
Generalized Linear Models 

• Classical linear regression 
⇒ complicated formulation of simple model, structural and 
     random component of the model 
 

• Generalized linear models 
⇒ general description and examples 
 

• Parameter estimation (extra matetrial)1 
⇒ maximum likelihood method, computational issues 
 

• Statistical inference (extra matetrial)1 
⇒ goodness of fit, analysis of deviance 

1Not obligatory 



Wikipedia 
• In statistics, the generalized linear model (GLM) is a 

useful generalization of ordinary least squares regression. 
It relates the random distribution of the measured variable 
of the experiment (the distribution function) to the 
systematic (non-random) portion of the experiment (the 
linear predictor) through a function called the link 
function. 
 

• The subject of generalized linear models was formulated 
by John Nelder and Robert Wedderburn as a way of 
unifying various other statistical models under one 
framework, allowing for one general method of 
efficiently performing maximum likelihood estimation 
for these models. 



Classical Linear Regression 
Why easy formulation if complicated formulation exists? 

Response variable Y has a normal distribution 
Expected value EY of Y depends on explanatory variables 
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link function, linking (i) and (ii) 

Taking more general distribution in (i) 
and a more general link function g in  
(iii) sticking to this linear form in (ii) 

Generalized Linear Model 



Generalized Linear Models 
Kyphosis, medical context 

Kyphosis is a deformation that can occur with children that 
underwent corrective spinal surgery. 

Question: given the 
age of the child at 
the time of surgery,  
what is the probability 
of occurrence of Kyphosis? 
> library(rpart) 
> data(kyphosis) 
> kyphosis 
   Kyphosis Age Number Start 
1    absent  71      3     5 
2    absent 158      3    14 
… 

Presentator
Presentatienotities
Data available in R as part of package rpart-Age in months-Number is nr. of vertebrae involved in the operation-Start: at which vertebra does the spinal correction start-



Kyphosis 
Data visualisation 

> kyphosis 
   Kyphosis Age Number Start 
1   absent    71     3         5 
2   absent  158     3        14 
3   present 128     4         5 
                                    
83 absent    36     4        13 
> par(mfrow=c(3,1)) 
> plot(Kyphosis~Age, 
+ data=kyphosis) 
> plot(Kyphosis~Number, 
+ data=kyphosis) 
> plot(Kyphosis~Start, 
+ data=kyphosis) 
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Presentatienotities
?So which one matters? Age, number, start?



Kyphosis 
towards a model 

Initial naive model: 
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Notation:       indicator of presence of Kyphosis (1 means present, 0 not) 
                      age of child i at time of surgery 
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Presentatienotities
Mu_i sometimes written as p_i (probability)



Kyphosis 
Generalized linear model 
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Notation:       indicator of presence of Kyphosis (1 means present, 0 not) 
                      age of child i at time of surgery 
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   does not depend on    linearly, but a nonlinear function 
g (link function) of     depends on     linearly  
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random component 

systematic component, linear predictor 

link function (logit) 

Logistic Regression model 
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Presentatienotities
-So, one uses ONE non-linear function to link the response to the predictor variables. -exp(eta) = z, z = mu/(1-mu) -> z(1-mu) = mu -> mu(1+z) = 1, mu = 1/(1+z).- 0<= mu <= 1-Why this link function: canonical link function, to be discussed later.-Xi^T beta = \sum_j beta_j X_{ij}



Logistic Regression 
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random component 

systematic component, linear predictor 

link function 

Estimate parameter vector β based on the 
available data ⇒ estimated model specified 
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Generalized Linear Models 
> d.AD 
   treatment outcome counts 
1       1             1         18 
2       1             2         17 
3       1             3         15 
4       2             1         20 
5       2             2         10 
6       2             3         20 
7       3             1         25 
8       3             2         13 
9       3             3         12 
> par(mfrow=c(2,1)) 
> plot(counts~treatment,d.AD) 
> plot(counts~outcome,d.AD) 
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next example 

Data: randomized control trial.  
Check first example for R function glm (type ?glm) 

Presentator
Presentatienotities
?Which distribution could we use for counts?Which one matters here?



Counts 
Generalized linear model 
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Notation:       measurement on counts, assumed to be Poisson 
                      vector of explanatory variables for experiment i 
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g (link function) of     depends on     linearly  
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link function 

Log-linear Regression model ( ) 
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Presentatienotities
Poisson distribution: f(k) = mu^(y)/y!*exp(-y)- Again ‘logical’ link function, later



Log-linear Regression 
Estimate parameter vector  
β based on the available  
data ⇒ estimated  
model specified iii
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How to estimate β in the logistic and log-linear regression model?  

First: “general” generalized linear model 
        ⇒ ML estimation in GLM’s 
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Generalized linear model 
General structure and examples 
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Here fi is the probability density of a one-dimensional exponential 
family distribution 
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Looks complicated, but………….. 

parameter natural iθ

parameter dispersion φ Scale parameter, in statistical problems known 

Presentator
Presentatienotities
- How to do ML estimation? - Our strategy: distributions can be written in exponential form -> canonical link function - Solve ML in general for exponential family- natural parameter describes how the exponential behaviour of the response changes with (linear) input X- Why exponential family? The exponential family is convenient to work with when deriving asymptotic properties of the estimators (Part II, GLM). 



Generalized linear model 
examples of  exponential family 
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Note: in exponential family the canonical link function is the function 
mapping the mean µ to the natural parameter. In other words: in a  
GLM with exponential family density f and canonical link, the natural  
parameter is modeled as linear function of the parameter vector β!! 








 −−
− 2

2

2

2

2

2log
2

2exp πσ
σσ

µµ yy

( )µµ −− !loglogexp yy

















+−+

− y
n

ny log)1log(
1

logexp µ
µ

µ

Presentator
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Poisson:mu^y = exp(log(mu^y)) = exp(ylog(mu))



Generalized linear model 

Background material1 
 
• Moments for exponential family 
• Maximum Likelihood Estimation 
• Newton-Rhapson 
• Testing 
• Confidence intervals 

 
 1Not obligatory 
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