Additional material for Chapter 4, Hamilton-Jacobi theory
Chapter 4 concerns the equation
Is+H(SaQ7Iq) :O7 (1)

which is split as
I+ H(s,q,p) =0, p=1I,

Differentiating (1) with respect to ¢ we get
Isq+Hq+ Hplyq =0

Consider ¢ = ¢(s) as unknown function of s and define p(s) = I,(s, q(s
z(s) = I(s,q(s)). If we demand that ¢ = H, along the curve s — (g(s)
then

. dp . . . .
p= o= Los(s,4(s) +lag(5,4(5))d(s) = —Ho+(§ — Hp)lyg and 2= I+ 1yq.
S N—_———— N—_—— N——
—Hq—Hylqq 0 —H+pHp
So

q:Hp, p:*qu Z:7H+pHpv

in which H = H(s, q(s),p(s)). Chapter 4 shows, among other things, how
solutions of ¢ = H,,p = —H, define solutions of (1) by considering the integral
I(q, s) below, starting from the standard Lagrangian integral

I= /L(t,x(t),d:(t)dt

over some bounded time interval which will be renamed later. I am skipping
indices for x and & throughout these notes. It is a minimal typographical oper-
ation to put them in later.

What was F' and u before in Chapter 1 is now L and x, and p will be neither
4 nor z: the letter p will be used for

=5 = L;, L=L(t,x,x), H(t,x,p)=pi— Lt ),
T

p

in which & is a symbol for now. Invertibility of the (¢, z)-dependent transforma-
tion & — p corresponds to

L(t,z,&)+ H(t,z,p) =pi with p=L; <= &t=H, and L,+ H,=0.

Exercise 1. Assuming that L is C? with L, invertible: prove these equalities
without making obvious mistakes, and show that the Lagrangian equations

d . d . .
are equivalent to the Hamiltonian equations
&=Hp; p=—H, (ie. &(t) = Hp(x(t), p(t)); p(t) = —He(2(t), p(t)))-

Distinguish carefully between symbols x, &, p and functions x(t),2(t), p(t), be-
tween partial and total derivatives, and show that H = H;. Generalize to
z,,p € R™.



Exercise 2. In a more general setting, if Q C R" is convex and open, and
if L € C*(Q) with k& > 2 has a matrix of second derivatives which is positive
definite throughout Q (in other words: L,, > 0), then the map

¢:x—p=1L, € R"

is locally a C*~1 diffeomorphism, as a direct consequence of the inverse function
theorem.

e Prove that ¢ is injective. Hint: assume first that 0 € Q and ¢(0) = 0 and
examine ¢(r) = fol 4 (tx)dt and - ¢(z).

Prove that Q* = ¢(Q) is convex and open.

Thus the inverse map ¥ : p € Q* — z € Q exists and is C*~!. Define
L*(p) = p-x — L(x). Prove that L* : Q* — R is C* with L, > 0.

Explain why p -z < L(x) + L*(p) with equality only if p = ¢(z) = L,.

Explain the symmetry between x and p and L and L*.

The chapter is concerned about I as a function of the boundary conditions
z(o) =k and x(s)=¢q leadingto I=1I(s,q)=1I(s,0,q,k), (2)

and finding stationary points for I(s,o,q, k) when s and ¢ are fixed and o and
K are varied over a manifold of the form T'(o, k) = 0. First however we consider
the case that o and & are fixed, say 0 = 0 € R and k = 0 € R (with notationally
n =1). Thus

Is.0) = [ Lita(t) 0y
0
in which z(t) solves

d
ﬁLi =L;, z(0)=0, z(s)=gq.
Exercise 3. Take a simple example, say
1
L(t,l‘,.’b) = L(l’,x) = §¢2 - V(IL’),

with V' a smooth function. Assume that x = x(¢;s,¢) is a solution which de-
pends smoothly on s and ¢. Find differential equations and boundary conditions
for x, and z,. What is the condition on the linear homogeneous equation that
must be satisfied to do this?

Exercise 4. (continued) Derive a first order partial differential equation for
I(s,q).

Exercise 5. Now consider the general case, i.e. with (2). Suppose that I(sg, qo)
is realised by a solution x = z(t). Explain why you can compute I, I, I, and
I; if (s,q) and (o, k) are not conjugate along the solution.

Exercise 6. (continued) Keep ¢ and « fixed. Derive that I, + H = 0 and
explain which arguments you should have in H.



Background: characteristics

In relation to the first order equation for I = I(s,q) we encountered you may
have seen the following. I am using the notation that Evans uses in his PDE
book.

Let F = F(x,z,p) be a function of (z,z,p). A general first order equation
ordinary differential equation

F(z,u(x),u(x)) =0
for uw = u(x) can be solved by putting
v=xz(r), z=2z()=u@()), p=pT)=u(x(r)).

Differentiating F(xz(7), 2(7),p(7)) = 0 with respect to 7 we get, omitting the
arguments,
Fui + F.2 + Fpp = 0.

Here dots denoting differentiation with respect to the artificial time variable 7.
Since
Z = Uy T = DT,
we must have
(Fo +pF.)® + Fyp =0,

which is certainly the case if we put
-j::Fpa p:_Fm_pF27

whence
2 =pt = pkF).

We have thus “reduced” a simple first order ODE to a 3-dimensional system of
first ODE’s for x, p, z. The right hand side of Z = - - has to be rewritten using
F =0, depending on the exact form of the equation.

With p; = uy, you easily see that first order PDE’s
F(z1,...,Tn, Uy Ugyy. .. Uy, ) =0
in n variables lead to (numbering i =1,...,n)
n
#;=Fy, pi=—Fs —piF., 2= piF,.
j=1
This is called the method of characteristics. Note it may happen that the right
hand sides F},, in the equations
T = Fpi

depend only on the independent variables z1,...,z,. Solution curves of this
system in n-dimensional z-space are called characteristics.

Of course you may also treat equations of the form

Ut +H(x7tauaul‘) = 07



Exercise 7. Show that you get

T = H,,

p:_ch—szy Z:pHp_H
(in which H depends on t,z, z,p).
Exercise 8. Show that equations of the form

up+ H(xy, oo Ty by Uy Uy ooy Uy, ) =0,

lead to n
(ﬁi:Hpm p.i:_HIi_piHZ’ ’é:zijpi_H
j=1



