J. Hulshof

18th December 2006

We first review the spaces interpolating between and extrapolating from $L^2(\Omega)$ and $H_0^1(\Omega)$. Throughout $\Omega \subset \mathbb{R}^n$ is a bounded domain with smooth boundary $\partial \Omega$. Let $0 < \lambda_1 < \lambda_2 \leq \lambda_3 \leq \cdots \rightarrow \infty$ be the eigenvalues and $\phi_1, \phi_2, \phi_3, \ldots$ be the corresponding eigenfunctions of $-\Delta$ in $L^2(\Omega)$ with zero boundary data on $\partial \Omega$. In other words, ϕ_i is a weak solution of

$$-\Delta \phi_j = \lambda_j \phi_j$$
 in Ω ; $\phi_j = 0$ on $\partial \Omega$.

These eigenvalues are the reciprocals of the eigenvalues of the solution operator A defined by Af = u where u is the weak solution of

$$(P): \quad -\Delta u = f \text{ in } \Omega; \quad u = 0 \text{ on } \partial \Omega$$

(see also exercise set 3). We normalise the eigenfunctions in $L^2(\Omega)$, that is

$$(\phi_i, \phi_j) = \int_{\partial\Omega} \phi_i \phi_j = \delta_{ij}.$$

Thus every $u \in L^2(\Omega)$ is uniquely written as

$$u = u_1\phi_1 + u_2\phi_2 + u_3\phi_3 + \dots = \sum_{j=1}^{\infty} u_j\phi_j$$

with $u_j = (u, \phi_j)$ (j = 1, 2, ...), and $(u_1, u_2, u_3, ...) \in l^2$, where

$$l^{2} = \{ u = (u_{1}, u_{2}, u_{3}, \ldots) : u_{j} \in \mathbb{R}, j = 1, 2, \ldots; ||u||^{2} = \sum_{j=1}^{\infty} u_{j}^{2} < \infty \}$$

is the standard example of a (real) separable infinite-dimensional Hilbert space. It will be convenient to simultaneously denote by u an element in $L^2(\Omega)$ and its representing coordinate sequence in l^2 .

We identify l^2 with its dual $(l^2)^*$: the continuous linear functions $F: l^2 \to \mathbb{R}$ are uniquely written as

$$F(v) = \langle F, v \rangle = (u, v) = \sum_{j=1}^{\infty} u_j v_j,$$

with $u \in l^2$, with a one-to-one correspondence between $F \in (l^2)^*$ and $u \in l^2$. Likewise we identify $L^2(\Omega)$ with its dual.

Next we define a "scale" of Hilbert spaces

$$\theta^{\alpha} = \{ u = (u_1, u_2, u_3, \ldots) : u_j \in \mathbb{R}, \ j = 1, 2, \ldots; \ ||u||_{\alpha}^2 = \sum_{j=1}^{\infty} \lambda_j^{\alpha} u_j^2 < \infty \},\$$

where $\alpha \in \mathbb{R}$. For $\alpha \geq 0$, the corresponding subspace of $L^2(\Omega)$ is

$$\{u = \sum_{j=1}^{\infty} u_j \phi_j : u_j \in I\!\!R, \, j = 1, 2, \dots; \, ||u||_{\alpha}^2 = \sum_{j=1}^{\infty} \lambda_j^{\alpha} u_j^2 < \infty\}.$$

Exercises 1,2,3 are optional and intended to review material discussed in the lectures.

1. Prove that the continuous linear functions $F:\theta^{\alpha}\rightarrow I\!\!R$ are uniquely written as

$$F(v) = \langle F, v \rangle = \langle u, v \rangle = \sum_{j=1}^{\infty} u_j v_j, \quad v \in \theta^{\alpha},$$

with $u \in \theta^{-\alpha}$, with a one-to-one correspondence between $F \in (\theta^{\alpha})^*$ and $u \in \theta^{-\alpha}$. Hint: first find the obvious linear isometry (norm preserving bijection) between θ^{α} and $\theta^0 = l^2$, and use this to show that there is a one-to-one correspondence between continuous linear functions on θ^{α} (i.e. elements in the dual of θ^{α}) and continuous linear functions on l^2 (i.e. elements in the dual of l^2).

2. Explain why $\theta^1 = H_0^1(\Omega)$ and why $H^{(-1)}(\Omega)$ may be interpreted as

$$\{u = \sum_{j=1}^{\infty} u_j \phi_j : u_j \in I\!\!R, \, j = 1, 2, \dots; \, \sum_{j=1}^{\infty} \lambda_j^{-1} u_j^2 < \infty\}$$

(these Fourier series exist in the sense that they have partial sums which, when considered as elements in $H^{(-1)}(\Omega)$, are Cauchy sequences).

3. Let $f \in L^2(\Omega)$. Let A be the solution operator corresponding to Problem (P) (see above). We already saw that $A : H^{(-1)}(\Omega) \to H^1_0(\Omega)$ is an isometry. Explain why $A : L^2(\Omega) \to \Theta^2$ is an isometry.

Remark: it can be shown that $\Theta^2 = H^2(\Omega) \cap H^1_0(\Omega)$. More generally $A : \Theta^{\alpha} \to \Theta^{2+\alpha}$ is an isometry.

4. For u = u(x, t) we consider the wave equation with zero boundary data on $\partial \Omega$:

$$u_{tt} = \Delta u \quad \text{for } x \in \Omega, \ t \in \mathbb{R}; \quad u = 0 \quad \text{for } x \in \partial \Omega, \ t \in \mathbb{R}.$$

Writing

$$u(x,t) = u_1(t)\phi_1(x) + u_2(t)\phi_2(x) + u_3(t)\phi_3(x) + \dots = \sum_{j=1}^{\infty} u_j\phi_j,$$

or, for short,

$$u(t) = u_1(t)\phi_1 + u_2(t)\phi_2 + u_3(t)\phi_3 + \dots = \sum_{j=1}^{\infty} u_j\phi_j,$$

derive equations which should be satisfied by the coefficients $u_1(t), u_2(t), \ldots$ Explain why solutions with prescribed $u(0), u_t(0) \in L^2(\Omega)$ will have $u(t) \in L^2(\Omega)$ for all $t \in \mathbb{R}$.

5. Same exercise, but now for the equation

$$u_{tt} = -\Delta \Delta u \quad \text{for } x \in \Omega, \ t \in I\!\!R,$$

with boundary conditions

$$\Delta u = u = 0$$
 for $x \in \partial \Omega$, $t \in \mathbb{R}$.

6. How would you solve the (same) equation

$$u_{tt} = -\Delta \Delta u \quad \text{for } x \in \Omega, \ t \in \mathbb{R}$$

with boundary conditions

$$\frac{\partial u}{\partial \nu} = u = 0 \quad \text{for } x \in \partial \Omega, \, t \in I\!\!R,$$

when you think back of exercise 4 in series 3 (this is the problem for a clamped plate, in dimension N = 1 it is known as the beam equation).