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Practical notes

Study material

1. These slides (3 sets for multiple testing)

2. “Tutorial in biostatistics: multiple hypothesis testing in
genomics” by Goeman & Solari. Sections 4.3 & 4.4 are
not compulsory study material.

3. PDF handouts: technical details.

References

1. [hand]: refers to PDF handout
2. [tut]: refers to tutorial
3. [exer]: refers to exercise




Mutliple testing lectures

1. Introduction Multiple Testing & Family-wise error rate
(FWER)

2. False Discovery Rate (FDR) + Bayesian perspective on
multiple testing
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B
Differential expression

‘ Data types
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Continuous Data: microarray gene expression, miR expression
Count data: RNAseq, miRseq 
Nominal: SNP
Nominal/ordinal: DNA copy number




B
Differential expression

‘ Comparative microarray experiment

Given: matrix of (normalized) expression values
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The objective:
Comparitive microarray experiments are carried out to identify genes that are differentially expressed, i.e., whose expression level is associated with a covariate, e.g., different RNA sources, different experimental conditions.



Differential expression
Top 5 genes out of 20,000

Gene p-value
OCIAD2 5.5e-6
NEK3 6.7e-6
TAF5 7.1e-6
FOXD4L6 7.5e-6
ADIG 8.8e-6

Small p-value?

e Getting a p-value as small as 5.5e-6 is unlikely

@ But is it also small if we admit that we tried 20,000 times?

@ Can we reliably state that OCIAD2 is differentially expressed?
@ What about NEK3?
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Multiple testing

How does multiple testing differ from single testing?

1. p-values not sufficient to control false positive rate:
p < 0.05 implies too many false positives

2. Different error control desirable when # tests large:
control proportion of false positives instead of P(at
least 1 false positive)

3. Opportunity to learn from other features:

When using a t-test: estimate the s.d. from all
features (other lecture: limma)
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P-values

e Test m null-hyposthesis: Hy;, Hy, » ..., Hopm,
 Renders m p-values: p, ,..., P

 Property of p-values: Py(p; < a) = a (or < a) [proof:
see hand-out]

* V: Number of false positives
e Under independence [tut]:

P(V>0) = 1-(1- a)™,



Too many false positives
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Multiple testing setting
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Family-wise error rate (FWER)

 FWER: probability of making at least one false
rejection, so

FWER = P(V > 0)

e If m =1 (one test), FWER reduces to type | error rate
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Bonferroni

Bonferroni’s solution

1. Multiply p-values with m, the number of tests
2. Reject null-hypothesis for feature | when

po"f=mx p; <a(e.g. a =0.05)

Under arbitrary dependency structure:

Reject H,, when pPorf< aimplies FWER < a [exer]



B
Bonferroni

em=>5
e o = 0.05.

Gene

o b wpNPk

p-values
Pi

0.006
0.372
0.012
0.000
0.811

Bonferroni
p_Bonf
|

p; X m=0.03
pixm>1
pi X m=0.06
p; X m=0.00
pixm>1
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YOS Gt
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Gene 1 and 4 are declared differentially expressed.
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What happens when m is increased to 1000? Gene 1?


Bonferroni

 Now suppose m=1000
» Consider the same 5 genes

e o = 0.05.
Gene p-values Bonferroni Reject

rejection level H,

1 0.006 ppxm>1 No

2 0.372 ppxm>1 No

3 0.012 ppxm>1 No

4 0.000 p; Xxm=0.00 Yes ¢t

5 0.811 ppxm>1 No

Only gene 4 is declared differentially expressed.



Holm’s sequential procedure
1. Reject all null-hypotheses with p-value p, < a/m

2. If r null-hypotheses are rejected, reject
all null-hypotheses with p-value p; < a/(m-r)

3. Continu until no rejections are done

Holm’s sequential procedure, adjusted p-values

1. p(l)HO|m =m p(l) |
2. phom™ = max(p.1y,(M-(i-1)) pg)
3. Reject when pyHom< a




Holm

Theorem

Under arbitrary dependency structure:
Reject H,; when pHom< a implies FWER < a

Proof

See hand-out



Holm
*m=2>5
e oo = 0.05.
Gene p-values Holm Reject
pi piHoIm H0

1 0.006 p; X 4= 0.024 Yes &=
2 0.372 PiXx2>0.744 NoO
3 0.012 p; X 3= 0.036 YES g
4 0.000 P, x5=0.00 Yes ¢t
5 0.811 pix1>0.811 No

Gene 1,3 and 4 are declared differentially expressed.
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What happens when m is increased to 1000? Gene 1?
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Holm

 Now suppose m=1000
» Consider the same 5 genes
e oo = 0.05.

Gene

ok WPk

p-values

0.006
0.372
0.012
0.000
0.811

Rank

3
455
44
1
878

Holm
piHoIm

P, X998 > 1
P X546 >1
P X957 >1
p; xm =0.00
pix123>1

Reject
HO
No
No
No

Yes €
No

Only gene 4 is declared differentially expressed.



Bonferroni vs Holm

e Bonferroni: very simple

e Holm is more powerful and valid under same assumptions,

o... but for high-dimensional settings (large m): little gain by
using Holm.

Bonferroni and Holm in R

load("'C:\\Synchr\\Onderwi js\\HighDimensional\\SIides\\FDR\\Exercises\\pvals.Rdata")

pvaladjHolm <- p.adjust(pvals,method="holm")
pvaladjBonf <- p.adjust(pvals,method="bonferroni™)

cbind(sort(pvaladjHolm)[1:50],
sort(pvaladjBonf)[1:50])
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Dependence

Genes are not independent, but collaborate in networks...



FWER under dependence

* Bonferroni and Holm are valid, but... likely to be conservative
when many positive correlations are present.

 Very relevant in imaging data (neighboring pixels are
extremely highly correlated), or DNA genomics data:
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FWER under dependence

e For example, imagine m=100.000 variables, which are
perfectly correlated withing blocks of 100.

 Bonferroni: p;"°"" = m x p,,

« However, p29 = m/100 x p, would suffice for FWER control
and is much less conservative

» m/100: effective dimension. Often hard to determine.

« Solution: permutation. Retains the correlation structure
between hypotheses (genes).



FWER by permutation

X: gene matrix, Y: response (disease) labels

Original data (X,Y) Permuted data (X, 11(Y))
subject genel gene2 disease subject genel gene2 disease
1 3.4 3.8 1 1 3.4 3.8 1
2 5.7 1.9 1 2 5.7 1.9 0
3 2.9 3.7 1 3 2.9 3.7 0
4 3.6 1.3 1 4 3.6 1.3 1
5 1.4 4.1 0 5 1.4 4.1 1
6 1.8 3.8 0 6 1.8 3.8 0
7 2.6 4.7 0 I 2.6 4.7 1
8 3.5 2.9 0 8 3.5 2.9 0



.

FWER by permutation

FWER = P(V>0) = Py(min_, . p;<a)

Find a’ such that FWER < a

== Use permutations to find the distribution of

minP = min._,

Exchangeability condition

The null-distribution of a test statistic T can be
obtained by permutation if, under H,, the distribution
of (X, Y) is the same as for (X,m1(Y)), where 1 is a
random permutation of response labels Y.
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Give example of non-exchangeable (different sd’s) and exchangeable cases
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FWER by permutation

Single-step algorithm, permutation-equivalent of Bonferroni

1. Initiate k=1.

2. Iteration k: Randomly permute the labels Y

3. Calculate new p-values for all tests based on
permuted data

4. Calculate the smallest p-value for permuted data:
minP,

5. Repeat 2 - 4 many times (say, 10,000)

6. Calculate critical value a’: the largest value of threshold t
for which Po(minP, <t) < a

/. Reject all H, for which p, = a'.
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See Tutorial for discussion on the number of permutations. This typically depends on whether the raw p-value pi has been computed from a know theoretical null-distribution (eg. T) or from the same permutations. In the latter case more permutations are needed, because a minimal pi of say 1/10000 may not be small enough when m=10000 


®
FWER by permutation

Westfall & Young algorithm: permutation-equivalent of Holm

1. Start with all hypotheses
2. Repeat
3. Single step minP to calculate o’

4. Reject hypotheses with p-value p,s o’
5. Remove rejected hypotheses

6. Stop when no more rejections occur
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See Tutorial for discussion on the number of permutations. 
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FWER by permutation

‘Why IS W&Y more powerful than single-step? \

~
o

0.3

False positive probability

0.2

0.1

0.0

0.00 0.01 0.02 0.03 0.04 0.05

3 1 Critical value
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See Tutorial for discussion on the number of permutations. 


F

WER b

ermutation
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D k=1 k=K=10*
p,=0001 | | Py =Pk
p, = 0.009
p; = 0.604
p,=0.211
Ps = 2 e
P = 0.843
P, = 0.402
pg = 0.041 Ps.1 Ps k

Example \

Sort Critical
) ) valeas
MINnP g sk
Say a’' =
0.008

Note: Bonferroni
gives a’ = 0.05/8
= 0.00625
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See Tutorial for discussion on the number of permutations. 


FWER by permutation

D, k=1 | ... | k=K=10* Sort Critical
_ ‘ ‘ lue a’=
Rejected i
| P11 P1,k minP g sk
p, = 0.604
- Say a’' =
ps=0.211 0.011

Rejected
p, =0.843 Ps1 | - Ps.k
ps = 0.041
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See Tutorial for discussion on the number of permutations. 


Summary

Familywise error rate (FWER)

* Generalizes Type | error to multiple hypotheses
 Limits the probability of any error among all inferences

FWER control methods

e Basic: Bonferroni

e Extension 1. Holm

e Extension 2: permutations

o Extension 1 & 2: Westfall & Young
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