∞(B) and

∆u(y) =
n∑

j=1

∂2u

∂yj
=

n∑
j=1

( ∂

∂yj

)2
∫

∂B

n∑
i=1

xi
∂G(x, y)
∂xi

ϕ(x)dS(x)

=
∫

∂B

{ n∑
i=1

xi
∂

∂xi

n∑
j=1

∂2G(x, y)
∂y2

j

}
ϕ(x)dS(x) = 0.

Next we show that u ∈ C(B). Observe that∫
∂B

K(x, y)dS(x) = 1,

because ũ ≡ 1 is the unique harmonic function with ũ ≡ 1 on the boundary. We have to
show that for all x0 ∈ δB

lim
y→x0
y∈B

u(y) = ϕ(x0) = u(x0),

so we look at
u(y)− u(x0) =

∫
∂B

K(x, y)(ϕ(x)− ϕ(x0))dS(x).

Fix ε > 0. Then there exists δ > 0 such that

|ϕ(x)− ϕ(x0)| < ε for all x ∈ δB with |x− x0| < δ.

Thus we have, with M = max∂B |ϕ|, that

|u(y)− u(x0)| ≤
∫

x∈∂B, |x−x0|<δ

K(x, y)|ϕ(x)− ϕ(x0)|dS(x)

+
∫

x∈∂B, |x−x0|≥δ

K(x, y)|ϕ(x)− ϕ(x0)|dS(x) ≤

∫
∂B

K(x, y)εdS(x) +
∫

x∈∂B, |x−x0|≥δ

K(x, y)2MdS(x) =

ε+ 2M
∫

x∈∂B, |x−x0|≥δ

K(x, y)dS(x) ≤ (choosing y ∈ B with |y − x0| <
δ

2
)

ε+ 2M
∫

x∈∂B, |x−y|≥ δ
2

1− |y|2

nωn|x− y|n
dS(x) ≤ ε+ 2M

1− |y|2

nωn

∫
∂B

(2
δ

)n
dS(x) =

ε+ 2M
(2
δ

)n(1− |y|2) → ε as y → x0.

Since ε > 0 was arbitrary, this completes the proof.
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1.12 Remark On the ball BR = {x ∈ Rn : |x| < R} the Poisson formula reads

u(y) =
R2 − |y|2

nωnR

∫
∂BR

ϕ(x)
|x− y|n

dS(x).

1.13 Corollary A function u ∈ C(Ω) is harmonic if and only if

u(y) =
1

ωnRn

∫
BR(y)

u(x)dx

for all BR(y) ⊂⊂ Ω.

Proof Exercise (hint: use Poisson’s formula in combination with the weak maximum
principle which was proved using the mean value (in-)equalities).

1.14 Corollary Uniform limits of harmonic functions are harmonic.

Proof Exercise.

1.15 Corollary (Harnack convergence theorem) For a nondecreasing sequence of harmonic
functions un : Ω → R to converge to a harmonic limit function u, uniformly on compact
subsets, it is sufficient that the sequence (un(y))∞n=1 is bounded for just one point y ∈ Ω.

Proof Exercise (hint: use Harnack’s inequality to establish convergence).

1.16 Corollary If u : Ω → R is harmonic, and Ω′ ⊂⊂ Ω, d = distance (Ω′, ∂Ω), then

sup
Ω′

|∇u| ≤ n

d
sup
Ω
|u|.

For higher order derivatives the factor n
d has to be replaced by (ns

d )s, where s is the order
of the derivative.

Proof Since ∆∇u = ∇∆u = 0, we have by the mean value theorem for y ∈ Ω′

∣∣∇u(y)∣∣ =
∣∣ 1
ωndn

∫
Bd(y)

∇u(x)dx
∣∣ =

(by the vector valued version of Gauss’ Theorem)

∣∣ 1
ωndn

∫
∂Bd(y)

u(x)ν(x)dS(x)
∣∣ ≤ 1

ωndn
nωnd

n−1 sup
Bd(y)

|u(x)||ν(x)| = n

d
sup

Bd(y)

|u(x)|,
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since ν is the unit normal.

1.17 Corollary (Liouville) If u : Rn → R+ is harmonic, then u ≡ constant.

Proof We have

∣∣∇u(y)∣∣ =
∣∣ 1
wnRn

∫
∂BR(y)

u(x)ν(x)dS(x)
∣∣ ≤ 1

wnRn

∫
∂BR(y)

|u(x)ν(x)|dS(x)

=
n

R

1
nωnRn−1

∫
∂BR(y)

u(x)dS(x) =
n

R
u(y)

for all R > 0. Thus ∇u(y) = 0 for all y ∈ Rn, so that u ≡ constant.

We have generalized a number of properties of harmonic functions on domains in R2, which
follow from the following theorem for harmonic functions of two real variables.

1.18 Theorem Let Ω ⊂ R2 be simply connnected. Suppose u ∈ C(Ω) is harmonic. Then
there exists v : Ω → R such that

F (x+ iy) = u(x, y) + iv(x, y)

is an analytic function on Ω. In particular u, v ∈ C∞(Ω) and ∆u = ∆v = 0 in Ω.

1.19 Exercise Let u : Ω → R be harmonic. Show that the function v = |∇u|2 is
subharmonic in Ω.

1.20 Exercise Adapt the proof of the mean value theorem to show that under the same
assumptions, for dimension n > 2,

u(y) =
1

ωnRn

∫
BR(y)

u(x)dx− an

∫
BR(y)

G(|x− y|;R)∆u(x)dx,

where

G(r,R) =
1

rn−2
− 1
Rn−2

+
n− 2

2
r2 −R2

Rn
,

and an > 0 can be computed explicitly. Derive a similar formula for n = 2.

1.21 Exercise Show directly that the function

K(x, y) =
R2 − |y|2

nωnR|x− y|n
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is positive and harmonic in y ∈ B = BR, and, without to much computation, that∫
B
K(x, y)dx = 1. (These are the three essential ingredients in the proof of Theorem

1.11 and Remark 1.13).

1.22 Exercise Use Corollary 1.16 to prove that, if u is harmonic in Ω and B2R(x0) ⊂⊂ Ω,
then

|u(x)− u(y)| ≤ |x− y|α(2R)1−α n

R
sup

B2R(x0)

|u| ∀x, y ∈ BR(x0).

1.23 Exercise (Schwarz reflection principle) Let Ω be a domain which is symmetric with
respect to xn = 0, and let Ω+ = Ω ∩ {xn > 0}. Show that a function u which is harmonic
in Ω+, and continuous at Ω ∩ {xn = 0}, has a unique harmonic extension to Ω, provided
u = 0 on Ω ∩ {xn = 0}.

2. Perron’s method

2.1 Theorem Let Ω be bounded and suppose that the exterior ball condition is satisfied at
every point of ∂Ω, i.e. for every point x0 ∈ ∂Ω there exists a ball B such that B∩Ω = {x0}.
Then there exists for every ϕ ∈ C(∂Ω) exactly one harmonic function u ∈ C(Ω) with u = ϕ
on ∂Ω.

For the proof of Theorem 2.1 we need to extend the definition of sub- and superharmonic
to continuous functions.

2.2 Definition A function u ∈ C(Ω) is called subharmonic if u ≤ h on B for every ball
B ⊂⊂ Ω and every h ∈ C(B) harmonic with u ≤ h on ∂B. The definition of superharmonic
is likewise.

Clearly this is an extension of Definition 1.1, that is, every u ∈ C2(Ω) with ∆u ≥ 0 is
subharmonic in the sense of Definition 2.2. See also the exercises at the end of this section.

2.3 Theorem Suppose u ∈ C(Ω) is subharmonic, and v ∈ C(Ω) is superharmonic. If
u ≤ v on ∂Ω, then u < v on Ω, unless u ≡ v.

Proof First we prove that u ≤ v in Ω. If not, then the function u − v must have a
maximum M > 0 achieved in some interior point x0 in Ω. Since u ≤ v on ∂Ω and M > 0,
we can choose a ball B ⊂⊂ Ω centered in x0, such that u − v is not identical to M on
∂B. Because of the Poisson Integral Formula, there exist harmonic functions u, v ∈ C(B)
with u = u and v = v on ∂B. By definition, u ≥ u and v ≤ v. Hence u(x0)− v(x0) ≥M ,
while on ∂B we have u − v = u − v ≤ M . Because u and v are harmonic it follows that
u− v ≡M on B, and therefore the same holds for u− v on ∂B, a contradiction.
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Next we show that also u < v on Ω, unless u ≡ v. If not, then the function u − v must
have a zero maximum achieved in some interior point x0 in Ω, and, unless u ≡ v, we can
choose x0 and B exactly as above, reading zero for M . Again this gives a contradiction.

Using again the Poisson Integral Formula we now introduce

2.4 Definition Let u ∈ C(Ω) be subharmonic, and let B ⊂⊂ Ω be a ball. The unique
function U ∈ C(Ω) defined by

(i) U = u for Ω\B;

(ii) U is harmonic on B,

is called the harmonic lifting of u in B.

2.5 Proposition The harmonic lifting U on B in Definition 2.4 is also subharmonic in Ω.

Proof Let B′ ⊂⊂ Ω be an arbitrary closed ball, and suppose that h ∈ C(B
′
) is harmonic

in B′, and U ≤ h on ∂B′. We have to show that also U ≤ h on B′. First observe that
since u is subharmonic U ≥ u so that certainly u ≤ h on ∂B′, and hence u ≤ h on B′.
Thus U ≤ h on B′\B, and also on the boundary ∂Ω′ of Ω′ = B′ ∩ B. But both U and h
are harmonic in Ω′ = B′ ∩B, so by the maximum principle for harmonic functions, U ≤ h
on Ω′ = B′ ∩B, and hence on the whole of B′.

2.6 Proposition If u1, u2 ∈ C(Ω) are subharmonic, then u = max(u1, u2) ∈ C(Ω) is also
subharmonic.

Proof Exercise.

2.7 Definition A function u ∈ C(Ω) is called a subsolution for ϕ : ∂Ω → R if u is
subharmonic in Ω and u ≤ ϕ in ∂Ω. The definition of a supersolution is likewise.

2.8 Theorem For ϕ : ∂Ω → R bounded let Sϕ be the collection of all subsolutions, and
let

u(x) = sup
v∈Sϕ

v(x), x ∈ Ω.

Then u ∈ C(Ω) is harmonic in Ω.

Proof Every subsolution is smaller then or equal to every supersolution. Since sup∂Ω ϕ is
a supersolution, it follows that u is well defined. Now fix y ∈ Ω and choose a sequence of
functions v1, v2, v3, . . . ∈ Sϕ such that vn(y) → u(y) as n→∞. Because of Proposition 2.6
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we may take this sequence to be nondecreasing in C(Ω), and larger then or equal to inf∂Ω ϕ.
Let B ⊂⊂ Ω be a ball with center y, and let Vn be the harmonic lifting of vn on B. Then
vn ≤ Vn ≤ u in Ω, and Vn is also nondecreasing in C(Ω). By the Harnack Convergence
Theorem, the sequence Vn converges on every ball B′ ⊂⊂ B uniformly to a harmonic
function v ∈ C(B). Clearly v(y) = u(y) and v ≤ u in B. The proof will be complete if we
show that v ≡ u on B for then it follows that u is harmonic in a neighbourhood of every
point y in Ω. So suppose v 6≡ u on B. Then there exists z ∈ B such that u(z) > v(z), and
hence we can find u ∈ Sϕ such that v(z) < u(z) ≤ u(z). Define wn = max(vn, u) and let
Wn be the harmonic lifting of wn on B. Again it follows that the sequence Wn converges
on every ball B′ ⊂⊂ B uniformly to a harmonic function w ∈ C(B), and clearly v ≤ w ≤ u
in B, so v(y) = w(y) = u(y). But v and w are both harmonic, so by the strong maximum
principle for harmonic functions they have to coincide. However, the construction above
implies that v(z) < u(z) ≤ w(z), a contradiction.

Next we look at the behaviour of the harmonic function u in Theorem 2.8 near the bound-
ary.

2.9 Definition Let x0 ∈ ∂Ω. A function w ∈ C(Ω) with w(x0) = 0 is called a barrier
function in x0 if w is superharmonic in Ω and w > 0 in Ω\{x0}.

2.10 Proposition Let u be as in Theorem 2.8, and let x0 ∈ ∂Ω, and suppose there exists
a barrier function w in x0. If ϕ is continuous in x0, then u(x) → ϕ(x0) if x→ x0.

Proof The idea is to find a sub- and a supersolution of the form u± = ϕ(x0)± ε± kw(x).
Fix ε > 0 and let M = sup∂Ω |ϕ|. We first choose δ > 0 such that |ϕ(x)−ϕ(x0)| < ε for all
x ∈ ∂Ω with |x− x0| < δ, and then k > 0 such that kw > 2M on Ω\Bδ(x0). Clearly then
u− is a sub- and u+ is a supersolution, so that ϕ(x0)−ε−kw(x) ≤ u(x) ≤ ϕ(x0)+ε+kw(x)
for all x ∈ Ω. Since ε > 0 was arbitrary, this completes the proof.

2.11 Exercise Finish the proof of Theorem 2.1, and prove that the map

ϕ ∈ C(∂Ω) → u ∈ C(Ω)

is continuous with respect to the supremum norms in C(∂Ω) and C(Ω).

2.12 Exercise Show that for a function u ∈ C(Ω) the following three statements are
equivalent:

(i) u is subharmonic in the sense of Definition 2.2;

(ii) for every nonnegative compactly supported function φ ∈ C2(Ω) the inequality∫
Ω

u∆φ ≥ 0

13



holds;

(iii) u satisfies the conclusion of the Mean Value Theorem, i.e. for every BR(y) ⊂⊂ Ω the
inequality

u(y) ≤ 1
nωnRn−1

∫
∂BR(y)

u(x)dS(x)

holds.

Hint: In order to deal with (ii) show that it is equivalent to the existence of a sequence
(Ωn)∞n=1 of strictly increasing domains, and a corresponding sequence of subharmonic
functions (un)∞n=1 ∈ C∞(Ωn), with the property that for every compact K ⊂ Ω there
exists an integer N such that K ⊂ ΩN , and moreover, the sequence (un)∞n=N converges
uniformly to u on K.

Finally we formulate an optimal version of Theorem 2.1.

2.13 Theorem Let Ω be bounded and suppose that there exists a barrier function in
every point of ∂Ω. Then there exists for every ϕ ∈ C(∂Ω) exactly one harmonic function
u ∈ C(Ω) with u = ϕ on ∂Ω. The map ϕ ∈ C(∂Ω) → u ∈ C(Ω) is continuous with respect
to the supremum norm.

Proof Exercise.

3. Potential theory

We recall that the fundamental solution of Laplace’s equation is given by

Γ(x) = Γ(|x|) =


1
2π

log(|x|) if n = 2;

1
n(2− n)ωn

|x|2−n if n > 2,

and that the Newton potential of a bounded function f : Ω → R is defined by

w(x) =
∫

Ω

Γ(x− y)f(y)dy.

Note that we have interchanged the role x and y in the previous section.

When n = 3, one can view w(x) as the gravitational potential of a body Ω with density
function f , that is, the gravitational field is proportional to −∇w(x). This gradient is well
defined because of the following theorem.
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3.1 Theorem Let f ∈ L∞(Ω), Ω ⊂ Rn open and bounded, and let w(x) be the Newton
potential of f . Then w ∈ C1(Rn) and

∂w(x)
∂xi

=
∫

Ω

∂Γ(x− y)
∂xi

f(y)dy.

Proof First observe that

∂Γ(x− y)
∂xi

=
xi − yi

nωn|x− y|n
so that

∣∣∂Γ(x− y)
∂xi

∣∣ ≤ 1
nωn|x− y|n−1

.

Hence ∫
BR(y)

∣∣∂Γ(x− y)
∂xi

∣∣dx ≤ ∫
BR(y)

dx

nωn|x− y|n−1
=

∫
BR(0)

dx

nωn|x|n−1

=
∫ R

0

1
rn−1

rn−1dr = R <∞,

and
∂Γ(x− y)

∂xi
∈ L1(BR(y)) for all R > 0.

Thus the function

vi(x) =
∫

Ω

∂Γ(x− y)
∂xi

f(y)dy

is well defined for all x ∈ Rn.

Now let η ∈ C∞([0,∞)) satisfy
η(s) = 0 for 0 ≤ s ≤ 1;
0 ≤ η′(s) ≤ 2 for 1 ≤ s ≤ 2;
η(s) = 1 for s ≥ 2,

and define

wε(x) =
∫

Ω

Γ(x− y)η(
|x− y|
ε

)f(y)dy.

Then the integrand is smooth in x, and its partial derivates of any order with respect to
x are also in L∞(Ω). Thus wε ∈ C∞(Rn) and

∂wε(x)
∂xi

=
∫

Ω

∂

∂xi

(
Γ(x− y)η(

|x− y|
ε

)f(y)
)
dy =

∫
Ω

∂Γ(x− y)
∂xi

η(
|x− y|
ε

)f(y)dy +
∫

Ω

Γ(x− y)η′(
|x− y|
ε

)
|xi − yi|
ε|x− y|

f(y)dy.
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We have for n > 2, and for all x ∈ Rn, that

∣∣∂wε(x)
∂xi

− vi(x)
∣∣ =

∣∣ ∫
Ω

∂Γ(x− y)
∂xi

(
η(
|x− y|
ε

)− 1
)
f(y)dy

+
∫

Ω

Γ(x− y)η′(
|x− y|
ε

)
xi − yi

ε|xi − yi|
f(y)dy

∣∣ ≤
‖f‖∞

{ ∫
|x−y|≤2ε

1
nωn|x− y|n−1

dy +
∫
|x−y|≤2ε

1
n(n− 2)ωn|x− y|n−2

2
ε
dy

}
= ‖f‖∞

{∫ 2ε

0

1
rn−1

rn−1dr +
∫ 2ε

0

1
(n− 2)rn−2

2
ε
rn−1dr

}
= ‖f‖∞

{
2ε+

1
n− 2

1
ε
(2ε)2

}
= ‖f‖∞

(
2 +

4
n− 2

)
ε,

so that
∂wε

∂xi
→ vi uniformly in Rn as ε ↓ 0.

Similarly one has

|wε(x)− w(x)| =
∣∣ ∫

Ω

Γ(x− y)
(
η(
|x− y|
ε

)− 1
)
f(y)dy

∣∣
≤ ‖f‖∞

∫ 2ε

0

1
(n− 2)rn−2

rn−1dr = ‖f‖∞
ε2

2(n− 2)
,

so that also wε → w uniformly on Rn as ε ↓ 0. This proves that w, vi ∈ C(Rn), and that
vi = ∂w/∂xi. The proof for n = 2 is left as an exercise.

The next step would be to show that for f ∈ C(Ω), w ∈ C2(Ω) and ∆w = f . Unfortunately
this is not quite true in general. For a counterexample see Exercise 4.9 in [GT]. To establish
w ∈ C2(Ω) we introduce the concept of Dini continuity.

3.2 Definition f : Ω → R is called (locally) Dini continuous in Ω, if for every Ω′ ⊂⊂ Ω
there exists a measurable function ϕ : R+ → R+ with∫ R

0

ϕ(r)
r

dr <∞ for all R > 0,

such that
|f(x)− f(y)| ≤ ϕ(|x− y|)

for all x, y in Ω′. If the function ϕ can be chosen independent of Ω′, then f is called
uniformly Dini continuous in Ω.
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3.3 Definition f : Ω → R is called (uniformly) Hölder continuous with exponent α ∈ (0, 1]
if f is (uniformly) Dini continuous with ϕ(r) = rα.

3.4 Theorem Let Ω be open and bounded, and let f ∈ L∞(Ω) be Dini continuous. Then
w ∈ C2(Ω), ∆w = f in Ω, and for every bounded open set Ω0 ⊃ Ω with smooth boundary
∂Ω0,

∂2w(x)
∂xi∂xj

=
∫

Ω0

∂2Γ(x− y)
∂xi∂xj

(f(y)− f(x))dy − f(x)
∫

∂Ω0

∂Γ(x− y)
∂xi

νj(y)dS(y),

where ν = (ν1, ..., νn) is the outward normal on ∂Ω0, and f is assumed to be zero on the
complement of Ω.

Proof We give the proof for n ≥ 3. Note that

∂2Γ(x− y)
∂xi∂xj

=
1
nωn

|x− y|2∂ij − n(xi − yi)(xj − yj)
|x− y|n+2

,

so that ∣∣∂2Γ(x− y)
∂xi∂xj

∣∣ ≤ 1
ωn

1
|x− y|n

,

which is insufficient to establish integrability near the singularity y = x. Let

uij(x) =
∫

Ω0

∂2Γ(x− y)
∂xi∂xj

(f(y)− f(x))dy − f(x)
∫

∂Ω0

∂Γ(x− y)
∂xi

νj(y)dS(y).

Since f is Dini continuous, it is easy to see that uij(x) is well defined for every x ∈ Ω,
because the first integrand is dominated by

1
ωn

ϕ(r)
rn

and the second integrand is smooth. Now let

viε(x) =
∫

Ω

∂Γ(x− y)
∂xi

η
( |x− y|

ε

)
f(y)dy.

Then ∣∣viε(x)−
∂w(x)
∂xi

∣∣ =
∣∣ ∫

Ω

∂Γ(x− y)
∂xi

{
η
( |x− y|

ε

)
− 1

}
f(y)dy

∣∣
≤ ‖f‖∞nωn

∫ 2ε

0

1
nωnrn−1

rn−1dr = 2‖f‖∞ε,

so that viε → ∂w/∂xi uniformly in Rn as ε ↓ 0. Extending f to Ω0 by f ≡ 0 in Ωc, we
find for x ∈ Ω, using the smoothness of (∂Γ/∂xi)ηf , that

∂viε(x)
∂xj

=
∫

Ω0

∂

∂xj

∂Γ(x− y)
∂xi

η
( |x− y|

ε

)
f(y)dy =
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∫
Ω0

{f(y)− f(x)} ∂

∂xj

∂Γ(x− y)
∂xi

η
( |x− y|

ε

)
dy+

f(x)
∫

Ω0

∂

∂xj

∂Γ(x− y)
∂xi

η
( |x− y|

ε

)
dy =

∫
Ω0

{f(y)− f(x)} ∂

∂xj

∂Γ(x− y)
∂xi

η
( |x− y|

ε

)
dx− f(x)

∫
∂Ω0

∂Γ(x− y)
∂xi

νj(y)dS(y),

provided 2ε < d(x, ∂Ω), so that

∣∣uij(x)−
∂viε(x)
∂xj

∣∣ =
∣∣ ∫

Ω0

{f(y)− f(x)} ∂

∂xj

(
1− η

( |x− y|
ε

))∂Γ(x− y)
∂xi

dy
∣∣ =

∣∣ ∫
Ω0

{∂
2Γ(x− y)
∂xi∂xj

(
1− η

( |x− y|
ε

))
− η′

( |x− y|
ε

) xj − yj

ε|x− y|
∂Γ(x− y)

∂xi
} ×

{f(y)− f(x)}dy
∣∣ ≤ ∫

|x−y|≤2ε

{ 1
ωn|x− y|n

+
2

εnωn|x− y|n−1
}ϕ(|x− y|)dy ≤

∫ 2ε

0

(
n

rn
+

2
εrn−1

)ϕ(r)rn−1dr ≤

n

∫ 2ε

0

ϕ(r)
r

dr + 2
∫ 2ε

0

r

ε

ϕ(r)
r

dr ≤ (n+ 2)
∫ 2ε

0

ϕ(r)
r

dr,

implying
∂viε

∂xj
→ uij as ε ↓ 0,

uniformly on compact subsets of Ω. This gives vi ∈ C1(Ω) and

uij(x) =
∂vi(x)
∂xj

=
∂2w(x)
∂xi∂xj

.

It remains to show that ∆w = f . Fix x ∈ Ω and let Ω0 = BR(x) ⊃ Ω. Then

∆w(x) =
n∑

i=1

uii(x) =
n∑

i=1

∂2w(x)
∂x2

i

= −f(x)
n∑

i=1

∫
∂BR(x)

∂Γ(x− y)
∂xi

νi(y)dS(y) =

f(x)
∫

∂BR(x)

n∑
i=1

∂Γ(x− y)
∂yi

νi(y)dS(y) = f(x)
∫

∂BR(0)

∂Γ
∂ν
dS =

f(x)nωnR
n−1 1

nωnRn−1
= f(x),

and this completes the proof.
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3.5 Definition Let f be locally integrable on Ω. A function u ∈ C(Ω) is called a weak
C0-solution of ∆u = f in Ω if, for every compactly supported ψ ∈ C2(Ω), the equality∫

Ω

u∆ψ =
∫

Ω

ψf

holds.

3.6 Exercise Let f ∈ C(Ω), and let w ∈ C1(Rn) be the Newton potential of f . Show
that w is a weak C0-solution of ∆u = f in Ω, and that the map

f ∈ C(Ω) → w ∈ C(Ω)

is compact with respect to the supremum norm in C(Ω).

4. Existence results; the method of sub- and supersolutions

We begin with some existence results which follow from the previous results. The first
one combines the results of Perron’s method (Theorem 2.1 and Exercise 2.13) with the
continuity of the second derivatives of the Newton potential of a Dini continuous function
(Theorem 3.4).

4.1 Theorem Let Ω be bounded and suppose that there exists a barrier function in every
point of ∂Ω. Then the problem {

∆u = f in Ω;
u = ϕ on ∂Ω,

has a unique classical solution u ∈ C2(Ω) ∩ C(Ω) for every bounded Dini continuous
f ∈ C(Ω) and for every ϕ ∈ C(∂Ω).

Proof Exercise (hint: write u = ũ+ w, where w is the Newton potential of f).

The previous theorem gives a classical solution u ∈ C2(Ω) ∩ C(Ω). We recall that for f
locally integrable on Ω, the function u ∈ C(Ω) is called a weak C0-solution of ∆u = f in
Ω if, for every compactly supported ψ ∈ C2(Ω), the equality

∫
u∆ψ =

∫
ψf holds. The

next theorem combines Perron’s method with Exercise 3.5.

4.2 Theorem Let Ω be bounded and suppose that there exists a barrier function in every
point of ∂Ω. Then the problem {

∆u = f in Ω;
u = 0 on ∂Ω,
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has a unique weak C0-solution for every f ∈ C(Ω). The map

f ∈ C(Ω) → u ∈ C(Ω)

is compact with respect to the supremum norm in C(Ω).

Proof Exercise.

4.3 Exercise Compute the solution of{
∆u = −1 in Ω;
u = 0 on ∂Ω,

in the case that
Ω = Ωε,R = {x ∈ Rn : ε < |x| < R}.

4.4 Exercise Let Ω be bounded and suppose that for some ε > 0 the exterior ball condition
is satisfied at every point of ∂Ω by means of a ball with radius r ≥ ε. For f ∈ C(Ω) let u
be the unique weak C0-solution of {

∆u = f in Ω;
u = 0 on ∂Ω.

Prove that
|u(x)| ≤ C||f ||∞dist(x, ∂Ω),

where C is a constant which depends only on ε and the diameter of Ω.

The concept of weak solutions allows one to obtain existence results for semilinear problems
without going into the details of linear regularity theory, which we shall discuss later on
in this course. We consider the problem

(D)

{
∆u = f(x, u) in Ω;
u = 0 on ∂Ω,

where f : R× Ω → R is continuous.

4.5 Definition A function u ∈ C(Ω) is called a weak C0-subsolution of (D), if u ≤ 0 on
∂Ω, and if for every compactly supported nonnegative ψ ∈ C2(Ω), the equality∫

Ω

u∆ψ ≥
∫

Ω

ψf(x, u(x))dx

20



holds. A C0-supersolution u is defined likewise, but with reversed inequalities. A function
u which is both a C0-subsolution and a C0-supersolution, is called a C0-solution of (D).

4.6 Theorem Let Ω be bounded and suppose that there exists a barrier function in every
point of ∂Ω. Let f : R × Ω → R be continuous. Suppose that Problem (D) admits a
C0-subsolution u and a C0-supersolution u, satisfying u ≤ u in Ω. Then Problem (D) has
at least one C0-solution u with the property that u ≤ u ≤ u.

Sketch of the proof The proof is due to Clement and Sweers and relies on an application
of Schauder’s fixed point theorem. Let

[u, u] = {u ∈ C(Ω) : u ≤ u ≤ u}.

In order to define the map T we first replace f by f∗ defined by f∗(x, s) = f(x, s) for
u(x) ≤ s ≤ u(x), f∗(x, s) = f(x, u(x)) for s ≥ u(x), and f∗(x, s) = f(x, u(x)) for s ≤ u(x).
It then follows from the maximum principle that every solution for the problem with f∗

must belong to [u, u]. Writing f for f∗ again, the map T is now defined by T (v) = u,
where u is the weak C0-solution of the problem{

∆u = f(x, v(x)) in Ω;
u = 0 on ∂Ω.

Let e ∈ C2(Ω) be the (positive) solution of{
∆e = −1 in Ω;
e = 0 on ∂Ω.

Then e is bounded in Ω by some constant M . We introduce the set

Ak = {u ∈ C(Ω) : |u(x)| ≤ ke(x) ∀x ∈ Ω}.

From the maximum principle it follows again that T : Ak → Ak is well defined, provided k
is larger then the supremum of f = f∗. The compactness of T follows from Theorem 4.2.
Hence there exists a fixed point, which is the solution we seek.

4.7 Exercise Fill in the details of the proof.

4.8 Exercise Prove the existence of a positive weak solution in the case that f(u) =
−uβ(1− u) with 0 < β < 1.

4.9 Exercise Prove the existence of a positive weak solution in the case that f(u) = −uβ

with 0 < β < 1.
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