
Additional material for Chapter 2

1 About Chapter 1

I will use L for the Lagrangian and not F . We assume that L = L(t, u, p)
is as smooth as we need. Chapter 1 concerned Euler-Lagrange equations for
u = u(t) ∈ IRn. We saw how minimizing

I(u) =
∫ b

a

L(t, u(t), u̇(t)) dt (1.1)

for sufficiently smooth functions u : [a, b]→ IRn (with u(a) and u(b) prescribed)
leads to the Euler-Lagrange system of differential equations:

d

dt

∂L

∂pi
− ∂L

∂ui
= 0 (i = 1, . . . , n) (1.2)

We also saw the Jacobi equations, obtained from (1.3.6) and the linearised
Lagrangian

φ =
∂2L

∂pi∂pj
πiπj + 2

∂2L

∂pi∂uj
πiηj +

∂2L

∂ui∂uj
ηiηj (1.3)

The Euler-Lagrange equations of (1.3) are the Jacobi equations

d

dt

∂φ

∂πi
− ∂φ

∂ηi
= 0 (i = 1, . . . , n) (1.4)

These Jacobi equations are the linearised Euler-Lagrange equations. Verify this!
For Lagrangians independent of t we noticed a conservation law. When you

multiply (1.2) by pi(t) = u̇i(t) you get

0 = pi(t)
d

dt

∂L

∂pi
− u̇i(t) ∂L

∂ui
=

d

dt

(
pi
∂L

∂pi

)
−ṗi(t) ∂L

∂pi
− u̇i(t) ∂L

∂ui︸ ︷︷ ︸
− dL

dt

=
d

dt

(
pi
∂L

∂pi
− L

)

2 Riemannian metrics on submanifolds of IRd

Chapter 2 deals with the problem of finding the shortest connecting curve be-
tween two given points in an n-dimensional submanifold M of IRd with d ≥ n.
For this we will need knowledge of the concept of covariant differentiation on
M . The nonabstract introduction with submanifolds below provides a machin-
ery that also works in the abstract setting of general Riemannian manifolds.

Locally M is given by smooth parametrizations

x = f(u)
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(coordinate charts) defined on open connected sets U ⊂ IRn with smooth1 tran-
sitions between u and ũ on U ∩ Ũ if f : U → M and f̃ : Ũ → M are two
different coordinate patches. A (preferably finite2) collection with this property
that describes the whole of M is called an atlas for M .

Every such parametrization provides us with locally defined tangent vector
fields

x1 =
∂x

∂u1
, · · · , xn =

∂x

∂un
,

since for every u ∈ U the vectors xi(u) are tangent to M in x(u) ∈ M . The
inner products

gij = gij(u) = xi · xj
are locally defined scalar fields. The coefficients define a Riemannian metric on
M , the metric inherited from the standard inner product in the ambient space
IRd, as is explained next.

In terms of local coordinates u1, . . . , un tangent vector fields V on M are
described by

V = V ixi = V i(u)xi(u) = V 1(u)x1(u) + · · ·+ V n(u)xn(u), (2.1)

in which we use a summation convention for repeated lower and upper indices.
Two such vectors fields have inner product

V ·W = V ixi ·W jxj = V iW jxi · xj = V iW jgij ,

called the first fundamental form. Don’t forget the u-dependence which is usu-
ally dropped from the notation and pay attention to the double use of subscripts:
as indices in gij and as derivatives in xi. The inner product of two tangent vector
fields on M defines a scalar field3 on M . The map

(V,W )→ V ·W (2.2)

is well defined, independent of the choice of coordinates, and bilinear over the
scalar fields, which makes the map a (symmetric) tensor. The scalars are real
valued (smooth) functions φ, ψ : M → IR and we have

(φV ) · (ψW ) = φψ (V ·W )

The formula’s hide the fact that this linearity differs from the usual linearity over
IR because the dependence on x ∈ M is suppressed in the notation. The map
(2.2) is a Riemannian metric, with metric coefficients gij in local coordinates.

3 Covariant differentiation

If we differentiate a vector field V as given by (2.1) we get contributions from
u-dependence in V i(u) and from u-dependence in xi(u). The tangential part
of the resulting derivative is what is by definition the covariant derivative. The
partial derivative of (2.1) with respect to uj can be written as

∂V

∂uj
=
∂V i

∂uj
xi + V ixij , xij =

∂xi
∂uj

=
∂2x

∂uj∂ui
=

∂2x

∂ui∂uj
= xji (3.1)

1See Section 1.4 in the book
2This is related to the concept of compactness
3A real valued function
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In the case that M = IRn = IRd with xi = ui, the tangent vectors xi are the
unit base vectors ei so that xij = 0 and the covariant partial derivatives of V
are just the partial derivatives V . The same holds if x(u) in linear in u. In all
other cases we decompose xij as

xij = Γlijxl + normal parts

The coefficients Γlij are called the Christoffel symbols. Taking the inner product
with xk we get

Γijk := xij · xk = Γlijxl · xk = Γlijglk

Thus Γijk is obtained from Γlij using glk. Introducing gkl = glk by

glkg
km = δml ,

we also obtain Γmij from Γijk:

gmkΓijk = Γlijglkg
km = Γlijδ

m
l = Γmij

The relation between both Γ-symbols is given by

Γijk = Γlijglk, Γmij = gmkΓijk

The metric coefficients are used to raise and lower the exponents4.
Next we determine Γijk. Differentiating gij with respect to uk we get

gij,k =
∂gij
∂uk

=
∂

∂uk
(xi · xj) = xki · xj + xjk · xi = Γkij + Γjki

Note the two cyclic permutations kij and jki of ijk on the right. Using cyclic
permutation, we have the following three equivalent forms of the resulting state-
ment:

gij,k = Γkij + Γjki

gjk,i = Γijk + Γkij

gki,j = Γjki + Γijk

Multiplying by − 1
2 , 1

2 and 1
2 and adding up we get

Γijk =
1
2

(gjk,i + gki,j − gij,k)

Using the symmetry gij = gji it follows that

Γijk =
1
2

(gjk,i + gik,j − gij,k) , Γmij =
1
2
gmk (gjm,i + gim,j − gij,m) (3.2)

These formula’s express the Christoffel symbols Γkij = Γkji in terms of the metric
coefficients gij and their first order derivatives, and can be used to write (3.1)
as

∂V

∂uj
=
∂V i

∂uj
xi + V iΓlijxl + normal parts

4Just as with tensor coefficients, though the Γ’s are not tensor coefficients
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The tangential part is thus

DujV := (
∂V

∂uj
)T =

(
∂V l

∂uj
+ V iΓlij

)
xl, V = V ixi (3.3)

This is called the covariant derivative of V with respect to uj . Both V and
DujV are tangent vector fields, with components

V i and (DujV )l =
∂V l

∂uj
+ V iΓlij

4 Tangent vectors as derivatives

Next we introduce the view point on tangent vectors as directional derivatives.
Since every tangent vector defines a directional derivative, it has become cus-
tomary to identify such first order differential operators with their direction
vectors. In short, we think of

xi =
∂x

∂ui
and

∂

∂ui

as essentially the same objects. To see how this works in a point x0 ∈ M we
use integral curves starting at x0, that is, solutions of

γ̇(t) = X(γ(t)), γ(0) = x0 ∈M, (4.1)

where X is a tangent vector field defined near x0. The differential equation
in (4.1) is called the flow equation for X. Using coordinates u, with u = u0

corresponding to x0, the expressions in (4.1) evaluate as

γ(t) = x(u(t)), γ̇(t) =
∂x

∂ui
(u(t))u̇i(t) = u̇i(t)xi, X(γ(t)) = Xi(u(t))xi,

so the system to be solved for u = u(t) to obtain the integral curves is

u̇i = Xi(u), u(0) = u0. (4.2)

The solution u = u(t) exists locally and is unique. We have u̇i(0) = Xi(u0)
and X0 := X(x0) = γ̇(0) = u̇i(0)xi = Xi(u0)xi. On scalar fields (functions)
φ : M → IR, given in local coordinates as

φ = φ(u1, . . . , un),

the vector field X now acts through

d

dt
|t=0φ(u(t)) =

∂φ

∂ui
(u0)u̇i(0) = Xi

0

∂φ

∂ui
(u0)

at φ in u = u0, i.e. as the directional derivative

Xi
0

∂

∂ui
corresponding to the direction vector Xi

0xi
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in u = u0. The derivative only depends on the value of the vector field in x0.
Since the point x0 = x(u0) was arbitrary we have

X = Xi ∂

∂ui
corresponding to the tangent field X = Xixi = Xi ∂x

∂ui
.

The two expressions above are merely different representations of the tangent
vector field X (both in local coordinates):

If φ is extended to a neighbourhood of M in IRd, the directional derivative

∂φ

∂X
= Xi ∂φ(x(u))

∂ui

is computed by multiplying the components

Xi ∂x
k

∂ui

of the tangent field X with the partial derivatives

∂φ

∂xk

As differential operator

X = Xi ∂

∂ui

X acts on scalar fields like φ = φ(u) and produces a scalar field Xφ, the deriva-
tive of φ in the direction of X. This directional derivative is denoted by

∇Xφ = Xφ, replacing the notation
∂φ

∂X

We already use the notation ∇X customary for covariant differentiation. For
reasons that should be clear, covariant differentiation of scalar fields is by defi-
nition the same as differentiation of scalar fields.

5 Commutators of tangent vector fields

If X and Y are vector fields on M then the commutator of X and Y is defined
as

[X,Y ] = XY − Y X

Verify that
[X,Y ]j = XkY jk − Y

kXj
k

and that [X,Y ] is a vector field. Note that [X,Y ] is bilinear over de scalar fields,
and verify that the Jacobi identity

[[X,Y ], Z] + [[Y,Z], X] + [[Z,X], Y ] = 0 (5.1)

holds.
Since [X,Y ] = XY − Y X is a vector field we can write

∇[X,Y ]φ = [X,Y ]φ = X(Y φ)− Y (Xφ) = ∇X(∇Y φ)−∇Y (∇Xφ).
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Remark: Lie derivatives

This commutator has a meaning by itself. If γ(t) is the solution of (4.1), then
the linearised flow equation transports the vector Y (x0) along γ(t). Denoting
the transported vector as ξ(t), we may differentiate the difference of ξ(t) and
Y (γ(t)) with respect to t and evaluate the derivative in t = 0. This should
define

(LXY )(x0) = lim
t→0

ξ(t)− Y (γ(t))
t

,

the Lie derivative of Y with respect to X in x0, but this formula has to be
handled with care because the numerator involves tangent vectors in tangent
spaces that vary with t.

In coordinates ξ(t) = ξi(t)xi with ξi(t) is a solution of the linearization of
(4.2) around u(t),

ξ̇i = (
∂Xi

∂uj
)︸ ︷︷ ︸

in (u(t)

ξj(t), ξj(0) = Y i(u0) (5.2)

Writing
ξ(t)− Y (γ(t)) = ξ(t)− Y (x0)− (Y (γ(t))− Y (x0))

you should verify that

(LXY )(x0) = (XY )(x0)− (Y X)(x0)

so that
[X,Y ] = LXY (5.3)

6 Covariant differentiation of tangent vectors

Next we observe that also
X = Xi ∂

∂ui

acts covariantly on tangent fields V if we replace

∂

∂ui
by Duj ,

as defined in (3.3) through

DujV :=
(
∂V l

∂uj
+ V iΓlij

)
xl for V = V ixi.

The result of this action is

Xj

(
∂V l

∂uj
+ V iΓlij

)
xl

and is denoted as

∇XV = (∇XV )j
∂

∂uj
, (∇XV )j = Xj

(
∂V l

∂uj
+ V iΓlij

)
(6.1)
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in the notation for tangent vectors as differential operators.
The map

V → ∇XV

is not linear over the scalar fields because

∇XφV = Xj

(
∂φV l

∂uj
+ φV iΓlij

)
xl

= φXj

(
∂V l

∂uj
+ V iΓlij

)
xl +Xj ∂φ

∂uj
V l = φ∇XV + (∇Xφ)V.

The latter term in this Leibniz rule destroys the tensor property of linearity
over the scalar fields.

Convince yourself that in the non-abstract approach

∇XV = Xj

(
∂V l

∂uj
+ V iΓlij

)
xl

is the tangential5 component of the derivative of V in the direction of X and
verify that

∇X(V ·W ) = ∇XV ·W + V · ∇XW

if W is another tangent vector field on M .

7 Submanifolds in IRd: second fundamental form

The normal part of the derivative of V in the direction of X is denoted by
II(X,V ), in which II is called the second fundamental form of M . Verify that
it is bilinear over the smooth fields on M . Since the normal part essentially
comes from the mixed derivatives xij , the second fundamental form must be
symmetric. Moreover, if N is a normal vector field on M and N,X, V are
extended smoothly6 to the ambient space IRd then

∇̄X(N · Y ) = ∇̄XN · Y +N · ∇̄XY, (7.1)

in which ∇̄ is the (standard covariant) derivative in IRd. On M the left hand
side of (7.1) is zero, and the second term N · ∇̄XY on the right hand side only
sees the normal part of ∇̄XY which is II(X,Y ). It follows that

∇̄XN · Y = −N · II(X,Y ) on M. (7.2)

This is called Weingarten’s relation. Note that in the codimension 1 case d =
n+ 1 we can choose a unit normal field N and define

h(X,Y ) = N · II(X,Y ) = −∇̄XN · Y = hijX
iY j (7.3)

5 to M
6This can be done, certainly locally, why?
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8 Curvature

The equality

∇X∇Y Z −∇Y∇XZ = ∇[X,Y ]Z +R(X,Y )Z (8.1)

definesR(X,Y )Z for tangent vector fieldsX,Y, Z. You may verify thatR(X,Y )Z
is multilinear in X, Y , Z over the scalar fields on M . In the case M = IRn = IRd

you will find that R(X,Y )Z ≡ 0. The standard way to write R(X,Y )Z in local
coordinates u is

(R(X,Y )Z)α = RαijkZ
iXjY k. (8.2)

So Z comes first7 and then X and Y . Using (6.1) and writing

Γαij,k =
∂Γij
∂uk

you should verify that8

Rαijk = ΓβikΓαβj − ΓβijΓ
α
βk + Γαik,j − Γαij,k (8.3)

and the zero ijk and jk cyclic sums

Rαijk +Rαkij +Rαjki = 0 = Rαijk +Rαikj (8.4)

If W is another tangent field then9

Rm(X,Y, Z,W ) = R(X,Y )Z ·W = RαijkZ
iXjY kgαlW

l = RlijkW
lZiXjY k,

(8.5)
which has the symmetries

Rm(X,Y, Z,W ) +Rm(Y,Z,X,W ) +Rm(Z,X, Y,W ) = 0,

Rm(X,Y, Z,W ) +Rm(Y,X,Z,W ) = 0 = Rm(X,Y, Z,W ) +Rm(X,Y,W,Z)

(the second one obtained from Rm(X,Y, Z, Z) = 0), implying

Rm(X,Y, Z,W ) = Rm(Z,W,X,Z)

In the 2-dimensional case n = 2 the only possible nonzero entries of Rijk are

R1212 = R2121 = −R1221 = −R2112

In the codimension 1 case

Rlijk = hikhlj − hijhlk

consists of all the 2 × 2 determinants you can get from the matrix hij . Note
that similarly

(W ·X)(Y · Z)− (W · Y )(X · Z) = (gikglj − gijglk)︸ ︷︷ ︸
Glijk

W lZiXjY k, (8.6)

7As if we would have prefered the notation ZR(X, Y )
8note the order ijk in the minus terms and the j ↔ k relation with the plus terms
9 lijk = dead body, as if we would have prefered the notation W · ZR(X, Y )
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in which Glijk has the same symmetry properties as Rlijk (and depends only
on G1212 if n = 2).

For submanifolds you can verify from the definitions that

Rm(X,Y, Z,W ) = II(X,W )II(Y,Z)− II(X,Z)II(Y,W ), (8.7)

which in the codimension 1 case (7.3) reduces to

Rm(X,Y, Z,W ) = h(W,X)h(Y,Z)− h(W,Y )h(X,Z),

so
Rm(X,Y, Z,W ) = (hikhlj − hijhlk)︸ ︷︷ ︸

Rlijk

W lZiXjY k, (8.8)

Gauss computed this expression for Rlijk from xijk = xikj , see Chapter 10 in
Schaum’s Differential Geometry book by Martin Lipschutz. The Gauss curva-
ture of a surface in IRd is the scalar ratio between (8.7) and (8.6). In IR3 this is
the scalar ratio between (8.8) and (8.6).

9 Geodesic curves

A smooth curve γ(t) ∈M may require several coordinate patches to describe it.
For the moment we assume that it can be described by one coordinate patch. If

γ : [a, b] 3 t→ u(t)→ x(u(t)) ∈M

is such a curve in M , then its velocity is given by

γ̇ =
∂x

∂u1
u̇1 + · · ·+ ∂x

∂un
u̇n =

n∑
i=1

u̇i
∂x

∂ui
=

n∑
i=1

u̇ixi.

Think of γ̇ as a vector at the point x = γ(t) in M . For every t this vector
is tangent to M , and written as a linear combination of the tangent vectors
obtained from the parametrization:

x1 =
∂x

∂u1
, . . . , xn =

∂x

∂un
.

Its length l is given by

l =
∫ b

a

|γ̇(t)| dt =
∫ b

a

√
γ̇(t) · γ̇(t) dt =

∫ b

a

√
xiu̇i · xj u̇j dt

=
∫ b

a

√
u̇iu̇jgij(u) dt

We will work with another quantity, called the energy, which involves an L
as in Chapter 1. Since I prefer to have u in L, my u’s are the γ’s in the book.
My γ(t) is what is c(t) in the book. The energy is defined by

E =
1
2

∫ b

a

|γ̇(t)|2 dt =
1
2

∫ b

a

γ̇(t) · γ̇(t) dt =
1
2

∫ b

a

xiu̇
i · xj u̇j dt
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=
1
2

∫ b

a

u̇iu̇jgij(u) dt =
∫ b

a

L(u(t), u̇(t)) dt,

in which
L = L(u, p) =

1
2
pipjgij(u). (9.1)

Playing with the estimate

∫ b

a

|γ̇(t)| dt =
∫ b

a

1 |γ̇(t)| dt ≤

√∫ b

a

12 dt

√∫ b

a

|γ̇(t)|2 dt

and reparametrization of γ to make |γ̇| constant you should easily conclude that
minimizers of l are minimizers of E and vice versa if we keep [a, b] fixed.

The Euler-Lagrange equations for E involve the derivatives of gij and come
out as

üi + Γiαβ u̇
αu̇β = 0 (9.2)

and are called the geodesic equations. Indeed,

Γiαβ =
1
2
gik (gαk,β + gβk,α − gαβ,k) ,

the symbols computed in (3.2). You should repeat this calculation without
looking at the notes above. What is the conservation law for this system?

9.1 A special metric with radial symmetry

A nice example is a surface M which is described by a single set of coordinates
u ∈ IR2 with a metric

gij(u) = g(|u|)δij (9.3)

in which u → g(|u|) is smooth and positive10. You can write the geodesic
equations as in the book (2.1.27). In a special case the example is related to
stereographic projection through

u1 =
x1

1− x3
, u2 =

x2

1− x3
,

which you may prefer as

u =
x

1− z
, v =

y

1− z

without indices.

• Verify that large circles on x2 + y2 + z2 correspond to circles in the uv-
plane. Hint: describe the large circles as z = ax+by and avoid goniometric
functions.

• The large circles not contained in this description are the vertical great
circles which correspond to lines through the origin in the uv-plane. As-
suming unit speed for both the vertical great circles and lines through the
origin derive the formula for g(|u|).

10 implying 0 = g′(0) = g′′′(0) = g′′′′′(0) = · · ·
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We return to (9.3) with general g(|u|).

• Why are geodesics through the origin straight lines?

• Take a geodesic line parametrized by t such that t = 0 corresponds to
(0, 0) and that the speed in (0, 0) is equal to 1. Use the conservation law
to derive a first order equation for R(t) = |u(t)| and solve it.

• Examine how long it takes for the geodesic curve to reach infinity. What
is the condition on g(|u|) to reach infinity in finite time? This should
involve some integral with g. Do the same in dimension n > 2? Is there a
difference?

• Can you cook up an example for which the geodesic cannot cross |u| = 1?
Can you classify these examples?

• Incidentally, what is the Gauss curvature for metrics of the form (9.3) in
IR2?

9.2 The Jacobi equations

Consider the Lagrangian (9.1).

• Show that the Jacobi equations (1.4) for (9.1) are

η̈i + 2Γijku̇
j η̇k + Γijk,lu̇

j u̇kηl = 0 (9.4)

Both u̇i(t) and ηi(t) define vector fields along γ(t) = x(u(t)) in M ∈ IRd tangent
to M through

γ̇(t) = u̇i(t)xi(u(t)) and ηi(t)xi(u(t))

The Jacobi equations are much more transparent if we work with the tangential
parts DtV of the time derivatives of such vector fields

V (γ(t)) = V i(t)xi(u(t))

• Derive that

DtV = (DtV )jxj with (DtV )j = V̇ j + V αΓjαβ u̇
β

• Apply this to V (γ(t)) = V i(t)xi with V i(t) = u̇i(t) and derive that the
geodesic equation (9.2) may be written as

Dtγ̇ = 0, γ̇ = u̇ixi

This should be easy and will tell you that the covariant t-derivative of the
t-derivative of γ(t) is zero.

• You can also apply the rule for DtV to V (γ(t)) = V i(t)xi with V i(t) =
ηi(t) and V i(t) = (Dtη)i(t). You should be able to derive that (9.4) may
be written as

(D2
t η)i + u̇αRiαβkη

β u̇k = 0, i.e. D2
t η +R(η, γ̇)γ̇ = 0

In the latter formula η = ηi(t)xi. This is harder but it gives an equation
that is obviously more informative.
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