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1 Monday 29-03-10

Discussion of the course (by Sara) so far from a more abstract perspective.
Prototype problem

(D) −∆u = f in Ω, u = 0 on ∂Ω,

which consists of an inhomogeneous equation with homogeneous (Dirichlet)
boundary conditions. Here Ω ⊂ IRn is open, connected, bounded,

∆ =
∂2

∂x2
1

+ · · ·+ ∂2

∂x2
n

,

f : Ω→ IR is given, and u : Ω→ IR is the unknown function.

Examples: Ω a bounded open interval in IR, Ω a bounded open rectangle in IR2,
Ω an open disk in IR2, Ω the open unit ball

B = Bn = {x2
1 + · · ·+ x2

n < 1}

in IRn, with boundary

S = Sn−1 = {x2
1 + · · ·+ x2

n = 1}.

General idea. Use the eigenfunctions φn with eigenvalues λn of (minus) the
Laplacian with zero Dirichlet boundary conditions:

−∆φn = λnφn in Ω, φn = 0 on ∂Ω.

Theorem: these exist, 0 < λ1 < λ2 ≤ λ3 ≤ λ4 ≤ . . . ↑ ∞, φ1 > 0 in Ω,∫
Ω

φnφm = δmn (Kronecker symbol),

in other words, the eigenfunctions form an orthonormal set with respect to
the inner product for functions (f · g =

∫
Ω
f(x)g(x)dx). Moreover this set is

∗Afdeling Wiskunde, Vrije Universiteit Amsterdam

1



complete: no (square integrable) function f : Ω→ IR can have f ·φn = 0 for all
n, unless f(x) = 0 for (almost) all x ∈ Ω.

For Problem (D) we have

f =
∞∑
n=1

anφn ⇒ u =
∞∑
n=1

an
λn
φn,

with this (generalised) Fourier series for u having much better convergence prop-
erties than the one for f , because λn →∞.

This approach is general. The right hand side f is decomposed in its build-
ing blocks (Fourier modes) and solving Problem (D) amounts to solving for the
individual blocks, and then putting the resulting solutions back together again.
This is called linear superposition. The approach works for arbitrary bounded
domains (domain means open connected set, no point in dropping the assump-
tion of connectedness here) and a large class of second order elliptic operators.
Chapter 6 in the book discusses the one-dimensional case.

Generically (i.e. in nonspecial cases) the eigenvalues are all different, with
multiplicity one, but not in examples with symmetry, such as Ω = B, ∂Ω = S,
which is the prototype example involving symmetry, treated by the method of
separation of variables in the book.

Evolution Problems. The decomposition is also well suited for solving evo-
lution problems involving the Laplacian. Both the wave and the heat equation
with zero boundary conditions reduce to decoupled ODE’s for the time depen-
dent Fourier coefficients. These are solved with initial data at t = 0 derived
from the Fourier decomposition of the initial data. Except for d’Alembert’s
method this is basically the only PDE-solving technique used in the first part
of the book.

Another prototype problem in the book is

(H) −∆u = 0 in Bn, u = g on Sn−1,

with g : Sn−1 → IR given. This is a homogeneous equation with inhomogeneous
(Dirichlet) boundary conditions. It is also treated by the method of separation
of variables. Here one can decompose the boundary condition in building blocks
given by the eigenfunctions of the so-called Laplace-Beltrami operator on Sn−1.
Warning. This approach for solving Problem (H) is much less general. It
does not work for arbitrary domains. A quick way to solve problems with
inhomogenous boundary conditions using Fourier series is to substract from u
any sufficiently smooth function U satisfying the boundary condition, which
gives an inhomogeneous equation for v = u− U with a homogeneous boundary
condition. Only on special domains a direct approach is feasible, see Section 3.8
for Ω a rectangle and Chapters 4 and 5 for:

Problems on Ω = B the unit ball.
On a ball the building blocks can be computed in terms of special functions.

This is done in Chapters 4 and 5 of the book. See also Chapter 9 (the handout) of
the famous book Special Functions by Andrews, Askey and Roy for a discussion
of the so-called spherical harmonics which appear here.
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For n = 2 we have

x = r cos θ, y = r sin θ ⇒ ∆ =
∂2

∂x2
+

∂2

∂y2
=

∂2

∂r2
+

1
r

∂

∂r
+

1
r2

∂2

∂θ2
,

or

∆ =
∂2

∂x2
+

∂2

∂y2
=

1
r

∂

∂r
r
∂

∂r
+

1
r2

∂2

∂θ2
,

while for n = 3

x = r sin θ cosφ, y = r sin θ sinφ, z = r cos θ ⇒ ∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
=

∆ =
1
r2

∂

∂r
r2 ∂

∂r
+

1
r2

∆S2 , ∆S2 =
1

sin θ
∂

∂θ
sin θ

∂

∂θ
+

1
sin2 θ

∂2

∂φ2
.

Note how radial and nonradial variables separate.
A quick way to rewrite ∆ in IRn in (new nondegenerate) coordinates u1, . . . , un,

is as follows. Writing

gij =
∂x

∂ui
· ∂x
∂uj

,

the symmetric matrix G with entries gij is positive definite and invertible, and

∆ =
1√

detG
(
∂

∂u1
· · · ∂

∂un
)
√

detGG−1


∂
∂u1
...
∂
∂un


2 Thursday April Fool’s Day

Discussion of the exam over Part 1 of the course. This also concerns the
disk B in IR2.

Exercise. Derive the expression for the Laplacian in (generalised) spherical
coordinates in dimension n = 2, n = 3 and n = 4. For n = 4 use

x1 = cos θ1, x2 = sin θ1 cos θ2, x3 = sin θ1 sin θ2 cos θ3, x4 = sin θ1 sin θ2 sin θ3,

all θj between 0 and π, except the last one, θ3 is between 0 and 2π.

Exercise. Let −µ ≤ 0 be an eigenvalue of

∆S2 =
1

sin θ
∂

∂θ
sin θ

∂

∂θ
+

1
sin2 θ

∂2

∂φ2

with eigenfunction Y (θ, φ). Show that the function u(x, y, z) = R(r)Y (θ, φ) is
harmonic if and only if

r2R′′ + 2rR′ = µR,

and that smoothness of u in the origin is only possible if µ = p(p + 1), p =
0, 1, 2 . . .. What can µ be for ∆S3 , the spherical Laplacian in IR4 you computed
above? Answer: µ = p(p+ 2). And for ∆S4?
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Exercise. Bessel’s equation of order p, Equation (1) in Section 4.7, reads

x2y′′(x) + xy′(x) + (x2 − p2)y(x) = 0,

and it arises from solving Helmholtz’ equation on a disk in Section 4.6 via
Equation (4) and scaling by R(r) = y(x), kr2 = x2. Use the previous exercise
to mimic this approach for solving Helmholtz’ equation on a ball in IR3 and on
a ball in IR4. Compute the resulting analogues of the Bessel equations. These
must also feature a nonnegative integer p.

The Laplace-Beltrami operator ∆S1 on the circle. In dimension n = 2

∆ =
∂2

∂x2
+

∂2

∂y2
=

1
r

∂

∂r
r
∂

∂r
+

1
r2

∆S1 , ∆S1 =
∂2

∂θ2
,

Exercise. Read Section 9.1 of the handout and fill in the details of the deriva-
tion of Poisson’s integral formula for determining a harmonic function on the
disk with boundary data given by u(x, y) = v(r, θ) = f(θ) for r = 1.

Exercise. Observe how the building blocks cos kθ and sin kθ arise as the re-
striction of harmonic homogeneous polynomials to the circle. Write this out for
k = 0, 1, 2, 3.

3 8-4-10

The Laplace-Beltrami operator ∆S2 on the 2-sphere. Same story, but
more complicated, because

∆S2 =
1

sin θ
∂

∂θ
sin θ

∂

∂θ
+

1
sin2 θ

∂2

∂φ2
.

Note that acting on u this gives exactly the coefficient of 1
r2 in Equation (1)

in Section 5.1 in the book, which first discusses the construction of solutions of
∆u = 0. Later on, when we solve ∆u+ λu = 0 with u = 0 on the boundary S2,
it is only the radial function R(r) which has to be treated differently, leading
to a Bessel type equation replacing Euler’s equation. The nonradial part of the
analysis will be exactly the same.

This is why it makes good sense to first discuss solutions of ∆u = 0, for which
the radial part is so easy, and the nonradial part so interesting. Separation of
the radial variable,

u(x, y, z) = R(r)Y (θ, φ),

shows that the nonradial part Y (θ, φ) must be an eigenfunction of ∆S2 , and
leads to Euler’s easy equation (3) with power solutions involving the parameter
µ. Recall (one of the exercises above) that, even before looking at the problem
for Y , smoothness of the solution u(x, y, z) only allows a discrete set of µ’s,
namely µ = n(n + 1) where n is (not the dimension but) an index which runs
over the nonnegative integers.

How to find the eigenfunctions Y of ∆S2? Two approaches. The first
is separation of variables. Section 9.2 in the handout gives a concise treat-
ment which parallels Chapter 5 in the book. It derives the associated Legendre
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equation with parameters n and m, separating

Y (θ, φ) = Θ(θ)Φ(φ)

to get (5) and (6) for Φ(φ) and Θ(θ). Note that not all the eigenfunctions will
be of this form, but the solutions thus obtained do provide us with a complete
basis of eigenfunctions, as is explained in the handout. The first equation (5)
is easy, the usual 1

2 , cosmφ and sinmφ for Φ(φ), but (6) is more involved. Via
s = cos θ, s between −1 and +1, it results in (12) in Section 5.1 of the book,
with µ = n(n+ 1), or the y-equation just before (3.9.5) in the handdout. This
is the Associated Legendre Equation. It can be solved using powerseries, all of
which are too bad in s = ±1 to provide smooth solutions on S2, except for the
polynomial ones, which are given, scattered through Chapter 5 in the book, by
(for m = 0) Rodrigues’ formula in Section 5.6, (3) in Section 5.3 (m = 0, . . . , n),
and just below (3), confusingly, for m = −1, . . . ,−n. Baptized as

Pmn (s),

each of these provides us with two linearly independent spherical harmonics

Y (θ, φ) = Pmn (cos θ) cosmφ and Y (θ, φ) = Pmn (cos θ) sinmφ

(except for m = 1), so that we obtain (with m = 0, . . . , n) 2n + 1 linearly
independent harmonic functions:

rnPmn (cos θ) cosmφ, rnPmn (cos θ) sinmφ,

or, in complex notation, with suitable normalizing factors, the Spherical Har-
monics in (4) of Section 5.3.

In the handout (ALE),

(ALE) (1− s2)y′′(s)− 2sy′(s) + (n(n+ 1)− m2

1− s2
)y(s)

is rewritten, setting
y(s) = (1− s2)

m
2 v(s),

ignore (3.9.5), as

(ECn,m) (1− s2)v′′ − 2(1 +m)sv′ + (n−m)(n+m+ 1)v = 0

for v(s). Here m = 0, . . . , n. See also the explanation below (5) in Section 5.7.

Exercise. Derive Equation (ECn,m).

4 12,15,19-4-10

A generating function. The polynomial solutions are, upto a constant, the
ultraspherical polynomials

C
m+ 1

2
n−m (s).

These are defined (compare Exercise 31 in Section 5.5) by

1
(1− 2sρ+ ρ2)α

=
∞∑
k=0

Cαk (s)ρk,
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where, through

α =
N − 2

2
,

α is related to the space dimension N in which

u(r, θ; ρ) =
1

dN−2
=

1

(r2 − 2ρr cos θ + ρ2)
N−2

2

is a solution of ∆u = 0, symmetric around the polar axis (say, as in the handout,
the x1-axis, but with N = 3 usually the z-axis) and singular in the point with
x1 = ρ on the positive polar axis. The polar angle θ is the angle between the
positive polar axis and the vector corresponding to a point x with length r, and
d is the distance from x to the singularity. If ρ = 1 we simply have the radial
singular harmonic function

u(r) =
1

rN−2
.

Shifting this single and very special singular solution along the polar axis we
generate all the harmonic polynomials we encountered in the separtion of vari-
ables approach by Taylor expansion, see below. It is now wonder that the role
of this single solution is fundamental. With the appropriate normalizing factor,
which makes ∆u a Dirac point mass, it is called the fundamental solution of
∆u = 0, and will appear in the construction of Green’s functions in Chapter 12,
which only treats the exceptional case N = 2, when the formula’s above break
down.

Writing the shifted solution as a power series in the parameter ρ, assuming
ρ < r, we obtain

u(r, θ; ρ) =
1

(r2 − 2ρr cos θ + ρ2)
N−2

2

=
∞∑
k=0

C
N−2

2
k (cos θ)

ρk

rN−2+k
,

where each of the terms in the sum defines a singular harmonic function. For
ρ > r (symmetry between ρ and r) we may write this solution as a power series
in r,

u(r, θ; ρ) =
1

(r2 − 2ρr cos θ + ρ2)
N−2

2

=
∞∑
k=0

C
N−2

2
k (cos θ)

rk

ρN−2+k
,

and each term is a harmonic function, which is in fact a harmonic homoge-
neous polynomial of degree k. Bonnet’s recurrence relations simply follow from
manipulations with the power series (use the one with r = 1).

Exercise. Do this for N=3, when you will recover the Legendre functions.

Tricks for solving the ODE. A direct way to solve (ECnm) is explained below.

Exercise. Differentiate Equation (ECn,m) and show that v′ satisfies (ECn,m+1).

Exercise. Solve Equation (ECn,m) for v′(s) when m = −n − 1. This gives
a simple polynomial for v′(s). Differentiating this polynomial m + n times we
obtain a solution of (ECn,m). Finally a multiplication by (1− s2)

m
2 gives, upto

a huge factor, the solution Pmn .
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Exercise. Compare the results to Section 5.6 Rodrigues formula (1) and Section
5.7 Rodrigues formula (1). Prove formula (3) in Section 5.6, Bonnet’s recurrence
relation.

Exercise. Prove the orthogonality relations of Pn (Section 5.6 Thm 1).

Exercise. Prove the orthogonality relations of Pmn (Section 5.6 Exercise 16).

Second approach for the eigenfunctions Y of ∆S2 . One can also work
directly with harmonic polynomials, see Section 9.3 and 9.4 in de handout. This
works for all dimensions. In dimension N the number of independent harmonic
polynomials of degree k is given by the number

ck,N = (2k +N − 2)!
(k +N − 3))!
k!(N − 2)!

,

which, for N = 3 gives ck = 2k+1, consistent with the numbers we found above!
The remarkable statement proved in the handout is that the homogeneous har-
monic polynomial of degree k in dimension N which is symmetric around a
(given) polar axis exists and is a multiple of the zonal harmonic function

C
N−2

2
k (cos θ)rk,

where θ is the polar angle. With ck,N rotated copies one can make a vector
basis of the homogeneous harmonic polynomial of degree k in IRN . You may
wonder, restrictiing attention to N = 3, how such a basis relates to the basis
constructed using the associated Legendre functions. The handout continues on
that theme.

Eigenfunctions of the Laplacian on ball.

A generating function for the Bessel functions Jn(r). We first recall
Theorem 2 in Section 4.9, written as, using polar coordinates in IR2,

cos y+ i sin y = eiy = eir sin θ =
∞∑

n=−∞
Jn(r)einθ =

∞∑
n=−∞

Jn(r)(cosnθ+ i sinnθ).

Note that consequently J−n(r) = (−1)nJn(r), see also Exercise 4.7.16. Each
term in the sum satisfies

∆u+ u = 0.

Bessel functions for N = 3. Recall that separation of variables for Helmholtz
equation in polar coordinates (OOPS, the book uses k where the whole world
uses λ, and then writes k = λ2)

∆u+ λ2u = 0, u(x, y) = R(r)Θ(θ),

gave (see Section 4.6. u↔ φ, λ2 ↔ k)

Θ(θ) = cosmθ and sinmθ,

and
R′′(r) +

1
r
R′(r) + (λ2 − µ

r2
)R(r) = 0, µ = m2.
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In the exercise above on Bessel’s analogue for N = 3 you found that separa-
tion of variables

u(x, y, z) = R(r)Y (θ, φ) = Θ(θ)Φ(φ)

for
∆u+ λ2u = 0

in IR3 leads to

R′′(r) +
2
r
R′(r) + (λ2 − µ

r2
)R(r) = 0, µ = m(m+ 1),

so that via
R(r) = y(x), λr = x,

(we already know that only k = λ2 > 0 allows solutions u which are zero on the
boundary of the ball), we arrive at

x2y′′(x) + 2xy′(x) + (x2 −m(m+ 1))y(x) = 0,

which, after putting

y(x) =
w(x)√
x

gives (see Section 4.8, Example 2)

x2w′′(x) + xw′(x) + (x2 − (m+
1
2

)2)w(x) = 0,

Bessel’s equation with index m+ 1
2 , and regular solution

y(x) = (
π

2x
)

1
2 Jm+ 1

2
(x) = jm(x).

As before λ has to be fitted with the zero’s of jn, giving rise to Theorem 1 in
Section 4.5. The angular part is exactly the same as for the case that λ = 0.

A generating function for N = 3? Can you think of nice analogue of the
generating function above?

Exercises from Chapter 5. Section 5.1: 1,3,4. Section 5.2 Example 2,
1,2,7,10,12. Section 5.3: 1,7. Section 5.4: 5, 9.

Finally, check the grey box properties of the Legendre function in Section 5.6,
and verify that they are consistent with

1
(1− 2sρ+ ρ2)

1
2

=
∞∑
k=0

Pk(s)ρk,

5 April 26

I explained the role of symmetry in relation to the real eigenvalues we encounter
throughout the book when we do separation of variables. This is part of Section
5.1.7 below. What follows below is part of what every math student should be
aware of. May be skipped if you already know what Hilbert spaces are, and
what the Riesz Representation Theorem says. The exercises in the sections
before Section 5.1.7 are not part of the programme for this course.
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5.1 Some functional analysis and measure theory

Functional analysis is a toolkit for solving equations in which the unknowns are
functions rather than numbers. For instance, we may want to find a function
f = f(x) such that, for every x ∈ [0, 1],

f(x)−
∫ x

0

sin(x− t)f(t)dt = cos(x).

This is an example of a linear integral equation. The left hand side defines a
function of a function, which we refer to as a (linear) functional acting on the
variable function f . In the nonlinear integral equation

f(x)−
∫ x

0

sin(x− t)f(t)2dt = cos(x),

the left hand side defines a nonlinear functional.
Most of the equations we solved in analysis and linear algebra required find-

ing a solution as a number or a finite set of numbers, which, substituted in some
given function, would make it zero, or would maximise or minimise it. Conse-
quently we learned in linear algebra and analysis all sorts of things about linear
and nonlinear functions defined on subsets of IRm and ICm, finite dimensional
vector spaces over the real or complex numbers, equipped with a natural (in-
ner product) norm. Our lifes were made easy by the fact that bounded closed
sets in IRm and ICm are compact so that bounded sequences have convergent
subsequences. Another fact taking completely for granted was the continuity of
linear functions.

In the infinite-dimensional setting needed to solve problems such as the in-
tegral equations above, we first need good normed vector spaces in which our
solutions are to be found. There are many different possibilities to assign a
norm to a function, leading to different spaces. There are many candidates for
IR∞ so to speak. It should be emphasized that in applications it is usually the
norm which appears first, and then leads to the introduction of vector space
on which the norm is well defined. This space will not be of much use unless
Cauchy sequences in this space are convergent (with, by definition, the limit
belonging to the same space). The theory of even only linear functionals is a
subtle issue in which linear algebra and analysis (epsilons and delta’s) merge.

5.1.1 Banach spaces

We begin with the concept of a (real) Banach space and related concepts.

Definition 1 Let X be a normed vector space. A sequence xn in X, indexed
by n ∈ IN , is called

convergent in X if ∃ x̄ ∈ X ∀ ε > 0 ∃N ∈ IN ∀n ≥ N ||xn − x|| ≤ ε;
Cauchy if ∀ ε > 0 ∃N ∈ IN ∀m,n ≥ N ||xn − xm|| ≤ ε.
If all Cauchy sequences in X are convergent, then X is called a complete normed
space or a Banach space. A set O ⊂ X is called open if

∀ x̄ ∈ O ∃ ε > 0 B(x̄, ε) = {x ∈ X : ||x− x̄|| < ε} ⊂ O

A set G is called closed if Gc = {x ∈ X : x 6∈ G} is open.
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The open sets thus defined form a topology: the empty set ∅ is open, X is
open, arbitrary unions of open sets are open, and finite intersections of open
sets are open. Equivalent norms on X should give the same convergent and
Cauchy sequences, and the same open sets.

Exercise 1 So how would you define two norms on X to be equivalent?

Exercise 2 Let Y be a Banach space and let X ⊂ Y be a linear subspace.
Prove that X is closed if and only if X is Banach.

If a normed space X is not complete, it can be made complete by ”adding”
to X all limits of Cauchy sequences which are not convergent in X. If X is a
subspace of some larger Banach space Y then X is complete if and only if X is
closed in Y :

Exercise 3 Let Y be a Banach space and let X ⊂ Y be a linear subspace.
Prove that X is closed if and only if X is Banach.

5.1.2 Finite-dimensional spaces

The first example of a Banach space is IRm, which has finite dimension m. Note
that the dimension of a vector space X is the supremum (possibly +∞) of all
n for which there exist n linearly independent x1, . . . , xn ∈ X, i.e.

λ1x1 + · · ·λnxn = 0 ⇒ λ1 = · · · = λn = 0

There are many norms on IRm, but they are all equivalent. This follows
from the fact that in IRm bounded closed sets are compact (equivalent: bounded
sequences have convergent subsequences):

Exercise 4 (i) Show that in every normed space the function x → ||x|| is
continuous. (ii) Assume that x1, . . . , xn ∈ X are linearly independent. Define
the map L : IRn → X by L(ξ) = L(ξ1, . . . , ξn) = ||ξ1x1 + · · · ξnxn||. Show that L
is continuous and that there exists 0 < m ≤ M <∞ such that m ≤ L(ξ) ≤ M
for all ξ = (ξ1, . . . , ξn) ∈ IRn with |ξ|2 = ξ2

1 + . . .+ ξ2
n = 1. (iii) Show by scaling

that m|ξ| ≤ L(ξ) ≤ M |ξ| for all ξ = (ξ1, . . . , ξn) ∈ IRn. (iv) Show that on a
finite-dimensional vector space all norms are equivalent. (v) Show that every
finite-dimensional normed space is complete.

Exercise 5 For a sequence xn in a Banach space X let sn = x1 + · · · + xn.
Show that the sequence sn is convergent if

∞∑
N=1

||xn|| <∞.

In view of Exercise 3 above every finite-dimensional normed space X has the
Heine-Borel property: closed bounded subsets are compact. The Heine-Borel
property characterises finite-dimensional spaces: in any infinite-dimensional
normed space it is possible, given a 0 < δ < 1, by using what is known as
Riesz’ lemma, to find a sequence xn with ||xn|| = 1 and ||xn − xm|| ≥ δ if
m 6= n. Such a sequence is bounded (it lies on the unit sphere), but cannot have
a convergent subsequence because all mutual distances are larger than δ > 0.
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5.1.3 Spaces of continuous functions

Functional analysis is (linear and nonlinear) analysis in infinite-dimensional
complete normed spaces (Banach spaces). Complete because we can hardly
prove anything if Cauchy sequences are not convergent. Functions on such
spaces are often called functionals, so as to distinguish them from the famil-
iar functions defined on subsets of IRm. Many Banach spaces consist of such
ordinary functions, for instance the space C([0, T ]) consisting of all real val-
ued continuous functions on a closed bounded interval [0, T ], also denoted as
C0([0, T ]).

Exercise 6 Prove that C([0, T ]) equipped with the maximum norm is a Ba-
nach space. Construct a bounded sequence which does not have a convergent
subsequence. Show also that

||x||2 =

(∫ T

0

|x(t)|2dt

) 1
2

defines a norm on C([0, T ]), but that with this norm the space is not complete.

C([0, T ]) is of course infinite-dimensional, but not too infinite-dimensional.
It is a separable normed space: there exists a sequence xn in X = C([0, T ])
such that every element in X is the limit of some subsequence of xn (equivalent:
there exists a countable dense subset). Non-separable spaces are to large for
man to handle and should be avoided.

Exercise 7 Let x ∈ C([0, T ]). Use the uniform continuity of x(t) on [0, T ] to
show that the (continuous) piecewise linear functions are dense in C([0, T ]) and
prove that C([0, T ]) is separable.

Existence and uniqueness results for differential equations

dx

dt
= f(x),

with f Lipschitz continuous, given some initial value x(0) = x0, are proved
using Banach’s fixed point theorem in C([0, T ]), after rewriting de ODE as an
integral equation.

5.1.4 Lebesgue spaces

The next important class of function spaces are the Lebesque spaces. Roughly
speaking Lp(Ω), where 1 ≤ p < ∞, is the space of all (Lebesque measurable)
functions u : Ω→ IR for which the p-norm

||u||p =
(∫

Ω

|u|p
) 1

p

is well-defined. In applications one restricts to Ω open and connected, with
varying smoothness assumptions on the boundary of Ω.

If ||u − v||p = 0 then u(x) = v(x) for almost every x ∈ Ω. By general
agreement u and v are then considered equivalent: we do not bother about
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modifications of u on sets of measure zero. Needless to say that whenever
possible we choose the nicest u among all functions equivalent to a particluar
measurable function.

The Lebesgue spaces need the concept of Lebesgue measure, which extends
the definition of

µ(I) = (b1 − a1) · · · (bn − an) for blocks I = [a1, b1]× · · · × [an, bn],

to a collection Λm of so-called Lebesgue measurable subsets E of IRm. We
briefly recall the essential step. The starting point is that for measurable subsets
F ⊂ IRm it should certainly be true that

F ⊂ ∪∞n=1In ⇒ µ(F ) ≤
∞∑
n=1

µ(In),

so that an obvious definition of µ(F ) would be

µ(F ) = inf
F⊂∪∞n=1In

∞∑
n=1

µ(In) ∈ [0,∞],

being the best we can do using our blocks. This definition makes sense for every
subset F ⊂ IRm, and obviously one has

∀E,F ⊂ IRm µ(F ) ≤ µ(F ∩ E) + µ(F ∩ Ec),

but it is impossible to prove that this statement remains true when ≤ is replaced
by =, as one would expect or hope.

The Lebesgue measurable subsets E ⊂ IRm are precisely those subsets E
with

∀F ⊂ IRm µ(F ) = µ(F ∩ E) + µ(F ∩ Ec)

(cutting a loaf of bread F with E does not miraculously increase the amount
of bread....). In fact it is sufficient to check that equality holds for all blocks F .
The collection Λm and the map µ : Λm → [0,∞] allow all countable operations
one could reasonably expect to be allowed.

Remark. For the construction of nonmeasurable subsets one needs Zorn’s
lemma (⇔ Axiom of choice, uncountable version), which goes beyond the ability
of mortal man. Thus for all practical purposes, all subsets of IRm we encounter
in daily life of applicable math are measurable, at least as long as we resist the
temptation of Zorn.

Integrals are defined by approximation with measurable stepfunctions (linear
combinations of characteristic function of measurable sets). Each f ∈ L1(IRN )
may be approximated in L1-norm with a sequence of compactly supported
smooth functions. In other words, the compactly supported smooth functions
are dense in L1(IRN ). The same statement holds in Lp(Ω), where 1 ≤ p < ∞
and Ω ⊂ IRN is open.

5.1.5 Hilbert space theory

Banach spaces in which the norm comes from an inner product are called Hilbert
spaces. A fundamental theorem for Hilbert spaces is:

12



Theorem 1 Let H be a Hilbert space and K ⊂ H a closed convex subset. For
every point x ∈ H there exists a unique point u ∈ K which is closer to x than
any other point of K. The point u ∈ K is called the projection of x on K,
denoted by u = PKx. An important special case is that of K being a linear
subspace of H.

The proof takes a minimizing sequence un and uses the parallellogram law
to show that this sequence is Cauchy. In fact:

Exercise 8 Prove that ||PKx1 − PKx2|| ≤ ||x1 − x2|| for all x1, x2 ∈ H. Note
that in general PK is not a linear map.

Finite-dimensional Hilbert spaces can, as far as their Hilbert space struc-
ture is concerned, be identified with IRm, whereas every separable infinite-
dimensional Hilbert space can be identified with the standard Hilbert space

l2 = {x = (x1, x2, x3, . . .) : ||x||22 =
∞∑
i=1

|xi|2 <∞}.

It is easy to see that the unit ball in l2 is not compact, because the unit basis
vectors form a sequence which is bounded, while all mutual distances equal

√
2.

There is another remarkable difference between l2 and IRm, as the following
nontrivial exercise shows.

Exercise 9 Show there exists a continuous map from the closed unit ball in l2

to the closed unit sphere which leaves the sphere pointwise invariant (goodbye
Brouwer).

5.1.6 Compact linear maps

We need the following theorem and the notion of compactness for an operator.

Theorem 2 Let X and Y be normed spaces. For a linear map A : X → Y
continuity in any point is equivalent to

||A||op = sup{||Ax||Y : ||x||X ≤ 1} <∞.

This property of a linear map A is often called boundedness of A: bounded on
the unit ball (on all balls in fact), but not on X of course. Note that then also
||Ax1 −Ax2||Y ≤ ||A||op ||x1 − x2||X for all x1, x2 ∈ X.

A special case is Y = IR. The vector space X∗ consisting of all continuous
linear F : X → IR is denoted by X∗ and

||F || = sup{|Fx| : ||x||X ≤ 1}

defines a norm on X∗. This dual space X∗ can be quite different from X.
However: the Riesz representation theorem states that the continous linear
real valued functions F on a Hilbert space are precisely the functions x→ (x, y),
and that the norm of F equals the norm of the corresponding y. So, as normed
vector spaces, H and H∗ may be identified.

13



Also as a consequence of Riesz the closed hyperplanes in H are precisely the
sets of the form

{x ∈ H : (x, y) = c} y ∈ H, c ∈ IR,

just as in IRn. The proof of Riesz’ representation theorem relies on the projection
theorem above.

We say that A : X → Y is called compact if the image sequence of any
bounded sequence in X always has a convergent subsequence in Y .

Exercise 10 Show that A compact and linear implies A continuous. To avoid
confusion assume that Y is Banach.

The strikingly easily proved Hilbert-Schmidt theorem (look it up, or see
Section 5.3 below) states that in a Hilbert space H every compact symmet-
ric (i.e. (Ax, y) = (x,Ay) for all x, y ∈ H) linear operator A : H → H
comes with a basis of eigenvectors corresponding to a sequence of real
eigenvalues which converge to zero . This statement generalises the corre-
sponding theorem for symmetric matrices.

Linear differential operators in ODE and PDE applications are never con-
tinuous from a (subspace of a) normed space X into itself. Such operators are
called unbounded. In avoiding these unbounded operators and still solve PDE’s
the next section is crucial.

5.1.7 General framework for eigenvalue problems

The framework below applies to many examples in the book.

Let H and V be Hilbert spaces such that V ⊂ H. The inner product on H
is denoted by single brackets, the inner product on V by double brackets. We
shall write

(u, u) = |u|2 for u ∈ H and ((u, u)) = ||u||2 for u ∈ V

Throughout this subsection we assume that V is dense in H, and that V is
compactly embedded in H, meaning that the inclusion map i : V → H defined
by i(x) = x is compact (and thus also bounded).

(i) Let f ∈ H. Then v → (f, v) defines a continous linear IR-valued map not
only on H but also on V , by composing it with i : V → H:

v ∈ V → v ∈ H → (f, v) ∈ IR.

Thus (for free!) there exists a unique u ∈ V such that ((u, v)) = (f, v) for all
v ∈ V . Denote u = Af . It is easy to show (do it!) that

(ii) A : H → V is injective.

(iii) A : H → H is linear, symmetric and compact.

(iv) A : V → V is linear, symmetric and compact.

(v) A : H → H is positive, i.e. (Af, f) > 0 if f 6= 0.

(vi) A : V → V is positive, i.e. ((Af, f)) > 0 if f 6= 0.
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By the Hilbert-Schmidt theorem:

(vii) H has an orthonormal basis {φ1, φ2, . . .} of eigenvectors of A corresponding
to positive eigenvalues λ1 ≥ λ2 ≥ λ3 ≥ · · · , with λn → 0 as n→∞, where

λ1 = max
f∈H

(Af, f)
(f, f)

and, more generally, for n > 1,

λn = max
f∈H,(f,φ1)=···=(f,φn−1)=0

(Af, f)
(f, f)

(viii) V also has an orthonormal basis {ψ1, ψ2, . . .} of eigenvectors of A, which
are multiples of {φ1, φ2, . . .}.

Exercise 11 What are these multiples? What are the corresponding eigenvalue
formula’s for A : V → V ? Evaluate these formula’s in terms of norms only, i.e.
without A appearing in the formula’s. Hint: use the definition of A.

Let

H = L2(0, 1) = {f : (0, 1)→ IR | f is measurable,
∫ 1

0

f2 <∞},

equipped with the inner product (f, g) =
∫ 1

0
fg. We say that g ∈ L1

loc(0, 1)
(locally integrable functions) is a weak derivative of f if∫ 1

0

gv = −
∫ 1

0

fv′

for all v ∈ C1([0, 1]) with v(0) = v(1) = 0. One can show that g is unique if it
exists, and that f(x)− f(y) =

∫ x
y
g for all 0 < y < x < 1. We write g = f ′. On

V = {f ∈ C([0, 1]) | f(0) = f(1) = 0, f ′ exists, f ′ ∈ L2(0, 1)}

we take the inner product ((f, g)) =
∫ 1

0
f ′g′.

Exercise 12 Now let f ∈ C([0, 1]) and suppose that we look for u ∈ C2([0, 1])
with −u′′ = f and u(0) = u(1) = 0. This boundary value problem can be
solved by means of direct integration and the appropriate choice of integration
constants. Show that u = Af , with A as above. In other words, with the
operator A we solve this boundary value problem. What are the eigenfunctions
and eigenvalues of A?

Exercise 13 The λ’s thus obtained correspond to the reciprocals of the λ’s in
Chapter 6. In particular, Equation (1) on page 333 should be considered with
y replaced by u, λy replaced by f , q replaced by −q so as to get

−(p(x)u′(x))′ + q(x)u(x) = r(x)f(x).

Take boundary conditions u(a) = u(b) = 0. Multiply by a smooth v(x) with
v(a) = v(b) = 0. Show that for p and r continuous and positive, and q continuous
and nonnegative, the approach above works: what do you you use for (·, ·) and
((·, ·))? Relate the eigenvalues λ in Equation (1) on page 333 to the eigenvalues
above. You should get something which involves maximizing or minimizing the
quotient of ∫

ru2 and
∫
pu′2 + qu2.
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5.2 Homework set 3

Hand in May 10 during before the course

1. Section 5.5, Exercise 25 (Reduction of order, this exercise show that only
the polynomial solutions appear in the spherical harmonics).

2. Section 5.5, Exercise 31, the first one, also: 31(c) Derive Bonnet’s recur-
rence formula (3) on Page 309 directly from 31(b) by differentiating the
power series.

3. For every continuous f : [0, 1] → IR the unique solution u : [0, 1] → IR
of −u′′(x) = f(x) with u(0) = u(1) = 0 can be computed directly. Show
that

u(x) =
∫ 1

0

G(x, y)f(y)dy,

with G(x, y) = x(1−y) for 0 ≤ x ≤ y and G(x, y) = y(1−x) for y ≤ x ≤ 1
or so.

4. For every continuous compactly supported f : IR → IR (i.e. f(x) = 0
outside some bounded interval) the unique bounded solution u : IR → IR
of −u′′(x) + u(x) = f(x) is given by a formula of the form

u(x) =
∫ ∞
−∞

G(x, y)f(y)dy.

Determine G(x, y). Hint use varation of variables

u(x) = A(x)ex +B(x)e−x,

etc.

5.3 Extra: symmetric linear maps and quadratic forms

Let H be a Hilbert space and A : H → H linear. Then continuity of A is
equivalent to

||A|| = sup{||Ax|| : ||x|| ≤ 1} <∞.

The quadratic form
Q(x) = (Ax, x)

has the property that

M = sup{|Q(x)| : ||x|| ≤ 1} ≤ ||A||,

since |Q(x)| = |(Ax, x)| ≤ ||Ax|| ||x|| ≤ ||A|| ||x|| ||x||. In fact:

Theorem 3 If A is linear, continuous and symmetric (i.e. (Ax, y) = (x,Ay))
then M = ||A||.

We remark that if H is a Hilbert space and A : H → H is linear and
symmetric (i.e. (Ax, y) = (x,Ay)), then the Hellinger-Toeplitz theorem asserts
that A is continuous. This relies on the concept of weak topologies and will not
be treated here.
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Exercise 14 Proof this theorem by showing that ||A|| ≤M . Hint: use

4(Ax, y) = (A(x+ y), x+ y)− (A(x− y), x− y),

|(A(x± y), x± y)| ≤ ||A|| ||x± y||2,

||x+ y||2 + ||x− y||2 = 2||x||2 + 2||y||2,

and put y = Ax/||Ax|| with ||x|| ≤ 1 to conclude.

The key point is that any x ∈ H with ||x|| = 1 wich realizes M is an
eigenvector with eigenvalue ±M . This can be proved by copying the proof of
this statement for the case that H = IR2 and A is a symmetric 2x2 matrix. To
prove that such x always exists we need extra information.

Theorem 4 If A is linear, compact and symmetric then M is achieved (and
thus A has an eigenvector).

To prove this theorem choose a sequence xn with ||xn|| = 1 and Q(xn) →
±M . Without loss of generality we assume that Q(xn)→ +M . The definition
of A being compact states that if xn is bounded then the sequence Axn has a
convergent subsequence. Thus we may choose our sequence in such a way that
Axn converges. We claim that consequently also xn converges (to a limit which
realizes M). This follows from

Axn − ||A||xn → 0,

which we infer from

0 ≤ ||(Axn − ||A||xn||)||2 = (Axn − ||A||xn, Axn − ||A||xn) =

||Axn||2 − 2||A||(Axn, xn) + ||A||2||xn||2,

in which the first term is less then ||A||2 = M2, the third term equals ||A||2 =
M2, and the middle term converges to −2||A||M = −M2.

In particular, if A : H → H is linear, compact, symmetric and positive
(meaning (Ax, x) > 0 for nonzero x) then

λ1 = sup
||x||≤1

(Ax, x) = max
||x||≤1

(Ax, x)

is a postive eigenvalue. The argument may then be repeated for A : H1 → H1,
where H1 is the subspace of vectors orthogornal to the corresponing eigenvector.
This produces a nonincreasing sequence of positive eigenvalues λn with mutually
orthogornal (unit) eigenvectors. The compactness of A implies that λn → 0
(why?). The eigenvectors thus obtained form a Hilbert basis of H.

5.4 Green’s function for the Laplacian on a ball

The Gauss divergence theorem says that for Ω ⊂ IRN bounded and open with
continuously differentiable boundary ∂Ω and V : Ω̄ → IRN continuously differ-
entiable, ∫

Ω

∇ · V =
∫
∂Ω

V · n,
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where n is the outward unit normal on ∂Ω. Note that n = n(x). In the integral
on the left we dropped the usual dx = dx1 . . . dxN from the notation, and in
the integral on the right we did not write the usual dS or dS(x). So take care
what the integration variable is, because below we’ll have x and y. I will try to
be consistent and stick to x as integration variable(s).

With V = u∇v this becomes∫
Ω

(∇u · ∇v + u∆v) =
∫
∂Ω

u
∂v

∂n
,

from which, interchanging u and v and subtracting, we get∫
Ω

(u∆v − v∆u) =
∫
∂Ω

(u
∂v

∂n
− v ∂u

∂n
),

the two Green’s formulas. These formula’s do not directly apply to the radially
symmetric function defined by (with some abuse of notation)

Γ(x) = Γ(|x|) = Γ(r), Γ′(r) = − 1
|∂Br|

,

where |∂Br| is the measure of the N -dimensional sphere with radius r, and Γ(r)
is the primitive of Γ(r) (take the integration constant such that Γ(∞) = 0 if
N ≥ 3, Γ(r) = − 1

2π log r for N = 2, Γ(r) = − r2 for N = 1), but applying
Green’s formula with u = Γ and v = 1 on Ω = BR(0) gives∫

BR(0)

∆Γ =
∫
∂BR(0)

Γ′(R) = −
∫
∂BR(0)

1
|∂BR(0)|

= −1,

while ∆Γ = 0 outside the origin. Apparently

−∆Γ = δ,

where δ is a unit point mass Dirac ”function” located at the origin. Whatever
that means, we have in fact that, provided 0 ∈ Ω, Ω nice as above, for C2-
functions ψ : Ω̄→ IR, that

ψ(0) =
∫
∂Ω

(Γ
∂ψ

∂n
− ψ∂Γ

∂n
)−

∫
Ω

Γ∆ψ,

the latter integral being ”improper” in the origin.

Exercise 15 Apply Green’s formula to Ω with a small ball Bε(0) cut out and
take the limit ε→ 0 to prove this formula.

Next, write, with more abuse of notation,

Γ(x, y) = Γ(x− y).

Then, provided u ∈ Ω, and replacing ψ by u,

u(y) =
∫
∂Ω

(Γ(x, y)
∂u(x)
∂n

− u(x)
∂Γ(x, y)
∂n

)dS(x)−
∫

Ω

Γ(x, y)∆u(x),

which is called Green’s representation formula.
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Since, for any C2-function h(x, y) which is harmonic in x,

0 =
∫
∂Ω

(h(x, y)
∂u(x)
∂n

− u(x)
∂h(x, y)
∂n

)dS(x)−
∫

Ω

h(x, y)∆u(x),

we have,

u(y) = −
∫
∂Ω

(u(x)
∂G(x, y)
∂n

)dS(x)−
∫

Ω

G(x, y)∆u(x),

provided also

G(x, y) = Γ(x, y) + h(x, y) = 0 for x ∈ ∂Ω.

The art is to find such a function h(x, y). Once this is done, we can express
u inside Ω in terms of its values on the boundary and its Laplacian inside the
domain.

Finding h(x, y) in closed form is easy for the case that Ω = BR(0). For
y ∈ BR(0) define

ȳ =
R2

|y|2
y,

the mirror image of y under reflection in the sphere ∂BR(0). The, irrespective
of y, we have

∂BR(0) = {x ∈ IRN : |x− y| = |y|
R
|x− ȳ|},

so that

h(x, y) = −Γ(
|y|
R
|x− ȳ|)

does the job, i.e.

G(x, y) = Γ(|x− y|)− Γ(
|y|
R
|x− ȳ|).

Exercise 16 Show that for G(x, y) and BR(0) as above,

∂G(x, y)
∂n

= − R2 − |y|2

R|∂B1(0)| |x− y|N
,

and relate this to Theorem 2 on Page 642. It will be convenient to write r =
|x− y|, r̄ = |x− ȳ| and use (check) that

∂r

∂xi
=
xi − yi
r

⇒ ∂r

∂n
=

N∑
i=1

xi
R

xi − yi
r

,

and likewise for r̄.

5.5 Mean value properties for harmonic functions

Let Ω ⊂ IRN be open and u : Ω→ IR twice continuously differentiable. Starting
with the Gauss divergence theorem applied to a ball

B̄r(x0) = {x ∈ IRN : |x− x0| ≤ r} ⊂ Ω,
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we have ∫
|x−x0|≤r

∆u dx =
∫
|x−x0|=r

∂u

∂n
dS(x) =

(write x = x0 + rξ, express the normal derivative as r-derivative and change
integration variable to ξ)

rN−1

∫
|ξ|=1

∂

∂r
u(x0 + rξ) dS(ξ) = rN−1 d

dr

∫
|ξ|=1

u(x0 + rξ) dS(ξ),

by interchanging integration and r-differentiation. Thus

d

dr

∫
|ξ|=1

u(x0 + rξ) dS(ξ) =
1

rN−1

∫
|x−x0|≤r

∆u dx.

This says that the average value of u(x) on a sphere |x− x0| = r changes
with r according to the integral of ∆u. If u is harmonic then this
average value does not change with r! Clearly the average goes to u(x0)
if r → 0. Conclusion: harmonic functions have the mean value property
that in every point they coincide with their averages over spheres
(and balls) centered in this point. Of course this only holds for radii
smaller than the radius of the largest such open ball contained in the domain.

Exercise 17 A twice continuously differentiable function u : Ω → IR is called
subharmonic if ∆u ≥ 0 in Ω. Show that in every point x0 ∈ Ω the value u(x0) is
less or equal than its local averages over closed balls B̄r(x0) ⊂ Ω. If a continuous
function u : Ω→ IR with this propery has a point x0 for which

u(x0) ≥ u(x) ∀x ∈ Ω

then, provided Ω ⊂ IRN is also connected, u(x) is constant in Ω. Prove this by
showing that in such a case {x ∈ Ω : u(x) = u(x0)} is both open and closed.

Exercise 18 A continuous function u : Ω → IR with the mean value property
is harmonic: it is twice continuously differentiable and satisfies ∆u = 0 in Ω.
Prove this by taking a fixed but arbitrary closed ball in Ω, apply Poisson’s
integral formula to construct a function U which is continuous on the closed
ball, harmonic inside, and coincides with U on the boundary of the ball, and
then apply the previous exercise to show that u and U coincide on the ball.
Remark: since the Poisson integral formula allows differentiation under the
integral the first order derivatives of u are also continuous and harmonic. Hence
all derivatives of u are continuous and harmonic.

Exercise 19 Show that orthogornal transformations leave harmonic functions
harmonic.

Exercise 20 Show the divergence theorem implies that for Ω ⊂ IRN bounded
and open with continuously differentiable boundary ∂Ω and u : Ω̄→ IR contin-
uously differentiable, ∫

Ω

∇u =
∫
∂Ω

un,

where n is the outward unit normal on ∂Ω. Both integrals are vectorvalued
integrals. Hint: apply Gauss to V = uei where ei is the i-th standard basis
vector.
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Exercise 21 Use the previous exercise to show

|∇u(x0)| ≤ N

ρ
|u(x0)|

if u : Ω→ IR is nonnegative and harmonic and B̄ρ(x0) ⊂ Ω where ρ > 0.

Exercise 22 Show that a bounded harmonic function u : IRN → IR is constant.

Exercise 23 Show that a bounded sequence of harmonic functions un : Ω→ IR
is equicontinuous on

Ωρ = {x ∈ Ω : B̄ρ(x) ⊂ Ω.

Thus we can take a subsequence which converges uniformly on every compact
subset K ⊂ Ω. Show this and that the limit function is also harmonic.

Exercise 24 Let u : Ω → [0,∞) be harmonic, ρ > 0, Ωρ as above and x ∈
Ωρ, y ∈ Ω2ρ with |x − y| ≤ ρ. Use the mean value property of u on B̄ρ(x) and
B̄2ρ(y) to show that u(x) ≤ 2Nu(y).

Exercise 25 Use the previous exercise to show that for all bounded open Ω ⊂
IRN there exists a constant C which depends only on Ω and ρ such that

max
Ω

u ≤ C min
Ω
u

for all harmonic u : Ω→ [0,∞).

6 Delta-functions and Green’s functions

The basic idea to present here is that (partial) differential equations (P)DE’s
of the form Lu = f , f : Ω → IR given, u : Ω → IR to be found, satisfying the
(P)DE as well as appropriate boundary conditions (BC’s), can besolved by first
solving the (P)DE with f replaced by a point mass in arbitrary point y ∈ Ω.
Just as we may sometimes write a function f as f(·), meaning that we can put
something on the position of the dot, the informal notation for a point mass in
y is

δ(· − y).

In IR3 you should think of
x→ δ(x− y)

as the mass distribution or density (which depends on the variable x) of a point
mass located in y. The Dirac delta-function is not a actually a mathematical
function. The theory of distributions developes the approriate formalism in
which the physically “obvious” formula

f(x) =
∫

Ω

δ(x− y)f(y)dy (6.1)

is also mathematically correct.
Denoting by x → G(x, y) the solution of Lu = δ(· − y) which satisfies the

BC’s, the solution formula

u(x) =
∫

Ω

G(x, y)f(y)dy
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does make sense without this formalism, as we shall discuss a bit below. Note
that this presentation has the x as variable in u, and the y as integration vari-
able in the decomposition of both u and f . In the Green’s function approach
leading to Poisson’s integral formula the roles of x and y were the other way
around. This is only because we chose to start with integrals in which x was
the integration variable. Note that we may interchange the role of x and y if
we like, but have to be careful not to get confused.

6.1 Dirac delta-functions in one variable

Let δn : IR→ IR be a sequence of smooth nonnegative even functions with

δn(x) = 0 for |x| ≥ 1
n
,

∫ ∞
−∞

δn(x)dx =
∫ 1

n

− 1
n

δn(x)dx = 1. (6.2)

It should be clear that we want to think of the limit

δ = lim
n→∞

δn

as an object which has a meaning, but that “functions” are not the appropriate
concept to be used here. Note that for any ε > 0 the function δn has the
property that

δn(x) = 0 for |x| ≥ ε and
∫ ε

−ε
δn(x)dx = 1 if n ≥ 1

ε
,

so there is a real motivation to want to say that the limit object should satisfy

δ(x) = 0 for |x| 6= 0 and
∫ 0+

0−
δ(x)dx = 1. (6.3)

Before continuing we observe that (6.1) makes sense for any continuous function
f : IR→ IR as a limit case.

Exercise 26 Let f : IR→ IR be continuous and δn : IR→ IR be a sequence of
smooth nonnegative functions satisfying (6.2).

1. Define
Hn(x) =

∫ x

−∞
δn(y)dy,

and show that Hn(0) = 1
2 , Hn(x) = 0 for x < − 1

n , Hn(x) = 1 for
x > 1

n , whence H = limn→∞Hn can be defined as function. It is called
the Heavide function. Reflect a moment on the relevance of H(0) = 1

2
and note that it makes sense to think of H as a primitive function of the
delta-“function”.

2. Accept for a fact that thus H(x− y) is a primitive function of δ(x− y).

3. Define
fn(x) =

∫ ∞
−∞

δn(x− y)f(y)dy

Prove that fn(x)→ f(x) as n→∞. Why is the convergence uniform on
bounded x-intervals?
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Exercise 27 Now assume that f : IR → IR is piecewise continuous, with only
finitely many points of discontinuity on every bounded interval, and that in each
such point the left and right limits exist. Prove that fn(x)→ 1

2 (f(x−) +f(x+))
in every x ∈ IR.

6.2 Green’s functions in one variable

We consider differential operators L of the form

L =
dn

dxn
+ an−1(x)

dn−1

dxn−1
+ · · ·+ a1(x)

d

dx
+ a0(x),

meaning that for n times differentiable functions u = u(x):

(Lu)(x) = u(n)(x) + an−1(x)u(n−1)(x) + · · ·+ a1(x)u′(x) + a0(x)u(x),

or, for short,
Lu = u(n) + an−1u

(n−1) + · · ·+ a1u
′ + a0u,

Note and accept the bad notation with x, a consequence of us not liking to write
D instead of d

dx . As already indicated, we want to solve

(Lu)(x) = u(n)(x)+an−1(x)u(n−1)(x)+ · · ·+a1(x)u′(x)+a0(x)u(x) = δ(x−y),

in order to solve Lu = f .

6.2.1 2nd order problems on a bounded interval

Exercise 28 Take Lu = u′′, y = 0. Accepting (6.3) show that Lu = u′′ = δ
must imply

u′ = C− for x < 0, u′ = C+ for x > 0, C+ − C− = 1,

and solve, for fixed but arbitrary 0 < y < 1,

u′′(x) = δ(x− y), u(0) = u(1) = 0.

Denote the solution by u(x) = G(x, y). Observe how this solution consists of 2
parts: a function defined for x < y which solves Lu = 0 on the left and satisfies
the left boundary condition u(0) = 0, and a function defined for x < y which
solves Lu = 0 on the right and satisfies the right boundary condition u(1) = 0.
In other words, a part which has the properties demanded to the left
of y, and a part which has the properties demanded to the right of y,
coinciding in y with a jump equal to 1 in the first derivative.

Exercise 29 Look at the previous exercise and at exercise 3 of the third home
work set in Section 5.2 above and observe that the G(x, y) just computed agrees
with the G(x, y) there, except for a minus sign. You have now verified that
u′′ = f with u(0) = u(1) = 0 is solved by

u(x) =
∫ 1

0

(G(x, y)f(y)dy.

The function G(x, y) is called the Green’s function for u′′ = f with boundary
conditions u(0) = u(1) = 0.
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Exercise 30 Using the explanation in Exercise 28 find the Green’s function for
u′′ = f with boundary conditions u(0) = u′(1) = 0.

Exercise 31 Can you find a Green’s function for u′′ = f with boundary con-
ditions u′(0) = u′(1) = 0?

Next we consider a first example where we cannot solve Lu = f by just taking
two primitives, and solve Lu(x) = δ(x−y) with the given BC’s to obtain G(x, y).

Exercise 32 To find the Greens’ function for u′′ − u′ = f with boundary con-
ditions u(0) = u′(1) = 0, take 0 < y < 1 fixed.

• solve u′′(x)− u′(x) = 0 with u(0) = 0 for x < y.

• solve u′′(x)− u′(x) = 0 with u′(1) = 0 for x > y.

• what should the jumps in u and u′ be?

• use the two free constants to get the jumps right.

The resulting two functions together form the Greens’ function G(x, y). It is
the (unique) solution of u′′(x)− u′(x) = δ(x− y) with u(0) = u′(1) = 0.

We have not yet defined what this really means, nor will we do so. Observe
though that, denoting the solution by u(x) and not by G(x, y), the lower order
term u′(x) is piecewise continuous. It has no contribution if we integrate it from
y−ε to y+ε and take the limit ε→ 0, whereas both u′′(x) and δ(x−y) (must/will)
do. If we accept that the primitive of u′′(x) is u′(x) and the primitive of δ(x−y)
is H(x− y), both u′′(x) and δ(x− y) have in fact exactly the same contribution
if we integrate from y − ε to y + ε and take the limit ε → 0. The upshot of
this reasoning is that the lower order term u′ does/should not matter for the
procedure to determine the Green’s function. For any second order problem of
the form u′′(x) + a(x)u′(x) + b(x)u(x) = f(x) with a zero-boundary condition
on the left and a zero boundary condition on the right may or may not admit
a Green’s function obtained as in Exercise 32. In Exercise 31 the method does
not work.

Exercise 33 See what goes wrong if you try to find a Green’s function for
u′′ + u = f with boundary conditions u(0) = u(π) = 0 following the method
outlined in Exercise 32. Observe that the solutions on the left and the right
have a nontrivial joint solution. In other words, u′′ + u = 0 with boundary
conditions u(0) = u(π) = 0 has a non-trivial solution.

Exercise 34 Convince yourself of the fact that the problem u′′(x)+a(x)u′(x)+
b(x)u(x) = f(x) with u(0) = u(1) = 0 has a Green’s function if and only if
u′′(x) + a(x)u′(x) + b(x)u(x) = 0 with u(0) = u(1) = 0 has no non-trivial
solution.

Exercise 35 Compute a Green’s function for u′′ + u = f with boundary con-
dition u(0) = u(L) = 0 for 0 < L < π.
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6.2.2 Green’s functions on IR

If we solve equations of the form Lu = f on the whole of IR there are no bound-
aries and no boundary conditions. How should we identify a unique solution?
Informally speaking, we can expect to have to demand that u(x) (and possibly
derivatives) is (are) well-behaved as x→ ±∞. In many physical problems this
can only mean: not too large.

Surely the answer will also depend on the assumptions we put on f . In
addition to f being continous we will have to put some assumptions on f(x)
concerning its behaviour as x→ ±∞. However, if we go for a Green’s function
approach, we start by solving Lu = δ(·−y), and the behaviour of this particular
right hand side as x→ ±∞ is of no consideration at all. Thus we simply ignore
f and proceed with trying to identify a solution of Lu = δ(·−y) which is unique
in having a property not shared by the other solutions of Lu = δ(· − y). Note
that there may be different properties which do the trick.

Exercise 4 of the third home work set in Section 5.2 above is illuminating.
We will examine the difference between solving u′′ = f on IR and u′′ − u = f
on IR. In both cases there are two free constants in the general solution to get
rid of. By the reasoning above we should first look at the difference between
solving

u′′(x)− u(x) = δ(x− y)

and
u′′(x) = δ(x− y).

Note how, in both cases, we first end up with considering solutions of the ho-
mogeneous equation!

Exercise 36 Which solutions of u′′ − u = 0 have exceptional behaviour as
x→ −∞ and which solutions have exceptional behaviour as x→∞? Use these
solutions to construct a (unique) solution u(x) = G(x, y) of u′′(x) − u(x) =
δ(x− y) which has the exceptional behaviour (that it goes to zero) as x→ −∞
and as x→∞. Hint: first take y = 0 and determine G(x, 0). Afterwards show
that G(x, y) = G(x−y) (and observe that this nice reduction is possible because
there are no x-dependent coefficients in the equation.

Exercise 37 Mimic the approach above for u′′(x) = δ(x − y) and observe it
fails.

Exercise 38 If you want to solve u′′(x)+au′(x)+bu(x) = f(x) using a Green’s
function which is bounded, what is the condition on a and b that you need?

6.2.3 Green’s functions for higher order problems

Solving

(Lu)(x) = u(n)(x) + an−1(x)u(n−1)(x) + · · ·+ a1(x)u′(x) + a0(x)u(x) = δ(x− y)

requires solving

Lu = u(n) + an−1u
(n−1) + · · ·+ a1u

′ + a0u = 0

for x < y and for x > y. We first examine the case that y = 0. Denote a
solution defined for x ≤ 0 by u−(x) and a solution defined for x ≥ 0 by u+(x).
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The matching conditions in 0 which allow to combine u−(x) and u+(x) into a
solution of

Lu = u(n) + an−1u
(n−1) + · · ·+ a1u

′ + a0u = δ

are the jump condition

u
(n−1)
+ (0) = u

(n−1)
− (0) + 1,

and the (zero) jump conditions

u+(0) = u−(0), u′+(0) = u′−(0), u′′+(0) = u′′−(0), . . . , u(n−2)
+ (0) = u

(n−2)
− (0).

Exercise 39 Find a Green’s function for u′′′(x) = f(x) with boundary condi-
tion u(0) = u′(0) = u(1) = 0.

Exercise 40 Find a Green’s function for u′′′(x) = f(x) with boundary condi-
tion u(0) = u′(0) = u′(1) = 0.

Exercise 41 Is there a Green’s function for u′′′(x) = f(x) with boundary con-
dition u(0) = u′(0) = u′′(1) = 0?

Exercise 42 If possible find a Green’s function for u′′′(x) = f(x) with u(0) =
u′′(0) = u′(1) = 0.

Exercise 43 Find a Green’s function for u′′′′(x) = f(x) with boundary condi-
tion u(0) = u′(0) = u(1) = u′(1) = 0.

Exercise 44 If possible find a Green’s function for u′′′′(x) = f(x) with u(0) =
u′′′(0) = u′(1) = u′′(1) = 0.

Exercise 45 If possible find a bounded Green’s function for u′′′′+u(x) = f(x)
on IR.
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