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1 Principle Component Analysis

1. We have 2xn measurement (e.g. measurements on two genes only).

(a) First consider 2 uncorrelated measurements with covariance matrix

Σ0 =

(
2 0
0 1

)
.

What are the weights of the two genes in the first principle component for this data.
No computations needed!

(b) Next, consider covariance matrix:

Σ =

(
2 0.2

0.2 1

)
.

Find the weights of the two genes in the first principle component for this data.

(c) Now change the covariate matrix to

Σ′ =

(
2 0.8

0.8 1

)
.

What do you expect to happen with the weights and verify your expectation?

2 Shrinkage (1)

Consider a high-throughput experiment in which a p-dimensional gene expression profile of 4
independent samples, equally distributed over two groups, has been determined using microarrays.
Let the random variable Yij denote the expression level of gene j in sample i and Xi the group
indicator for sample i. Assume the Yij (for all i and j) are independent and distributed as Yij |Xi ∼
N (Xi, 1) for i = 1, . . . , n and j = 1, . . . , p, where the group levels are coded as -1 and 1.

In the remainder we consider fitting the linear regression model Yij |Xi = βjXi + εij for all

genes. For this regression model the unbiased estimator is β̂j = (XTX)−1XTYj , where X =

(X1, X2, X3, X4)T and Yj = (Y1j , Y2j , Y3j , Y3j)
T . As Var(εij) = 1, we have Var(β̂j) = (XTX)−1

for all j.

1. Show the Mean Squared Error (MSE) of β̂j equals 1
4 .

2. Define the shrunken estimator: β̂j(λ) = β̂j−λ(β̂j−βtarget), where λ ∈ [0, 1] and βtarget = 1.

Calculate the expectation of the shrunken estimator β̂j(λ).
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3. Calculate the variance of the shrunken estimator β̂j(λ).

4. Which λ minimizes the Mean Squared Error of the shrunken estimator β̂j(λ)? Explain your
answer.

5. Instead of βtarget = 1, we now set βtarget = 1
p

∑p
j=1 β̂j . Would this change your answer to

Question 1d? Motivate your answer.

3 Analysis of high-dimensional count data

3.1 edgeR

1. What are the correct parametrizations f(µ, φ) and g(µ, φ) to arrive at the negative binomial
distribution from the Poisson-Gamma? Tip: Equate the first 2 moments of the Poisson-
Gamma to those of the Negative Binomial.

2. Show that Zi =
∑n

j=1 Yij is a sufficient statistic for µ when Yij ∼ NB(µ, φ).

3. Load the d10000.Rdata data set, available from: http://www.few.vu.nl/~mavdwiel/HDDA/
d10000.Rdata

Rename the feature names by entering:

rownames(d10000$counts) <- sapply(1:10000,function(i) paste("Tag",i))

d10000

Group information is available in d10000$sample, enter:

group <- d10000$samples$group group

(a) Mimic the analysis from the demo to find the 50 most significant differentially expressed
tags. Note that this is a simple 2-group study with no additional covariates. In this case
you do not need to apply estimateGLMCommonDisp() (data were already normalized).
Compare the results with those from the Wilcoxon analysis (apply wilcox.test()).

(b) In the simple two-group setting (no covariates), the data can also be analysed using the
functions exactTest() and topTags(), see edgeR manual, page 13 & 14. Use these
functions to generate a top 50 of differential tags. In this case you do not need to apply
estimateCommonDisp() (data were already normalized).

(c) Which method generates smaller p-values? Compare the two lists in terms of intersec-
tion. Use intersect().

4 Shrinkage (2)

Consider a coin tossing experiment with many different coins. Many of the coins are (approxi-
mately) fair, some are not. We have a 1000 coins, each tossed 6 times. The number of heads is
binomially distributed with N = 6 and some pj for coin j. Moreover, assume pj ∼ B(α, β), where
B denotes the beta-distribution.

1. Derive an Empirical Bayes moment estimate for α and β.
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2. Let Xj be the number of heads for coin j. Let Mk be the number of coins for which Xj = k.
Suppose we have M0 = 35,M1 = 68,M2 = 152,M3 = 287,M4 = 215,M5 = 170,M6 = 73.
What are the estimates for α and β?

3. We throw a coin 1001 and observe X1001 = 1. In reality the coin is fair. What is the
improvement of the estimate of p1001 when applying the (empirical) Bayes estimate instead
of the classical one?

5 ShrinkBayes

1. Show that the posterior of a parameter under a nonparametric prior fnp can be computed
from the posterior π(θ|Yi) obtained under a parametric prior fp

2. Verify the result for the posterior under the mixture prior, so compute f(θ|Y), θ 6= 0 and
P (θ = 0|Y).

3. For the CAGE data, we wish to test test H0 : βi,group1 = . . . = βi,group5.

(a) What is a suitable prior for this null-hypothesis?

(b) Apply the ShrinkBayes software to test H0

Some tips:

• the null-hypothesis implies a null-model without the group parameters.

• use the argument excludefornull in the ShrinkSeq function

• use the argument finalprior=TRUE in the FitAllShrink function

• use BFupdatePosterior to compute posteriors under the mixture prior
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