Mathematical details for lecture series “Statistics for High-Dimensional

Data”

1

Multiple Testing

1.1 Definitions

Definitions

1.2

H{ : null-hypothesis for ith test
Ho : {i: H}is true}
Hi : {i: H} is not true}

m : |HoUH;| number of tests

T - |’H0|/m

Vo Z 1{p; < u}; number of false positives given threshold u
1€Ho

S Z 1{p; < u}; number of true positives given threshold u
1€H1
R Z 1{p; < u}; total number of rejections given threshold u
i
R : {i:p; <u}; the rejection set

Py, : null probability measure.

Uniform distribution of p-values

Theorem

If a

p-value, i.e. the probability that the test statistic T(Y") exceeds observation

= T(Y™) given the null-hypothesis, p = Py(T(Y") > t), is computed from a
continuous test statistic T'(Y"), we have under the null-hypothesis

p(Y*) ~ U[0,1] or equivalently Py(p(Y*) < o) = «

Proof:

Po(

p(Y?) <) = B(B(T(Y) >TY7)|T(Y")) < a) = Py(1 - F(T(Y")) < )

)
= Py(F(T(Y*) >1—a)=P(T(Y*) > F (1 - a))
- R(T(Y) < FY(1—a)) = 1 - F(FY(1 - a))
=l-1l-a)=a«a



1.3 Bonferroni and Holm

Proof Bonferroni: see Exercise

Proof Holm: Let V¢ = 0 indicate the critical event that 7 is the smallest index
for which null-hypothesis Hp; is true and p; = p(;). Then V* = 0 implies at
most m — (¢ — 1) null-hypotheses.

P(V > 0|V =0)P(V' =0) < i[i P(V; =1V = 0)|P(Vi = 0)

i=1 j=1
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(m — (i = 1)a/((m— (i = 1)P(V' =0) = a,
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where we use the Bonferroni inequality for P(V > 0|V® = 0) and the fact that
P(V; =1V =0) = 0 for all (i — 1) j’s for which p; < p).

1.4 Estimating 7

A conservative estimate for the bFDR is obtained when replacing mo by 1. Quite
a few methods exist for estimating my. A few simple estimators.

1. 7 : fraction of non-rejected null-hypothesis when applying Benjamini-
Hochberg.

A —mi #{p:;€(0.25,0.75)}
2. o = min | 1, AEELS

) . We count the number of times that p; lies

between the 25% and 75% quantile of the null (Uniform) and divide this by
the number of times we expect this to happen if all null-hypotheses would
hold: 0.5m. Other pairs of quantiles (gx«100, ¢(1-x)«100) can be used; it
may be tuned by applying a mean square error criterion.

3. Model the distribution of p-values as: f(p) = mo + (1 — mp)h(p) and use
the assumption h(1) = 0. Then, 77y = f(1). Parametric, semi-parametric
and non-parametric methods may be used to model f(p).

1.5 FDR estimation, bFDR
P(i € Ho)P(p; < tli € Ho)
P(p; <)
3
7TOF0(t) ( )
F(t)

Therefore, the following estimate is commonly used:

bFDR = P(i € Holp; < t) =

S ﬁ'omt ﬁ'oFo(t)
bFDR = = —
#pi <t} F@)




where F'(t) denotes the empirical distribution of p-values.

bFDR is (sometimes) called “(Empirical) Bayesian FDR”, because of the inter-
pretation of P(i € Ho|p; < t) as a posterior probability.

Note: the Bayesian FDR, bFDR, is closely related another FDR concept pFDR
= E[V/R|R > 0]. In fact, the same estimators are used for both.

Equivalence Theorem A
The BH rule is equivalent to rejecting all H{ for which p; < t and ¢ = max, {bFDR(u) <
a}, when using w9 = 1.

Proof
The above rejection rule is equivalent to using p; < p(;), where p(;y is the largest
order statistic smaller than ¢. Then,

P(pi < pgjli € Ho)

. P@) ;
bFDR(p(;)) < a & —— <as —— <aspy) <alj/m).
v P(pi < pi) j/m v

1.6 Local FDR, /fdr

bFDR can be written as moFp(u)/F(u). A disadvantage of bFDR is that the
significance for a p-value p; (using bFDR cut-off u = p;) depends on all values
< p;. Local FDR, ¢fdr, is a more specific alternative:

Ufdr = mo fo(u)/ f(u).

Here, usually fo = 1 is used (uniform distribution). Difficulty with ¢fdr is the
estimation of f(u), which is more difficult than estimating F'(u).

Note that Ef[¢fdr(u)|u < v] = bFDR(v), since

Ejlmofou)/ fwu < o] = m( fo<u>/f<u>*f<u>du) JF(w) = moFo(v)/F(v).

u<lv

Appendix (not compulsory): Proof of BH-rule controlling
FDR

Let us write the FDR for given rejection set R as FDR(R), (NOTE: |R| =0 is

not a concern, since this case does not contribute to the expectation) then

FDR(R) = E {R;JM}

- >R

1€Ho

_ Z E{l{]% < aR|/m}}

i€Ho |R‘



using that, R satisfies the self-consistency condition: R = {i|p; < a|R|/m}. To
see this: R = {ilp; < p(p},J = max(jlp) < aj/m), so R = {i|p; < aJ/m}.
IRl = Hilpi < py}l = Hilps < aJ/m}| = J. Then, substitute J by |R|:
R = {ilpi < a|R|/m}.

The assertion ¢ € R is equivalent to p; < a(|R"_,| + 1)/m and implies |R| =
IR’ ;| + 1, where R’ ; is the rejection set {j # i|p; < p(x)}, K = max(k : pg) <
a(k + 1)/m). Note that by definition, R’ ; only depends on the p-values of
p—i = (pj,j # i). Therefore, the FDR can be rewritten as follows:

FDR(R) = > E fata= SQ/R];I 1+ Wm}]
i€Ho - -t

- 3l e

_ [E[1{p; < of|R"_;| + 1]/m}]|p—i]
= 2B R +1 }

i€Ho -
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where we used in the first inequality that the random variable p; conditional
to p—; has the same distribution than its marginal (from the independence
assumption).



