
Additional material for Chapter 4, Hamilton-Jacobi theory

Chapter 4 concerns the equation

Is +H(s, q, Iq) = 0, (1)

which is split as
Is +H(s, q, p) = 0, p = Iq.

Differentiating (1) with respect to q we get

Isq +Hq +HpIqq = 0

Consider q = q(s) as unknown function of s and define p(s) = Iq(s, q(s)) and
z(s) = I(s, q(s)). If we demand that q̇ = Hp along the curve s → (q(s), p(s)),
then

ṗ =
dp

ds
= Iqs(s, q(s))︸ ︷︷ ︸
−Hq−HpIqq

+Iqq(s, q(s))q̇(s) = −Hq+(q̇ −Hp︸ ︷︷ ︸
0

)Iqq and ż = Is + Iq q̇︸ ︷︷ ︸
−H+pHp

.

So
q̇ = Hp, ṗ = −Hq, ż = −H + pHp,

in which H = H(s, q(s), p(s)). Chapter 4 shows, among other things, how
solutions of q̇ = Hp, ṗ = −Hq define solutions of (1) by considering the integral
I(q, s) below, starting from the standard Lagrangian integral

I =
∫
L(t, x(t), ẋ(t)dt

over some bounded time interval which will be renamed later. I am skipping
indices for x and ẋ throughout these notes. It is a minimal typographical oper-
ation to put them in later.

What was F and u before in Chapter 1 is now L and x, and p will be neither
u̇ nor ẋ: the letter p will be used for

p =
δL

δẋ
= Lẋ, L = L(t, x, ẋ), H(t, x, p) = pẋ− L(t, x, ẋ),

in which ẋ is a symbol for now. Invertibility of the (t, x)-dependent transforma-
tion ẋ→ p corresponds to

L(t, x, ẋ) +H(t, x, p) = pẋ with p = Lẋ ⇐⇒ ẋ = Hp and Lx +Hx = 0.

Exercise 1. Assuming that L is C2 with Lxx invertible: prove these equalities
without making obvious mistakes, and show that the Lagrangian equations

d

dt
Lẋ = Lx (i.e.

d

dt
Lẋ(t, x(t), ẋ(t) = Lx(t, x(t), ẋ(t)) )

are equivalent to the Hamiltonian equations

ẋ = Hp; ṗ = −Hx (i.e. ẋ(t) = Hp(x(t), p(t)); ṗ(t) = −Hx(x(t), p(t)) ).

Distinguish carefully between symbols x, ẋ, p and functions x(t), ẋ(t), p(t), be-
tween partial and total derivatives, and show that Ḣ = Ht. Generalize to
x, ẋ, p ∈ Rn.
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Exercise 2. In a more general setting, with L = L(y) (think of y = ẋ), if
Ω ⊂ Rn is convex and open, and if L ∈ Ck(Ω) with k ≥ 2 has a matrix
of second derivatives which is positive definite throughout Ω (in other words:
Lyy > 0), then the map

φ : y → p = Ly ∈ Rn

is locally a Ck−1 diffeomorphism, as a direct consequence of the inverse function
theorem.

• Prove that φ is injective. Hint: assume first that 0 ∈ Ω and φ(0) = 0 and
examine φ(y) =

∫ 1

0
d
dtφ(ty) dt and y · φ(y).

• Prove that Ω∗ = φ(Ω) is open.

• Thus the inverse map ψ : p ∈ Ω∗ → y ∈ Ω exists and is Ck−1. Define
L∗(p) = p · y − L(y). Prove that L∗ : Ω∗ → R is Ck with L∗pp > 0. Hint:
show that the first order derivatives of ψ and φ have the same smoothness.

• Prove that y = ψ(p) globally maximizes p · y − L(y). Thus

L∗(p) = max
y∈Ω

p · y − L(y),

which is usually called the Legendre transform of L.

• Explain why p · y ≤ L(y) + L∗(p) with equality only if p = φ(y) = Ly.

• Assume that Ω∗ is convex. Show that (L∗)∗ = L. Hint: use the symmetry
above.

• Example: let 1 < s < ∞ and L(y) = 1
s |y|

s. Determine L∗(p). Hint: we
wrote s instead of p because p is already in use.

• Suppose Ω = Rn and α > 0. Express the Legendre transform of y → L(αy)
in terms of L∗.

The chapter is concerned about I as a function of the boundary conditions

x(σ) = κ and x(s) = q leading to I = I(s, q) = I(s, σ, q, κ), (2)

and finding stationary points for I(s, σ, q, κ) when s and q are fixed and σ and
κ are varied over a manifold of the form T (σ, κ) = 0. First however we consider
the case that σ and κ are fixed, say σ = 0 ∈ R and κ = 0 ∈ Rn (with notationally
n = 1). Thus

I(s, q) =
∫ s

0

L(t, x(t), ẋ(t)dt

in which x(t) solves

d

dt
Lẋ = Lx, x(0) = 0, x(s) = q.
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Exercise 3. Take a simple example, say

L(t, x, ẋ) = L(x, ẋ) =
1
2
ẋ2 − V (x),

with V a smooth function. Assume that x = x(t; s, q) is a solution which de-
pends smoothly on s and q. Find differential equations and boundary conditions
for xs and xq as we did in the course and derive a first order partial differential
equation for I(s, q).

Exercise 4. We did not discuss the solvability of the boundary value problems
for xs and xq. Consider the general case, i.e. with (2). Suppose that I(s0, q0)
is realised by a solution x = x(t). Explain why you can compute Is, Iq, Iσ and
Iκ if (s, q) and (σ, κ) are not conjugate along the solution.

Exercise 5. (continued) Keep σ and κ fixed. Derive that Is + H = 0 and
explain which arguments you should have in H.

Background: characteristics

In relation to the first order equation for I = I(s, q) we encountered you may
have seen the following. I am using the notation that Evans uses in his PDE
book.

Let F = F (x, z, p) be a function of (x, z, p). A general first order equation
ordinary differential equation

F (x, u(x), ux(x)) = 0

for u = u(x) can be solved by putting

x = x(τ), z = z(τ) = u(x(τ)), p = p(τ) = ux(x(τ)).

Differentiating F (x(τ), z(τ), p(τ)) = 0 with respect to τ we get, omitting the
arguments,

Fxẋ+ Fz ż + Fpṗ = 0.

Here dots denoting differentiation with respect to the artificial time variable τ .
Since

ż = uxẋ = pẋ,

we must have
(Fx + pFz)ẋ+ Fpṗ = 0,

which is certainly the case if we put

ẋ = Fp, ṗ = −Fx − pFz,

whence
ż = pẋ = pFp.

We have thus “reduced” a simple first order ODE to a 3-dimensional system of
first ODE’s for x, p, z. The right hand side of ż = · · · has to be rewritten using
F = 0, depending on the exact form of the equation.
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With pi = uxi
you easily see that first order PDE’s

F (x1, . . . , xn, u, ux1 , . . . , uxn
) = 0

in n variables lead to (numbering i = 1, . . . , n)

ẋi = Fpi , ṗi = −Fxi − piFz, ż =
n∑
j=1

pjFpj .

This is called the method of characteristics. Note it may happen that the right
hand sides Fpi

in the equations

ẋi = Fpi

depend only on the independent variables x1, . . . , xn. Solution curves of this
system in n-dimensional x-space are called characteristics.

Of course you may also treat equations of the form

ut +H(x, t, u, ux) = 0,

Exercise 6. Show that you get

ẋ = Hp, ṗ = −Hx − pHz, ż = pHp −H

(in which H depends on t, x, z, p).

Exercise 7. Show that equations of the form

ut +H(x1, . . . , xn, t, u, ux1 , . . . , uxn) = 0,

lead to

ẋi = Hpi
, ṗi = −Hxi

− piHz, ż =
n∑
j=1

pjHpj
−H
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