Additional material for Chapter 2

1 About Chapter 1

I will use L for the Lagrangian and not F. We assume that L = L(t,u,p)
is as smooth as we need. Chapter 1 concerned Euler-Lagrange equations for
u=u(t) € R". We saw how minimizing

b
I(u) = / L(t,u(t),u(t))dt (1.1)
for sufficiently smooth functions u : [a,b] — IR" (with u(a) and u(b) prescribed)
leads to the FEuler-Lagrange system of differential equations:

doL oL _
dt opt  Out

(i=1,...,n) (1.2)

We also saw the Jacobi equations, obtained from (1.3.6) and the linearised
Lagrangian
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The Euler-Lagrange equations of (1.3) are the Jacobi equations
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These Jacobi equations are the linearised Euler-Lagrange equations. Verify this!
For Lagrangians independent of ¢ we noticed a conservation law. When you
multiply (1.2) by p(t) = 4i(t) you get

0=p'(t)
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2 Riemannian metrics on submanifolds of IR?
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Chapter 2 deals with the problem of finding the shortest connecting curve be-

tween two given points in an n-dimensional submanifold M of IR? with d > n.

For this we will need knowledge of the concept of covariant differentiation on

M. The nonabstract introduction with submanifolds below provides a machin-

ery that also works in the abstract setting of general Riemannian manifolds.
Locally M is given by smooth parametrizations

z = f(u)



(coordinate charts) defined on open connected sets U C IR" with smooth® tran-
sitions between w and @ on UNU if f : U — M and f : U — M are two
different coordinate patches. A (preferably finite?) collection with this property
that describes the whole of M is called an atlas for M.

Every such parametrization provides us with locally defined tangent vector

fields
or ox

= wa y In = W,
since for every u € U the vectors z;(u) are tangent to M in x(u) € M. The
inner products

z

9ij = 9i5(u) = i - x;
are locally defined scalar fields. The coefficients define a Riemannian metric on
M, the metric inherited from the standard inner product in the ambient space
IR, as is explained next.

In terms of local coordinates u!,...,u" tangent vector fields V on M are
described by
V=V, =Viwaz(u) = VI (u)zi(u) + -+ V*(u)z, (u), (2.1)

in which we use a summation convention for repeated lower and upper indices.
Two such vectors fields have inner product

VW =Vig, Wiz, = ViWig, - x; = ViWig,,,

called the first fundamental form. Don’t forget the u-dependence which is usu-
ally dropped from the notation and pay attention to the double use of subscripts:
as indices in g;; and as derivatives in ;. The inner product of two tangent vector
fields on M defines a scalar field® on M. The map

(V.W) =V.-W (2.2)

is well defined, independent of the choice of coordinates, and bilinear over the
scalar fields, which makes the map a (symmetric) tensor. The scalars are real
valued (smooth) functions ¢, : M — IR and we have

@V) - (W) = ¢ip (V- W)

The formula’s hide the fact that this linearity differs from the usual linearity over
IR because the dependence on x € M is suppressed in the notation. The map
(2.2) is a Riemannian metric, with metric coefficients g;j in local coordinates.

3 Covariant differentiation

If we differentiate a vector field V' as given by (2.1) we get contributions from
u-dependence in V*(u) and from u-dependence in x;(u). The tangential part
of the resulting derivative is what is by definition the covariant derivative. The
partial derivative of (2.1) with respect to u? can be written as
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1See Section 1.4 in the book
2This is related to the concept of compactness
3A real valued function

= Tjj; (31)




In the case that M = IR" = IR? with 2/ = u?, the tangent vectors x; are the
unit base vectors e; so that x;; = 0 and the covariant partial derivatives of V'
are just the partial derivatives V. The same holds if 2(u) in linear in u. In all
other cases we decompose z;; as

Tij = Féjxl + normal parts

The coefficients T ; are called the Christoffel symbols. Taking the inner product
with x; we get

Dy o= a5 - ap = Dhyay - = Thgu
Thus I';;;, is obtained from Fﬁj using g;. Introducing g*' = ¢'* by

gig™™ =",

we also obtain F{? from I'yjp:

9" Tiji = Tiyqu9"™™ = Ti;6" =T
The relation between both I'-symbols is given by

Tijk =g, T = g™ Tij

The metric coefficients are used to raise and lower the exponents?.
Next we determine T';;;. Differentiating g;; with respect to u* we get
S 591‘;‘ _ 0
Jiik = Buk = uk

(i j) = i - x5 + Tjr - T = Ty + Ty

Note the two cyclic permutations kij and jki of ijk on the right. Using cyclic
permutation, we have the following three equivalent forms of the resulting state-
ment:

Gijk = Urij + T
Gik,i = Dije + Drj

Gkij = Ljki + Lijr

Multiplying by —1, £ and  and adding up we get

1
= (Gjk,i + 9rij — Gij k)

Tijr = 5

Using the symmetry g;; = g;; it follows that

mk (
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= Gk + Girg — Gijk) s Ui = 59" (Gjmi + Gimj — Gijm)  (3.2)
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These formula’s express the Christoffel symbols Ffj = I‘?i in terms of the metric
coefficients g;; and their first order derivatives, and can be used to write (3.1)
as ‘
oV ovr
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4Just as with tensor coefficients, though the I'’s are not tensor coefficients

x; + ViI‘éjxl + normal parts




The tangential part is thus

l
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w)j“ = % + V1F1j> Zy, V = Vzl'i (33)

This is called the covariant derivative of V with respect to w/. Both V and
D,;V are tangent vector fields, with components
oVt

Vi and (D,V) = > T VTl

4 Tangent vectors as derivatives

Next we introduce the view point on tangent vectors as directional derivatives.
Since every tangent vector defines a directional derivative, it has become cus-
tomary to identify such first order differential operators with their direction
vectors. In short, we think of

T oul oul

as essentially the same objects. To see how this works in a point xyp € M we
use integral curves starting at zg, that is, solutions of

V() = X(v(t)),  7(0) =z € M, (4.1)

where X is a tangent vector field defined near xg. The differential equation
in (4.1) is called the flow equation for X. Using coordinates u, with u = ug
corresponding to zg, the expressions in (4.1) evaluate as

_ Ox

= 50 (u(t))a' (t) = 4" (s, X(y(t)) = X" (ult))zi,

V() = z(u(t), (t)

so the system to be solved for u = u(t) to obtain the integral curves is
' = X"(u), u(0) = uo. (4.2)

The solution u = wu(t) exists locally and is unique. We have 4(0) = X(ug)
and Xo = X(z9) = ¥(0) = @*(0)z; = X*(ug)z;. On scalar fields (functions)
¢ : M — IR, given in local coordinates as

qs = ¢(u17 AR 7un)7
the vector field X now acts through

_ 9¢
Coul

()i (0) = X 2 (u)

d

— |t=0@(u(?

liod(u(t)
at ¢ in u = wyg, i.e. as the directional derivative

i

X!—— corresponding to the direction vector Xgx;
ou?



in 4 = ug. The derivative only depends on the value of the vector field in xg.
Since the point z¢p = z(ug) was arbitrary we have

. 0 ; ; 0
X = XZT corresponding to the tangent field X = X'z; = Xiax”
ut u'

The two expressions above are merely different representations of the tangent
vector field X (both in local coordinates):

If ¢ is extended to a neighbourhood of M in IR?, the directional derivative
96 _ . 00(x(w))
0X ou?

is computed by multiplying the components

;02"
ou?
of the tangent field X with the partial derivatives
o¢

o

As differential operator
0

ou’
X acts on scalar fields like ¢ = ¢(u) and produces a scalar field X ¢, the deriva-
tive of ¢ in the direction of X. This directional derivative is denoted by
9¢

Vxp=X lacing th tati —
x® ¢, replacing the notation X

X =X

We already use the notation Vx customary for covariant differentiation. For
reasons that should be clear, covariant differentiation of scalar fields is by defi-
nition the same as differentiation of scalar fields.

5 Commutators of tangent vector fields

If X and Y are vector fields on M then the commutator of X and Y is defined
as
[X,Y]=XY -YX

Verify that ‘ ‘ _
(X, Y)Y = X*y! - vFX]

and that [X,Y] is a vector field. Note that [X, Y] is bilinear over de scalar fields,
and verify that the Jacobi identity

[[X,Y],Z]+HY,Z],X}+[[Z,X],Y]:0 (51)

holds.
Since [X,Y] = XY — Y X is a vector field we can write

Vixy¢=[X,Y]o = X(Y¢) - Y(X¢) = Vx(Vy¢) - Vy(Vx9).



Remark: Lie derivatives

This commutator has a meaning by itself. If v(¢) is the solution of (4.1), then
the linearised flow equation transports the vector Y (zg) along +(t). Denoting
the transported vector as £(t), we may differentiate the difference of £(¢) and
Y (y(t)) with respect to t and evaluate the derivative in ¢ = 0. This should

define

£(t) =Y (y(1))
t )
the Lie derivative of Y with respect to X in zg, but this formula has to be
handled with care because the numerator involves tangent vectors in tangent
spaces that vary with ¢.

In coordinates £(t) = £i(t)x; with £4(¢) is a solution of the linearization of
(4.2) around u(t),

(LxY ) (o) = lim

§= 00, @0)=iw) (52
in (u(t)

Writing

you should verify that
(LxY)(z0) = (XY)(x0) — (YX)(20)

so that
[X,Y]=LxY (5.3)

6 Covariant differentiation of tangent vectors

Next we observe that also

0
ou’

acts covariantly on tangent fields V' if we replace

X=X

by D,
8’1142 y u

as defined in (3.3) through

ov!

Dj = -
o= (G +

V’T‘%) xz for V =Vig,.

The result of this action is

OV _
X <8uJ + Vzl‘ﬁj) 7

and is denoted as

.0
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(VxV)! = X7 (auj +V rij> (6.1)



in the notation for tangent vectors as differential operators.
The map
V —-VxV

is not linear over the scalar fields because

l
VxoV = X7 <6(;b:j + (ZﬁViFéj) T

The latter term in this Leibniz rule destroys the tensor property of linearity
over the scalar fields.
Convince yourself that in the non-abstract approach

)% -
VxV =X’ (8uﬂ + VZFij) Zy
is the tangential® component of the derivative of V in the direction of X and
verify that
Vx(V-W)=VxV - W+V. -VxW

if W is another tangent vector field on M.

7 Submanifolds in IR%: second fundamental form

The normal part of the derivative of V in the direction of X is denoted by
I(X,V), in which T is called the second fundamental form of M. Verify that
it is bilinear over the smooth fields on M. Since the normal part essentially
comes from the mixed derivatives x;;, the second fundamental form must be
symmetric. Moreover, if N is a normal vector field on M and N, X,V are
extended smoothly® to the ambient space IR? then

Vx(N-Y)=VyN- Y +N-VyY, (7.1)

in which V is the (standard covariant) derivative in IR%. On M the left hand
side of (7.1) is zero, and the second term N - VxY on the right hand side only
sees the normal part of VxY which is I(X,Y). It follows that

VxN-Y =—-N-I(X,Y) on M. (7.2)

This is called Weingarten’s relation. Note that in the codimension 1 case d =
n + 1 we can choose a unit normal field N and define

R(X,Y)=N-I(X,Y)=-VxN Y = h;; X"V’ (7.3)

5to M
6This can be done, certainly locally, why?



8 Curvature

The equality
VxVyZ -VyVxZ=VixyviZ+ R(X,Y)Z (8.1)

defines R(X,Y)Z for tangent vector fields X, Y, Z. You may verify that R(X,Y)Z
is multilinear in X, Y, Z over the scalar fields on M. In the case M = IR" = IR?
you will find that R(X,Y)Z = 0. The standard way to write R(X,Y)Z in local
coordinates u is

(R(X,Y)Z)* = R Z' XY (8.2)
So Z comes first” and then X and Y. Using (6.1) and writing
o _ O
Uk Quk

you should verify that®

Riy, = kafﬁj - Ffjfgk + s — Dok (8.3)
and the zero ijk and jk cyclic sums
R%k + Rgij + R?ki =0= R%‘k + R?kj (8.4)

If W is another tangent field then®
Rm(X)Y,Z,W)=R(X,Y)Z-W = R} Z' XTY g W' = Ri;jy W' Z' XY,
(8.5)
which has the symmetries
Rm(X,Y,Z,W)+ BRm(Y,Z, X, W)+ BRm(Z,X,Y,W) =0,
Bm(X,Y,Z, W)+ BRm(Y,X,Z,W)=0=Rm(X,Y,Z, W)+ Rm(X,Y,W, Z)
(the second one obtained from Rm(X,Y, Z, Z) = 0), implying
Rm(X,Y,Z,W)=Rm(Z,W,X,Z)
In the 2-dimensional case n = 2 the only possible nonzero entries of R;;;, are
Ri212 = Ro121 = —Ri221 = —Ra112
In the codimension 1 case
Riijr = hirhyy — hijhag

consists of all the 2 x 2 determinants you can get from the matrix h;;. Note
that similarly

W-X)Y-2Z) = (W-Y)X - Z) = (9irgi; — 9i39) W' Z'XTY*, (8.6)
—_—
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7As if we would have prefered the notation ZR(X,Y")
8note the order ijk in the minus terms and the j < k relation with the plus terms
91ijk = dead body, as if we would have prefered the notation W - ZR(X,Y)



in which Gy, has the same symmetry properties as Ry;j, (and depends only
on G1212 ifn= 2)
For submanifolds you can verify from the definitions that

which in the codimension 1 case (7.3) reduces to

SO
Rm(X,Y,Z,W) = (hixhij — hijhy) W ZIXIYF, (8.8)
N——
Ryijk

Gauss computed this expression for Ry from x;j, = x5, see Chapter 10 in
Schaum’s Differential Geometry book by Martin Lipschutz. The Gauss curva-
ture of a surface in IR? is the scalar ratio between (8.7) and (8.6). In IR? this is
the scalar ratio between (8.8) and (8.6).

9 GGeodesic curves

A smooth curve v(t) € M may require several coordinate patches to describe it.
For the moment we assume that it can be described by one coordinate patch. If

v:ia,b) ot —u(t) — x(u(t) e M

is such a curve in M, then its velocity is given by

oxr .4 Ox "L 0 "
- al o g = == = wax;.
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Think of 4 as a vector at the point z = ~«(t) in M. For every t this vector
is tangent to M, and written as a linear combination of the tangent vectors
obtained from the parametrization:

Ox Ox
IlZ%,...,Inzw.

Its length [ is given by

l:/abW(t)|dt:/ab\/Wdt:/abq/xmi-xjajdt
=/ab\/mdt

We will work with another quantity, called the energy, which involves an L
as in Chapter 1. Since I prefer to have u in L, my «’s are the 4’s in the book.
My ~(t) is what is ¢(¢) in the book. The energy is defined by

[N B L IR
E=g [ WOFdt=5 | (t)-At)dt =5 | i’ 254 dt



b

b
:%/a w'i? gij(u) dt:/ L(u(t), u(t)) dt,

a
in which

L= L(u,p) = 50 gis o). (9.1)

Playing with the estimate

/: [5(t)] dt = /ab 14(t)| dt < \//ab 12dt\//ab 4/()[2 dt

and reparametrization of v to make |¥| constant you should easily conclude that
minimizers of [ are minimizers of E and vice versa if we keep [a, b] fixed.

The Euler-Lagrange equations for E involve the derivatives of g;; and come
out as

i + T gu®u” =0 (9.2)

and are called the geodesic equations. Indeed,

. 1 .
T = 5911@ (Gak,3 + 9k,a — JaB,k) »
the symbols computed in (3.2). You should repeat this calculation without
looking at the notes above. What is the conservation law for this system?

9.1 A special metric with radial symmetry

A nice example is a surface M which is described by a single set of coordinates
u € IR? with a metric
gij(u) = g(|ul)ds; (9.3)

in which v — g(|u|) is smooth and positive!?. You can write the geodesic

equations as in the book (2.1.27). In a special case the example is related to
stereographic projection through

1 xt 9 x?
U =—, U =—
1—a3’ 1— a3’
which you may prefer as
P v="
1—2’ 1—2

without indices.

e Verify that large circles on z? + y? + 22 correspond to circles in the uv-
plane. Hint: describe the large circles as z = ax+by and avoid goniometric
functions.

e The large circles not contained in this description are the vertical great
circles which correspond to lines through the origin in the uv-plane. As-
suming unit speed for both the vertical great circles and lines through the
origin derive the formula for g(|ul).

1% implying 0 = ¢'(0) = ¢""(0) = ¢"""'(0) =

10



We return to (9.3) with general g(|ul).
e Why are geodesics through the origin straight lines?

e Take a geodesic line parametrized by ¢ such that ¢ = 0 corresponds to
(0,0) and that the speed in (0,0) is equal to 1. Use the conservation law
to derive a first order equation for R(t) = |u(t)| and solve it.

e Examine how long it takes for the geodesic curve to reach infinity. What
is the condition on g(|u|) to reach infinity in finite time? This should
involve some integral with g. Do the same in dimension n > 27 Is there a
difference?

e Can you cook up an example for which the geodesic cannot cross |u| = 17
Can you classify these examples?

e Incidentally, what is the Gauss curvature for metrics of the form (9.3) in
R??
9.2 The Jacobi equations
Consider the Lagrangian (9.1).
e Show that the Jacobi equations (1.4) for (9.1) are
it + 20 i ik + Ty il ifyh =0 (9.4)

Both @'(t) and 7(t) define vector fields along () = z(u(t)) in M € R tangent
to M through

Y(t) = @' (t)zi(u(t)) and ' ()zi(u(t))
The Jacobi equations are much more transparent if we work with the tangential
parts D;V of the time derivatives of such vector fields

V(y(t) = V' (t)ai(u(t))
e Derive that
DV = (D;V)z; with (DV)! =V7+ VT i’
e Apply this to V(y(t)) = Vi(t)z; with Vi(t) = 4'(t) and derive that the
geodesic equation (9.2) may be written as
Dy =0, %=1tz

This should be easy and will tell you that the covariant ¢t-derivative of the
t-derivative of y(t) is zero.

e You can also apply the rule for D;V to V(y(t)) = Vi(t)x; with Vi(t) =
nt(t) and V(t) = (Dyn)*(t). You should be able to derive that (9.4) may
be written as

(Din)" + 4R gn®iF =0, ie. Din+ R(n,4)7 =0

In the latter formula n = n’(t)z;. This is harder but it gives an equation
that is obviously more informative.
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