
Mathematical details for lecture series “Statistics for High-Dimensional
Data”

1 Multiple Testing

1.1 Definitions

Definitions

Hi
0 : null-hypothesis for ith test

H0 : {i : Hi
0 is true}

H1 : {i : Hi
0 is not true}

m : |H0 ∪H1| number of tests

π0 : |H0|/m
V :

∑

i∈H0

1{pi < u}; number of false positives given threshold u

S :
∑

i∈H1

1{pi < u}; number of true positives given threshold u

R :
∑

i

1{pi < u}; total number of rejections given threshold u

R : {i : pi < u}; the rejection set

P0 : null probability measure.

1.2 Uniform distribution of p-values

Theorem
If a p-value, i.e. the probability that the test statistic T (Y ) exceeds observation
t = T (Y ∗) given the null-hypothesis, p = P0(T (Y ) > t), is computed from a
continuous test statistic T (Y ), we have under the null-hypothesis

p(Y ∗) ∼ U [0, 1] or equivalently P0(p(Y
∗) ≤ α) = α

.

Proof :

P0(p(Y
∗) ≤ α) = P0(P0(T (Y ) > T (Y ∗)|T (Y ∗)) ≤ α) = P0(1− F (T (Y ∗)) ≤ α)

= P0(F (T (Y ∗)) > 1− α) = P0(T (Y
∗) > F−1(1− α))

= 1− P0(T (Y
∗) ≤ F−1(1− α)) = 1− F (F−1(1− α))

= 1− (1− α) = α

(1)



1.3 Bonferroni and Holm

Proof Bonferroni: see Exercise

Proof Holm: Let V i = 0 indicate the critical event that i is the smallest index
for which null-hypothesis H0j is true and pj = p(i). Then V i = 0 implies at
most m− (i− 1) null-hypotheses.

P (V > 0) =

m∑

i=1

P (V > 0|V i = 0)P (V i = 0) ≤
m∑

i=1

[

m∑

j=1

P (Vj = 1|V i = 0)]P (V i = 0)

≤
m∑

i=1

(m− (i− 1))α/((m− (i− 1))P (V i = 0) = α,

(2)

where we use the Bonferroni inequality for P (V > 0|V i = 0) and the fact that
P (Vj = 1|V i = 0) = 0 for all (i− 1) j’s for which pj < p(i).

1.4 Estimating π0

A conservative estimate for the bFDR is obtained when replacing π0 by 1. Quite
a few methods exist for estimating π0. A few simple estimators.

1. π̂0 : fraction of non-rejected null-hypothesis when applying Benjamini-
Hochberg.

2. π̂0 = min

(
1, #{pi∈(0.25,0.75)}

0.5m

)
. We count the number of times that pi lies

between the 25% and 75% quantile of the null (Uniform) and divide this by
the number of times we expect this to happen if all null-hypotheses would
hold: 0.5m. Other pairs of quantiles (qλ∗100, q(1−λ)∗100) can be used; it
may be tuned by applying a mean square error criterion.

3. Model the distribution of p-values as: f(p) = π0 + (1 − π0)h(p) and use

the assumption h(1) = 0. Then, π̂0 = f̂(1). Parametric, semi-parametric
and non-parametric methods may be used to model f(p).

1.5 FDR estimation, bFDR

bFDR = P (i ∈ H0|pi ≤ t) =
P (i ∈ H0)P (pi ≤ t|i ∈ H0)

P (pi ≤ t)

=
π0F0(t)

F (t)
.

(3)

Therefore, the following estimate is commonly used:

ˆbFDR =
π̂0mt

#{pi ≤ t} =
π̂0F0(t)

F̂ (t)
,



where F̂ (t) denotes the empirical distribution of p-values.

bFDR is (sometimes) called “(Empirical) Bayesian FDR”, because of the inter-
pretation of P (i ∈ H0|pi ≤ t) as a posterior probability.
Note: the Bayesian FDR, bFDR, is closely related another FDR concept pFDR
= E[V/R|R > 0]. In fact, the same estimators are used for both.

Equivalence Theorem
The BH rule is equivalent to rejecting allHi

0 for which pi ≤ t and t = maxu{ ˆbFDR(u) ≤
α}, when using π0 = 1.

Proof
The above rejection rule is equivalent to using pi ≤ p(j), where p(j) is the largest
order statistic smaller than t. Then,

ˆbFDR(p(j)) ≤ α ⇔ P (pi ≤ p(j)|i ∈ H0)

P̂ (pi ≤ p(j))
≤ α ⇔ p(j)

j/m
≤ α ⇔ p(j) ≤ α(j/m).

1.6 Local FDR, `fdr

bFDR can be written as π0F0(u)/F (u). A disadvantage of bFDR is that the
significance for a p-value pi (using bFDR cut-off u = pi) depends on all values
≤ pi. Local FDR, `fdr, is a more specific alternative:

`fdr = π0f0(u)/f(u).

Here, usually f0 = 1 is used (uniform distribution). Difficulty with `fdr is the
estimation of f(u), which is more difficult than estimating F (u).

Note that Ef [`fdr(u)|u ≤ v] = ˆbFDR(v), since

Ef [π0f0(u)/f(u)|u ≤ v] = π0

(∫

u≤v

f0(u)/f(u)∗f(u)du
)
/F (v) = π0F0(v)/F (v).

Appendix (not compulsory): Proof of BH-rule controlling
FDR

Let us write the FDR for given rejection set R as FDR(R), (NOTE: |R| = 0 is
not a concern, since this case does not contribute to the expectation) then

FDR(R) = E

[ |R ∩ H0|
|R|

]

=
∑

i∈H0

E

[
1{i ∈ R}

|R|
]

=
∑

i∈H0

E

[
1{pi ≤ α|R|/m}

|R|
]
,



using that, R satisfies the self-consistency condition: R = {i|pi ≤ α|R|/m}. To
see this: R = {i|pi ≤ p(J)}, J = max(j|p(j) ≤ αj/m), so R = {i|pi ≤ αJ/m}.
|R| = |{i|pi ≤ p(J)}| = |{i|pi ≤ αJ/m}| = J. Then, substitute J by |R|:
R = {i|pi ≤ α|R|/m}.

The assertion i ∈ R is equivalent to pi ≤ α(|R′
−i| + 1)/m and implies |R| =

|R′
−i|+1, where R′

−i is the rejection set {j 6= i|pj ≤ p(K)},K = max(k : p(k) ≤
α(k + 1)/m). Note that by definition, R′

−i only depends on the p-values of
p−i = (pj , j 6= i). Therefore, the FDR can be rewritten as follows:

FDR(R) =
∑

i∈H0

E

[
1{pi ≤ α[|R′

−i|+ 1]/m}
|R′

−i|+ 1

]

=
∑

i∈H0

E

[
E

[
1{pi ≤ α[|R′

−i|+ 1]/m}
|R′

−i|+ 1

∣∣∣∣ p−i

]]

=
∑

i∈H0

E

[
E[1{pi ≤ α[|R′

−i|+ 1]/m}]|p−i]

|R′
−i|+ 1

]

=
∑

i∈H0

E

[
α/m

]

≤
∑

i∈H0∪H1

E

[
α/m

]

=
α

m
m,

= α

where we used in the first inequality that the random variable pi conditional
to p−i has the same distribution than its marginal (from the independence
assumption).


