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These notes are, in some sense, a continuation of the notes [1] by Federico
Camia, to which I will refer frequently, and are mainly based on parts of
Chapter 3 of the Saint-Flour notes [6] by Wendelin Werner.

1 Summary of some basic properties of SLE

In Section 6 of [1] we saw that the search for a Loewner chain with certain
stochastic properties, (which in turn came from the search for the ‘scaling
limit’ of the percolation exploration path), led to the definition of chordal
SLEκ (Def. 6.1) in [1]).

In the present section we work in the ‘reverse’ direction: we start from the
above mentioned definition and list and discuss the main properties of such
processes. For the time being, we will only work on the above mentioned
type of SLE and therefore omit the word ‘chordal’.

Since SLEκ is driven by Brownian motion, we first list the basic prop-
erties of that process. As before, we denote standard Brownian motion by
(Bt, t ≥ 0). For each t ≥ 0, Bt has a normal distribution with mean 0 and
variance t. We list the following basic properties:

Basic properties of Brownian motion

• Symmetry: (−Bt, t ≥ 0) has the same law as (Bt, t ≥ 0).

• Markov property: Let T ≥ 0. The process (BT+t − BT , t ≥ 0) has
the same law as (Bt, t ≥ 0) and is independent of (Bt, 0 ≤ t ≤ T ).
This also holds for certain random T , namely stopping times.

• Scaling property: Let λ > 0. The process (Bλt, t ≥ 0) has the same
law as (

√
λBt, t ≥ 0). In other words, (Bλt/

√
λ, t ≥ 0) has the same

law as (Bt, t ≥ 0).
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Let κ > 0 and Wt :=
√
κBt, t ≥ 0. Obvious analogs of the properties

listed above for B clearly hold for W . In particular, if λ > 0, the process
(Wλt/

√
λ, t ≥ 0) has the same law as (Wt, t ≥ 0).

Now let (Kt, t ≥ 0) be the SLEκ process (as in Def. 6.1 of [1]). It is
not difficult to show that the SLE process (Kt, t ≥ 0) driven by W ‘inherits’
some of the above properties for Brownian motion (as suggested in Section
6 of [1]):

Some basic properties of SLEκ:

• Symmetry: The law of (Kt, t ≥ 0) is preserved under reflection in
the imaginary axis.

• Conformal Markov property: Let T ≥ 0. The process

(gT (KT+t \KT )−WT , t ≥ 0)

is again an SLEκ process, i.e. has the same law as (Kt, t ≥ 0)).
Moreover, it is independent of (Kt, 0 ≤ t ≤ T ).
This also holds if T is a stopping time (w.r.t. the Brownian motion
driving K).

• Scaling property: Let λ > 0. The process (Kλt, t ≥ 0) has the same
law as (

√
λKt, t ≥ 0). In other words, (Kλt/

√
λ, t ≥ 0) has the same

law as (Kt, t ≥ 0).

As remarked in Section 6 of [1], it can be shown that Kt is generated
by a curve. More precisely, there is a continuous curve (which may touch
itself but not intersect itself) γ(·) such that, for each t ≥ 0, Kt is the ‘filling’
of the curve segment (γ(s), 0 ≤ s ≤ t), and we have gt(γ(t)) = Wt. This
fact is far from trivial and has been proved in [7]. Sometimes this fact
helps to find more ’visual’ proofs of certain results for SLE, for instance the
scaling property above. However, this scaling property (and also the two
other properties listed above) can also be derived by just using the Loewner
equation, as we will see below:

In fact, we start quite generally, and only later use that SLE is driven
by Brownian motion. Let (Kt, t ≥ 0) be a Loewner chain driven by some
function w(.). Now consider the process (K̂t := Kλt/

√
λ, t ≥ 0). From the

convention that Kt has capacity 2t, and from what we learned earlier about
capacities, it follows immediately that K̂t has capacity

2λt

(
√
λ)2

= 2t,
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so that K̂ is also a Loewner chain. Now we will determine its driving func-
tion: It is easy to see that the family of conformal maps ĝt, t ≥ 0 corre-
sponding with K̂ is given by

ĝt(z) =
gλt(
√
λz)√
λ

.

Just check that this ĝt is a map with the required properties (in particular
that it has the ‘correct’ hydrodynamic normalization) and use that these
properties are unique. From the Loewner equation for gt we then have:

dĝt(z)

dt
=

1√
λ

dgλt(
√
λz)

dt

=
1√
λ
λ

2

gλt(
√
λz)− w(λt)

=
2

ĝt(z)− (1/
√
λ)w(λt)

. (1)

Hence the driving function of K̂ is the function ŵ given by

ŵ(t) =
w(λt)√

λ
.

In the special case where K is an SLEκ process, we now get immediately
from the earlier listed scaling property for Brownian motion, that the driving
function of K̂ has the same law as that of K and hence that K̂ has the same
law as K.

In a similar (but somewhat more elaborate) way the conformal Markov
property for SLE follows from the Markov property of Brownian motion.

The above considerations may intuitively give the impression that two
SLE processes with different parameters κ behave ‘qualitatively’ the same.
However, as already remarked at the end of Section 6 of [1] this is not the
case: the bahaviour for κ < 4 is very different from that for κ > 4. We will
now point out where this difference comes from.

Let (Kt, t ≥ 0) be an SLEκ process, and let x be a non-zero real number.
We will study the time at which x is absorbed by K. We denote this time by
Tx (which may be infinite). By the scaling property of SLE the distribution
of Tx can be easily expressed in that of T1. In particular, T1 is finite with
probability one if and only if Tx is finite with probability one. As long as 1
is not in the hull, gt(1) satisfies the Loewner equation
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dgt(1)

dt
=

2

gt(1)−Wt
,

and vice versa: So T1 is the time at which gt(1) hits Wt, or equivalently,
gt(1) −Wt hits 0. So it is natural to study the process (gt(1) −Wt, t ≥ 0).
It turns out to be convenient to divide this by

√
κ, and we define

Xt :=
gt(1)−Wt√

κ
, t ≥ 0.

Note that X starts away from 0 (namely at location 1/
√
κ).

To answer the question whether X will hit 0, we study its infinitesimal
increments (differentials):

dXt =
1√
κ

(dgt(1)− dWt). (2)

As to the term dgt(1) in (2), the Loewner equation immediately gives:

dgt(1) =
2dt

gt(1)−Wt
,

which by the definition of X equals 2dt/(
√
κXt).

As to the term dWt: Recal that W is
√
κ times a standard Brownian

motion. But by the symmetry property of Brownian motion, we can also
write Wt as −

√
κBt, with Bt a standard Brownian motion. So we write

dWt = −
√
κdBt.

Together the above manipulations give

dXt =
2

κXt
dt+ dBt. (3)

This can be interpreted as (the differential equation for) a Brownian
motion with location-dependent drift. (If, in the right-hand-side of (3) Xt

would be replaced by a constant c, we would have a Brownian motion with
constant drift 2/(κc)). Note that the drift blows up when we approach 0
(and that the drift is away from 0). Equations of the form (3) have been
studied widely since a long time. (In fact, it describes a 1+(4/κ) dimensional
Bessel process). It is well-known that a process X satisfying (3) will hit 0
with probability 1 if κ > 4 and with probability 0 if κ ≤ 4. Using this it can
be shown (see the Exercise on the next page) that

Proposition 1.1. (a) If κ ≤ 4, then almost surely no point on the real line
(apart from 0) will be absorbed by the SLE process. More formally, with
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probability one, ∪t≥0Kt ∩ R = {0}.
(b) In fact, if κ ≤ 4, we even have that K is a simple curve.
(c) If κ > 4 then almost surely each point on the real line will eventually be
in the hull; more precisely, with probability one, R ⊂ ∪t≥0Kt.

Exercise:
(a) Show part (a) and part (c) of the proposition. (Hint: use the earlier
made remark that, in the above context, the element 1 on the real line is
not ‘special’).

(b) Derive part (b) of the proposition from part (a). Hint: Here you may
use the earlier mentioned fact that SLE is generated by a continuous curve,
say γ. If this curve is not simple, there is a (rational) time t such that the
curve (γ(t+ s, s > 0) hits the segment γ(0, t].
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2 Computation of first-hitting probabilities

In this section we assume κ > 4. In the previous section we have seen that
then a.s. each point x on the real line will eventually be in the hull. In the
present section we consider the following problem: Let a < 0 < c. What is
the probability that c is absorbed in the hull before a? In othere words: what
is the probability that the SLE process hits the halfline [c,∞) before it hits
the halfline (−∞, a]? It turns out that this can be solved quite explicitly.

Apart from being interesting in itself, this problem is motivated by con-
nections with critical percolation, see Section 2.4.

2.1 Notation and key ideas for the computation

It follows from the scaling property of SLE that the probability that [c,∞)
is hit before (−∞, a] depends only on the ratio of a and c. Therefore we can
write this probability as Fκ(−a/(c− a)), with Fκ, with Fκ a function which
maps the interval (0, 1) to itself. We will often omit the subscript κ.

Now let t > 0 and suppose that neither a nor c is in Kt. Consider the
‘standard’ map gt. As we noted before (see the conformal Markov property),
the process

(gt(Kt+s \Kt)−Wt, s ≥ 0)

is again an SLE process (with the same κ). Moreover, the hitting of [c,∞)
by the original process corresponds with hitting [gt(c)−Wt,∞) by the new
process. (And a similar statement holds for hitting (−∞, a]). In particular,
the original process hits [c,∞) before (−∞, a] iff the new process hits [gt(c)−
Wt,∞) before (−∞, gt(a) −Wt]. Hence, (if at time t neither c nor a is in
Kt),

P ([c,∞) is hit before (−∞, a] |Ft) = F

(
Wt − gt(a)

gt(c)− gt(a)

)
, (4)

where Ft is the σ−field containing all information up to time t. As I ex-
plained in class, the l.h.s. of (4), considered as a random process indexed
by t, is a (bounded) Martingale; in particular, it has no ‘drift’. But then
this also holds for the r.h.s. Therefore we will try to obtain an expression
for the changes of the r.h.s. of (4), under ‘infinitesimal changes’ of t. This
expression will contain terms of order dBt and terms of order dt. By setting
the latter (the drift terms) equal to 0, we will obtain a (differential) equation
for the function F .
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To carry this out we will use some (but not much) stochastic calculus.
For those who have not learned stochastic calculus, I give a very short and
informal intermezzo on this subject.

2.2 A short (and very informal) introduction to Stochastic
Calculus / Ito’s formula

As I pointed out in class, in ‘ordinary’ calculus we are used to write (when
f is a ‘smooth’ function):

df(t) = f ′(t)dt. (5)

In principle we could add the term

1

2
f ′′(t)(dt)2,

but don’t do that because, ‘when we sum things up, the contribution of such
terms vanishes’. Let us recall where this vanishing comes from: Divide the
interval (t, t+ s) in n sub-intervals

(t+ (i− 1)s/n, t+ is/n), 1 ≤ i ≤ n.

The sum of the squares of the lengths of the subintervals is

n∑
i=1

(s/n)2 = s2/n, (6)

which goes to 0 as n → ∞; this essentially explains the above mentioned
vanishing.

Now suppose we ‘start’ with a standard Brownian motion (Bt, t ≥ 0)
and consider the above function, but now applied to the Brownian motion.
That is, we consider the function (or process)

t→ f(Bt), t ≥ 0.

If we repeat the above considerations, f ′(t)dt is replaced by f ′(Bt)dBt and
the analog of (6) becomes

n∑
i=1

(
B(t+is/n) −B(t+(i−1)s/n)

)2
. (7)

The terms in this summation are independent, and each term has (by the
scaling property of Brownian motion) the same distribution as
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(
Bs√
n

)2

=
(Bs)

2

n
.

In other words, the distribution of (7) is the same as that of the average
of n independent copies of (Bs)

2. Hence (by the law of large numbers) (7)
converges in probability to the expectation of (Bs)

2, which is s. There-
fore, the ‘second-order’ term now doesn’t vanish but becomes 1

2f
′′(Bt)dt.

Summarizing, instead of (5) we get

d(f(Bt) = f ′(Bt)dBt +
1

2
f ′′(Bt)dt , (8)

which is known as (a form of) Ito’s formula.

2.3 The computation

Now we proceed from the situation at the end of Subsection 2.1. Define

Zt :=
Wt − gt(a)

gt(c)− gt(a)
.

Recall that we want to study the ‘infinitesimal increments’ of F (Zt).
Therefore we first do this for Zt. This appears to be easy: Simple use of the
‘quotient rule’ for differentiation gives

dZt =
(gt(c)− gt(a)) (dWt − dgt(a))− (Wt − gt(a)) (dgt(c)− dgt(a))

(gt(c)− gt(a))2
. (9)

To work this out further, we apply the Loewner equation, which gives us
immediately

dgt(c) =
2dt

gt(c)−Wt
,

and its analog for a instead of c. Plugging that into (9) and doing some
elementary algebra (and using the definition of Zt again) gives:

dZt =
dWt

gt(c)− gt(a)
+

2dt

(gt(c)− gt(a))2

(
1

Zt
− 1

1− Zt

)
. (10)

Recall that we are eventually interested in the drift term of dF (Zt). In
the spirit of the ideas in Subsection 2.2 we write, somewhat informally,

dF (Zt) = F ′(Zt)dZt +
1

2
F ′′(Zt)(dZt)

2. (11)
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This tells us (again somewhat informally) that the drift terms (the terms
involving dt) in dF (Zt) consists of F ′(Zt) times the the drift terms in dZt,
together with 1/2F ′′(Zt) times the drift terms in the square of dZt. The
former gives, by (10), of course a contribution

F ′(Zt)
2dt

(gt(c)− gt(a))2

(
1

Zt
− 1

1− Zt

)
.

As to the contribution of the latter: (again informally), if we take the square
of the r.h.s. of (10) and then replace, in the spirit of Subsection 2.2, (dWt)

2

by κdt (the factor κ arises of course becauseWt can be regarded as a standard
Brownian motion times

√
κ), we get the contribution

1

2
F ′′(Zt)

κdt

(gt(c)− gt(a))2
.

Together with the former contribution this gives, for the drift term in dF (Zt):

2

(gt(c)− gt(a))2

(
F ′(Zt)(

1

Zt
− 1

1− Zt
) +

κ

4
F ′′(Zt)

)
dt. (12)

It is intuitively obvious (and can be shown from the equation (10)) that Zt
‘can take all values between 0 and 1)’. Therefore (12) and the requirement
that F (Zt) has no drift gives the following differential equation for F :

κ

4
F ′′(z) +

(
1

z
− 1

1− z

)
F ′(z) = 0, 0 < z < 1. (13)

Another intuitively obvious result (which can be shown rigorously by doing
some extra work on (10)) is that F (z) tends to 0 as z → 0 and it tends to 1
as z → 1.

The above differential equation with boundary conditions has a unique
solution. More explicitly, we have

Theorem 2.1. For all κ > 4,

F (z) = c(κ)

∫ z

0

dx

x4/κ(1− x)4/κ
, z ∈ (0, 1), (14)

where

c(κ) =

(∫ 1

0

dx

x4/κ(1− x)4/κ

)−1
.

Remark: In the step leading to (11) we assumed certain smoothness
properties of F . This smoothness can be proved from further exploiting the
equation (10) and an elegant interpretation of F (z) in terms of the process
Zt.
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2.4 Connections with critical percolation

Earlier in this course it was made plausible that the scaling limit of an explo-
ration path in critical site percolation on the triangular lattice corresponds
with an SLE process. What should be the parameter κ of that process?
The computation in the previous subsection (resulting in (14), together with
Smirnov’s results give the answer, as we will see now: Let the points a and
c as in the previous subsection. Now consider critical site percolation on the
triangular lattice, with mesh δ, in the upper half-plane. Using the Cardy-
Smirnov theorem (as we saw in Section 5.7 of [3]) we can, in principle,
compute the probability (in the limit, as δ → 0) that there is an open path
from the segment [a, 0] to the segment [c,∞). I write ‘in principle’ because
the result is in terms of a conformal map from the half-plane to the domain
inside an equilateral triangle (see Theorem 5.46 in [3]). Fortunately, such a
map is explicitly known, and the resulting computation yields exactly (14)
with κ = 6. Recalling the correspondence between crossing probabilities
and hitting probabilities of the percolation exploration path, this means
that, in the scaling limit (as δ → 0), the probability that the exploration
path (starting at O) hits the segment [c,∞) before (−∞, a] is the same as
the probability of the corresponding event for SLE6.

This makes plausible that the percolation exploration path converges in
distribution, as the mesh of the lattice tends to 0, to the trace of an SLE6

path. This has indeed been proved in the literature. (An outline was given
in [5], see also the introduction of [4]; a detailed proof was given in [2]). A
full treatment would take far too much time in this course.
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