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1 Introduction and problem statement

The Semantic Web [1] extends the World Wide Web by providing well-defined semantics to
information and services. Through these semantics machines can “understand” the Web, making
it possible to query and reason over Web information, treating the Web as if it were a giant
semi-structured database.

Over the recent years, large volumes of data have been published in a Semantic Web format,
constituting a valuable resource for researchers across several fields: in medicine, there are dozens
of datasets that comprise protein sequence and functional information, biomedical article citations,
gene information and more1. The US and UK governments are putting major effort in making
public information more accessible by providing it in Semantic Web formats 2. General knowledge
extracted from Wikipedia 3 and geographical knowledge 4 is also available.

Semantic Web data is expressed in statements, also known as triples. Available data is quickly
outgrowing the computational capacity of single machines and of standard indexing techniques.
In March 2009, around 4 billion statements were available. In the following 9 months this number
had tripled to 13 billion statements and the growth continues.

A statement consists of a sequence of three terms: subject, predicate and object. An example is:

<http://www.vu.nl> <rdf:type> <http://dbpedia.org/University>

This statement states that the concept http://www.vu.nl is of type http://dbpedia.org/University.
The reason of using URIs to identify concepts is that URIs are unique on the Web while a classical
name (for example “Vrije Universiteit”) could introduce ambiguity.

Machines can reason using these triples, inferring new statements from the existing statements.
This is usually accomplished by applying a set of rules. The most commonly used rulesets are the
RDFS ruleset [3] and the OWL-horst ruleset [4], with the second being more powerful and more
difficult to implement. Rules are typically applied recursively, adding the inferred statements
to the input and stopping only when the closure is reached (i.e., no further conclusions can be
derived). An example rule is:

1http://www.linkedlifedata.com/ (2.7GTriples) and http://esw.w3.org/topic/HCLSIG/LODD
2http://www.data.gov/(5.07GTriples) and http://www.data.gov.uk/
3http://www.dbpedia.org(450MTriples)
4http://www.geonames.org(77MTriples)
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if (<?p isA transitiveProperty>, <?a ?p ?b>, <?b ?p ?c>) then <?a ?p ?c>

Unbound variables are denoted with a question mark. To apply this rule, we must perform a
three-way join between all the statements that match the patterns on the left side of the rule. For
all bindings, a statement of the form given at the right side will be generated. Both the RDF and
the OWL-Horst rulesets contain a dozen of these rules. In the worst case, reasoning with these
rules has an exponential complexity

The current state of the art of building inference engines with these rulesets mainly consists of
programs that run on a single machine. However, since the volume of Semantic Web data vastly
outgrows the capacity of such centralized solutions, a parallel approach is needed. This is far from
trivial, as (i) performing joins in parallel is known to be a challenging problem, (ii) it is difficult
to split the data into independent partitions, (iii) the term “popularity” follows a very skewed
distribution, which raises load balancing issues, and (iv) rules must be applied recursively. In the
next section we we briefly explain how we solve these problems.

In this paper, we present WebPIE, a parallel reasoner based on MapReduce [2] which aims
at reasoning on the scale of the Web. In section 2 we highlight some of the main features of
WebPIE while in section 3 we show that WebPIE vastly outperforms the best published centralised
approaches, being able to reason over one-order-of-magnitude larger datasets and achieving up to
60 times better throughput, compared to the best published approaches.

2 WebPIE: A Web-scale Parallel Inference Engine

We have developed WebPIE (Web-scale Parallel Inference Engine). WebPIE encodes Semantic
Web reasoning as a set of Map and Reduce operations, tapping on the power of the MapReduce
programming model [2] for performance, fault-tolerance and simplified administration. It aims
at high scalability in terms of the number of processing nodes and data size. This is achieved
by optimizing the execution of joins required to apply the RDFS and OWL-horst rules. More
information can be found in the relevant publications [6]5. In this paper, we will summarize some
of the main features of our approach.

A MapReduce implementation of Semantic Web reasoning is complicated by the inability of
MapReduce to execute data joins efficiently. In order to match a rule, the antecedents must be
grouped together based on a term and processed by a single reduce function running on a single
machine. The term distribution of Semantic Web statements is very skewed, therefore grouping
on single terms will lead to severe load balancing problems.

In addition, the same statement may be derived on the basis of multiple inputs and by multiple
rules. This leads to an excessive number of duplicate inferences, which has a detrimental effect on
load balancing and wastes resources, rendering the system practically unusable.

Since reasoning is a recursive problem, the output has to be joined with the input and processed
again, until no new statements are derived (fixpoint iteration).

We have addressed the above issues with the following key optimisations:

• We have improved load balancing by applying some rules in separate MapReduce jobs and
filtering out statements that cannot fire any rules for the current job. Furthermore, observing
that many rules include schema (i.e., ruleset) statements, which are limited in number, we
load the schema statements in memory. In this way, it was possible to iterate over the
statements in one part of the join, exploiting the streaming nature of MapReduce operations.

5the OWL-horst reasoning method is currently under review and the source code repository is located at
https://launchpad.net/reasoning-hadoop
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• We have addressed the problem of duplicate inferences by grouping statements by the in-
ferred statements that they may produce. This makes elimination of duplicates straight-
forward and efficient. Furthermore, we have developed rule-specific optimisations for prob-
lematic rules. For example, to avoid generating duplicates for the rule mentioned in the
introduction, we have used the graph distance to intelligently select the statements that
should be included in each rule application.
• We have optimised the order of the rule application to reduce the number of required iter-

ations over the dataset.

3 Performance and scalability

We have implemented a prototype using the Hadoop framework and conducted experiments
to evaluate the performance of our system. Our experiments were run on 64 nodes of the DAS3
multi-cluster6 using a gigabit ethernet interconnect. Each node was equipped with two dual-core
Opteron processors, 4GB of main memory and a 250GB SATA hard drive.

In Table 1(a), we report the runtime of our prototype on five real-world datasets and a bench-
mark. The first three datasets are Web crawls. As such, they contain poor quality data and cannot
be used for more powerful OWL-horst reasoning, as this would result in meaningless derivations.
Instead, much simpler RDF reasoning is used. LDSR and Uniprot are curated datasets that have
sufficient quality for OWL-horst reasoning, as does the LUBM benchmark dataset. Although
more inferences are made on the data crawled from the Web, RDFS reasoning is much simpler
than OWL-horst reasoning, resulting is significantly shorter runtimes.

We also notice that the execution time is not proportional on the input size. This behavior
is expected because the computation complexity does not only depend on the input size, but
also on how the statements are related to each other. In theory, both RDFS and OWL-horst
reasoning have exponential complexity, and it would be straightforward to devise an artificial
dataset that would render our optimisations ineffective. However, we have empirically found in
realistic datasets that such artificial worst cases do not appear.

We have evaluated the scalability of our approach, in terms of data size, using the standard
LUBM benchmark. The results are shown in Figure 1(b). For LUBM, the complexity of the
generated dataset does not increase with size. The results show that our solution scales linearly
up a very large input size (100 billion statements). In fact, the system performs better for datasets
of larger size, since the platform overhead becomes lower relative to the total execution time.

The current state-of-the-art includes single machine reasoners 7 and distributed reasoners [5, 7].
Compared to the former, we have shown inference on a number of statements which is one

order of magnitude larger than reported anywhere (100 billion triples against 12 billion triples).
Furthermore, our inference is 60 times faster (10 billion triples in 4 hours against 12 billion triples
in 290 hours for LUBM) against the best performing reasoner (BigOWLIM) on a large server.
For UniProt, BigOWLIM 3.1 needs 21 hours to perform forward reasoning on 1.15 billion triples8

(yielding a throughput of 15.2 Ktriples/sec) while our system needs only 6 hours for 1.5 billion
triples (yielding a throughput of 68.3 Ktriples/sec).

There are two other distributed reasoning platforms that have shown RDFS inference in the
order of hundreds of millions of triples. The marvin platform, which we have developed in
previous work [5], and the system presented in [7]. WebPIE vastly outperforms both systems

6http://www.cs.vu.nl/das3/
7http://esw.w3.org/topic/LargeTripleStores
8D5.5.2 at http://www.larkc.eu/deliverables
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Dataset Input Output Runtime
(Triples) (Triples) (h:m:s)

RDFS
Falcon 32.5M 863.7M 0:04:19
Swoogle 78.8M 1.50B 0:07:15
BigWeb 864.8M 30.0B 0:56:57

OWL-horst
LDSR 862M 935M 3:31:00
Uniprot 1.5B 2.0B 6:05:49
LUBM 1.1B 496M 0:36:36

(a)

Input Output Runtime Throughput
(Triples) (Triples) (h:m:s) (Kt/sec)

1.07B 0.50B 0:36.36 455.2
2.14B 0.99B 0:59:40 602.6

10.71B 4.97B 4:03:37 684.6
102.50B 47.56B 45:46:12 606.8

(b)

Figure 1. (a) Reasoning performance over rulesets and datasets of varying complexity. (b) Reasoning
performance over input size for the LUBM benchmark

in terms of data size and throughput. Furthermore, it supports OWL-horst inference, which is
significantly more complex than the RDFS inference supported in these systems.

4 Conclusions

In this paper we have described the problem of very large scale reasoning, stressing its relevance
to the Semantic Web. We have proposed WebPIE, a parallel approach based on MapReduce which
vastly outperforms state-of-the-art approaches and scales linearly with input size.

We have demonstrated reasoning on Web scale up to 60 times faster and with 10 times more
data than any other approach. A drawback of our system is that it does batch processing, i.e.
every time we execute a rule all the input must be read. This can be improved by designing a
specific data layer so that the MapReduce can read only the relevant statements. Further research
is also required to evaluate how relevant the input complexity is in the calculation of the closure.

We believe that this work establishes that computing the closure of a very large dataset is
no longer an important bottleneck, and that research efforts should switch to other modes of
reasoning.

We can provide a live demonstration of our system as well as results on additional datasets.

References
[1] T. Berners-Lee, J. Hendler, and O. Lassila. The semantic web. Scientific American, 284(5):34–43,

2001.
[2] J. Dean and S. Ghemawat. Mapreduce: Simplified data processing on large clusters. In Proceedings

of the USENIX Symposium on Operating Systems Design & Implementation (OSDI), pp. 137–147.
2004.

[3] P. Hayes, (ed.) RDF Semantics. W3C Recommendation, 2004.
[4] H. J. ter Horst. Completeness, decidability and complexity of entailment for RDF schema and a

semantic extension involving the OWL vocabulary. Journal of Web Semantics, 3(2–3):79–115, 2005.
[5] E. Oren, S. Kotoulas, G. Anadiotis, R. Siebes, et al. Marvin: distributed reasoning over large-scale

semantic web data. Journal of Web Semantics, 2009.
[6] J. Urbani, S. Kotoulas, E. Oren, and F. van Harmelen. Scalable distributed reasoning using mapre-

duce. In Proceedings of the ISWC ’09. 2009.
[7] J. Weaver and J. Hendler. Parallel materialization of the finite rdfs closure for hundreds of millions

of triples. In 8th International Semantic Web Conference (ISWC2009). 2009.

4


