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Practical notes 
Study material 

1. These slides (3 sets for multiple testing) 
 

2. “Tutorial in biostatistics: multiple hypothesis testing in 
genomics” by Goeman & Solari. Sections 4.3 & 4.4 are 
not compulsory study material. 
 

3. PDF handouts: technical details. 

References 

1. [hand]: refers to PDF handout 
2. [tut]: refers to tutorial 
3. [exer]: refers to exercise 
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Mutliple testing lectures 

1. Introduction Multiple Testing & Family-wise error rate 
(FWER) 
 
 

2. False Discovery Rate (FDR) + Bayesian perspective on 
multiple testing 
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Content 

1. Introduction Multiple testing 
 

2. FWER 
 

3. Bonferroni & Holm 
 

4. Permutations 
 

5. R-code 
 

6. Summary 
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Introduction 
Multiple Testing 
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Source: http://flowingdata.com/2011/04/08/statistical-significance-on-xkcd/ 
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Data types 
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Presentator
Presentatienotities
Continuous Data: microarray gene expression, miR expression
Count data: RNAseq, miRseq 
Nominal: SNP
Nominal/ordinal: DNA copy number
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Comparative microarray experiment 
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Given: matrix of (normalized) expression values 

Differential expression 

Presentator
Presentatienotities
The objective:
Comparitive microarray experiments are carried out to identify genes that are differentially expressed, i.e., whose expression level is associated with a covariate, e.g., different RNA sources, different experimental conditions.
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Differential expression 
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Multiple testing 

1. p-values not sufficient to control false positive rate: 
 p ≤ 0.05 implies too many false positives 

How does multiple testing differ from single testing? 

3. Opportunity to learn from other features: 
 When using a t-test: estimate the s.d. from all 
 features (other lecture: limma) 

2. Different error control desirable when # tests large:  
 control proportion of false positives instead of P(at 
 least 1 false positive) 
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P-values 

• Test m null-hyposthesis: H01, H02 , ..., H0m  
 
• Renders m p-values: p1 ,..., pm  
 
• Property of p-values: P0(pi ≤ α) = α (or ≤ α) [proof: 
see hand-out] 
 

• V: Number of false positives 
 
• Under independence [tut]: 

 
      P(V>0) = 1-(1- α)m

0 
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Too many false positives 



14 

Multiple testing setting 

 True Null False Null 

Rejected V U R  
   

Non-rejected m0 - V m1 - U 
 

m-R 

m0  
 

m1 m 
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Family-wise error rate (FWER) 

• FWER: probability of making at least one false 
rejection, so  

 
FWER = P(V > 0) 

 
• If m = 1 (one test), FWER reduces to type I error rate  
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Under arbitrary dependency structure:  
 
Reject H0i  when pi

bonf ≤ α implies FWER  ≤  α [exer]  

Bonferroni 

Bonferroni’s solution 

1. Multiply p-values with m, the number of tests 
2. Reject null-hypothesis for feature i when  
 

pi
bonf = m x pi ≤ α (e.g. α = 0.05) 
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p-values 
 pi 

0.006 
0.372 
0.012 
0.000 
0.811 

Bonferroni 
pi

Bonf 

Bonferroni 

pi x m = 0.03 
pi x m > 1 
pi x m = 0.06 
pi x m = 0.00 
pi x m > 1 

Gene 
  

1 
2 
3 
4 
5 

Reject  
H0  

Yes 
No 
No 
Yes 
No 

• m = 5 
• α = 0.05. 

Gene 1 and 4 are declared differentially expressed. 

Presentator
Presentatienotities
What happens when m is increased to 1000? Gene 1?
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p-values 
  

0.006 
0.372 
0.012 
0.000 
0.811 

Bonferroni 
rejection level 

Bonferroni 

pi x m > 1 
pi x m > 1 
pi x m > 1 
pi x m = 0.00 
pi x m > 1 

Gene 
  

1 
2 
3 
4 
5 

Reject  
H0  

No 
No 
No 
Yes 
No 

• Now suppose m=1000  
• Consider the same 5 genes 
• α = 0.05. 

Only gene 4 is declared differentially expressed. 
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Holm 

Holm’s sequential procedure 
1. Reject all null-hypotheses with p-value pi ≤ α/m 

 
2. If r null-hypotheses are rejected, reject  
all null-hypotheses with p-value pi ≤ α/(m-r) 
 
3.  Continu until no rejections are done 

Holm’s sequential procedure, adjusted p-values 

1. p(1)
Holm = m p(1)  

2. p(i)
Holm = max(p(i-1),(m-(i-1)) p(i))  

3. Reject when p(i)
Holm ≤ α 
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Theorem 
 
Under arbitrary dependency structure:  
Reject H0i  when pi

Holm ≤ α implies FWER  ≤  α  
 
Proof 
 
See hand-out  
  
 

Holm 
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p-values 
 pi 

0.006 
0.372 
0.012 
0.000 
0.811 

Holm 
pi

Holm 

Holm 

pi x 4= 0.024 
pi x 2 > 0.744 
pi x 3= 0.036 
pi x 5 = 0.00 
pi x 1 > 0.811 

Gene 
  

1 
2 
3 
4 
5 

Reject  
H0  

Yes 
No 
Yes 
Yes 
No 

• m = 5 
• α = 0.05. 

Gene 1,3 and 4 are declared differentially expressed. 

Presentator
Presentatienotities
What happens when m is increased to 1000? Gene 1?
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p-values 
  

0.006 
0.372 
0.012 
0.000 
0.811 

Holm 
pi

Holm 

Holm 

pi x 998 > 1 
pi x 546 > 1 
pi x 957 > 1 
pi x m = 0.00 
pi x 123 > 1 

Gene 
  

1 
2 
3 
4 
5 

Reject  
H0  

No 
No 
No 
Yes 
No 

• Now suppose m=1000  
• Consider the same 5 genes 
• α = 0.05. 

Only gene 4 is declared differentially expressed. 

Rank 
  

3 
455 
44 
1 

878 
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Bonferroni vs Holm 

• Bonferroni: very simple 
 

• Holm is more powerful and valid under same assumptions,  
 

•... but for high-dimensional settings (large m): little gain by 
using Holm.  

Bonferroni and Holm in R  
load("C:\\Synchr\\Onderwijs\\HighDimensional\\Slides\\FDR\\Exercises\\pvals.Rdata") 
  

pvaladjHolm <- p.adjust(pvals,method="holm") 
pvaladjBonf <- p.adjust(pvals,method="bonferroni") 
 
cbind(sort(pvaladjHolm)[1:50], 
sort(pvaladjBonf)[1:50]) 
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Dependence 

Genes are not independent, but collaborate in networks... 
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FWER under dependence 

• Bonferroni and Holm are valid, but... likely to be conservative 
when many positive correlations are present.  
 

• Very relevant in imaging data (neighboring pixels are 
extremely highly correlated), or DNA  genomics data:  
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FWER under dependence 
• For example, imagine m=100.000 variables, which are 
perfectly correlated withing blocks of 100.  
 
• Bonferroni: pi

bonf = m x pi,  
 

• However, pi
adj = m/100 x pi would suffice for FWER control 

and is much less conservative 
 

• m/100: effective dimension. Often hard to determine. 
 

• Solution: permutation. Retains the correlation structure 
between hypotheses (genes). 
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FWER by permutation 

(X,π(Y))  (X,Y)  

X: gene matrix, Y: response (disease) labels 
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FWER by permutation 
FWER = P(V>0) = P0(mini=1,...,m pi ≤ α’) 
 
Find α’ such that FWER ≤ α 
 
       Use permutations to find the distribution of  
 

minP = mini=1,...,m pi  

Exchangeability condition 

The null-distribution of a test statistic T can be  
obtained by permutation if, under H0, the distribution  
of (X, Y) is the same as for (X,π(Y)), where π is a  
random permutation of response labels Y. 

Presentator
Presentatienotities
Give example of non-exchangeable (different sd’s) and exchangeable cases
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FWER by permutation 

Single-step algorithm, permutation-equivalent of Bonferroni 
1. Initiate k=1. 
 

2. Iteration k: Randomly permute the labels Y 
3. Calculate new p-values for all tests based on  
permuted data 
4. Calculate the smallest p-value for permuted data:  
minPk 
 

5. Repeat 2 - 4 many times (say, 10,000) 
6. Calculate critical value α’: the largest value of threshold t  
for which P0(minPk ≤ t) ≤  α 
7. Reject all H0i for which pi ≤ α’.  

Presentator
Presentatienotities
See Tutorial for discussion on the number of permutations. This typically depends on whether the raw p-value pi has been computed from a know theoretical null-distribution (eg. T) or from the same permutations. In the latter case more permutations are needed, because a minimal pi of say 1/10000 may not be small enough when m=10000 



30 

FWER by permutation 

Westfall & Young algorithm: permutation-equivalent of Holm 

1. Start with all hypotheses 
 
2. Repeat 
 

3. Single step minP to calculate α’ 
4. Reject hypotheses with p-value pi ≤ α’    
5. Remove rejected hypotheses 

 
6. Stop when no more rejections occur 

Presentator
Presentatienotities
See Tutorial for discussion on the number of permutations. 
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FWER by permutation 

Why is W&Y more powerful than single-step? 
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Presentator
Presentatienotities
See Tutorial for discussion on the number of permutations. 
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FWER by permutation 

Example 

pi 

p1 = 0.001 

p2 = 0.009 

p3 = 0.604 

p4 = 0.211 

p5 = 0.002 

p6 = 0.843 

p7 = 0.402 

p8 = 0.041 

k=1 ... k=K=104 

p1,1 ... p1,K 

... ... ... 

... ... ... 

... ... ... 

... ... ... 

... ... ... 

... ... ... 

p8,1 ... p8,K 

minP1 ... minPK 

minP1 

. 

. 

. 

minPK 

minP(1) 

. 

. 

. 

minP(K) 

Sort Critical 
value α’= 
minP(0.05K) 

Say α’ = 
0.008  

Note: Bonferroni 
gives α’ = 0.05/8 
= 0.00625 

Presentator
Presentatienotities
See Tutorial for discussion on the number of permutations. 
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FWER by permutation 

Example 

pi 

Rejected 

p1 = 0.009 

p2 = 0.604 

p3 = 0.211 

Rejected 

p4 = 0.843 

p5 = 0.402 

p6 = 0.041 

k=1 ... k=K=104 

p1,1 ... p1,K 

... ... ... 

... ... ... 

... ... ... 

... ... ... 

p6,1 ... p6,K 

minP1 ... minPK 

minP1 

. 

. 

. 

minPK 

minP(1) 

. 

. 

. 

minP(K) 

Sort Critical 
value α’= 
minP(0.05K) 

Say α’ = 
0.011  

Presentator
Presentatienotities
See Tutorial for discussion on the number of permutations. 
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• Generalizes Type I error to multiple hypotheses 
• Limits the probability of any error among all inferences 
 
 
FWER control methods 
 
• Basic: Bonferroni 
• Extension 1: Holm 
• Extension 2: permutations 
• Extension 1 & 2: Westfall & Young 

Summary 

Familywise error rate (FWER) 
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