
Lecture notes percolation (Draft, October 3, 2014)

J. van den Berg

In these lecture notes I discuss some ‘classical’ percolation results, with
emphasis on bond percolation on the square lattice, which are treated in the
first part of the course Percolation. The main result in these notes (which
will be extended/updated from week to week) is that the critical probability
for the above mentioned model is equal to 1/2.

The illustrations referred to in the text are provided in a separate file.

1 Some basic tools

This section concerns two very general results for independent 0− 1 valued
random variables. Our state space is the set Ω := {0, 1}n. (You could e.g.
interpret this as the possible outcomes of n coinflips). Elements of Ω are
typically denoted by ω = (ω1, · · · , ωn) and called configurations. If ωi = 1
we say, somewhat informally, that the ith component of ω is (or has value) 1,
or that there is a 1 at the ith position. We will often be somewhat informal
in our way of writing events. For instead, instead of writing the event that
the ith component has value 1 as {ω ∈ Ω : ωi = 1} we usually write simply
{ωi = 1}.

1.1 Increasing events, the notion of pivotality, and Russo’s
formula

Let ω be a configuration and let A be an event (i.e. a subset of Ω). We
say that an index 1 ≤ i ≤ n is pivotal (in the configuration ω for the event
A) if exactly one of the configurations ω and ω(i) is in A. Here ω(i) is the
configuration obtained from ω by flipping the ith component of ω. (That is,

ω
(i)
j is equal to ωj if j 6= i and equal to 1− ωj if j = i).

We denote by Ai the event that i is pivotal:

Ai := {ω ∈ Ω : i is pivotal in ω for A}.
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Example 1 Consider the event that all n outcomes are 1. So we take

A := {ω ∈ Ω : ωi = 1, 1 ≤ i ≤ n}.

Then i is pivotal in ω if and only if ωj = 1 for all j 6= i. So in this example
Ai is the event that all positions 6= i have value 1:

Ai = {ω : ωj = 1 for all j 6= i}.

Note that in the above Example the pivotality of i is a property that depends
only on the values at the positions 6= i. It is easy to see from the definition
that this is always the case:
Observation 1(a): Let i be an index, ω a configuration and A and event.
If i is pivotal for A in ω, then i is also pivotal for A in ω(i).

A certain (large) class of events is of special importance: We say that an
event A is increasing if (informally) it has a preference for 1’s. Formally, A
is increasing if ω ∈ A and ω′ ≥ ω implies ω′ ∈ A. Here ω′ ≥ ω means that
ω′i ≥ ωi for all indices i.

Observation 2 Let A be an increasing event, and i an index. Then the
event that A holds and i is pivotal and the event that i is pivotal and has
value 1 are the same. More precisely,

A ∩Ai = {ωi = 1} ∩Ai.

Exercise: Prove this.

Now we introduce randomness. Let Pp denote the product measure with
parameter p on Ω. So

Pp(ω) = p|{i:ωi=1}| (1− p)|{i:ωi=0}|, ω ∈ Ω.

Here the notation |V | is used for the number of elements in the set V .
The following simple relation (called Russo’s formula, or Margulis-Russo

formula) between the derivative of an increasing event and its (expected
number of) pivotal indices turns out to be extremely useful:

Lemma 1.1. Let A be an increasing events. Then

d

dp
Pp(A) =

n∑
i=1

Pp(Ai). (1)
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Note that the r.h.s. of (1) is the expectation of the number of indices
that are pivotal for A.

Example 2
Let A be as in Example 1. Clearly, Pp(A) = pn and so d/dpPp(A) =
npn−1. Let us check this with the outcome of Russo’s formula: We have (see
Example 1) that the probability that i is pivotal is pn−1. So

∑n
i=1 Pp(Ai) =

npn−1 which indeed is in accordance with the above.

Exercise
Let A be the event that ω1 and ω2 are both 1 or ω3 is 1. Give Pp(A), Pp(A1),
Pp(A2) and Pp(A3) and use this to check Russo’s formula for this special
case.

Proof. of Lemma 1.1: As is often the case, it is more convenient to prove
something more general. In the above setup all indices had the same pa-
rameter p. During this proof we consider the more general case where each
index i has a parameter pi which may differ from the other parameters. Let
the corresponding product measure on Ω be denoted by P(p1,··· ,pn). More
precisely,

P(p1,··· ,pn)(ω) =
∏

1≤i≤n:ωi=1

pi ×
∏

1≤i≤n:ωi=0

(1− pi).

We claim that (with A as in the stament of the Lemma), for each index
i:

∂

∂pi
P(p1,··· ,pn)(A) = P(p1,··· ,pn)(Ai). (2)

It is easy to see (check this yourself) that this claim implies the Lemma;
so we only have to prove the claim. First we write the obvious equality

P(p1,··· ,pn)(A) = P(p1,··· ,pn)(A \Ai) + P(p1,··· ,pn)(A ∩Ai). (3)

By observation 1(b) the event in the first term on the r.h.s. is completely
determined by the the values ωj , j 6= i. Hence its probability is a function
of the pj ’s, j 6= i. So the partial derivative with respect to pi of the first
term is 0.

Now we handle the second term in (3): By Observation 2 the event in
that term is equal to the intersection of the event that that ωi = 1 and
the event that i is pivotal for A. However, by Observation 1(a) these two
events are independent, so we have that the second term in (3) is equal to
pi × P(p1,··· ,pn)(Ai). Taking the partial derivative of this expression w.r.t.
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pi, and using that (again by Observation 1(a)) the second factor in this
expression is a function of the pj ’s, j 6= i, gives (2) and hence completes the
proof of the lemma.

The probability that i is pivotal is often called the influence of i. The
above Lemma says that, for an increasing event, its derivative with respect
to the parameter p is equal to the sum of the influences.

1.2 Positive correlation of increasing events

As before, Pp denotes the product distribution with parameter p.

Theorem 1.2. Let A,B ⊂ Ω be increasing events.

Pp(A ∩B) ≥ Pp(A)Pp(B). (4)

This result goed back to Harris (1960). Later it was extended to a larger
class of probability distributions by Fortuin, Kasteleyn and Ginibre (whence
the name FKG inequality).

There is a short induction proof of Theorem 1.2. Here we give a sketch
of a different proof, which is longer but has the advantage of being close to
intuition.

Proof. Let X1, · · · , Xn, Y1, · · · , Yn be independent random variables, each
taking value 1 with probability p and value 0 with probability 1 − p. It is
clear that the l.h.s. of (4) is equal to

P ((X1, · · · , Xn) ∈ A, (X1, · · · , Xn) ∈ B), (5)

and that the r.h.s. of (4) is equal to

P ((X1, · · · , Xn) ∈ A, (Y1, · · · , Yn) ∈ B). (6)

The idea of the proof is to change the event in (5) step by step into the
event in (6), in such a way that at each step the probability of the event
decreases. (By ‘decreases’ we will always mean ‘strictly decreases or remains
the same’). It is clear that if we can do that, the probability of (5) is indeed
larger than or equal to that of (6).

The first step is the following:
Claim 1 The probability in (5) is ≥

P ((X1, · · · , Xn) ∈ A, (Y1, X2, · · · , Xn) ∈ B) (7)
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Proof of Claim 1.
Let a2, · · · , an ∈ {0, 1}. We will condition on the event that, for all i =
2, · · · , n, Xi = ai. In particular we will show that, for each choice of
a2, · · · an, the conditional probability of the event in (5) is larger than the
conditional probability of the event in (7) (which clearly completes the proof
of the Claim). To do this we have to distinguish some cases:
Case (i): (0, a2, · · · , an) ∈ A ∩ B. In this case it is clear (recall that A and
B are increasing events) that both conditional probabilities are equal to 1.
Case (ii): (0, a2, · · · , an) /∈ A, (1, a2, · · · , an) ∈ A, (0, a1, · · · , an) ∈ B. In
this case both conditional probabilities are equal to the probability that
X1 = 1, which is p.
Case (ii’): Same as (ii) but with A and B exchanged. Now the first condi-
tional probability is equal to P (X1 = 1) and the second to P (Y1 = 1) which
(again) are both p.
Case (iii): (0, a2, · · · , an) /∈ A, (1, a2, · · · , an) ∈ A, (0, a2, · · · , an) /∈ B,
(1, a2, · · · , an) ∈ B. Now the first conditional probability is equal to P (X1 =
1) (which is p) and the second is equal to P (X1 = 1, Y1 = 1), which is p2 < p.
Finally we have to consider the case where (1, a2, · · · , an) /∈ A ∩ B. It is
clear that then both conditional probabilities are 0.

This proves Claim 1 and completes the first step. The second step is the
following:

Claim 2 The probability in (7) is ≥

P ((X1, · · · , Xn) ∈ A, (Y1, Y2, X3, · · · , Xn) ∈ B) (8)

Proof of Claim 2.
This is essentiall the same as that of Claim 1: Now let a1, a3, · · · , an ∈ {0, 1}
and b1 ∈ {0, 1}. We will condition on the event that Y1 = b1 and that, for
all i 6= 2, Xi = ai. We show that, for each choice of b1 and the ai’s, the
conditional probability of the event in (7) is at least that of the event in (8).
Again one has to consider similar cases as in the proof of Claim 1, and each
case is handled practically the same as before. We only show one case here,
namely the one corresponding with case (iii) in the proof of Claim 1:
(a1, 0, a3, · · · , an) /∈ A, (a1, 1, a3, · · · , an) ∈ A, (b1, 0, a3, · · · , an) /∈ B,
(b1, 1, a3, · · · , an) ∈ B. Again, (as in case (iii) of Claim 1, and for essentially
the same reason), the first conditional probability is p and the second is p2.
The other cases also correspond with similar cases as in the proof of Claim
1, and are handled in practically the same way. This completes the proof of
Claim 2.

More generally, the kth step, 1 ≤ k ≤ n, is described and handled in
practically the same way.
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This completes the (sketch of the) proof of Theorem 1.2.

2 The critical probability for bond percolation on
the square lattice is at least 1/2

The main result of this section was first proved by Harris around 1960. In the
late seventies a new proof, based on box-crossing inequalities, was obtained
by Russo (1978) and by Seymour and Welsh (1978). These box-crossing
results turn out to be very important for many other purposes. Below we
give a recent (slightly more elegant, in some sense weaker, but strong enough
for our current purpose) version of the RSW box-crossing results, following
Bollobás and Riordan (2006).

2.1 Box crossing inequalities

The key issue in this subsection is to give lower bounds for the probability of
crossing certain rectangles in terms of probabilities of crossing other (easier
to cross) rectangles.
First a trivial (and very general: it holds for every probability space) in-
equality and some notation.

Lemma 2.1. Let A1 and A2 be two events that have the same probability.
Then

P (A1) ≥
P (A1 ∪A2)

2
.

Remark: Later we will introduce a sharper, less trivial, version, but for
our present purpose Lemma 2.1 will do.

Back to percolation: For any rectangle R we denote by H(R) the event
that there is a horizontal open crossing of R (that is, an open path that lies
inside R and crosses R from left to right). Similarly, V (R) deontes the event
that there is an open vertical crossing of R. Let hp(n,m) be the probability
that there is an open horizontal crossing of a given n×m box:

hp(n,m) = Pp (H([0, n]× [0,m])) .

The trivial Lemma 2.1 above, together with other simple observations,
has the following consequence:
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Lemma 2.2. Let R be the square [0, 2n]2, and S the square [0, n]2 (see
Figure 1). Let P1 be a (deterministic) top-down crossing of S and let P ′1 be
its image under reflection in the line y = n. Note that the ‘concatenation’
of P1 and P ′1 forms a top-down crossing of R, and divides R in three parts:
the top-down-crossing just mentioned, the part Rr(P1) to the right of it, and
the part Rl(P1) to the left of it. Let A(P1) be the event that there is an open
path in Rr(P1) from the right-hand side of R to P1. We have

Pp(A(P1) ≥
Pp(H(R))

2
. (9)

Proof. Let A(P ′1) be the event that there is an open path in R from its
right-hand side to P ′1. It is easy to see that H(R) ⊂ A(P1) ∪A(P ′1). Hence,
using Lemma 2.1,

Pp(A(P1)) ≥ Pp(H(R))/2.

It is not difficult to give a lower bound for horizontally crossing a 3n by
n rectangle in terms of the probabiliities of similar events for n by n squares
and 2n by n rectangles:

hp(3n, n) ≥ hp(2n, n)2 hp(n, n).

For convenience we will mainly work with rectangles with even width, and
often write the above result as

Lemma 2.3.
hp(6n, 2n) ≥ hp(4n, 2n)2 hp(2n, 2n).

Proof. See Figure 2 and use FKG.

In practically the same way one can prove that

Lemma 2.4.
hp(4n, 2n) ≥ hp(3n, 2n)2 hp(2n, 2n).

But, can we give lower bounds (of, say, hp(3n, 2n)) in terms of crossing
probabilities of squares only? That appears to be more tricky! Most of the
work is in the following intermediate result:
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Lemma 2.5. Let R and S be as in Lemma 2.2 (see also Fig. 1). Let X(R)
be the event that there is an open vertical crossing P1 of S and an open path
P2 in R from the right-hand side of R to P1. Then

Pp(X(R)) ≥ Pp(H(R))Pp(V (S))/2.

Proof. Let π be a (deterministic) vertical crossing of S. Let E(π) be the
event that π is the left-most open vertical crossing of S. It is clear that
(with the notation of Lemma 2.2 and its proof)

E(π) ∩A(π) ⊂ X(R).

Moreover, the event E(π) depends only on the edges in the path π and in
Rl(π), while the event A(π) depends only on the edges in Rr(π). Hence
these events are independent. Finally, if π1 and π2 are different vertical
crossings of S, the events E(π1) and E(π2) are disjoint. Hence,

Pp(X(R)) ≥
∑
π

Pp(E(π))Pp(A(π)) ≥ Pp(H(R))

2

∑
π

Pp(E(π)), (10)

where we sum over all vertical crossings π of S, and where the second in-
equality follows from Lemma 2.2. Lemma 2.5 now follows from the fact that
the last summation in the r.h.s. of (10) equals Pp(V (S)).

From Lemma 2.5 we can easily obtain a lower bound for hp(3n, 2n) of
the form announced above Lemma 2.5:

Lemma 2.6.
hp(3n, 2n) ≥ hp(2n, 2n)2hp(n, n)3/4.

Proof. Consider the squares R = [0, 2n]2 and R′ = [−n, n]× [0, 2n], and the
square S = [0, n]2 in their intersection. (See Fig. 3). In Fig. 3 the events
X(R), and its reflected analog for R′ hold. If, in addition, H(S) holds, then
we have an open horizontal crossing of R∪R′ (which is a 3n by 2n rectangle).
Hence, using FKG,

hp(3n, 2n) ≥ Pp(X(R))2 Pp(H(S)).

The desired result now follow from Lemma 2.5, and by noting that Pp(V (S)) =
Pp(H(S)) = hp(n, n) and Pp(H(R)) = hp(2n, 2n).
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Combining this lemma with Lemma 2.4 and Lemma 2.3 we can also give
a lower bound for hp(6n, 2n) in terms of hp(n, n) and hp(2n, 2n).

Now consider a rectangle R = [0, n + 1] × [0, n] and its dual rectangle
Rd (see Fig. 4). Note that R and R′ are iosomorphic. There is either
a horizontal open crossing of R or a vertical closed (dual) crossing of R′.
From these symmetry properties we get that h1/2(n, n + 1) is exactly 1/2.
This, together with the above Lemma’s gives:

Proposition 2.7. There is a ε > 0 such that h1/2(6n, 2n) > ε for all n ≥ 1.

We are now quite close to showing that θ(1/2) = 0 (and hence that
pc ≥ 1/2). First the follolwing consequence of Proposition 2.7. Recall that
B(n) denotes the set of vertices {(x, y) : |x|, |y| ≤ n}. Now let, for integers
0 ≤ n ≤ m, A(n,m) denote the set of vertices {(x, y) ∈ Z2 : n ≤ |x| ≤
m, n ≤ |y| ≤ m}. A set of this form is called an annulus. We say, somewhat
informally, that ‘A(n,m) has an open circuit’ if there is an open circuit C in
A(n,m) such that B(n) is contained in the union of C and its interior.

Corollary 2.8.

inf
n
P1/2 (A(n, 3n) has an open circuit ) > 0.

Proof. Note that A(n, 3n) is the union of four 2n by 6n rectangles as indi-
cated in Figure 5. If each of these rectangles has an open crossing ‘in the
long direction’, then the annulus has an open circuit. By the FKG inequal-
ity and Proposition 2.7 this has probability larger than ε4, with ε as in the
Proposition.

2.2 pc ≥ 1/2 and other consequences of Corollary 2.8

From Corollary 2.8 we easily get our main result of this section, the following
theorem.

Theorem 2.9. For bond percolation on the square lattice,

θ(1/2) = 0 and hence pc ≥
1

2
.
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Proof. There are infinitely many disjoint annuli of the form in Corollary 2.8.
For instance, to be specific, take the annuli A(3k, 3k+1), k ≥ 1 and even. Now
consider perolation with parameter 1/2. According to the corollary there
is an α > 0 such that each of the above mentioned annuli has probability
larger than α to have an open circuit. Hence (since for disjoint annuli these
events are independent), with probability 1 there is at least one (and, in
fact infinitely many) of these annuli that have an open circuit. However,
by symmetry (p = 1/2 and duality) an analogous result holds for closed
circuits in the dual lattice. We conclude that with probability 1 there is a
closed circuit in the dual lattice that has the vertex 0 in its interior. But
if there is such a circuit, 0 can not be in an infinite open cluster. Hence
θ(1/2) = 0.

By refining the proof of the Theorem a little, we get the following re-
sult which can be interpreted as a bound for the so-called critical one-arm
exponent:

Theorem 2.10. There is a δ > 0 such that for all n ≥ 1

P1/2(O ↔ ∂Bn) ≤ n−δ.

Proof. Look at the proof of Theorem 2.9. It is easy to see that the number
of annuli in the dual lattice of the form A(3k+1, 3k) + (1/2, 1/2), k ≥ 1 and
even, that are in the interior of ∂B(n), is of order log n. More precisely,
there is a c > 0 such that for each n the number of such annuli is at least
c log n. The probability of the event {O ↔ ∂B(n)} is smaller than or equal
to the probability that none of those annuli has a closed circuit, which in
turn is at most (1− α)c logn. This can be written as

nc log(1−α),

so the desired result holds with δ = −c log(1−α). (Note that α ∈ (0, 1) and
hence that log(1− α) < 0).
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3 The critical probability for the square lattice is
at most 1/2

The strategy followed here is essentially that in the original proof by Harry
Kesten (1980). There are more ‘modern’ proofs, which put the result in a
more general framework (see Russo (1982) and Bollobás and Riordan (2006))
but, in my opinion, the proof described here is the shortest and most natural
self-contained proof. First we have to do some preliminary work: We need
a so-called finite-size criterion for percolation.

3.1 A finite-size criterion

Let hp(n,m) be the crossing probability defined in Subsection 2.1. We will
need a result of the following form:

Theorem 3.1. Let p ∈ [0, 1].
If there is an n > 4 with hp(3n, n) > 25/26, then θ(p) > 0.

Proof. We need a small modification of the events H(R) and crossing prob-
abilities hp(n,m) introduced in subsection 2.1: We define, for a rectangle
R, Ĥ(R) as the event that there is an open path in R that starts from the
left-side of R, ends on the right side of R and does not visit the upper or
the lower side of R. Further, we define, for all positive integers n, m,

ĥp(n,m) = Pp

(
Ĥ([0, n]× [0,m])

)
.

It is easy to see (check this; use Figure 6) that for each positive integer k

1− ĥp(4k, k) ≤ 5(1− ĥp(2k, k)). (11)

Further note that the events Ĥ([0, 4k] × [0, k]) and Ĥ([0, 4k] × [k, 2k])
are independent, and that both of them are contained in Ĥ([0, 4k]× [0, 2k]).
(Note that the above independence does not hold if we replace Ĥ by H.
This explains why we introduced Ĥ). Hence,

1− ĥp(4k, 2k) = 1− Pp
(
Ĥ([0, 4k]× [0, 2k])

)
≤ (1− ĥp(4k, k))2. (12)

Combining this with (11) we get

1− ĥp(4k, 2k) ≤ (5(1− ĥp(2k, k)))2. (13)

Now we are ready to prove the theorem. In the rest of this proof we
denote the number 1/26 by α. Suppose n > 4 and hp(3n, n) > 25/26 = 1−α.
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Then, clearly (use a picture), we also have ĥp(2(n + 2), (n + 2)) > 1 − α.

(This is where we used n > 4). So we have ĥp(2m,m) > 1 − α (where we
took m = n+ 2), and hence

1− ĥp(2m,m) < α. (14)

Applying (13) we get

1− ĥp(4m, 2m) ≤
(

5(1− ĥp(2m,m))
)2

< 25α(1− ĥp(2m,m)). (15)

Since α < 1/25 this is again smaller than α, so (14) still holds with m
replaced by 2m. So we can iterate the above and get, for all k ≥ 0,

1− ĥp(2k+1m, 2km) < α (25α)k. (16)

Now let, for k ≥ 0, Rk be the reactangle [0, 2k+1m]× [0, 2km] if k is even,
and [0, 2km]× [0, 2k+1m] if k is odd. If each of these rectangles has an open
crossing ‘in the long direction’, then (see Figure 7) there is an infinite open
cluster. Hence, by (16) and FKG,

Pp(∃ an infinite open cluster ) ≥
∏
k≥0

(
1− α(25α)k

)
,

which is larger than 0 because
∑

k(25α)k <∞.

Exercise 3.1 Give a modification of the last part (below (16) without
using FKG.

3.2 Proof of pc ≤ 1/2

In this subsection we use the following generalisation of Proposition 2.7,
which can be proved in practically the same way as Proposition 2.7.

Proposition 3.2. For all k > 0 there is an δk > 0 such that h1/2(kn, n) > δk
for all n ≥ 1.

Now we have done enough preliminary work to start the proof that
pc ≤ 1/2. The strategy will roughly be as follows: Let us suppose that
pc > 1/2. Let Hn denote the event that there is an open horizontal crossing
of the box [0, 8n] × [0, 2n]. We will show that if p ∈ (1/2, pc) and n is very
large, then the expected number of pivotal edges for the event Hn is also
very large. But then, according to Russo’s formula, d

dpPp(Hn) is large on
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the entire interval (1/2, pc). However, since Pp(Hn) is bounded (namely,
between 0 and 1) this gives a contradiction.

Now we carry this out more explicitly. Let N(Hn) denote the number
of pivotal edges for the event Hn.

Proposition 3.3. There is a constant C2 > 0 such that for all p ∈ (1/2, pc)
and all n ≥ 1

Ep(N(Hn)) > C2 log n.

Proof. We start by three ‘observations’:
Observation 1 See Figure 8. Let π be a ‘deterministic’ vertical dual cross-
ing of some box R, and let π′ be a (also ‘deterministic’) horizontal path,
starting from the right side of R and ending ‘near’ π. By the latter we mean
that the end vertex of π′ has distance 1/2 to the midpoint of some edge
(denoted by e in Figure 8) of which the dual edge is in π. Now suppose we
have a configuration (assignment of states, open or closed’ to the edges) in
which π is the leftmost, closed vertical dual crossing of R and in which π′

is open. In such configuration the above mentioned edge e is pivotal for the
event H(R). (This is so because if we make e open, there is no longer a
vertical closed dual crossing of R: we cannot avoid e by making a ‘leftgoing’
detour beacuse π was the leftmost such crossing, and neither by making an
‘rightgoing’ detour because that is blocked by π′).

Observation 2 See Figure 9. Let, again, π be a ‘deterministic’ vertical dual
crossing of some box R and π′ a horizontal path, starting from the right side
of R and ending ‘near’ π. Let NE(π, π′) be the edges in the ‘North-East’
region indicated in Figure 9. Let LL(π, π′) be the event that π is the leftmost
closed, dual, vertical crossing of R and that π′ is the lowest open horizontal
path with the above mentioned property. This event is independent of the
edge values in NE(π, π′).

Observation 3 See Figure 10. Let, again, π and π′ be a dual path, re-
spectively path, with the properties in the second sentence of Observation
2. Let v ∈ Z2 be the endpoint of π′. Let, for k ≥ 1, Ak = Ak(π, π

′) be the
annulus v +A(3k, 3k+1). Let, for those k for which the north-east corner of
Ak is inside R, Ck = Ck(π, π

′) be the event that there is an open path in
Ak ∩NE(π, π′) that starts at π and ends ‘near’ π. If p ≥ 1/2, we have

Pp(Ck) ≥ η, (17)

where η > 0 is the infimum in Corollary 2.8.
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We continue with the proof of the Proposition: During the proof we let
Rn denote the box [0, 8n]× [0, 2n]. Let p ∈ (1/2, pc) and n a positive integer.
Let π be a vertical dual crossing of the box [0, 6n] × [0, 2n]. From now on
we will often call that box the left part of Rn. Let π′ be a horizontal path
in the lower half of Rn, which starts at the right side of Rn and ends ‘near’
π. Let the events LL(π, π′) and Ck(π, π

′ be as in Observation 2. Note that
if both these events occur then, by Observation 1, there is a pivotal edge
inside Ak. Hence

Ep
(
N(Hn) |LL(π, π′)

)
≥ Ep

(∑
k

I(Ck(π, π
′) |LL(π, π′)

)
, (18)

where the summation is over all even k for which the north-east corner of
Ak is inside Rn and where I(·) denotes the indicator function. The right-
hand-side of (18) is of course equal to∑

k

Pp
(
Ck(π, π

′) |LL(π, π′)
)
,

which by Observation 2 equals∑
k

Pp(Ck(π, π
′)),

which by Observation 3 is at least ∑
k

η.

Since the number of terms in the summation is of order log n (here we
use that π and π′ are located in the left part, respectively lower half, of Rn),
this last expression is at least ηc log n for some constant c > 0 which does
not depend on n or p. Using this we have

Ep(N(Hn)) ≥
∑
π,π′

Pp(LL(π, π′))Ep
(
N(Hn) |LL(π, π′)

)
≥ ηc log n

∑
π,π′

Pp(LL(π, π′)), (19)

where the sum is over all π, π′ with the properties mentioned a few lines
above (18). Using (as before) that the event that π is the leftmost closed
vertical dual crossing of Rn is independent of the edge values in the region
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to the right of π, it follows that, for fixed π, the sum over π′ in (19) is at
least the product of

Pp(π is the leftmost closed vertical dual crossing of Rn)) (20)

and
Pp(∃ an open horizontal crossing of the lower half of Rn). (21)

By Proposition 3.2 the probability in (21) is at least δ4. Further, the
sum over π of (20) clearly equals

Pp(∃ closed vertical dual crossing of [0, 6n]× [0, 2n]),

which (using duality) equals 1 − hp(6n, 2n), which (by Theorem 3.1 and
because p ≥ 1/2) is at least 1

26 .

So the summation over π, π′ in (19) is at least δ4
26 and hence

Ep(N(Hn)) ≥ cη δ4
26

log n.

Taking C2 = cη δ426 this completes the proof of Proposition 3.3.

From this Proposition the main result in this section follows easily:

Theorem 3.4. (Kesten (1980)).

pc ≤ 1/2,

and hence, by Theorem 1.9,
pc = 1/2.

Proof. Let C2 as in Proposition 3.3 If pc > 1/2 we can choose an n satisfying
(pc−1/2)C2 log n > 1. By Russo’s formula and Proposition 3.3 we then have

Ppc(Hn) ≥ P1/2(Hn)+(pc−1/2) inf
p∈(1/2,pc)

Ep(N(Hn)) ≥ (pc−1/2)C2 log n > 1,

which is impossible. Hence pc ≤ 1/2.
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4 Connection probabilities at criticality

In this section we study, for the critical case (that is, for p = 1/2), the
asymptotic behaviour of the probability that O has an open path to some
vertex at large distance from O. Recall that Theorem 2.10 gives an upper
bound, in the form of a power of n, for P1/2(O ↔ ∂B(n)). A lower bound
in the form of a power law of n is obtained as follows: Let, for each even
integer k ≥ 0, Ak denote the event that there is an open horizontal crossing
of the box [0, 2k+1] × [0, 2k]. Similarly, let for each odd integer k ≥ 1, Ak
denote the event that there there is an open vertical crossing of the box
[0, 2k]× [0, 2k+1]. Let k̂ = k̂(n) be the smallest k with 2k > n. Clearly, there
is a c > 0 such that, for all n, k̂(n) < c log n. Also note that if all the events
A1, · · ·Ak̂ occur, and the edge with endpoints 0 and (1, 0) as well as the edge
with endpoints (1, 0) and (2, 0) are open, then there is an open path from 0
to the boundary of B(n). (This is a similar sitution as in Figure 7 at the end
of the proof of Theorem 3.1). By Proposition 2.7 there is an ε > 0 such that
each of the events Ak mentioned above has probability > ε. Hence (using
the FKG inequality), we get the following power-law lower bound:

P1/2(O ↔ ∂B(n)) ≥ 1

4
εk̂ ≥ 1

4
εc logn =

1

4
nc log ε.

A considerably better power-law lower bound can be obtained easily by using
a correlation-like inequality which we present in the following subsection
(and which is also useful in many other percolation arguments).

4.1 Another basic tool: the BK inequality

We have used several times results of the form that the probability that
there is an open path from a to b and an open path from u to v is larger
than or equal to the probability that there is an open path from a to b
times the probability that there is an open path from u to v. (Here u, v,
a and b are vertices in, for instance, the square lattice). This was a direct
consequence of the FKG inequality (see Section 1).

It turns out that it is useful to have an upper bound for the probability
that there exist disjoint open paths from a to b and from u to v. (In this
context, we say that two paths are disjoint if they have no edge in common).

As the results in Section 1, the tool we present now is relevant in a
much more general context than percolation theory. Again, we work on
Ω = {0, 1}n, and Pp is the product distribution on Ω with parameter p.
Before we state the main definition and results, we introduce some notation:
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Let ω ∈ Ω and K ⊂ {1, · · · , n}. We use the notation [ω]K for the set of all
elements of Ω that ‘agree with ω on K’. More formally,

[ω]K := {α ∈ Ω : αi = ωi for all i ∈ K}.

Now let A,B ⊂ Ω. We define A�B as the set of all ω ∈ Ω with the prop-
erty that there are disjoint subsets K,L ⊂ {1, · · ·n} such that, informally
speaking, the ω values on K guarantee that ω is in A, and the ω values on
L guarantee that ω is in B. Formally, the definition is:

A�B := {ω ∈ Ω : ∃ disjointK,L ⊂ {1, · · · , n} s.t. [ω]K ⊂ A and [ω]L ⊂ B}.

Theorem 4.1. For all n and all A,B ⊂ {0, 1}n,

Pp(A�B) ≤ Pp(A)Pp(B). (22)

This theorem was proved for increasing events by Van den Berg and
Kesten (1985) (whence the name BK inequality), who conjectured that it
holds for all events. Between then and (about) 1995 the result for increasing
events was extended to some other special classes of events, but there was
not much hope for a proof for the general case. Then, unexpectedly, a
young mathematician who was at that time in the final stage of his PhD
work, David Reimer, obtained a proof for the general case. The main idea in
Reimer’s proof (for which he received a George Polya price) was to ‘replace’
the problem by a (linear-)algebraic problem, in a very clever and elegant
way.

In this course we will use the inequality only for increasing events. That
special case can be proved in a similar way (but a bit more tricky) as the
FKG inequality in Section 1.2, namely by a step-by-step procedure. (Now at
each step the monotonicity is opposite to that in the proof of FKG: at each
step the probability of (the version at that step of) A�B does not decrease
but increase (or remains the same). We omit the details here.

Remark: To illustrate the BK inequality in a percolation-like setting, let G
be a finite graph of which the edges are independently open with probability
p and closed with probability 1 − p. Let, as in the introduction in the
beginning of this subsection, a, b, u and v be vertices of G. Let A be the
event {a ↔ b} (i.e. the event that there is an open path from a to b) and
B the event {u→ v}. By taking n equal to the number of edges of G, and
taking 0 for ‘closed’ and 1 for ‘open’, we can translate this in terms of the
general context, and it is easy to see (check this yourself) that, for A and
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B as above, A�B is the event that there are disjoint open paths from a to
b and from u to v. (Where, by ‘disjoint’ we mean here that the two paths
have no edges in common).

4.2 Back to connection probabilities at criticality

We will now use the inequality in the previous subsection to give a lower
bound for the probability (in the critical case) that 0 has an open path to
the boundary of B(n).

Theorem 4.2. For all n,

P 1
2

(O ↔ ∂B(n)) ≥ 1

2
√
n
.

Proof. Fix an n > 0 and consider the rectangle R := [0, 2n] × [0, 2n − 1].
We have seen before (using symmetry and duality) that the probability
P1/2(H(R)) that there is a horizontal open crossing of R is exactly 1/2. Let
l and r denote the left side and the ride side of R respectively, and let m be
the vertical line segment that divides R in two halves. Now suppose there
is an open horizontal crossing π of R. This path intersects m, and it is
clear that each vertex v on π ∩m has disjoint open paths to l and r. Also
note that each path from v to r or l intersects ∂B(v, n), the 2n× 2n square
centered at v. Hence,

H(R) ⊂
⋃
v∈l
{∃ two disjoint open paths from v to ∂B(v, n)}. (23)

Hence, since the number of vertices on m is 2n, and by using the BK in-
equality (and translation invariance), we have

1

2
= P 1

2
(H(R)) ≤ 2nP 1

2
(O ↔ ∂B(n))2,

from which the desired result follows immediately.

In fact it is believed that, for critical percolation on the square lattice
and other ‘nice’ planar lattices, P1/2(O ↔ ∂B(n)) behaves like n−5/48, in
the sense that

− log(Ppc (O ↔ ∂B(n)) / log n→ 5

48
, as n→∞.
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So far this has only been proved for site percolation on the triangular lattice
(using SLE processes, which will be introduced later in this course). Such
behaviour is called ‘power law behaviour’ and the corresponding exponent
(here 5/48) is called a ‘critical exponent. It is believed that, at and near
criticality, the asymptotic behaviour of several other functions can also be
described in terms of power laws. For instance, it is believed that, as p
approaches pc from above, θ(p) behaves like (p−pc)β, where the exponent β
essentially depends only on the dimension of the lattice. It has been proved
that in sufficiently high dimensions (> 19 is sufficient) the critical exponents
are exactly the same as for the binary tree. For instance, β is then exactly
1. For dimension 2 it is believed that β = 5/36. Again, this has so far only
been proved for site percolation on the triangular lattice.
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