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1
Introduction

The occurrence of unexpected emergencies may have a major impact on our daily lives,
and in many cases short response times are crucial. In severe, life-threatening emergency
situations where every second counts, the timely presence of medical aid, firefighters or
policemen may make the difference between survival and death. In other areas, emergency
incidents may cause considerable disruptions, e.g., in case of failure of production facilities,
medical equipment, communication services, financial services and public transport.

At a high level, these examples share the following important characteristics. In an
emergency situation, the time needed for the resources (e.g., firefighters, doctors, police,
repairmen, equipment) to arrive at the emergency location should be below some response
time target value. To ensure short response times, the resources are located at a number
of base locations (fire or police stations, warehouses) spread across the region of service.
Throughout this thesis, networks in which such emergency incidents occur will be referred
to as Emergency Response Networks (ERN’s).

In this thesis, we address operational questions ultimately aimed at reducing response
times in ERN’s. More specifically, we focus of the following two powerful means to
improve the responsiveness of ERN’s:

1. dispatching of resources: “Which resources to be sent to which emergency incident?”

2. proactive relocation of resources: “Where to locate/relocate the resources in order
to properly anticipate future incidents?”

1



1.1. Maintenance and Emergency Services

1.1 Maintenance and Emergency Services

In practice, there are many types of emergency incidents, and there is a variety of services
available to deal with them. Two important service categories are maintenance services
and emergency services. Maintenance services are related to keeping capital goods such as
machines, trains and aircraft operational, and emergency services refer to application areas
such as ambulance and firefighter services, police surveillance and road-side assistance.

1.1.1 Maintenance Services

In the high-tech industry, expensive and complex expensive devices are built, called
capital goods. These are durable goods used for production or services, such as aircraft,
lithography machines and MRI-scanners. The availability of capital goods is crucial to
keep the primary processes of their owners and/or users up and running. For instance,
the inconvenience of aircraft not being operational when needed is not only inconvenient
to travelers, but also causes a significant loss of revenue for airlines. Moreover, it leads
to operational costs related to rescheduling corresponding flights. Lithography machines
form a bottleneck production step of semi-conductor manufacturing: when a lithography
machine is down, it may cause the standstill of an entire factory. The unavailability of
MRI-scanners may lead to high costs as well, in addition to inconveniencing patients in
the best case, and medical emergencies in the worst case.

Keeping capital goods operational is often costly. In [81] and [116] the authors esti-
mate that the costs of maintenance and unavailability of a capital asset over its lifetime
(typically at least a decade) is three to four times the acquisition costs. Spare parts for
capital goods are among the main sources of costs, and any delay in delivering the spare
parts significantly contributes to the unavailability. In fact, in 2003 spare part sales and
services (mostly maintenance) accounted for 8% of the gross domestic product in the
United States [119]. More recently, US Bancorp estimated that the yearly expenditure
in the US on spare parts amounts to 700 billion US dollars, which is 8% of the US
gross domestic product [51]. Service accounts for 25% of total revenue for 120 large
manufacturing companies in America, Asia Pacific, and Europe, and after-sales services
account for 40% of the profit for these 120 companies [61].

We distinguish between preventive and corrective maintenance. There is a large
body of research literature devoted to preventive maintenance (see, for example, [107]
and [120] for overviews), where the goal is to develop policies that are able to detect and
prevent potential breakdowns before they occur. It is often implemented in practice as
a periodic review policy, where a repairman regularly checks the equipment condition,
and decides upon a review whether to repair it or not. Corrective maintenance takes
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Chapter 1. Introduction

place when, apart from the “planned” maintenance, a defect suddenly occurs. In this
case, a maintenance provider must be able to deliver and repair the spare part very
quickly, often within a few hours. The maintenance part of this thesis is focused primarily
on optimization and development of heuristics for corrective maintenance operations.
Corrective maintenance is an inevitable part of maintenance services and its optimization
can be done independently from preventive maintenance.

Because the need for spare parts is uncertain (as it is unknown when machines break
down), and the spare parts should be delivered in a timely manner, after-sales departments
store resources (spare parts, tools and service engineers) in warehouses near the places
where such need can arise. These spare parts are used to service for instance MRI-
scanners at hospitals that contracted after-sales services. The stock in these warehouses
is resupplied with a certain lead time whenever demand occurs. Sometimes the spare
part needed to repair an MRI-scanner is not available at the nearest stock point, and a
replacement part is shipped from a more distant warehouse that does have it in stock.
Such shipments are called lateral transshipments, and are an important distinguishing
feature of networks of spare part stocks. This feature enables not only efficient pooling of
spare part stocks, but also complicates the analysis and control of such networks because
stock points cannot be analyzed in isolation.

Most of the spare parts management research literature, spanning several decades,
is devoted to the tactical decisions making. The main focus is on optimization of local
inventory management policies [18, 39]. One of the first models of this type was introduced
as early as 1968 [95], followed by a number of extensions (see, e.g., [75, 33]). For a detailed
overview of the spare parts inventory management models we refer to [117]. The strategic
decision of facility location for spare parts networks has received relatively little attention,
although some research looked into jointly solving the two problems of network design
and inventory stocking [14, 52, 90, 122]. Interestingly enough, some of these are based on
the previous work on facility location for Emergency Medical Services (EMS). Limited
research was devoted to operational level decision making for spare parts. In recent
years, dynamic rules for dispatching and relocation of spare parts seems to attract more
attention in the research literature [84, 101, 28, 74].

1.1.2 Emergency Services

The type of operational challenges observed in corrective maintenance appears in many
other logistics-related applications, for instance with ambulance, firefighter, police-
surveillance and road-side assistance services. In life-threatening emergencies, the ability
of ambulance and firefighter service providers to arrive at the emergency scene within a few

3



1.2. Focus and Research Questions

minutes is crucial. In practice, a commonly used service-level target is that the response
time for high-priority calls should be below some threshold, which depends on the type of
emergency. To enable such extremely short response times (i.e., the time between a call
and the moment when service is offered at the scene of the emergency) at affordable cost,
efficient planning of emergency services is crucial. To this end, emergency service providers
face a variety of planning problems at the strategic, tactical, and operational level. For
example, consider fire fighting services. In the Netherlands, there is a requirement by
law that a fire has to be responded to within 5-10 minutes, depending on the type of
call. In order to meet this requirement, there are several fire stations spread around each
region. Each station has a number of trucks waiting and ready. When an emergency call
is placed, one or more fire trucks are dispatched based on proximity to the emergency.
Sufficient equipment must be available to be able to deal with major incidents adequately,
as those might require multiple fire trucks simultaneously. Fire trucks must be properly
distributed in order to be able to respond to a possible second incident elsewhere.

Independently and in parallel with the developments in spare part management,
researchers have been working on models and algorithms for EMS management. Much
of this work was devoted to determining the optimal location of base stations, where
ambulances await new emergencies. The pioneering models were introduced in the early
1970s [102, 17] and were followed by numerous extensions and case studies. This re-
search literature on strategic decision making gave rise to the development of models
for real-time dispatching and relocation of emergency vehicles, with one of the first
dynamic relocation models introduced in [30]. Dynamic ambulance management is
an active research area, with some recent works including [47, 110, 112, 99, 79]. For
overviews of location, relocation and dispatching literature for EMS we recommend [12, 7].

Combining areas of expertise: Despite many similarities in how maintenance and
emergency services operate, so far the research in these areas has been done relatively
independent from each other, in particular at the operational level. We believe that
merging such independent streams of research with apparent commonalities can contribute
to development of better methods in each area, as well as propagate and evolve the
methodology into other application areas with similar features. This thesis is the first
attempt in doing so. We aim to get inspiration from the research done in one application
area to address a problem arising in another one.

1.2 Focus and Research Questions

In this thesis we focus on how to exploit the potential of dispatching and relocation of
resources in ERN’s by developing new models and optimization methods.

4



Chapter 1. Introduction

Dispatching: In practice, dispatching of resources is often done according to some static
rule, where for each potential location of an incident there is a predefined and fixed
dispatching order. One example of such policy is the closest-first policy, where the closest
available resource is dispatched to the incident location. Such a policy, however, does
not take into account important spatial properties of ERN’s, such as traveling times,
differences in incident arrival rates across the region, current location and availability
of resources. This can result in coverage gaps in some areas, and, therefore, may lead
to large response times for later incidents. Dynamic state-dependent dispatching poli-
cies can be useful to maintain good coverage over time and boost the performance of ERN’s.

Relocation: Another way to maintain good coverage in real time is by proactive reloca-
tion of resources between different storage locations. Relocation actions can be used either
to compensate for the imbalances caused by static dispatching, or it can complement
a dynamic dispatching policy. Often, dispatching options are limited by the service
targets such as maximum response time. It can be that such restrictions still result in
an unfavorable allocation of resources. This problem can be mitigated by relocating
resources from well covered areas to those with a shortage. Both dynamic dispatching and
relocation policies introduce a great deal of flexibility in ERN operations management.
There is an enormous potential in improving the overall ERN performance given this
flexibility, and we are looking into the question of how to best exploit it.

Research questions: At a high level, the research questions that we address in this
thesis are:

1. How to proactively relocate resources during major and long-lasting incidents?

2. How to deal with uncertainty in travel times?

3. How to optimally combine dispatching and proactive relocation of resources?

4. How to strike a good balance between prevention of, and response to, emergency
incidents?

To address these questions, we will focus on two different examples of such application
areas, namely, maintenance services for capital goods and firefighting emergency services.
In doing so, we look at both application areas mentioned above, acquiring data and insights
from the Fire Department of Amsterdam-Amstelland (FDAA) and Philips Healthcare.
We address a number of practical operational problems from firefighter services and spare
parts management, combining methodology and ideas from both areas of expertise.
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1.3. Outline of the Thesis

1.3 Outline of the Thesis

The research presented in this thesis is organized in five chapters. Chapters 2, 3, 4 and
6 can be read separately, while reading Chapter 5 should follow Chapter 4. Below we
outline our contributions.

Optimal resource relocation during major emergency incidents

Fire departments have to deal with the uncertainty of not just the location and time
of an incident, but also its severity. Occasionally, large fires occur that might require
multiple fire trucks for an extended period of time. The current practice of the fire
department is to dispatch the closest vehicles to the incident location, but this leads to
significant gaps in coverage. The question then arises, how to protect against the risk
of a simultaneous incident elsewhere. One way to ensure reasonable response time to
such simultaneous incidents is by relocating the remaining idle fire trucks between the
fire stations.

In Chapter 2 we address this question, and conduct a case study using FDAA data. We
introduce a fast heuristic that allows us to strike a balance between the gain in coverage
and the number of relocations made. The heuristic is based on solving a mathematical
program that makes use of spatial distribution of incidents, as well as the location and
availability of fire trucks. Using ten years of historical data provided by FDAA, we test
the algorithm in a simulation against three benchmark policies including the current
FDAA practice. The proposed algorithm outperforms all benchmarks, including the
heuristic currently used by FDAA. The obtained results demonstrate that significant
improvements can be made by making relocations as opposed to not relocating at all, and
provide insight into how the system performance can be improved with the willingness to
make more relocations.

Dealing with uncertainty in travel times

Another source of uncertainty for firefighting services is the driving time. Traffic jams
or weather conditions may negatively affect response times to an incident. In the city
center of Amsterdam, for example, where the streets are narrow and crowded, even a single
garbage truck or a lifted bridge may cause a delay. Stochastic driving times may affect
the optimal dispatching policy, especially when multiple vehicles have to be dispatched
to the same incident location. The problem gets more complicated when correlation in
driving time is present, where two vehicles driving through the same congested area can
both get delayed. This brings us to the next question. How to dispatch fire trucks to
incidents under stochastic driving times and driving time correlation? When dispatching
fire trucks to incidents, a common practice of the fire departments is to always dispatch
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Chapter 1. Introduction

the closest vehicles. This policy proved to be sub-optimal in some of the previous studies
for EMS, even when a single emergency vehicle is dispatched to each incident and when
driving times are assumed to be deterministic. The fire departments, however, often have
to dispatch multiple fire trucks to the same incident. In the city center of Amsterdam,
for example, FDAA always dispatches two trucks to ensure quick response times in case
one truck gets delayed.

Chapter 3 models this type of system and provides an algorithm for producing dis-
patching policies. We model the system as a Markov Decision Process (MDP) that takes
into account stochastic driving times and driving time correlation. The optimal policy
shows significant improvement over the closest-first dispatching. As the optimal policy
cannot be computed for real life applications, we develop a heuristic based on a queuing
approximation for the future costs in the MDP formulation. The heuristic is scalable,
while able to produce high quality dispatching policies.

Combining dispatching and relocation of resources

In maintenance networks for capital goods, when a breakdown occurs, a service
engineer has to be dispatched. Dispatching decisions have to be made in real time, and
can be affected by the spatial distribution of the machines, as well as by the current
location and status of the service engineers. Service engineers, like fire trucks, are spread
across the region to ensure quick response times to breakdowns. The question is then how
to dispatch these service engineers for the best performance, and whether the performance
can be improved by relocating the service engineers between their base stations.

In Chapters 4 and 5 we look into the problem of dynamic dispatching and relocation of
service engineers. Inspired by the extensive research done for EMS, we propose a number
of scalable heuristic policies both for dispatching and relocation of service engineers.
The proposed heuristics are compared against each other in a simulation for various
types of service logistics networks. The best combination of dispatching and relocation
heuristics shows close to optimal performance on a small toy instance, where the optimal
policy is obtained using policy iteration algorithm for the MDP formulation of the problem.

Balancing prevention and fast response to emergencies

Spare parts are typically stored in multiple warehouses, and can also be relocated
between them. One of the biggest trends in maintenance research is predictive or condition-
based maintenance that aims at reducing the maintenance costs by repairing machines
before they break down. Doing preventive maintenance introduces one more decision
layer to an already complicated problem. For instance, assume each breakdown requires
a spare part, then how should the spare parts be dispatched to breakdowns, and how
they should be relocated between warehouses? With the introduction of condition-based
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maintenance we answer yet another question of when and which machines should be
preventively repaired to reach the maximum performance of the system?

Chapter 6 introduces a new model that explicitly incorporates the degradation process
of the machines in a maintenance service network and enables proactive maintenance
along with corrective dispatching and relocation of spare parts. We demonstrate that
this significantly improves the optimal policy independent of the cost structure.

Cross-fertilization of ideas from different application areas: In the last paragraph
of Section 1.1, we stated that in this thesis we aim to draw inspiration from research
done in the area of emergency services to address problems in the area of maintenance
services, and vice versa. Indeed, for the results on dispatching fire trucks in Chapter 3, we
draw inspiration from the paper by Tiemessen et al. [101], who propose an approximation
algorithm for optimal dispatching in the context of spare parts. In Chapter 3, we adapt
the approximation in [101] to our problem of dispatching multiple fire trucks. Conversely,
we also use insights from the EMS domain for addressing planning problems in the context
of maintenance services. More specifically, for the results presented in Chapter 4 we
develop a number of heuristics for dispatching service engineers motivated by results
in the EMS literature, including compliance tables [108] and the DMEXCLP heuristic
proposed by Jagtenberg et al. [47]. Moreover, the results on the ADP-based approach
presented in Chapter 5 are based on ideas borrowed from the EMS-domain [71, 79]. This
way, the cross-fertilization of ideas from the different application areas form the basis for
the results presented in this thesis.

Combining the ideas from the two application areas is possible due to the many
similarities in how maintenance and emergency services operate. It is worth mentioning,
however, that the two domains have some specific features as well. For example, in
firefighter services, we have to deal with the fact that a single incident may require more
than one fire truck of the same type. In contrast, in spare parts management for capital
goods, it is unlikely that a breakdown of a machine requires multiple spare parts of the
same type or more than one service engineer. In turn, in spare parts management, it
might be possible and beneficial to postpone a dispatching decision, and wait, for example,
for a busy service engineer to become available. It is also possible to perform preventive
dispatching/maintenance before an actual breakdown occurs. However, this is not the
case in emergency services, where dispatching decisions are always reactive and have to
be made as soon as an emergency occurs. Such features need to be taken into account
when modelling, and especially when adapting an approach from a different domain.
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2
Fire Truck Relocation during Major Incidents

The effectiveness of a fire department is largely determined by its ability to respond to
incidents in a timely manner. To this end, fire departments typically have fire stations
spread evenly across the region, and dispatch the closest truck(s) whenever a new incident
occurs. However, large gaps in coverage may arise in the case of a major incident that
requires many nearby fire trucks over a long period of time, substantially increasing
response times for emergencies that occur subsequently. Motivated by this, we propose
a heuristic for relocating idle trucks in order to retain good coverage during a major
incident. This is done by solving a mathematical program that takes into account both
the location of the available fire trucks and the historic spatial distribution of incidents.
This heuristic allows the user to strike a balance between the coverage and the number of
truck movements. Using extensive simulations, we test the heuristic for the operations of
the Fire Department of Amsterdam-Amstelland (FDAA), and compare it against three
other benchmark strategies in a simulation fitted using ten years of historical data. We
demonstrate substantial improvement over the current relocation policy, and show that
not relocating during major incidents may lead to a significant decrease in performance.

The work in this chapter is based on [103]: D. Usanov, G.A.G. Legemaate, P.M. van
de Ven, and R.D. van der Mei. Fire truck relocation during major incidents. Naval
Research Logistics 66(2): 105 — 122, 2019.
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2.1 Introduction

Fire fighting services are designed and operated to minimize the response time to fires
and other incidents that require fire department presence. To this end, fire stations
are positioned throughout the coverage area of a fire department to allow for a fast
response to any incident, irrespective of its location. This coverage may be disrupted
by major incidents, such as large fires, which can occupy many nearby trucks over an
extended period of time. Consequently, emergencies that arise during a major incident
may experience a slower response. To address this issue, it is standard practice of many
fire departments to reduce the gap in coverage by temporarily relocating idle fire trucks [34].

A substantial research effort has been devoted to organizing the fire department
and other emergency services on the strategic, tactical and operational level, which has
succeeded in reducing response time. However, the problem of relocating fire trucks
during major incidents has received relatively little attention, and in practice this is done
based mainly on the dispatchers’ intuition. In Appendix 2.8 we describe (an abstraction
of) the relocation heuristic currently used by the FDAA, which covers Amsterdam and
its surrounding areas, obtained from discussions with its dispatchers. This heuristic
does a single relocation in case of a major incident, moving an idle truck to the now
empty fire station closest to the incident. Discussions with the FDAA revealed that,
in order for any relocation algorithm to be acceptable in practice, it should be simple
to implement and intuitive to explain. Most importantly, the number of relocations
done after a major incident should be small, and determined by the dispatchers. The
latter constraint is designed to prevent relocations of limited utility, which may cause
unnecessary inconvenience to the firefighters.

To our knowledge, the only study that considers relocations during major incidents
is [59], in the context of the Fire Department of the City of New York (FDNY). The
approach proposed there was adopted by the FDNY, and was for instance successfully
used during the terrorist attacks on September 11, 2001, to maintain good coverage
throughout the city [34]. While successful in New York, we are not aware of any other
fire departments that have implemented this algorithm, at least not in the Netherlands.
We conjecture that this is because this approach lacks some of the desired characteristics
outlined above. In particular:

(i) the procedure used to calculate cost coefficients for the objective function is compli-
cated and hard to explain to practitioners,

(ii) some of the assumptions made seem specific to the grid-like street network of New
York,
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(iii) it does not allow the user to control the number of relocations.

In this chapter we propose a relocation heuristic that has all these desired features, and
in addition allows us to find better relocations.

We consider the situation where a new major incident has just started, and fire trucks
have been dispatched to the incident. We then solve a coverage-maximization problem
that takes into account both the location of the remaining idle fire trucks and the historic
spatial distribution of incidents. Our objective function contains a parameter indicating
the willingness to relocate, which can be used to control the number of relocations made
during a major incident. Moreover, we impose some measure of fairness across the region
by ensuring that each location is covered by a certain minimum number of fire trucks.
Once the major incident is resolved, the relocated trucks return to their base stations.

To assess the effectiveness of our approach in practice, we apply it to the case of the
FDAA, by fitting our model to ten years of incident and dispatch data. We demonstrate
a substantial improvement over the current practice, and comfirm the importance of
relocations by showing a significant reduction in the response time compared to not doing
relocations at all.

The contribution presented in this chapter is three-fold:

1. We introduce a new relocation heuristic which is easy to implement and to explain
to practitioners;

2. This heuristic grants the user significant control in terms of the number of relocations
made per major incident, allowing him to strike a balance between coverage gain
and inconvenience to firefighters caused by additional relocations;

3. Using real-life data, it is tested against three other relocation methods. Our heuristic
shows better performance, especially when there are only a few trucks available.

The remainder of this chapter is structured as follows. In Section 2.2 we provide an
overview of the relevant literature. The model outline is described in Section 2.3, followed
by Section 2.4 where our relocation algorithm is presented. In Section 2.5 we discuss
the performance metrics used to evaluate the relocation methods. The simulation and
the data used to conduct computational experiments, together with the results of the
experiments, are discussed in Section 2.6. In Section 2.7 we conclude and outline future
research directions.
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2.2 Literature Review

The topic of this chapter falls into the area of organizing emergency service systems,
which is usually divided into three levels: strategic, tactical and operational. At the
strategic level, facility location problems are solved to determine where to optimally locate
the system facilities (e.g., fire stations). At the tactical level, the problem of allocating
vehicles (e.g., fire trucks) to the facilities is addressed. Often, the strategic and tactical
level problems are solved jointly. In contrast, the operational level concerns short-term
decisions, such as how to dispatch vehicles to incidents or how to relocate vehicles between
the facilities in real time.

The majority of the research on organizing emergency service systems have been
motivated by ambulance management. Reviews of the emergency facility location and
ambulance relocation models can be found in [12, 66]. One of the first emergency facility
location models is the Location Set Covering Model (LSCM), introduced in [102]. LSCM
finds the smallest number and the locations of facilities required to cover every demand
point within a certain universal time threshold. The same concept of coverage was used
in the Maximal Covering Location Problem (MCLP), formulated in [17]. However, the
objective of MCLP is to maximize population covered by a given number of facilities.
These two basic models were followed by extensions that incorporated backup or multiple
coverage, and partial coverage. Examples of such extensions are the hierarchical objective
set covering model [20], backup coverage models [37], maximum availability location
problem [91], double standard model (DSM) [29], and MCLP with partial coverage [54].
In [19], the Maximum Expected Covering Location Problem (MEXCLP) was introduced,
a probabilistic extension of MCLP. The MEXCLP model uses the concept of marginal
coverage accounting for the probability that facilities may be busy responding to incidents.
The MEXCLP model was further followed by extensions incorporating stochastic travel
times [46, 114], time-dependent demand [113], and survival probabilities [26, 57].

One of the first models for facility location in a fire department context was introduced
in [38], where the authors proposed a greedy heuristic for determining the locations of the
fire stations. Since then, various studies have looked at formulating and solving mathe-
matical programs for fire department related coverage problems. Such studies include [87],
where the authors used a hierarchical objective function for the set-covering problem
in a case study for the Denver Fire Department. In [92], MCLP and a multi-objective
formulation were applied to the city of Baltimore. A multi-objective model was also used
in [4]. Recent fire department-specific facility location case studies include [16], [21] and
[115].

At the operational level, we limit ourselves to discussing literature related to relo-
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cations. The locations of the emergency facilities are assumed to be given, of interest
is the decision how to relocate vehicles between those facilities in real time. The first
problem of such type was addressed in [59] in the early 1970s. The authors intro-
duced the mathematical programming formulation and a heuristic for relocating idle
trucks during a major incident. The problem of dynamic ambulance relocation was first
discussed in [9], where the authors used dynamic programming to find an optimal solution.

The basic concepts and models developed to solve the strategic and tactical level
problems were further used to develop relocation models at the operational level for
Emergency Medical Services (EMS). Such models include the dynamic extensions of DSM
[30] and MEXCLP [31, 108]. Additionally, recent approaches addressed the problem using
heuristics [47, 110], approximate dynamic programming [71, 93], stochastic optimization
[78], and Markov chains [1].

It is worth noting that insights and heuristics obtained for EMS cannot directly be
applied to the fire department setting. One of the main reasons is that fire departments
usually experience much lower incident rates than EMS, and consequently, the fraction of
time each truck is busy responding to incidents is relatively small. This allows the use
of one-shot decision formulations instead of multiple-step or infinite horizon. Moreover,
EMS models are often driven by regulatory requirements that are uniform across the
coverage area. Fire departments, however, may impose different time thresholds for
different buildings depending on their function and location. Another distinguishing
feature of the fire departments’ operations is that often multiple trucks are required for
one incident.

2.3 Model

We consider a region partitioned into a set of demand locations L, and assume that new
incidents start at each demand location l ∈ L according to a Poisson process with rate λl.
Poisson arrivals are common in the research literature on emergency service operations,
where the times between successive events are memoryless and independent. The rates
at which new incidents occur may differ between demand locations due to, for instance,
population density and building types.

The region is served by a set of fire stations N . Denote by g(i) ∈ L the demand
location that station i ∈ N is located in. In practice, the fire department uses a range of
vehicles, including pumpers, ladder trucks and trucks specialized in roadside accidents. A
particular incident may require one specific truck type, or a mix. To simplify the analysis,
we limit ourselves to a single type of fire truck that is dispatched to all incidents. All

15



2.3. Model

Vehicle Type
Priority Incidents Pumper Ladder Rescue Marine Rescue

1 88879 99% 28% 3% 3%
2 28432 95% 30% 1% 2%
3 10085 87% 20% 2% 2%

Total 127396 97% 28% 3% 2%

Table 2.1: Deployment per vehicle type grouped by priority (data: FDAA 2008 - 2018)

results, however, generalize easily to the case with multiple types of vehicles, as discussed
in Section 2.4.1. This assumption is motivated by the example of FDAA, where a pumper
is dispatched to almost every high-priority incident. The FDAA fleet usage statistics are
summarized by vehicle type in Table 2.1. It shows the number of incidents that occurred
over a 10-year period, and for each vehicle type and incident priority level (priority 1
being the highest) the percentage of incidents of that priority that required at least one
truck of that type. From this table it is clear that pumpers are dispatched to almost
every incident. Each fire truck has a base station where it is located when not handling
an incident or temporarily relocated to another station. We assume that each fire station
is the base station for at least one truck.

The travel time tlm between each pair of demand locations l,m ∈ L is assumed to be
deterministic and known. The time it takes for a truck at station i to travel to another
fire station j (j 6= i) or an incident location l is equal to the travel time between the
corresponding demand locations (i.e., tg(i)g(j) and tg(i)l, respectively). Let qi be the
(deterministic) dispatch time corresponding to station i ∈ N , i.e., the time it takes for a
truck to leave its base station i after an incident started. We define the response time of a
fire truck from station i ∈ N to an incident at demand location l ∈ L as rg(i)l := qi+ tg(i)l.
Because both the travel times and dispatch times are assumed to be deterministic, so are
the response times.

We denote by i(k)(l) ∈ N the kth closest fire station to demand location l measured
in terms of response time, k = 1, . . . , |N |. We define the service area SAi of a fire station
i ∈ N as the set of demand locations to which this fire station is closest in terms of
response time, i.e., SAi = {l ∈ L| i = i(1)(l)}. We assume that for every demand location
l ∈ L there are no two stations i and j (i 6= j) such that rg(i)l = rg(j)l, that is, the
corresponding response times are different for all stations. Let di =

∑
l∈SAi λl be the

total demand corresponding to the service area of station i.

The number of trucks required for a new incident is a random variable S, and assumed
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to be independent of other incidents and identically distributed within the same service
area. When a new incident arises, all required trucks are dispatched simultaneously. In
case there are insufficient idle trucks, the remainder will be provided by neighbouring
fire departments. Whenever a new incident arises, those idle fire trucks with the smallest
response time for the corresponding demand location are dispatched. After the incident
is resolved, all trucks return to their base station. Since we only consider incidents of the
highest priority, this is in accordance with the current dispatching policy of FDAA (and
fire departments elsewhere).

2.3.1 Response Neighborhoods

The relocation heuristic that we present in Section 2.4 will strive to relocate trucks to
improve coverage, i.e., position the idle trucks to maximize the probability that the next
incident is responded to in time. However, in the fire fighting domain fairness is an
important secondary criterion, as we want to avoid neglecting certain areas. For instance,
not covering rural areas because this is not optimal from a coverage perspective may not
be acceptable for a fire department, as all fires should be responded to within certain
time limits. Hence, assuming that the fire department considers its original allocation of
trucks to be fair, we try to maintain that relative distribution of trucks across the region
when relocating.

In order to measure fairness, we use the concept of a response neighborhood (RN) of
a set of fire stations N ⊆ N , defined as the set of all demand locations for which the fire
stations in N are the |N | closest, i.e., RN(N) = {l ∈ L | N = {i(1)(l), . . . , i(|N |)(l)}}.
If N contains a single station (i.e., |N | = 1), its response neighborhood corresponds to
the service area of that station (i.e., RN({i}) = SAi). If N contains all stations (i.e.,
N = N ), its response neighborhood is simply the collection of all demand locations (i.e.,
RN(N ) = L). Note that the response neighborhood of a set of fire stations may be empty,
for instance if those stations are located on opposite sides of the service region.

We are particularly interested in the collection of response neighborhoods correspond-
ing to all sets of fire stations of equal size n ∈ {1, ..., |N |}. We denote this collection by
Kn = {RN(N) | |N | = n}, and observe that for each n, Kn forms a partition of the
set of all demand locations L. We say that a fire station i serves response neighborhood
k ∈ Kn if it is one of the n closest stations for that response neighborhood.

The partitioning of demand locations is illustrated in Figure 2.1, which visualizes
Kn in a toy example with three fire stations. Every point of the rectangular region in
Figure 2.1 is considered as a separate demand location, and Euclidean distance is used to
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(a) n = 1 (b) n = 2 (c) n = 3

Figure 2.1: Representation of the response neighborhoods Kn for n = 1, 2, 3

determine the response time. Points belonging to the same response neighborhood have
the same color. For n = 2 (Figure 2.1b), for example, the region is partitioned into two
response neighborhoods: the light blue is served by fire stations 2 and 3, and the dark
blue is served by stations 1 and 3. In this case there are no points with 1 and 2 as their
closest stations, so RN({1, 2}) = ∅.

To store the relation between fire stations N and response neighborhoods Kn, we use
an |N |-by-|Kn| incidence matrix An, with an element anik = 1 if the fire station i ∈ N
serves the response neighborhood k ∈ Kn, and anik = 0 otherwise. One fire station can
serve several response neighborhoods of size n, and one response neighborhood of size n
is served by exactly n fire stations. We say that a response neighborhood k is covered if
at least one of the fire station serving this response neighborhood has a truck ready to
respond to an incident.

The notion of response neighborhoods was originally introduced in [59] for n = 3, and
in this chapter we extend it to general n, to allow us to address the feasibility issues
discussed in Section 2.4.1 below.

18



Chapter 2. Fire Truck Relocation during Major Incidents

2.4 Relocation Algorithm

We consider the moment when a new incident occurs and the required trucks are dis-
patched, and are interested in how to relocate the remaining idle fire trucks between
stations to compensate for the temporary loss of coverage. For ease of presentation and
implementation, we decompose this problem into two parts, with no loss in performance.
In Section 2.4.1 we introduce an integer program that identifies (1) a set of trucks to be
relocated and (2) a set of empty stations to be filled with those trucks. In Section 2.4.2
we apply the Linear Bottleneck Assignment Problem (LBAP) [13] to determine which of
those trucks should be relocated to which stations. The relocation algorithm uses these
two formulations, and is summarized in pseudocode in Appendix 2.8.

To provide an even coverage of the region, we require that each response neighborhood
k ∈ Kn, for some fixed value of n, is covered by at least one truck. In other words, for
every demand location, at least one of the n closest fire stations should have a fire truck
available. In practice, the appropriate value of n is decided upon by the fire department.
If an incident involving at least n trucks happens, some response neighborhoods in Kn
may become uncovered, and some trucks have to be relocated to satisfy the requirement.

The choice of n influences how frequently relocations will be made, and how uniformly
trucks are redistributed over the region when making relocations. For lower n, we will
have to make relocations more frequently, since the response neighborhoods of smaller
size lose coverage more often. However, the distribution of trucks over the region will be
more even when smaller response neighborhoods are covered.

Not every incident should necessarily lead to making relocations, as the coverage
may still remain sufficient, or the coverage loss may be for a short period of time. The
condition that triggers the relocation algorithm can be anything, such as uncovering a
response neighborhood, or the number of idle trucks falling below some threshold. In the
numerical evaluation in Section 2.6, we run the relocation algorithm whenever three or
more trucks are dispatched in a single major incident.

2.4.1 Maximum Coverage Relocation Problem

We now introduce some additional notation, in order to formulate the decision which
trucks to relocate as a mathematical program. Let fi be the number of trucks avail-
able at a station i right after a major incident occurred and the required trucks are
dispatched to it. We also introduce three sets of fire stations: the set of empty stations
E = {i ∈ N : fi = 0}, stations with exactly one available truck S = {i ∈ N : fi = 1}, and
stations with more than one available truck M = {i ∈ N : fi ≥ 2}. Finally, we use the
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following three sets of variables. The variable xij is equal to 1 if we decide to relocate a
truck from station i to station j, and 0 otherwise. The binary variable zi is equal to 1 if
station i has no trucks available after all the relocations are made, and 0 otherwise. The
variable yi is equal to the number of trucks at station i after all relocations are completed.

The objective that we want to optimize is a combination of (i) the gain in coverage
obtained from relocation, and (ii) some penalty for making too many relocations. The
former consists of multiple terms, depending on whether the relocated trucks came from
stations with multiple trucks or not. If not, the net gain in coverage can be written as∑

i∈S

∑
j∈E

xij(dj − di),

and the gain for the cases with multiple trucks present is represented as∑
i∈M

∑
j∈E

xijdj −
∑
i∈M

zidi.

The penalty for relocation is simply given by the total number of relocations made,∑
i∈N

∑
j∈E xij . Combining these using some weight parameter W ∈ [0, 1], we obtain the

objective function (2.1) below.

The parameter W serves two purposes. First, when chosen correctly it ensures that
both components of the objective function have the same order of magnitude. Second,
it indicates the willingness to relocate. If W = 0, the smaller number of relocations is
made to satisfy the constraints. If W = 1, the gain in demand covered is maximized
independently of the number of relocations made. The value of W can be set by the user
of the relocation heuristic. The relevant range of parameter W depends on the data, as
the order of magnitude of the gain in coverage (the first term of the objective (2.1), see
below) depends on the fire department’s policy. Specifically, it is affected by the locations
of fire stations, the allocation of trucks, and on the frequency and spatial distribution of
the incidents. If W is too large (close to 1), too many relocations are made. Conversely,
if W is close to 0 then coverage is ignored completely, and an arbitrary feasible solution
(satisfying (2.2), see below) is chosen. For instance, in our case, W = 0.01 was sufficient
to ensure that the number of relocations made does not exceed the minimum required by
the constraints (2.2) while resulting in substantial coverage gains. However, the choice of
W also depends on the user’s willingness to relocate fire trucks. In Section 2.6.3 below we
show how the system performance can be improved by increasing W and allowing users
to make additional relocations.

As mentioned above, in addition to maximizing coverage, we also aim for fairness, by
ensuring that all response neighborhoods are covered after relocations are finished. To do
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this, we impose constraint (2.2) below. Combining the objective function and this fairness
constraint, we are in position to provide the Maximum Coverage Relocation Problem
(MCRP) formulation:

max W
(∑
i∈S

∑
j∈E

xij(dj − di) +
∑
i∈M

∑
j∈E

xijdj −
∑
i∈M

zidi

)
(2.1)

−
(
1−W

)∑
i∈N

∑
j∈E

xij

s.t.
∑
i∈N

anikyi ≥ 1, k ∈ Kn (2.2)∑
j∈N

xij ≤ fi, i ∈ N (2.3)

∑
j∈N

xji ≤ 1, i ∈ E (2.4)

1− zi ≤ yi, i ∈M (2.5)

yi = fi +
∑
j∈N

xji −
∑
j∈N

xij , i ∈ N (2.6)

xij = 0, i ∈ N , j ∈ S ∪M (2.7)

xij , zi ∈ {0, 1}, i, j ∈ N (2.8)

yi ∈ {0, 1, ...}, i ∈ N (2.9)

Here, constraints (2.3) do not allow to relocate more trucks than available at a station.
At most one truck is relocated to the same empty station due to (2.4). Constraints (2.5)
force the decision variable zi to take value 1 if station i becomes uncovered in a given
solution. Constraints (2.6) ensure that the variables yi have the correct values. Finally,
(2.7) makes sure that relocations are made only to empty stations.

Fire departments typically have very strict rules about what vehicles are dispatched
to what types of incidents (in particular for high priority incidents). Specifically, FDAA
uses a dispatching policy where for each type of incident it is predefined how many trucks
of each type are needed, and the vehicles of different types are typically not mutually
substitutable. Hence, the model can be easily applied to multiple types of trucks by
decomposing the problem into different vehicle types. In this case response neighborhoods,
coverage requirements and the objective coefficients are defined for each vehicle type
separately. The same formulation can then be used with different input data to find
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optimal relocations for each type of trucks independently of other types.

Note that different fire departments may have policies or rules that impose additional
constraints which can be easily included in our model. In the case of FDAA, for example,
fire stations are of two types: professional and volunteer. Trucks from volunteer fire
stations are not allowed to relocate. We can take this into account by adding the following
constraint to the MCRP formulation:

yi ≥ vi ∀i ∈ N ,

where vi is the number of volunteer trucks at station i before making relocations. In our
numerical evaluation in Section 2.6 we will include this constraint as well.

Remark 1 (MCRP Feasibility) It may be infeasible to satisfy the MCRP con-
straints (2.2) for a given value of n if the number of available idle trucks is too small to
cover all response neighborhoods in Kn. A similar set of constraints to ours was used
in [59] with the definition of response neighborhood implying a fixed size of it. The
authors of [59] admit that there may be no feasible solution to their problem, and that
the fire department in this case uses some emergency allocation procedures. To handle
this problem we introduce the starting response neighborhoods’ size n0 ∈ N, and initially
try to solve MCRP with n = n0. If the problem is infeasible, we set n = n0 + 1, and solve
MCRP again. We continue incrementing n by 1 until the problem is feasible. As the size
n of response neighborhoods increases, fewer trucks are needed to satisfy constraint (2.2).
Assuming that there is at least one idle truck available, the problem is always feasible
with n = |N |, as there is only one response neighborhood in K|N |.

Remark 2 (MCRP Generalization) In the formulation (2.1)-(2.9) we partition
the region into response neighborhoods of the same size n to ensure that each demand
location has at least one idle truck at one of the n closest fire stations. This approach
appeals to FDAA as it provides fairness across the region, independent of the arrival rates
of new incidents. If needed, by increasing the W parameter additional relocations can be
made so that the busier response neighborhoods are covered by more trucks if the number
of idle trucks exceeds the minimum required to satisfy constraint (2.2). Although this
definition of fairness was requested by FDAA, other fire departments may have different
constraints. For example, one could require for one set of demand locations to have at
least one idle truck at one of the two closest stations, and for another set to have at
least two trucks at one of the five closest stations. To allow for this, in Appendix 2.8
we provide a generalized formulation of MCRP that can incorporate more complicated
response neighborhood structures and their coverage requirements.
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2.4.2 Linear Bottleneck Assignment Problem

In general, there may be multiple optimal solutions to MCRP that would relocate the
same set of trucks to the same set of empty stations. For instance, assume that the
MCRP model proposes to relocate one truck from station 1 to station 2, and another
truck from station 3 to station 4. For the MCRP model this solution is equivalent to the
one where we relocate a truck from station 1 to station 4, and another truck from station
2 to station 3. However, in practice, because of differences in travelling time between the
stations, these two solutions can differ in terms of the time it takes to realize them.

To maintain good coverage levels in real-time, we want to move to a new configuration
of trucks as fast as possible. A similar task for ambulance relocation was addressed in
[108] using the Linear Bottleneck Assignment Problem (LBAP), that can be solved in
polynomial time [13]. We formulate LBAP in the context of fire truck relocation. Let xij
for i, j ∈ N be the solution of MCRP. Next, we construct the set of origin fire stations
O and the set of destination fire stations D as follows. For every pair (i, j) such that
xij = 1, we add station i into the set of origins O, and we add station j into the set of
destinations D. There can be more than one truck relocated from the same station i
elsewhere. In this case, we add station i to the set O as a separate element for each truck
relocation from this station. Hence, multiple origins o ∈ O may correspond to the same
fire station. Due to constraints (2.4), it is never optimal in MCRP to relocate more than
one truck to the same station j, so each of the destination stations appears in the set
D only once. The obtained sets O and D are of the same size, containing origins and
destinations for all the trucks that have to be relocated. Let the binary decision variable
x̂od be equal to 1 if a truck should be relocated from station o ∈ O to station d ∈ D, and
0 otherwise. The problem of minimizing the maximum traveling time over all relocations
can then be formulated as follows:

min max
o∈O, d∈D

tg(o)g(d)x̂od (2.10)

s.t.
∑
d∈D

x̂od = 1, o ∈ O (2.11)∑
o∈O

x̂od = 1, d ∈ D (2.12)

x̂od ∈ {0, 1}, o ∈ O, d ∈ D (2.13)

Here, we use the function g introduced in Section 2.3 to indicate the demand locations
corresponding to the elements of O and D. Constraints (2.11) and (2.12) ensure that
exactly one truck is relocated from each origin o ∈ O, and exactly one truck is assigned
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Figure 2.2: Examples of penalty functions Φ(ri)

to each destination d ∈ D, respectively.

2.5 Performance Metrics

There are many ways of measuring the performance of an emergency service system. In
this section we present some of the main performance metrics used by practitioners and
researchers. Assume that we have a set of incidents I. Let ri denote the response time
for incident i ∈ I. The performance metrics we consider are of the form

|I|∑
i=1

Φ(ri)/|I|,

where Φ(.) is a non-decreasing one-dimensional penalty function. So we consider the
average penalty over incidents in I.

One of the most commonly used penalty functions, shown in Figure 2.2a, is a linear
penalty function:

Φ(ri) = ri, i ∈ I, (2.14)
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which represents the response time. The disadvantage of this performance measure is
that even if the overall average response time is low, there can be a lot of variability in
response time for particular incidents.

Alternatively, the fire department can use time thresholds, indicating how soon
incidents should be responded to since the moment of an alarm. It can be a single time
threshold for the whole region, or different time thresholds for different demand locations.
Assume Ti is the time threshold corresponding to the ith incident’s location. The penalty
function displayed in Figure 2.2b corresponds to the ‘fraction of late arrivals’ performance
metric, and is defined as follows:

Φ(ri) =

{
0, if ri ≤ Ti,
1, if ri > Ti.

(2.15)

However, the disadvantage is that this function gives the same penalty no matter how
much the response time exceeds the time threshold. So, once the response time threshold
has been exceeded, further delays will not be penalized.

The final penalty function we consider is a combination of the first two:

Φ(ri) =

{
a e

αri/Ti−1
eα−1 , if ri ≤ Ti,

1− b e
β(2Ti−ri)/Ti−1

eβ−1 , if ri > Ti.
(2.16)

Here, parameters a, b, α and β allow us to adjust the shape of the function, providing
flexibility in the system performance evaluation. The parameters a and b define the
points where the two functions comprising Φ(.) intersect the time threshold Ti, and the
parameters α and β define the steepness of those functions. Examples of the resulting
penalty function for different parameter values are presented on Figures 2.2c, 2.2d and
2.2e.

2.6 Numerical Experiments

In this section we evaluate the performance of our relocation algorithm by applying it
to incident data from FDAA. In our computational experiments we compare it to the
following three benchmarks:

1. The Kolesar-Walker benchmark. This benchmark uses our algorithm (Ap-
pendix 2.8) with the MCRP formulation substituted with the adapted version of
the mathematical program proposed by Kolesar and Walker [59]. We refer to this
relocation strategy as KW. The adapted formulation can be found in Appendix
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2.8, where we discuss in detail how to implement this formulation, and highlight
several implementation issues that may arise.

2. The Current Practice benchmark. This benchmark is the relocation algorithm
used in current practice by FDAA. This algorithm was originally developed between
1994 and 1996, and different dispatchers use their own interpretation of it during
deployment, based on their experiences and intuition. A detailed description of this
algorithm can be found in Appendix 2.8. We refer to this relocation strategy as
CP.

3. The No Relocations benchmark. This benchmark makes no relocations, and
referred to as NR.

In [59], the authors note that the integer programming formulation used in the KW
heuristic cannot be solved exactly in a reasonable amount of time. They, therefore, decom-
pose the problem in two stages and solve it heuristically. However, today computational
time is no longer an issue for solving both MCRP and KW integer programs exactly, for
realistic problem sizes. In our computational experiments, we used Gurobi MIP solver [35]
that was able to find exact solutions in a matter of seconds.

2.6.1 Simulation

We simulate the FDAA operations to assess the performance of the four strategies. In
this section, we briefly describe how the simulation works.

We generate the sequence of incidents over a given time horizon. Each incident i has
four attributes: time ti, location li, size Si in terms of the number of trucks involved, and
duration Di. The duration of an incident is defined as the time between the arrival of the
first truck to the location of the incident, and the end of the incident. We then process
the sequence of incidents using one of the four relocation strategies.

In each demand location l, new incidents arrive with rate λl. Given the demand
location of a new incident li, we also know the corresponding service area. The service
area is further used to sample the random size of an incident Si. The size of an incident
is independent of other incidents and identically distributed for the same service area. It
is drawn from an empirical distribution based on data for the corresponding service area.
For the duration of an incident Di we use a Weibull distribution, where the parameters are
fitted to the data corresponding to the service area and the size of an incident. As there
are less data available for large incidents, we group these and use the same parameters
for all major incidents in the same service area. In order to arrive at realistic values for
the duration, this distribution is truncated between 0.1 and 24 hours. We choose the
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Weibull distribution, because it has positive support, can represent both heavy and light
tailed behavior, and allows us to accurately fit the data. Weibul distribution was used,
for example, for hospital treatment time in EMS literature [71, 110, 111].

When we process the sequence of incidents, the trucks are dispatched to incidents
according to their mean response time for a given demand location. The dispatch and
travelling times are assumed to be deterministic and known. Each truck can be in one of
the two states. It is either ‘busy’ with an incident or ‘available’ to be dispatched. When
a truck is dispatched to an incident, its state changes to ‘busy’. The state of a truck
is switched to ‘available’ again immediately after the incident is finished, and the truck
starts travelling to the fire station it was assigned to. We do not track the exact location
of fire trucks. We only track their ‘destination’ fire stations. So, when dispatching a truck
that is relocating or returning from another incident, we assume it to be dispatched from
its ’destination’ fire station.

Whenever a major incident occurs, we consider relocating trucks using one of the four
relocation strategies mentioned earlier. If the truck is relocated, its ‘destination’ changes
to the fire station it is relocated to. The state of such truck remains ‘available’. The
relocated truck goes back (changes its ‘destination’) to its base station whenever another
‘available’ truck is assigned to the station the first truck was relocated to.

2.6.2 Data

To estimate the input parameters of the simulation, we use the real-world data from the
FDAA. This fire department currently operates 22 pumpers located at 19 fire stations,
and covers 6 municipalities with total population of approximately one million inhabitants.
In our simulation, we omit one volunteer station with one pumper that does not have its
own service area. There are several professional fire stations close to it, so the truck from
this station is never the fastest to any incident because of the relatively large dispatch
time associated with volunteer firefighters.

We use the partitioning of the region into 2663 demand locations defined and used by
the FDAA. Those demand locations are the polygons comprising the region in Figure
2.3. The FDAA also provided us with the average travelling times between each pair of
demand locations. In addition, we received information on all the incidents that occurred
in the FDAA coverage area over the 10-year period 2006-2015. This information includes
for each incident its location, starting and end times, and the trucks used to handle the
incident. For each truck, we know the time it took to dispatch to an incident location
from the moment of an alarm, the travelling time between the fire station and the inci-
dent location, the time spent at the scene, and the time it took to return to the fire station.
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Figure 2.3: Spatial distribution of incidents in Amsterdam-Amstelland

The incidents are distinguished into three priority levels. Priority 1 incidents are
the most important and constitute the majority of all incidents. The trucks busy with
either a priority 2 or a priority 3 incident can be dispatched to a priority 1 incident
upon request. To evaluate the arrival rates, we use only the data on priority 1 inci-
dents to which at least one fire truck was dispatched. Figure 2.3 represents the spatial
distribution of incidents, with darker demand locations corresponding to higher arrival
rates. The overall arrival rate is 21.28 incidents per day. The average duration of an
incident is 1.16 hours, and the average number of available trucks upon an incident
arrival is 19.6 out of 21. So on average the trucks are idle most of the time. In fact,
an average fire truck is busy responding to priority 1 incidents only about 3.5% of the time.

The FDAA uses four different time thresholds T , depending on the type of the building
where an incident happened: 5, 6, 8 or 10 minutes. For every demand location l ∈ L we
know the number nlT of buildings with the corresponding time threshold equal to T . To
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get a single time threshold Tl for every demand location l ∈ L we compute a weighted
average as follows: Tl = (5nl5 + 6nl6 + 8nl8 + 10nl10)/(nl5 + nl6 + nl8 + nl10). These
time thresholds are used to calculate performance measures below.

2.6.3 Computational Results

In this section, we present the results of the experiments conducted using the FDAA
data and the simulation. Both MCRP and KW formulations were solved using Gurobi
Optimizer [35].

Aggregate performance

First, we run the simulation of FDAA over a time horizon of 200 years with the starting
RN size n0 equal to 3 and parameter W = 0.01, that is sufficiently small to make the
smallest number of relocations. We do not set W = 0, since in this case the model finds
an arbitrary solution with the smallest number of relocations neglecting the secondary
objective. We use the same sequence of incidents for all four relocation strategies. To
compute the performance of the system, we keep track of the response times for all
the incidents. Then we limit ourselves to those incidents such that at least one of the
four relocation strategies results in a different response time from the others. This is
done in order to isolate those incidents that are affected by the coverage gap left by the
major incident and the relocation decision made by one of the algorithms. We call these
incidents the decisive subset of all incidents. The performance metrics are calculated
using this decisive subset. In our experiments, the decisive subset constitutes 33.3% of all
incidents that occurred simultaneously with a major incident. And the incidents that
happen simultaneously with a major incident constitute 3.4% of all incidents.

We use the following notation to refer to the performance measures. ART for the
average response time (2.14) and FLART for the fraction of late arrivals (2.15) given a
single time threshold T . Using different time thresholds Tl for different demand locations
l ∈ L, we also compute FLAR and the three versions of the compromise penalty function
(2.16) CPFc, CPFd and CPFe from Figures 2.2c, 2.2d and 2.2e, respectively. For the
time threshold T we choose the four values used by FDAA, being 5, 6, 8 and 10 minutes.
These performance metrics, computed over the decisive set of incidents, are presented
in Table 2.2. The results show that the MCRP model outperforms all other approaches,
and making no relocations is the worst strategy. Improvement made by MCRP over the
NR scenario is 19.2% in terms of ART , 42.6% in terms of FLAR, and 15.3% to 57.2%
in terms of FLART . The KW model performs quite close to MCRP, with the biggest
difference observed in terms of FLART for time threshold T equal to 5 and 6.
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Table 2.2: Aggregate results computed over 200 years simulation run

Performance Metric MCRP KW CP NR
ART (sec) 413 417 466 511
FLAR5 75.1% 77.2% 84.7% 88.7%
FLAR6 56.8% 58.3% 71.2% 79.4%
FLAR8 29.7% 29.9% 42.4% 53.3%
FLAR10 12.6% 12.8% 20.9% 29.4%
FLAR 32.2% 32.7% 45.3% 56.1%
CPFc 0.330 0.335 0.457 0.561
CPFd 0.330 0.335 0.458 0.562
CPFe 0.298 0.300 0.418 0.520

(a) ART (b) FLAR

Figure 2.4: Performance as a function of the number of busy fire trucks

Impact of the number of busy trucks

Table 2.2 compares the four scenarios over all incidents that occur when there are at least
three trucks already busy. Next, we break down the same decisive subset of incidents
by the number of trucks already busy upon arrival of an incident. Figure 2.4 shows
relative improvement over the NR relocation strategy as a function of the number of
trucks occupied elsewhere.

We can see that the KW and MCRP models perform approximately the same until
the number of busy trucks reaches 7. If 7 trucks or more are already occupied, MCRP
significantly outperforms KW. The reason is in the objective function of KW. Each cost
coefficient in the KW-model objective is an estimate of the average response time during
the major incident if the corresponding relocation is made (see Appendix 2.8). The
average response time depends on the configuration of all the trucks, and therefore, on all
the relocations made. Hence, the effect of every single relocation depends on whether
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Figure 2.5: FLART plotted as a function of time threshold T

and how other trucks are relocated. This dependency is not taken into account in the
KW objective. Hence, the more relocations we make, the less accurate the estimates are.
When bigger incidents happen, we have to relocate more trucks to satisfy the coverage
constraints, and this increases inaccuracy of the objective of KW.

For the subset of incidents occurring when there are at least 7 trucks busy, Figure 2.5
plots the FLART performance measure as a function of time threshold T , ranging from 0
to 20 minutes with the step of 5 seconds. The MCRP and KW lines are significantly below
the other two methods. They are close to each other, but MCRP is consistently better for
the time thresholds between 3 and 10 minutes. For T between 7 and 9 minutes, FLART is
at least 5% better with the MCRP model than the corresponding value with the KW model.

Confidence intervals

Next, we split the 200 years incidents sequence into 400 intervals of 6 months length. We
compute the ART and FLAR performance measures over each interval for every scenario,
and calculate the 95% confidence intervals for the obtained values. We do this first for the
incidents that occur when there are at least 3 trucks busy, and then for the subset with
at least 7 trucks already occupied. These confidence intervals are plotted in Figure 2.6.
Again, MCRP shows the best performance, with both sides of the confidence intervals
having the lowest values. The most significant improvement over the other methods is
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(a) At least three trucks are busy (b) At least seven trucks are busy

Figure 2.6: Confidence intervals

observed in terms of FLAR when there are at least 7 trucks busy.

Varying parameter W

So far, we measured the performance with the two models KW and MCRP making the
smallest number of relocations required to cover every response neighborhood. Now we
show how the performance changes for the KW and MCRP models if we change the value
of parameter W to allow for more relocations. We generate a sequence of incidents over 50
years time horizon. Then we run the two scenarios using the KW and MCRP models for
different values of W so that the number of relocations made per major incident gradually
increases from the minimum required to the maximum possible with both models. We
vary W in the range between 0.01 and 0.999, and for each value of W we report the
average number of relocations made per major incident and the average performance over
the generated 50 years incidents sequence. In Figure 2.7, ART and FLAR are plotted
against the number of relocations made per major incident.

First, since the KW model associates costs with each relocation, and the objective is
to minimize the total costs, it does not make many more relocations than the minimum
required, even if we set the parameter W equal to 1 (see Appendix 2.8) and allow for as
many relocations as possible. The minimum number of relocations needed to satisfy the
constraints is 1.2 per major incident with both models. The maximum obtained is 1.3
with the KW model, and 3.2 with the MCRP model.
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(a) ART (b) FLAR

Figure 2.7: Change in performance if gradually increasing the number of relocations made per major
incident

Secondly, we can see that making more relocations boosts the performance of the
MCRP model. Making just about 0.5 relocations more than the minimum required
decreased ART by 2.6% (10 seconds), and FLAR by 11.8%. In contrast, allowing for
more relocations does not improve the performance of the KW model. In fact, when
making more relocations the performance of the KW model slightly decreases, most likely
due to the negative effects on the KW model’s objective accuracy. The reasons behind
this decrease in accuracy are discussed in more detail in Section 2.8.

Risk maps

So far, we looked at the overall performance over the entire region. We may also construct
the risk maps of the region shown in Figure 2.8. To do this, we simulate 100 major
incidents for each demand location. The size of each incident is sampled from the empirical
distribution for the corresponding service area, and the duration is sampled from a Weibull
distribution, as described in Section 2.6.1. For each major incident the relocations are
made using one of the four strategies, with both KW and MCRP making the minimum
number of relocations required to satisfy the constraints (W = 0.01). The new incidents
are then generated until the major incident is resolved. We keep track of response times
to those simultaneous incidents, and compute the ART for each demand location over all
the incidents.

In the end, we get four values of the ART for each of the 2663 demand locations,
so 10652 measurements in total. We use these values to color the demand locations in
Figure 2.8. We pick an interval between 355 and 455 seconds containing about 98% of
all 10652 observations excluding very small and very large ART values. We then divide
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(a) NR (b) CP

(c) KW (d) MCRP

Figure 2.8: ART computed conditioning on the location of a major incident over all simultaneous events.
Colors range from dark green (below 330 seconds) to dark red (above 449 seconds). The red stars
represent the fire stations
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this interval into subintervals of 5 seconds, and color the demand locations gradually
changing from dark green (ART below 355 seconds) to dark red (ART above 455 seconds).

Figure 2.8 shows that the KW and MCRP models provide a significantly higher level
of coverage during the major incidents overall and a much more fair coverage across the
region. Comparing these two models, MCRP showed a better overall performance than
KW while keeping a fair coverage of the whole region. For example, ART and FLAR
computed over all simultaneous incidents are 378 seconds and 24.6%, respectively, with
the MCRP model against 383 seconds and 25.5% with the KW model.

2.7 Conclusion

In this chapter we considered the problem of relocating fire trucks during major incidents,
to compensate for gaps in the coverage arising from the large number of trucks required for
the incident. We proposed a novel relocation algorithm that solves a Maximum Coverage
Relocation Problem (MCRP) whenever a major incident arises, in order to find the best
relocations. The MCRP model is then tested by applying it to the operations of the
FDAA. We calibrated the model based on ten years of historical incident data from the
fire department, and used discrete-event simulation to evaluate its performance. We
demonstrated that MCRP shows massive gains compared to not doing any relocations at
all, and also provides significant improvement over the current practice at the FDAA. We
also compared MCRP with the state-of-the-art as proposed by Kolesar and Walker [59].
We showed that MCRP performs better for larger incidents and, unlike the KW model,
benefits from increasing willingness to make relocations. Moreover, MCRP is argued to
be more flexible and easier to implement than KW.

For future work one could test MCRP on data from different fire departments, to
better evaluate its performance across a wide range of possible scenarios. In addition,
the framework presented here can be extended in various ways. First, our definition of
coverage can be modified to include the risk in certain demand locations, in addition
to the rate at which new incidents arise. For instance, a fire at a chemical plant may
prove disastrous if not responded to in a timely manner, so a demand location housing a
chemical plant should be weighted heavier than a demand location corresponding to farm
land. Other extensions include dealing with incidents that require a mixture of different
vehicle types (such as a ladder truck and a pumper) and explicitly modelling stochastic
effects, such as random travel times and incident durations.
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2.8 Appendices

In this section we provide supplementary materials to the main body of the chapter.

2.8.1 Algorithm Pseudocode

In this section we outline the relocation algorithm from Section 2.4 in a pseudocode.
The algorithm uses the MCRP and LBAP formulations, and is launched whenever an
incident occurs involving at least n0 trucks. The fire department decides up front on
the proper value of n0 as discussed in the beginning of Section 2.4. Let MCRP (n) be
interpreted as a function that takes parameter n as an argument, solves MCRP with
response neighborhoods of size n, and outputs |N |×|N | matrix X with elements Xij = xij ,
that is, the solution of MCRP. Assume, MCRP (n) outputs the empty matrix in case the
corresponding MCRP is infeasible. Let LBAP (X) be the function that takes the matrix
X = MCRP (n) as an argument, solves LBAP constructed as described in Section 2.4.2,
and outputs |N | × |N | matrix X̂ with elements X̂ij = x̂ij (i.e., the solution of LBAP).
We summarize the relocation algorithm in Algorithm 1.

Algorithm 1 Relocation algorithm

function Relocate(n0)
n← n0
X ←MCRP (n)
while X is empty do

n← n+ 1
X ←MCRP (n)

X̂ ← LBAP (X)

2.8.2 MCRP Generalization

In this section we formulate the MCRP generalization that can incorporate various RN
structures, potentially of different cardinality and coverage requirements. Let K be a set
of response neighborhoods, where k ∈ K is a collection of demand locations for which
at least bk idle fire trucks are required to be at stations Nk ⊆ N . The following is the
generalized formulation of MCRP:
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max W
(∑
i∈S

∑
j∈E

xij(dj − di) +
∑
i∈M

∑
j∈E

xijdj −
∑
i∈M

zidi

)
(2.17)

−
(
1−W

)∑
i∈N

∑
j∈E

xij

s.t.
∑
i∈N

anikyi ≥ bk, k ∈ K (2.18)∑
j∈N

xij ≤ fi, i ∈ N (2.19)

∑
j∈N

xji ≤ 1, i ∈ E (2.20)

1− zi ≤ yi, i ∈M (2.21)

yi = fi +
∑
j∈N

xji −
∑
j∈N

xij , i ∈ N (2.22)

xij = 0, i ∈ N , j ∈ S ∪M (2.23)

xij , zi ∈ {0, 1}, i, j ∈ N (2.24)

yi ∈ {0, 1, ...}, i ∈ N (2.25)

This formulation differs from the formulation (2.1)-(2.9) in constraints (2.2). Here,
instead of partitioning the region into the RNs Kn of the same cardinality n, any
partitioning K of the region is possible. A partition k ∈ K is required to be covered by at
least bk ∈ N fire trucks instead of 1, as in (2.2).

2.8.3 Kolesar & Walker Formulation

Here we provide an extended version of the approach from Kolesar and Walker [59]. As
mentioned in Section 2.3 the original definition of RN used in [59] implied a fixed size
depending on the type of vehicle. We parametrize the size of RN to be able to extend it
in case the model is infeasible for a given value of RN size. It allows us to use the KW
model in the algorithm presented in Section 2.4 instead of the MCRP model. We also
introduce the W parameter in the KW objective in the same manner as for the MCRP
model to see how the model performs if we increase willingness to relocate (see Section
2.6.3).

In the KW formulation we use the same notations as in the MCRP formulation. The
KW model can be formulated as follows:
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min W
∑
i∈N

∑
j∈N

cijxij +
(
1−W

)∑
i∈N

∑
j∈N

xij (2.26)

s.t.
∑
i∈N

anikyi ≥ 1, k ∈ Kn (2.27)

yi = fi +
∑
j∈N

xji −
∑
j∈N

xij , i ∈ N (2.28)

∑
j∈N

xij ≤ fi, i ∈ N (2.29)

xij ∈ {0, 1}, i, j ∈ N (2.30)

yi ∈ {0, 1, ...}, i ∈ N (2.31)

The objective function (2.26) consists of two parts. The first part is an indication
of the expected total response time during the major incident multiplied by parameter
W , as we discuss in detail in Section 2.8 below. The second part is the number of
relocations made, multiplied by 1−W . This objective is equivalent to the original one if
the W parameter is close enough to 0, so the minimum number of relocations is made
to satisfy the constraints. Constraints (2.27) require every response neighborhood to
be covered by at least one truck, and constraints (2.29) ensure not more than avail-
able trucks are relocated from every station. Note that the KW formulation does not
have constraints (2.4). Those constraints prevent relocating more than one fire truck
to the same station, which otherwise could happen in case of W > 0, as in MCRP
each relocation is associated with a positive gain in the objective function. In the KW
formulation, each relocation is associated with a cost. Relocating trucks beyond the
first to an empty station can only make a feasible solution infeasible, by uncovering
one or more response neighborhoods, while not increasing coverage. Hence, it is never
optimal in the KW formulation to relocate more than one truck to the same empty station.

The main difference between the KW and the MCRP formulations is in the first
component of the objective function. While the MCRP model maximizes the gains
in coverage obtained by making relocations, the KW model minimizes the total costs∑
i∈N

∑
j∈N cijxij incurred by making relocations. The cij ’s themselves do not have a

clear interpretation, but the difference in the objective between two candidate relocation
solutions is an estimation of the difference in the expected total response time to the
incidents arriving during the fire that triggered the relocation. In other words, the solution
to the KW model minimizes an approximation of the expected total response time to
incidents occurring during the major incident.
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Computing these cij factors is a complex task that requires more detailed data and
computations compared to MCRP. Below, we provide a procedure for computing the
cij along the lines of [59]. This is intended both to clarify the interpretation mentioned
above, as well as to illustrate why the performance of the KW model decreases for larger
incidents, when more relocations are required to satisfy constraints (2.27).

Computing the coefficients cij

The definition of the cij is based on the square root law, which was first stated in [58] as
a way to approximate the expected traveling time to an incident. Consider a region with
area A that is served by N fire stations. By the square root law, the expected distance
between the locations of the incidents and the fire stations closest to those incidents can
be approximated as D = K

√
A/N , where K is some constant. In the remainder of this

subsection, we describe how the authors in [59] propose to use the square root law to
define and compute the cij .

Denote by Ai a physical area of the service area of station i, and by di the arrival
rate of incidents in the service area of station i. Constants c1 and c2 are chosen such
that c1

√
Ai is a good estimate of the expected response distance D

(1)
i of the closest fire

truck to the incidents in service area i, and c2
√
Ai is an estimate of the expected response

distance D
(2)
i of the second closest truck to the incidents in service area i. We will discuss

choosing the c1 and c2 in Appendix 2.8 below.

Denote the average response velocity in the service area of station i by vi. These can

be evaluated using the distance and travelling time data. Let i
(1)
j denote the station where

the closest truck to j is located. The arrival rate of incidents in the service area of station
i is computed as di =

∑
j:i

(1)
j =i

λj . Let t denote the duration of the major incident, then

the aggregate response time over all incidents in the service area of station i during the
time interval [0, t] can approximated with c1

√
Aidit/vi if i has a truck available, and with

c2
√
Aidit/vi if it does not.

The KW model was developed with the main objective to cover all response neighbor-
hoods with minimum number of relocations. In their iterative approach, the empty fire
stations to be covered were defined first, and then the trucks were chosen for relocation to
those empty fire stations. Assume that station j ∈ J is to be covered, and a set of stations
I have a truck available for relocation. We need to decide from which station i ∈ I to
relocate a truck to station j. Denote αi = di

√
Ai/vi and let rij be the driving time from

station i ∈ I to station j. Let T > t denote the time when the major incident is finished,
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and all trucks have returned to their original stations, then the aggregate response time
over all incidents during [0, T ] in the response area of the region I ∪ {j}, given that a
truck from station i ∈ I is relocated to the empty station j, can be approximated with

(c2 − c1)[αi(t+ rij) + αjrij ] + c1T
∑

k∈I∪{j}

αk.

The second term c1T
∑
k∈I∪{j} αk in the expression above indicates the total response

time in case all the station had an idle truck, and the first term accounts for the fact that
demand locations in the service areas of stations i and j are served by the second closest
truck during t+ rij and rij time units, respectively. As the second term is the same for
any potential relocation, it is then omitted, and the cost cij of relocating an available fire
truck from station i to an empty station j is approximated by

cij = (c2 − c1)[αi(t+ rij) + αjrij ]. (2.32)

In our implementation of the KW model, the value t in (2.32) for the duration of a major
incident is picked as a sample average over the historical incidents data, and is equal to
three hours.

Fitting historical data

Recall that c1 (c2) denotes a constant such that c1
√
Ai (c2

√
Ai) is a good approximation

for the expected response distance in region i if the closest (second-closest) truck is
dispatched. In order to estimate the parameters c1 and c2 we use linear regression based
on the following data of the FDAA. The arrival rates λj of new incidents for every demand
location j, the distance dij and the travel time tij between any pair of a demand location
j and fire station i.

Based on the given travel times, the service areas are constructed for every station
i, and the physical area Ai is computed for a corresponding service area. The expected
distance of the closest and the second closest trucks to incidents arriving in a service area

i is computed based on the provided arrival rates, travel times (for D
(2)
i to define which

truck is second closest for every demand location in a given service area), and distances.

Remember that i
(1)
j denotes the station where the closest truck to j is located. Let also

i
(2)
j indicate the fire station with the second closest truck to demand location j. Given

the data mentioned above, we can estimate the expected travelling distance of the closest
and the second closest truck in a service area of station i as

D̃
(1)
i =

∑
j:i

(1)
j =i

λjdi(1)j j∑
j:i

(1)
j =i

λj
and D̃

(2)
i =

∑
j:i

(1)
j =i

λjdi(2)j j∑
j:i

(1)
j =i

λj
,
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(a) c1 (b) c2

Figure 2.9: Linear regression for c1 and c2 parameters.

respectively. Based on the obtained estimations D̃
(1)
i and D̃

(2)
i for 17 fire stations, and

the corresponding data on physical areas Ai, a simple linear regression is fit to model the

relationships D
(1)
i = c1

√
Ai and D

(2)
i = c2

√
Ai. The obtained linear regression is shown

on Figure 2.9.

As the graphs show, the linear regression does not fit the data well. Specifically, the
coefficient of determination R2 is equal to -0.58 for the c1 regression and to -1.19 for
the c2 model. The root-mean-sqare error (RMSE) is 0.77 and 1.79, respectively. The
coefficient of determination is computed as R2 = 1 − SSres/SStot, where SSres is the
residual sum of squares and SStot is the total sum of squares. Hence, the negative value
of R2 means that a horizontal line that is the mean of the data provides a better fit than
does the fitted function. We conjecture that this poor fit is due to the irregular road
network in the FDAA coverage area, which is in sharp contrast with the grid-like network
in NY, for which the approach in [58, 59] was developed.

Implementing the KW model

In order to implement the KW model, we require the following data:

- the arrival rate of new incidents λj per demand location;

- the traveling times rij between each pair of demand location and fire station;

- the traveling distances dij between each pair of demand location and fire station;

- the physical area Ai of each service area;
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- the duration of major incidents.

In contrast, to implement the MCRP model, we require only the following:

- the arrival rate of new incidents di per service area;

- the traveling times rij between each pair of demand location and fire station.

Note that obtaining the arrival rate per service area di is much easier than finding the
arrival rate λj per demand location, since the latter is much more granular.

Clearly, the data requirements for MCRP are much lighter compared to KW. Moreover,
the computations required to implement KW outlined in Sections 2.8 and 2.8 are more
complex than those for MCRP, and require expert knowledge to execute. Consequently,
the threshold for implementing MCRP should be much lower than for KW.

Looking at the KW formulation and the computation of the cij , we observe that the
authors of [59] make a number of significant assumptions and approximation steps that
may result in inaccuracies, in particular as the size of the major incident grows. For
instance, it requires an estimate up front for the duration t of the major incident. Given
the substantial variability of these durations (for FDAA the historical duration of major
incidents ranges from 1 hour to a full day), requiring a single point estimate for the
duration has significant impact on the objective function and the accuracy. Moreover,
KW leans heavily on the square root law from [58], which as we have seen in Section 2.8
is not accurate in the coverage area of FDAA. We conjecture that its successful usage in
NY is due to that city’s regular road network. Both these errors compound when the size
of the major incident grows.

Upon closer inspection of the cij components, we see that in computing these it is
always assumed that the second-closest truck is dispatched in case that the closest truck
is not available. This is of course not true in practice, since sometimes both the first and
second-closest trucks are unavailable. This is particularly likely during large incidents,
which explains why KW becomes less accurate in that regime. Furthermore, when it
comes to the cij , the authors of [59] write “each relocation cost cij [...] depends on the
resultant configuration of houses to be filled and to be left empty [...]. However, we can
approximate the cij by taking an average configuration”. So, in [59], the authors use some
‘default’ configuration rather than the current one, the gap between which again grows
with the incident size.
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Figure 2.10: Current Practice algorithm example

2.8.4 ‘Current Practice’ Algorithm

In this section, we describe the CP algorithm using the example from Figure 2.10. The
service area of the fire station corresponding to the major incident’s demand location is
painted red. The service areas of the other empty and volunteer stations are painted white,
and the service areas of the fire stations with available professional trucks are painted
blue. If a major incident happened, and several trucks are dispatched to its location
(flame icon), the CP algorithm relocates one of the available professional trucks to the
fire station (big star) servicing the major incident’s demand location. The procedure
identifying which truck to relocate is as follows. The available professional trucks are first
ordered according to their mean response time corresponding to the incident’s demand
location. Then these trucks are divided into three groups. Assume there are N trucks
available for relocation. The first bN/3c trucks from the ordered list are put into the first
group (light blue), the next bN/3c trucks are put into the second group (blue), and the
last N − 2 bN/3c trucks are put into the third group (dark blue). The first truck from
the third group is then chosen for relocation.
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3
Dispatching Fire Trucks under

Stochastic Driving Times

In this chapter we discuss optimal dispatching of fire trucks under stochastic driving times.
The study is motivated by a particular dispatching problem that arises at the FDAA,
where two fire trucks are sent to the same incident location for a quick response. We
formulate the dispatching problem as a Markov Decision Process, and numerically obtain
the optimal dispatching decisions using policy iteration. We show that the fraction of late
arrivals can be significantly reduced by deviating from current practice of dispatching the
closest available trucks, with a relative improvement in terms of fraction of late arrivals of
on average about 20%, and over 50% for certain instances. We also show that driving-time
correlation has a non-negligible impact on decision making, and if ignored may lead to
performance decrease of over 20% in certain cases. As the optimal policy cannot be
computed for problems of realistic size due to the computational complexity of the policy
iteration algorithm, we propose a dispatching heuristic based on a queueing approximation
for the state of the network. We show that the performance of this heuristic is close to
the optimal policy, and requires significantly less computational effort.

The work in this chapter is based on [106]: D. Usanov, P.M. van de Ven, and R.D. van
der Mei. Dispatching fire trucks under stochastic driving times. Computers & Operations
Research, 114, 2020.
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3.1 Introduction

When a new fire arises, one or more trucks are dispatched from the fire stations close to
the fire in order to facilitate a quick response. However, sending closest trucks may lead
to gaps in coverage for the duration of an incident which may have adverse effect on the
response time to incidents that happen simultaneously. This is particularly true for large
fires that require multiple trucks and take longer to put out. In this chapter, we study
how to dispatch multiple fire trucks under stochastic driving times in order to respond
quickly to the present fire, while maintaining good coverage for possible simultaneous
incidents.

To illustrate this tradeoff, we consider the example of FDAA, which operates 19 fire
stations spread across the city of Amsterdam and surrounding areas. When a small fire
occurs in the city center of Amsterdam that only requires a single fire truck to address,
the FDAA nevertheless dispatches two trucks from different fire stations. These incidents
are of the highest (of three) priority level, and constitute about 70% of all fires. When
the first truck arrives at the fire, the second truck returns to its fire station. This type of
redundancy is used by FDAA in order to mitigate delays that may arise when a fire truck
encounters a traffic jam or a large garbage truck. Intuitively, the dispatcher would want
to ensure that these two trucks are relatively close to the fire, but still sufficiently spaced
out so that the remaining trucks retain good coverage. Moreover, we would want the
trucks to approach the fire from different directions, so that when one truck gets stuck in
traffic, the other can still get to the fire quickly. We refer to the latter phenomenon as
driving-time correlation, and observe that this adds yet another layer of complexity to
the optimal dispatching problem.

Although the problem of dispatching a single vehicle to incidents has been studied
extensively in the literature on emergency services, to our knowledge very little work has
been done on dispatching multiple vehicles, and we are the first to consider driving-time
correlation in this context. Moreover, we are not aware of any studies into driving-time
correlation in the transportation literature either. The current practice of the FDAA is
to dispatch a truck each from the two fire stations closest to the incident. However, it is
unclear whether this leads to the fastest response (given the correlated driving times),
and leaves the best coverage. Naturally, driving-time correlation also plays a role when
considering incidents that require more than two trucks, but for ease of presentation
we limit ourselves to the case with two trucks. While this problem is motivated by the
situation of the FDAA, we believe other major cities with busy traffic use, or could benefit
from, similar dispatching methods.

To study this problem, we model the city as a graph, where the vertices correspond

46



Chapter 3. Dispatching Fire Trucks under Stochastic Driving Times

to demand locations where incidents may occur, and an edge indicates that two locations
can be reached directly. Fire stations are positioned at some of the vertices, and new fires
arise at random times and locations. Similar to the current practice of the FDAA, we
assume that fires are addressed by sending two fire trucks, the first of which to arrive
will engage the fire.1 The response time of a truck dispatched from a fire station to a
fire is the sum of travel times over all edges traversed on the graph, and the travel time
over each edge is modelled as random variable. When two trucks dispatched to the same
fire use the same edge they may incur the same travel times, capturing the driving time
correlation. Fires last for some random time, after which the trucks become idle again.
In order to determine the optimal dispatching policy we model this system as a Markov
decision process (MDP).

We first use policy iteration to numerically determine the optimal dispatching policy,
and show that significant improvements can be made over the current practice of sending
the two closest idle trucks. We also use this approach to demonstrate that it is important
to take into account driving-time correlation in the model, since dispatch decision and
performance metrics may be incorrect otherwise. For realistic-sized instances such as
the coverage area of FDAA we cannot use policy iteration due to its computational
complexity, and we develop novel heuristics instead.

Inspired by the results in [101], we develop these heuristics using the idea of one-step
improvement. This approach was developed in [80, 82], and has for instance been applied
to call centers [10], control of traffic lights [36], routing in queueing networks [11] and
loss networks [40]. To do this, we first obtain an approximation for the fraction of late
arrivals under the policy of sending the closest trucks, assuming that all fire stations are
independent from each other. We then apply a single policy-iteration step to these results
in order to obtain an improved policy. We show that the resulting policy significantly
outperforms closest-first. The computational complexity of this approach is much better
than that of the full policy iteration algorithm needed to obtain the optimal dispatching
policy, yet its performance is remarkably close to optimal.

To summarize, in this chapter we make the following contributions:

1. We develop the first model for dispatching multiple trucks in an emergency service
network setting, possibly in the presence of correlated (stochastic) driving times;

2. We show that the current fire department practice of sending the closest trucks is
far from optimal, the optimality gap grows with the number of trucks in the system

1Note that we limit ourselves to the case of two trucks for simplicity, but we expect that our approach,
heuristics and insights hold for larger fires that require more trucks.
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and can be as large as 50% for certain problem instances;

3. We show that taking into account driving time correlation has a significant impact
on the response time and the optimal dispatch policy, and ignoring correlation when
deriving a policy may lead to performance loss of more than 20%;

4. To circumvent computational issues for obtaining the optimal dispatch policy, we
propose a new heuristic based on 1-step policy improvement that has a small
optimality gap, but only requires a fraction of its computation time.

The remainder of this chapter is organized as follows. In Section 3.2, we provide a
review of the relevant literature, and in Section 3.3, we give a description of the model
studied in the chapter, explain how we account for driving-time correlation, and formulate
the MDP. In Section 3.4 we discuss one-step improvement policy and introduce our
heuristics. In Section 3.5 we numerically investigate the impact of correlation, compare
the performance of the optimal policy, closest-first and the heuristics. Conclusions and
suggestions for further research are made in Section 3.6.

3.2 Literature Review

Operations Research related to fire departments can be traced back to the seminal RAND
fire project, which ran from 1968 to 1975 and addressed a range of issues related to the
New York City fire department. This includes for instance developing a simulation model
for fire fighting services [15], a square root law for fire fighting response times [58], and
algorithms for relocations during major incidents [59]. We refer to [34] for an overview of
this project and its research output. Since then the research literature on fire department
operations has been limited in both scope and quantity, focussing mostly on facility
location problems. The goal of this stream of literature is to determine the optimal
location of the fire stations (see, e.g., [69, 44, 16, 21]).

To our knowledge, the only papers that deal specifically with dispatching of fire trucks
are [100] and [43], both originating from the RAND fire project. In [100], the authors
consider whether to dispatch one or two fire trucks to incidents of unknown severity, and
show that the optimal policy has a threshold structure, where one dispatches two trucks
only if sufficient trucks are available. However, this work ignores the spatial component
and does not determine which trucks to dispatch. The work closest to ours is perhaps [43],
where the authors propose an algorithm for how many (one or two) and which trucks to
dispatch. The objective of the algorithm is to minimize response time to serious incidents,
those requiring at least two ladder trucks. The algorithm performs a grid search, where
the first truck is picked for dispatching based on a certain loss approximation, assuming
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that only that truck is dispatched. Then, given the choice of the first truck, the second
truck is decided on based on another loss function. Finally, the decision is made whether
to send only the first truck, or both of them, based on the corresponding estimated costs.
In contrast to our work, [43] relies on heuristic arguments for determining the future costs
of current dispatching decisions, and ignores driving-time correlation. Moreover, the used
loss functions do not seem to have an intuitive interpretation, and dispatching of the first
truck is done independently of whether the second truck will be dispatched or not. In
contrast, our approach is to jointly pick the two trucks to be dispatched such that the
fraction of late arrivals is minimized, allowing to incorporate driving-time correlation.

An area that is closely related to fire truck dispatching is that of dispatching ambu-
lances to accidents and other emergencies. We will discuss the most relevant literature
below, but emphasize that to our knowledge most of this work only considers dispatching
a single vehicle to incidents, and does not take into account driving-time correlation.
While results on the optimal dispatching of a single ambulance are not directly applicable
to our setting, we now provide a brief discussion of some recent developments in this area.
See for instance [45, 25, 7] for a more complete overview of this field. In [2], a dispatching
heuristic was proposed based on the notion of preparedness, measuring the ability of
the system to respond quickly to future incidents. The heuristic suggests to dispatch an
ambulance resulting in the smallest decrease in preparedness. The algorithm was further
studied in [65]. It was shown that the preparedness algorithm performs significantly
worse than sending the closest ambulance in terms of average response time. The authors
noted, however, that the poor performance of the preparedness algorithm is due to the
fact that it ignores the current response time when making a dispatching decision. They
introduced a modified version of the algorithm that balances between the decrease in
preparedness and the response time to the current incident. In their experiments, the
extended algorithm outperformed the closest-first dispatching policy.

In [67], the authors consider a setting with multiple incident priority levels, and com-
pare a range of dispatching policies based on the closest-first policy. Modifications include
possibilities to reroute busy ambulances to more urgent incidents and to reassign incidents
to ambulances that become idle. The authors conclude that the relative performance of
each policy depends on the parameters and available infrastructure. In [48], the authors
formulate the problem of ambulance dispatching as an MDP, and then present a heuristic
which is shown to perform close-to-optimal, and in certain cases outperforms closest-first.
In [5] and [6], patient survivability is used as an objective for the problem with different
incident priority levels. The authors formulate the problem as an MDP, and observe
that dispatching closest vehicle is only optimal for the most urgent incidents. They
also indicate that the optimal policy is most beneficial when the spatial distribution of
incidents is skewed, which is the case in most real-life applications. Using the insights
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obtained from the optimal policy, the authors introduce a heuristic that outperforms the
closest-first policy. The authors of [72, 73] provide an MDP formulation of the ambulance
dispatching problem under certain fairness constraints, and numerically compute the
optimal policy for small instances. The problem of possibly sending two different types of
emergency vehicles is considered in [98], where the authors propose a heuristic for this
purpose.

In addition to dispatching, substantial work in recent years has focused on relocation
as well as joint dispatching and relocation of ambulances, in order to maintain better
coverage. The relocation decisions imply proactive repositioning of idle vehicles within
the region with the aim to reduce response time to future incidents. In [71, 93, 70, 79],
the joint problem was addressed using approximate dynamic programming. In [25],
the authors use stochastic programming to solve this problem, while ensuring that the
workload due to relocations remains limited. The optimization method in [24] is designed
to make relocations that maximize coverage under personnel’s workload limitations. Low
computation costs of the approach allow to make decisions in real time, in contrast to the
earlier methods described, which require offline computations.

As mentioned earlier, the research on ambulance dispatching is mostly focused on
the setting where exactly one vehicle is required to serve an incident. To understand
why results for the single-vehicle case cannot easily be applied in our multiple-vehicle
setting, consider the following. First, any dispatching action is a trade-off between a quick
response, and ensuring that the remaining coverage is sufficient, should another incident
arise while the first incident is still ongoing. Decomposing a multiple-vehicle dispatching
formulation into a sequence of independent single-vehicle problems, one may not be able
to carefully navigate this tradeoff, since every dispatching decision is made in a greedy
way (assuming it is the only such decision). To illustrate this, consider the easier problem
having to remove k trucks: which set of k trucks would result in the best coverage? It is
easy to see that solving the problem sequentially would likely result in a substantially differ-
ent solution with a worse coverage compared with solving the problem jointly for all trucks.

The second reason why algorithms for dispatching a single vehicle cannot be easily
applied in our setting is due to the driving-time correlation. If applying single-vehicle
policies for dispatching multiple trucks, one would be unable to take into account this cor-
relation. As we shall show in this chapter, driving-time correlation has a significant impact
on the optimal dispatching policy, and ignoring it substantially reduces performance.
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Figure 3.1: Graph representation of a region served by a fire department

3.3 Model

We consider a city represented by a connected, undirected graph (J , E), see Figure 3.1.
The set of vertices J = {1, ..., J} represents the neighborhoods, or demand locations.
Two vertices are connected if it is possible to travel directly between these two demand
locations. A subset I ⊆ J of demand locations contain a fire station (marked with
triangles in Figure 3.1), and we denote I = |I|. Fire station i ∈ I houses Ci fire trucks,
and all fire trucks are assumed to be identical.

We assume that new fires arise at each demand location j ∈ J according to a Poisson
process with rate λj . Fire trucks can be either idle (i.e., waiting at a fire station) or busy
(i.e., travelling or fighting a fire), and whenever a new fire starts, two idle fire trucks
have to be dispatched. If a fire starts and fewer than two idle trucks are available, we
request the missing truck(s) from a neighboring region. We assume the neighboring
regions have ample capacity, so there are always trucks available. For tractability, we
assume that when a truck is dispatched, it remains busy for an exponential time with
rate µ, independent from the other truck dispatched and from the location of the fire and
fire station. Independence from the location of the fire and fire station is a reasonable
assumption as in practice the traveling time is negligible compared to the on-scene service
time. Note that the independence assumption allows us to consider any travel time
distribution, although we shall focus mostly on Erlang-distributed travel times, for ease of
presentation. The assumption that both trucks have the same busy-time distribution will
result in an upper bound on the real-life busy fraction, since only the first truck to arrive
will stay to resolve the incident. However, given the relatively low busy fraction for the
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fire truck application domain, we expect our model to be sufficiently accurate. Returning
trucks can be dispatched once they reach their station. Although an idealization, this
assumption has negligible impact given the relatively low busy fraction of fire trucks seen
in practice, and given the traveling time is small compared to the on-scene service time.
This means it is rarely the case a fire truck is driving upon arrival of a new incident.

The state of the system can be represented by a vector f = (f1, . . . , fI), where fi de-
notes the number of idle trucks at station i. Let the vector a(f , j) = (a1(f , j), ..., aI(f , j))
represent the dispatch action taken if a new fire starts at a location j when in state f .
Here 0 ≤ ai(f , j) ≤ fi denotes the number of trucks dispatched from station i ∈ I. Given
that exactly two trucks are dispatched to every fire we have that |a(f , j)| ≤ 2, where the
remaining 2− |a| trucks are sent from neighboring regions.

We denote by F a(t) the state of the system at time t under decision rule a. Observe
that, due to the exponentiality assumptions, the process {F a(t)}t≥0 is a continuous-time
Markov process, with state space S = {(f1, ..., fI)|0 ≤ fi ≤ Ci ∀i ∈ I}. Let ei denote a
vector of length I with ith element equal to 1, and all other elements equal to zero. The
transition rates q of this process are given by

q(f ,f − a(f , j)) = λj , j ∈ J , f ∈ S,
q(f ,f + ei) = (Ci − fi)µ, i ∈ I, f ∈ S.

The first transition corresponds to trucks being dispatched upon the start of a new fire at
location j, where the number of trucks at each location i is reduced from fi to fi−ai(f , j).
These transitions occur at rate λj , the rate at which new incidents start at demand
location j. The second transition corresponds to a truck returning to its fire station and
becoming idle. This happens at rate µ for each individual truck not at its station, so the
rate of trucks returning to station i is equal to (Ci − fi)µ. This model is an example of
the hypercube model from [63]. The hypercube model consists of a multiserver queueing
model with distinguishable servers, corresponding to fire trucks in our setting. In [50],
the authors numerically compute the optimal assignment policy of servers to requests
in the hypercube model, and show that assigning the lowest-cost (closest in our setting)
server is only optimal for small loads. The model is of relatively limited use in our setting,
however, in that it cannot fully take into account the spatial component of our problem,
and is only concerned with allocating a single server (dispatching a single truck). In [41],
a hypercube model was proposed used to analyze a system with particular dispatching
policies including multiple dispatch and partial backup. This model was further embedded
into a genetic algorithm in [42] to optimize the service areas of ambulance bases.
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3.3.1 Traveling and Response Time

When a truck is dispatched from fire station i ∈ I to demand location j ∈ J , it travels
along a shortest path on the graph. Let s(i, j) ⊆ E denote the set of edges constituting
the path. Since we assume that the graph is connected, such a path always exists. In case
multiple shortest paths exist, we select one at random. The travel time along edge e ∈ E
is denoted by Xe ∼ exp(1), and follows an independent exponential random variable with
unit mean. So the marginal traveling time of a fire truck dispatched from i to j is given
by Ti,j =

∑
e∈s(i,j)Xe, an Erlang-distributed random variable with |s(i, j)| phases of unit

mean.

For fire trucks dispatched from neighboring regions, we assume a traveling time T0
independent of the demand location of the fire, as typically those trucks are located
relatively far away, and the driving time is dominated by the time it takes to reach the city
in the first place. We assume that T0 has an Erlang distribution with 2 maxi∈I,j∈J |s(i, j)|
phases of unit mean. That is, the expected traveling time for a truck from a neighboring
region is twice the maximum expected traveling time between any fire station-demand
location pair on the graph, to reflect the fact that these trucks have to travel further.

The performance of a fire department is measured based on the response time to
incidents, i.e., the time between the moment a fire reported and when the first truck
arrives on scene. We consider two cases for computing the response time: uncorrelated
and correlated. In the first case, we use the simplifying assumption that the driving time
on the same edge is independent between both dispatched fire trucks. In the correlated
case, we assume that both trucks incur the same driving time realization for each shared
edge. We now discuss both cases in more detail.

Case 1: Uncorrelated driving times

In order to model the fact that in the uncorrelated case the response times of the two
trucks that are dispatched are completely independent, we introduce two independent
copies of the driving time random variable over each edge. To do this, we introduce an
index v = 1, 2, which is used to distinguish between the two trucks that are dispatched,

and is distinct from the index i ∈ I we use to index over all trucks. We denote by X
(v)
e

the driving time of truck v over edge e ∈ E, for v = 1, 2, and we assume that X
(1)
e and

X
(2)
e are independent. We first treat the case where no trucks are sent from outside, and

truck v is dispatched from location iv, v = 1, 2. In this case, the total traveling time

of the v-th truck to j can be written as T
(v)
iv,j

=
∑
e∈s(iv,j)X

(v)
e , v = 1, 2. These T

(v)
iv,j

are mutually independent because the X
(v)
e are, even when i1 = i2. The T

(v)
iv,j

follow an
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Erlang distribution with |s(iv, j)| phases of unit mean.

In case one truck is dispatched from outside, we assume its traveling time is indepen-
dent from the truck dispatched from inside the system; if two trucks are dispatched from

outside their traveling times are assumed to be mutually independent. We denote by T
(1)
0

and T
(2)
0 two i.i.d. copies of the Erlang-distributed random variable T0.

Summarizing, in the uncorrelated case, given a dispatch decision a for a fire at location
j, the response time can be expressed as

R(a, j) =


min{T (1)

i,j , T
(2)
i,j } if ai = 2,

min{T (1)
i1,j

, T
(2)
i2,j
} if ai1 = ai2 = 1, i1 6= i2,

min{T (1)
i,j , T

(1)
0 } if ai = 1, |a| = 1,

min{T (1)
0 , T

(2)
0 } if |a| = 0.

(3.1)

The first two entries correspond to the case where two trucks are dispatched from inside
the network with the first covering the case where both trucks are sent from the same
location, and the second the case with different locations. Note that if the trucks are
dispatched from the same station, they follow the same shortest path in a graph. This is a
reasonable assumption, as it is unlikely that in reality there are two independent shortest
paths. Moreover, an alternative solution of sending the trucks via two different paths is
difficult to sell at the fire department, as it is counterintuitive to the goal of getting to
the incident as quickly as possible. The third and fourth entry in (3.1) correspond to the
case where one and two trucks are dispatched from outside, respectively.

Case 2: Correlated driving times

In the correlated case the traveling times are no longer independent from each other,
and we denote by Xe the shared random traveling time over edge e ∈ E for both trucks.
In contrast to the uncorrelated case, we need not distinguish between both trucks to
compute the traveling time, and we denote Ti,j =

∑
e∈s(i,j)Xe as the traveling time from

i to j over s(i, j), which is an Erlang distributed random variable with |s(i, j)| phases of
unit mean. The traveling time of trucks dispatched from outside the network are still
assumed to be independent from traveling times inside the network and from each other.
Thus, in the correlated case the response time is given as follows:

R(a, j) =


Ti,j if ai = 2,
min{Ti1,j , Ti2,j} if ai1 = ai2 = 1, i1 6= i2,

min{Ti,j , T (1)
0 } if ai = 1, |a| = 1,

min{T (1)
0 , T

(2)
0 } if |a| = 0.

(3.2)
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The entries correspond to the same decisions as in (3.1) (respectively: two trucks from
the same location, two trucks from different locations, one truck from outside the network,
both trucks from outside the network). Note that in comparison to (3.1), the first entry
no longer contains a minimum operator, since both trucks will have the same driving
time realization as they are dispatched from the same location and there is correlation.
The second entry is no longer necessarily a minimum between two independent Erlang-
distributed random variables, as the routes of the two trucks may share one or more edges
on the graph, for which they will see the same driving time realization.

We emphasize that our approach described above for modeling driving-time correlation
is certainly not the only possibility, and this work should be seen as the first attempt to
take this phenomenon into account when making dispatching decisions. For instance, we
assume complete correlation between the driving time on each shared edge, whereas a
smaller but still positive correlation coefficient may be more realistic. We briefly discuss
this extension in Section 3.6.

For each incident, we are interested in whether the response time is within some time
limit t∗, and we say a late arrival occurred otherwise. Our goal is to minimize the fraction
of late arrivals. This is one of the most widely used performance metrics in emergency
services, and is for instance used by the FDAA and the Dutch government to measure
the performance of fire fighting services.

3.3.2 MDP Formulation

We are interested in finding the dispatch decisions a(f , j) that minimize the fraction of
late arrivals. In order to determine these, we describe the system as an infinite-horizon
average-cost Markov decision process (MDP). To do this, we first uniformize our Markov
process {F a(t)}t≥0 by adding the following dummy transitions: q(f ,f) = µ

∑
i∈I fi.

This ensures that transitions out of any state happen at rate τ =
∑
j∈J λj +

∑
i∈I Ci,

without altering the dynamics of the network.
We are now in position to formulate our infinite-horizon average-cost MDP. Note that

when a new fire starts and the network is in state f , we can make any of the following
decisions a:

A(f) = {a ∈ NI0 | 0 ≤ ai ≤ fi, min{2, |f |} ≤
I∑
i=1

ai ≤ 2},

i.e., we dispatch at most two trucks from inside the region, and we only dispatch outside
trucks if fewer than two idle trucks are available. This description also states that we
cannot dispatch more trucks from each station than available. Let h∗(f) denote the
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relative cost incurred over an infinite time horizon when starting in state f ∈ S, compared
to paying the average cost g∗ every time unit. Since our process is unichain and has a
finite state space and action space, we know from [89, Theorem 8.4.3] that there exists an
optimal deterministic policy that satisfies the Bellman equations:

h∗(f)τ =− g∗ + µ
∑
i∈I

(Ci − fi)h∗(f + ei) + µ
∑
i∈I

fih
∗(f)

+
∑
j∈J

λj min
a∈A(f)

{P(R(a, j) > t∗) + h∗(f − a)}, f ∈ S.
(3.3)

The first summation on the right-hand side of (3.3) corresponds to fire trucks returning
to their fire station, and the second to dummy transitions needed for uniformization.
In neither case do we incur a cost or have to make a decision. The third summation
corresponds to new fires that occur, in which case we have to make a dispatch decision a,
and incur some costs P(R(a, j) > t∗) equal to the probability of exceeding the response
time threshold t∗, given the dispatch decision and location of the fire. The value function
g∗ has an interpretation of the rate of late arrivals, that is, the average number of arrivals
per time unit that were later than the time threshold t∗. To measure the performance of
the dispatching policies we use the fraction of late arrivals, which is equal to g∗∑

j∈J λj
.

To compute the immediate costs P(R(a, j) > t∗), we must take a closer look at the
distribution of the response time R(a, j), presented in (3.1) and (3.2) for uncorrelated
and correlated driving times, respectively. For uncorrelated driving times, in all four
cases of (3.1), the response time is the minimum of two independent Erlang distributed
random variables. The same holds for cases 3 and 4 of (3.2), for correlated driving times.

The most challenging setting to compute is case 2 of (3.2), where two trucks are
dispatched to node j from different locations i1 and i2 under correlated driving times.
This may be rewritten as the sum of an independent Erlang-distributed random variable
and the minimum of two others, i.e.,

R(a, j) =
∑

e∈s(i1,j)∩s(i2,j)

Xe + min

 ∑
e∈s(i1,j)\s(i2,j)

Xe,
∑

e∈s(i2,j)\s(i1,j)

Xe

 , (3.4)

where ai1 = ai2 = 1, i1 6= i2. This kind of driving time correlation captures the fact that
two fire trucks that take the same route may be delayed by the same incident or traffic,
and encourages dispatching trucks over non-overlapping routes.

Thus, in order to compute the immediate costs P(R(a, j) > t∗), we require the
following result.
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Proposition 3.3.1. Let Y0 ∼ Er(1, w0), Y1 ∼ Er(1, w1) and Y2 ∼ Er(1, w2) be indepen-
dent Erlang-distributed random variables with phases of unit mean, wi > 0, i = 1, 2, 3.
Then

P (min{Y1, Y2} > t∗) = e−2t
∗
w1−1∑
n=0

w2−1∑
m=0

t∗n+m

n!m!

and

P (Y0 + min{Y1, Y2} > t∗) =

w1−1∑
n=0

w2−1∑
m=0

n+m∑
l=0

e−2t
∗
t∗l(−1)n+m−l

n!m!(w0 − 1)!

(
n+m

l

)

×
∫ t∗

y0=0

yn+m−l+w0−1
0 ey0dy0

+

w0−1∑
n=0

t∗n

n!
e−t

∗
.

The proof of Proposition 3.3.1 can be found in Appendix 3.7.

3.3.3 Closest-First Dispatching

The main benchmark throughout this chapter is the current practice of FDAA, which is
to always send the two closest (in terms of expected travel time) fire trucks, which we
refer to as the closest-first (CF) policy. We consider this as part of a larger class of static
dispatching policies, where fire trucks are dispatched according to a fixed order per demand
location. Such policy can be represented by a list σj(k), j ∈ J , k ∈ {1, . . . ,

∑
i Ci}, where

σj(k) ∈ I represents the fire station from which to send the kth truck for an incident
at location j. Let aCF (f , j) denote the action taken in state f given a new incident at
location j, then

aCF (f , j) = eσj(k1) + eσj(k2),

where
k1 = min{k : fσj(k) ≥ 1}, k2 = min{k : fσj(k) − I{k=k1} ≥ 1},

denote the number of the first and second truck dispatched, respectively. That is, truck k1
is the closest fire truck to demand location j that is available, and k2 the second-closest. If
Ci = 1 for all i, then σj reduces to a permutation over all fire stations. In case ki, i = 1, 2
does not exist (because there are insufficient trucks available), we set σj(ki) = 0 and
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define e0 as the all-zero vector, to ensure trucks are sent from outside.

The long-term average costs under this CF policy can be obtained by limiting the
Bellman equations (3.3) to only those actions aCF (f , j), i.e.,

hCF (f)τ =− gCF + µ
∑
i∈I

(Ci − fi)hCF (f + ei) + µ
∑
i∈I

fih
CF (f)

+
∑
j∈J

λj

(
P(R(aCF (f , j), j) > t∗) + hCF (f − aCF (f , j))

)
, f ∈ S.

(3.5)

Here, gCF and hCF (f) denote the long-term average and relative costs under the CF
policy, respectively. Thus, (3.5) is a system of |S| linear equations, with |S|+ 1 unknowns
gCF and hCF (f), f ∈ S. The costs can be obtained by fixing hCF (f) for one state f ,
and solving the remaining system of equations.

3.4 Dispatching Heuristics

As we shall see from the experiments in Section 3.5.2, the optimal dispatching policy
significantly outperforms closest-first, both in the correlated and uncorrelated cases.
However, it is well-known that solving the Bellman equations (3.3) can be computationally
infeasible for large instances. In this section, we present two heuristics to approximate
the optimal dispatching policy.

3.4.1 The One-Step Improvement Heuristic

The first heuristic we consider is based on the idea of one-step improvement, and we
refer to the policy obtained this way as to the one-step improvement (OSI) policy. This
approach was developed in [80, 82], and the key idea is to first determine the (relative)
costs h̃(y) for some sub-optimal policy, and then applying a single policy iteration step to
find improved actions. That is, we replace the future costs h∗(y) in (3.3) by some function
h̃(y). The maximizing action for this approximation of the Bellman equations can then
be determined without iteration, significantly reducing the computational complexity
compared to the full policy iteration algorithm. As pointed out in [80, 82], the first policy
iteration step typically yields the biggest gains, so the result from one-step improvement
is often close to optimal.

Here we use the CF policy to approximate the future optimal relative costs. We
first compute the relative costs hCF (f) from (3.5), and then substitute these into the
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right-hand side of the Bellman equations (3.3). Ignoring the part that does not depend
on the actions, the decision made by the OSI policy can be found as:

aOSI(f , j) ∈ arg min
a∈A(f)

(
P(R(a, j) > t∗) + hCF (f − a)

)
, f ∈ S. (3.6)

3.4.2 The One-Step Improvement Approximation Heuristic

To derive the OSI policy from (3.6), we first need to solve the CF policy’s Bellman
equations (3.5) to determine the hCF (f). This is still computationally expensive for large
problem instances. In this section, we present an algorithm that approximates the CF
policy costs hCF (f), which can then in turn be used as a basis for the one-step improve-
ment in (3.6). We will refer to the policy obtained using one step improvement with the
CF policy cost approximation as the one-step improvement approximation (OSIA). This
constitutes our second heuristic.

In order to approximate hCF (f), we assume that each fire station has exactly one
truck. This assumption does not limit the applicability of the algorithm, as we can always
treat each truck as a separate station in the same location, and adjust the states and
actions accordingly. Let J(f , t) denote the expected total cost under the CF policy during
the time interval [0, t] starting from state f . Then the relative cost hCF (f) can be defined
as

hCF (f) = lim
t→∞

(
J(f , t)− gCF t

)
,

where gCF denotes the cost per time unit under CF from (3.5).

Assume that after some time T > 0 the system is in steady state, so the difference
between the relative costs and the average costs is incurred in the interval [0, T ] only. In
this case, we can approximate hCF (f) as

hCF (f) = lim
t→∞

J(f , t)− gCF t = J(f , T )− gCFT

+ lim
t→∞

(J(f , t)− J(f , T ))− (gCF t− gCFT )

≈J(f , T )− gCFT.

(3.7)

Substituting (3.7) into (3.6) we obtain the equations for the OSIA policy:

aOSIA(f , j) ∈ arg min
a∈A(f)

P(R(a, j) > t∗) + J(f − a, T )− gCFT

= arg min
a∈A(f)

P(R(a, j) > t∗) + J(f − a, T ), f ∈ S, j ∈ J .
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Here, we omit the gCFT term because it appears for all actions a.

So in order to derive the OSIA policy, we need to estimate J(f , T ), for all f ∈ S, the
total costs incurred in the interval [0, T ], starting from state f . Following the approach
taken in from [101], we decompose the network into individual M/M/1/1 queues associ-
ated with individual fire stations. By doing this, we essentially decouple the network into
individual fire stations, for each we can now compute an approximation for the probability
of the corresponding fire truck to be busy (the so-called busy probability). We combine
these to obtain an approximation for J(f , T ).

Let us first consider a fire station i in isolation, and compute its busy probability. De-
note by Di the given demand arrival rate for the truck at station i. Recall that the steady-
state busy probability of an M/M/1/1 queue with load ρi is given by B(ρi) = ρi/(1 + ρi),
and thus the steady-state rate of rejected requests is DiB(ρi). Denote by N(ρi, fi, t) the
expected number of rejected requests in the M/M/1/1 queue during [0, t] starting with fi
trucks at time 0. Finally, let ∆(ρi, fi) be the difference in rejected requests between start-
ing from steady state and starting from fi: ∆(ρi, fi) = limt→∞

(
N(ρi, fi, t)−DitB(ρi)

)
.

Assuming as above that the system is in steady state after time T , we have that

∆(ρi, fi) ≈
(
N(ρi, fi, T )−DiTB(ρi)

)
. (3.8)

The busy probability pi can be obtained by dividing the expected total number of rejections
N(ρi, fi, T ) by the expected number of arrivals DiT . Observe that in our case ρi = Di/µ,
since each request will occupy the server (i.e., fire truck) for an expected duration µ−1.
Using the identity in (3.8) and bounding between 0 and 1 to obtain a probability (since
we are using approximations), we get

pi =
N(ρi, fi, T )

DiT
= max

{
0,min

{
1, B(Di/µ) +

∆(Di/µ, fi)

DiT

}}
. (3.9)

Observe that in order to evaluate (3.9) we need to approximate ∆(Di/µ, fi), the
difference in total number of rejected calls between steady-state and starting from state
fi. To do this, we formulate the queue representing station i as an average-cost MDP,
where the state is the number of idle trucks at the fire station. Transitions happen when
either a request for a truck arrives, or an idle truck returns from an incident. If there is
an idle truck, it is always dispatched. The cost for a rejection is 1, and 0 for an accepted
job. This results in the following system of two Bellman equations and a normalizing
equation:

h0 =
Di

Di + µ
−
DiB(Diµ )

Di + µ
+

Di

Di + µ
h0 +

µ

Di + µ
h1, (3.10)
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h1 = −
DiB(Diµ )

Di
+ h0, (3.11)

1

1 + Di
µ

h0 +

Di
µ

1 + Di
µ

h1 = 0. (3.12)

Solving (3.10)-(3.12), we obtain h = (h0, h1), the relative costs starting from state fi = 0
or fi = 1, respectively. We use ∆(Di/µ, fi) = hfi , and compute pi using (3.9).

Having determined the busy probability pi for a given arrival rate Di, our next step
is to update the values of Di using the busy probabilities obtained. Here, we again
consider all fire stations jointly. According to the CF policy, the closest two idle trucks
are dispatched to an incident. Recall that the lists σj(k), j ∈ J , k ∈ {1, . . . , I}, represent
the dispatching order corresponding to the CF policy. So as each station has exactly one
truck, σ−1j (i) denotes the position held by station i in the dispatching order of demand lo-

cation j. For instance, σ−1j (i) = 1 means that station i is the closest to demand location j.

Let p0 correspond to the probability of an outside truck being unavailable, and set
p0 = 0. After pi is computed for each station i according to (3.9), we calculate the
probability pj{i1,i2} of a newly arrived incident at demand location j requests trucks at i1
and i2. Note that a single incident can generate requests at multiple pairs of fire stations,
since some of them might be occupied. By conditioning on the availability of the fire
trucks we obtain:

For j = 1, . . . , J , i1 = 2, . . . , I, i2 = 1, . . . , (i1 − 1) (both trucks are from inside):

pj{i1,i2} =


1, if σj(i1) = 1, σj(i2) = 2,

or σj(i1) = 2, σj(i2) = 1,∏
i 6=i1,i2, σj(i)<max{σj(i1),σj(i2)} pi, otherwise.

(3.13)

For j = 1, . . . , J , i1 = 1, . . . , I, i2 = 0 (one truck is from outside):

pj{i1,i2} =
∏
i 6=i1

pi. (3.14)

For j = 1, .., J , i1 = 0, i2 = 0 (both trucks are from outside):

pj{i1,i2} =

I∏
i=1

pi. (3.15)
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Algorithm 2 CF cost approximation

Initialization

pj{i1,i2} =

{
1, if σj(i1) = 1, σj(i2) = 2 or σj(i1) = 2, σj(i2) = 1

0, otherwise

D{i1,i2} =
∑
j∈J λjp

j
{i1,i2} ∀i1, i2 ∈ {0, 1, ..., I}

Di =
∑
k 6=iD{i,k} ∀i ∈ I

while true do
Compute ∆(Di, µ, fi) = hfi using (3.10)-(3.12)
Compute pi using (3.9)
Compute pj{i1,i2} using (3.13)-(3.14)

Compute D{i1,i2} using (3.16)

D̂i =
∑
k 6=iD{i,k} ∀i ∈ I

if |Di − D̂i|/Di < ε ∀i ∈ I then
Di = D̂i ∀i ∈ I
break

Di = D̂i ∀i ∈ I
J(f , T ) = T

∑
j∈J λj

∑I
i1=0

∑max{0,i1−1}
i2=0 pji1i2C

j
i1i2

(1− pi1)(1− pi2)

The probability pj{i1,i2} is equal to 1 if trucks at i1 and i2 are the closest to j. Other-

wise, it is a product of the busy probabilities of those trucks that are closer than either i1
or i2. Trucks from inside of the region are always closer than those from outside.

Denote D{i1,i2} the demand arriving for trucks from stations i1 and i2. Given the

probabilities pj{i1,i2}, we compute D{i1,i2} for i1 = 2, ..., I, and i2 = 1, ..., (i1 − 1):

D{i1,i2} =
∑
j∈J

λjp
j
{i1,i2}. (3.16)

Finally, by summing over all pairs {i, k}, k 6= i, we can obtain the arrival rate of incidents
at station i as Di =

∑
k 6=iD{i,k}.

Let Cji1i2 indicate the expected penalty related to sending trucks i1 and i2 to location
j. It is equivalent to the cost P(R(a, j) > t∗) where the action a corresponds to sending
the trucks from stations i1 and i2 to location j, given that those are idle. Computing these
costs is discussed in Section 3.3.2. We now summarize the algorithm that approximates
J(f , T ) for a given state f ∈ S in pseudocode Algorithm 2.
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3.5 Numerical Results

We now present the results of our numerical experiments. In Section 3.5.1 we describe
the setup of our numerical experiments. The results are separated into two parts: in
Section 3.5.2 we compare the CF and OPT policies, and use this to understand how much
improvement over CF can be obtained, and what is the impact of driving-time correlation
on the policies and their performance. In Section 3.5.3, we then evaluate the performance
of our heuristics OSI and OSIA relative to CF and OPT, both in terms of fraction of late
arrivals and computation time.

3.5.1 Experimental Setup

All experiments were run in MATLAB R2017b on a computer with an Intel Core i5-5250U
1.6 GHz processor, 8 GB RAM, running Linux Fedora 26. In order to evaluate the
performance of a policy for a given network and set of parameters, we numerically solve
the Bellman equations (3.3) for OPT policy and the restricted Bellman equations (3.5)
for CF policy. This way we obtain gOPT and gCF , the long-term expected number of late
arrivals per time unit for OPT and CF, respectively. The dispatching order σj(k) for CF
is determined by ordering for each demand location j the fire stations k based on the
length of their shortest path to j. Ties are broken arbitrarily.

In order to compute the performance of OSI we first determine the relative costs for
closest first hCF (f) from (3.5), and substitute these into (3.6) to determine the actions
aOSI . These are then substituted into the Bellman equations (3.3), which we solve
numerically to obtain the rate of late arrivals for OSI, gOSI . For OSIA, we repeat this
procedure, except that instead of computing the exact relative costs for closest first
hCF (f), we compute J(f , T ) from Algorithm 2 and use the approximation for hCF (f)
from (3.7). This way, we obtain gOSIA, the rate of late arrivals under OSIA. In order
to compute the fraction of late arrivals (FLAR) for any of these policies, we divide the
long-term expected number of late arrivals per time unit g by the total arrival rate, i.e.,
g/
∑
j∈J λj .

For our experiments, we randomly generate grid-like graphs, as outlined below. For
some parameter d ∈ N, we generate a grid of d× d vertices (see Figure 3.2a), placed at
unit distance. We then connect each pair of vertices within unit distance from each other,
so a vertex away from the boundary is connected to its four immediate neighbors (see
Figure 3.2b) and we obtain a graph with |J | = d2 nodes and |E| = 2d(d− 1) edges. We
then remove edges uniformly at random, until the number of removed edges is below
2d(d− 1)s (see Figure 3.2c), where s ∈ (0, 1) is some desired level of sparseness. The s
parameter is drawn from a uniform distribution U(0.4, 1). While removing the edges, we
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(a) (b) (c)

Figure 3.2: Random graph construction

check if the graph remains connected. In case the graph becomes disconnected, a new
random edge is selected for removal. If after a certain number of attempts no edge is
found that can be removed without disconnecting the graph, the procedure stops, and
the obtained graph is used.

In our experiments, we assume each station has exactly one truck. This does not affect
methodology, but makes it easier to visualise and understand the difference in actions
taken by different policies. We allocate stations (or trucks) to vertices sequentially in a
randomized manner. Each of the I trucks is positioned on a vertex not yet occupied by
other trucks uniformly at random.

3.5.2 Comparison of Closest-First and Optimal Dispatching

In this section we study OPT and its performance relative to the CF heuristic. Recall that
OPT is computed from the Bellman equations (3.3) through policy iteration, and it is here
that we run into the infamous curse of dimensionality, which states that the state space
and action space of the MDP become too big to solve in an efficient manner. Specifically,
our action space grows as O(I2) since each action consists of sending two trucks. The
state space grows as O(2I × d2), since there are 2I possible combinations of available
trucks, and the next fire can occur on any of the J = d2 demand locations. Although the
complexity of each step of policy iteration is polynomial in the size of the state space and
action space, there is no universal polynomial bound on the complexity of the algorithm,
due to the uncertainty in the number of steps required [68]. In practical terms, this means
that we can only compute the optimal policy for instances of small-to-moderate size.
In Section 3.5.3 we restrict ourselves to suboptimal policies, and consider instances of
real-life size (in the case of FDAA, there are roughly I = 13 trucks and J ≈ 400 demand
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locations). Due to the relatively low load seen in the FDAA practice (ρ = 0.02) and used
in our experiments, the number of incidents that requires trucks from outside is negligible.

Relative improvement of the optimal policy over closest-first

We are interested in assessing the current practice of dispatching the two closest trucks,
and to see whether there is any room for improvement (i.e., reducing the fraction of late
arrivals) by dispatching in a smarter way. To do this, we consider the relative improvement
of OPT over CF, which is computed as

δOPT =
gCF − gOPT

gCF
× 100%.

In Figure 3.3 we plot the relative improvement against the load of the system ρ =
∑
j∈J λj

Iµ ,
which represents the amount of work per truck arriving each time unit. We do this
for four different randomly generated graphs, and show the improvement both in un-
correlated and correlated cases. We choose the time threshold for late arrivals as
t∗ = γmaxi∈I,j∈J |s(i, j)|, to ensure that it scales with the graph size, and set γ = 0.6.

We see that in both cases the relative improvement ranges from 0% to 50%, depending
on the load and on the graph. This suggests that in the right circumstances, significant
gains can be found by dispatching in a clever way. In the uncorrelated case, the relative
difference is small when ρ is small or large. This is because if the load is close to 0, the
system is almost always in the state with all the trucks being idle, and when ρ is close to
1, there is no room for improvement irrespective of whether there is correlation or not,
because the system is almost always in the state with no idle trucks.

When correlation is introduced, however, we see from Figure 3.3 that sending two
closest trucks does not necessarily minimize response time, even for small loads. Hence,
in this case the OPT policy may improve upon the CF policy even for very small values
of ρ, as illustrated in Figures 3.3c and 3.3d. However, we see in all cases in Figure 3.3
that as ρ grows, the improvement curve for correlated driving times converges to the one
corresponding to uncorrelated case.

The influence of the time threshold t∗ (through the parameter γ) is studied in Fig-
ure 3.4. Four arbitrary random graphs are chosen, and for each the relative improvement
is plotted against γ, with ρ = 0.1. We again observe that significant gains can be made
compared to the closest-first policy, and that the extent of this improvement depends
on the network parameters. Here we can see that the behaviour is similar in both the
correlated and uncorrelated cases. If γ is close to zero (and hence, so is t∗), the OPT
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(a) graph 1 (b) graph 2

(c) graph 3 (d) graph 4

Figure 3.3: δOPT as a function of ρ for four random graphs (I = 5, d = 7, γ = 0.6)

policy cannot improve upon the CF policy. The time threshold is too low to meet, unless
the location of a fire coincides with the location of one of the idle trucks. As a result,
the fraction of late arrivals is close to 1 independent of which trucks are sent. As γ
grows, there is more room for improvement. However, when γ approaches 1, the relative
improvement of OPT drops to zero again. The reason is that in this case the time
threshold t∗ is so large it can always be met, even if the dispatching policy is far from
optimal.

For a more detailed review of the relative improvement of OPT over CF we turn to
Table 3.1. This shows the relative improvements a function of the graph size parameter d
and the number of trucks I, for ρ = 0.1 and γ = 0.6. For every combination of I and d,
we generate 150 random graphs. The values in Table 3.1 represent the minimum, mean
and maximum over these 150 random graphs for each parameter set. We can see a modest
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(a) graph 1 (b) graph 2

(c) graph 3 (d) graph 4

Figure 3.4: δOPT as a function of γ for four random graphs (I = 5, d = 7, ρ = 0.1)

increase in relative improvement in d, and a significant improvement in I, reaching an
average improvement of over 20% with I = 6 trucks, and over 50% for certain instances
with driving time correlation.

In Figure 3.5 we show the fraction of late arrivals for OPT for the same set of
experiments discussed above. That is, for different values of d and I we plot the confidence
interval over all 150 graphs considered. Although we observed from Table 3.1 that the
average relative improvement of OPT over CF is not significantly affected by whether
we consider driving-time correlation, we see from Figure 3.5 that the fraction of late
arrivals increases when correlation is taken into account. This indicates that in this case
it is more important to deviate from the CF policy in order to limit the fraction of late
arrivals. Since in practice there is always some degree of driving-time correlation, these
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Table 3.1: Minimum, maximum and mean δOPT evaluated over 150 random graphs (ρ = 0.1, γ = 0.6)

uncorrelated correlated

III ddd min mean max min mean max

3

4 0.00% 5.50% 20.49% 0.00% 5.77% 19.69%

5 0.00% 7.41% 25.08% 0.00% 7.46% 25.16%

6 0.01% 6.70% 24.79% 0.00% 6.60% 26.56%

7 0.03% 7.09% 32.43% 0.00% 7.06% 34.51%

4

4 0.15% 9.61% 25.66% 0.04% 11.36% 37.27%

5 0.99% 10.28% 34.56% 0.92% 11.39% 42.50%

6 1.10% 11.02% 31.16% 1.18% 12.32% 37.11%

7 1.38% 11.32% 39.17% 1.15% 12.19% 42.49%

5

4 2.24% 16.03% 46.65% 2.53% 18.58% 50.59%

5 2.25% 16.62% 40.96% 2.29% 17.91% 43.17%

6 2.36% 16.84% 37.36% 3.49% 17.94% 39.77%

7 2.68% 19.72% 52.42% 1.63% 20.22% 54.95%

6

4 4.94% 20.70% 46.21% 5.13% 23.35% 51.01%

5 7.12% 21.79% 43.17% 6.10% 24.08% 48.80%

6 4.03% 22.75% 49.18% 4.68% 24.63% 52.34%

7 6.04% 24.84% 53.57% 5.40% 26.48% 54.60%

results suggest that when dispatching multiple trucks it is valuable to deviate from CF
dispatching. This is in contrast to the case with a single truck, when CF is close to
optimal [48].

Impact of correlation on the optimal policy.

To illustrate the difference between the optimal policies without correlation (aOPTuc ) and
with correlation (aOPTc ) we select a random graph with d = 6 (J = 36 demand locations)
and I = 4 trucks, see Figure 3.6. The demand locations are colored according to the
arrival rates of new incidents, with green corresponding to low rates. We are looking
at the state f = C with all four trucks available. The background of each location
j is colored according to the corresponding policy aOPT (C, j). For example, if a new
incident happens at a demand location with green background, then trucks 1 and 2 will
be dispatched.

While for this particular choice of graph and parameters the impact of correlation
is relatively small, it is useful for illustrating how the optimal policy changes when
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Figure 3.5: Confidence intervals for fraction of late arrivals of the OPT policy for different values of d
(ρ = 0.1, γ = 0.6)

correlation is introduced. For instance, to the demand location highlighted in black in
the middle of the graph, the policy aOPTuc dispatches trucks 1 and 3 that share one edge
on their way to that location. The policy aOPTc instead dispatches trucks 2 and 4 that
share no edges in their shortest paths, as shared edges imply higher probability of being
late in the presence of driving-time correlation.

The other two changes in this example, as well as those in other instances we evaluated,
follow a similar pattern: the optimal policy with correlation may be different from the
optimal policy without correlation for those demand locations where aOPTuc dispatches two
trucks with overlapping routes. However, this need not be the case, and the example in
Figure 3.6 also includes such demand locations where aOPTc remains unchanged compared
to aOPTuc , because in these cases the decrease in expected response time when changing
actions does not outweigh the coverage reduction resulting from this change. This illus-
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(b) aOPTc (C, j)

Figure 3.6: Example of difference between aOPTuc (f , j) and aOPTc (f , j) on a random graph

trates the complexity of finding the optimal policy for this model, and the difficulties one
would encounter when trying to generalize the observations obtained from Figure 3.6 into
some kind of heuristic. One main reason for this is the complex interactions encountered
in this model. For instance, changing the arrival rate in one part of the network may
affect the optimal policy elsewhere.

To see the extent to which driving-time correlation affects the optimal policy for
a broader range of instances we conduct the following experiment. We generate 150
random graphs, and for every graph we compute aOPTc and aOPTuc . In order to study the
impact of ignoring driving-time correlation, we look at what happens with the system
performance if we use aOPTuc in a setting with driving-time correlation. To do this, we
substitute the policy aOPTuc into the Bellman equations (3.5) for a fixed policy with the
costs corresponding to the correlated case, and measure the relative increase in value
function compared to the policy aOPTc (f , j). Note that the relative increase in value
function is equivalent to the relative increase in the fraction of late arrivals.

Table 3.2 shows the aggregate results of this experiment with minimum, maximum
and mean relative increase in fraction of late arrivals computed over 150 random graphs.
We observe that the importance of taking driving-time correlation into account grows
with the number of trucks in the system. With more vehicles available there are more
options for making a dispatching decision to avoid potential traffic jams for the current
and upcoming incidents. The average decrease in performance when using the policy
derived under the assumption of uncorrelated driving times in a setting with driving-time
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Table 3.2: Relative increase in fraction of late arrivals when ignoring correlation (d = 6, ρ = 0.1, γ = 0.6)

III min mean max

3 0.0% 1.3% 7.4%

4 0.2% 2.8% 12.2%

5 0.3% 4.8% 16.3%

6 1.1% 7.1% 21.3%

correlation reached 7.1% for 6 trucks, and for some instances was over 20%.

3.5.3 Performance of the Heuristics

In this section, we compare the performance of the two heuristics OSI and OSIA to the
optimal policy OPT, both in terms of fraction of late arrivals and computation time.

Improvement over closest-first

First, we look at the heuristics’ performance. Table 3.3 shows the relative difference of
OSI and OSIA with CF, in addition to that of OPT. The values of δOSI and δOSIA are
computed the same way as δOPT . The numbers presented in the table are the mean values
of the corresponding metrics evaluated over 150 randomly generated graphs. The values
of d and γ are fixed, and we vary the load ρ in the range {0.02, 0.04, 0.1, 0.4, 0.6} and the
number of trucks I in the range 3 to 6. For every combination of I and ρ the minimum,
mean and maximum over 150 randomly generated graphs is presented. The improvement
over CF for all three policies first increases with ρ followed by a decrease for high loads.
Both OSI and OSIA policies show significant improvement over the CF policy for lower
values of ρ, and are relatively close to the performance of OPT. The improvement over
CF grows with I and is larger in the presence of driving-time correlation, similar to what
we observed in Table 3.1. As it can be seen from the more detailed Tables 3.7, 3.6 and
3.8 in Appendix 3.7, the heuristics performance also improves as d increases, suggesting
that their performance is better for larger networks. Appendix 3.7 also includes Table 3.9,
which shows the relative improvement of OSIA over CF for ρ = 0.02 and I = 7 for larger
values of d. Here we see that as I and d grow larger, the gap with CF increases as well.

Note that, in our setting, the fraction of late arrivals under the CF policy FLARCF

is relatively low. This would mean that the improvement over CF in the number of late
arrivals is low compared to the total number of incidents. However, this improvement
should not be understated. From the emergency services perspective, any improvement
in late arrivals is considered significant. In the case of FDAA, for example, the original
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Table 3.3: Aggregate performance evaluated over multiple random graphs (d = 6, γ = 0.6)

uncorrelated correlated

III ρρρ FLARCFFLARCFFLARCF δOPTδOPTδOPT δOSIδOSIδOSI δOSIAδOSIAδOSIA FLARCFFLARCFFLARCF δOPTδOPTδOPT δOSIδOSIδOSI δOSIAδOSIAδOSIA

3

0.02 0.39% 4.83% 4.83% 2.81% 0.51% 5.54% 5.54% 4.12%

0.04 0.48% 6.36% 6.36% 4.88% 0.60% 6.52% 6.52% 5.43%

0.1 0.77% 6.70% 6.70% 6.36% 0.89% 6.60% 6.60% 6.33%

0.4 2.12% 2.57% 2.57% 2.51% 2.19% 2.59% 2.59% 2.52%

0.6 2.74% 1.48% 1.48% 1.45% 2.79% 1.50% 1.50% 1.47%

4

0.02 0.20% 9.49% 9.49% 5.10% 0.31% 12.24% 12.24% 9.53%

0.04 0.25% 11.55% 11.54% 8.51% 0.37% 13.53% 13.52% 11.43%

0.1 0.47% 11.02% 10.99% 10.45% 0.59% 12.32% 12.29% 11.87%

0.4 1.82% 3.77% 3.75% 3.28% 1.90% 4.13% 4.12% 3.50%

0.6 2.50% 2.14% 2.14% 1.94% 2.56% 2.33% 2.32% 2.05%

5

0.02 0.10% 15.71% 15.62% 8.56% 0.18% 17.38% 17.30% 13.50%

0.04 0.14% 18.57% 18.35% 13.60% 0.21% 19.56% 19.32% 16.22%

0.1 0.29% 16.84% 16.49% 14.35% 0.38% 17.94% 17.58% 16.00%

0.4 1.60% 4.76% 4.68% 3.90% 1.68% 5.22% 5.12% 4.06%

0.6 2.34% 2.56% 2.53% 2.21% 2.40% 2.79% 2.75% 2.32%

6

0.02 0.05% 20.45% 20.15% 11.73% 0.11% 22.00% 21.70% 17.33%

0.04 0.07% 24.90% 24.37% 17.89% 0.13% 25.91% 25.30% 21.64%

0.1 0.18% 22.75% 22.05% 18.44% 0.25% 24.63% 23.75% 21.57%

0.4 1.43% 5.99% 5.84% 4.92% 1.50% 6.67% 6.49% 5.17%

0.6 2.20% 3.16% 3.10% 2.70% 2.26% 3.47% 3.40% 2.87%

idea of dispatching two trucks instead of one is targeted at reducing the risk of a possible
delay, despite additional operational costs. This shows the importance of any decrease
in response time. The further gains that can be achieved by changing the dispatching
strategy are particularly valuable, given that it does not involve any extra operational costs.

Given the value functions gOPT and gOSIA of the OPT and OSIA policies, respectively,
we compute the OSIA optimality gap as

gOSIA − gOPT

gOPT
× 100%.

We compute the optimality gap for OSI in a similar way. Table 3.4 shows the average
optimality gap of the OSI and OSIA policies computed over 150 random graphs for each
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Table 3.4: Average optimality gap of OSI and OSIA (d = 6, γ = 0.6)

uncorrelated correlated

III ρρρ OSI OSIA OSI OSIA

3

0.02 0.00% 2.36% 0.00% 1.68%

0.04 0.00% 1.72% 0.00% 1.24%

0.1 0.00% 0.37% 0.00% 0.29%

0.4 0.00% 0.06% 0.00% 0.07%

0.6 0.00% 0.03% 0.00% 0.03%

4

0.02 0.00% 6.01% 0.01% 3.57%

0.04 0.01% 3.91% 0.01% 2.70%

0.1 0.03% 0.66% 0.04% 0.52%

0.4 0.01% 0.51% 0.02% 0.66%

0.6 0.01% 0.21% 0.01% 0.28%

5

0.02 0.18% 11.67% 0.16% 5.98%

0.04 0.36% 7.24% 0.40% 4.79%

0.1 0.47% 3.05% 0.49% 2.41%

0.4 0.09% 0.90% 0.11% 1.22%

0.6 0.04% 0.36% 0.04% 0.49%

6

0.02 0.67% 16.26% 0.58% 8.13%

0.04 1.04% 11.72% 1.12% 7.04%

0.1 1.01% 5.73% 1.33% 4.18%

0.4 0.16% 1.13% 0.20% 1.60%

0.6 0.06% 0.47% 0.07% 0.63%

combination of I and ρ. The performance of both OSI and OSIA stays within a few
percent of OPT. The optimality gap grows with I. The OSI policy performs slightly
better in a setting without correlation, while the opposite is true for OSIA. The optimality
gap of both OSI and OSIA decreases in ρ, suggesting that these approximations perform
best in the high load regime. Note that while the optimality gap of these heuristics
grows in the network size, we have seen from Tables 3.3, 3.7, 3.6, 3.8 and 3.9 that the
improvement over CF also does. So while neither OSI nor OSIA is asymptotically optimal,
their performance in fact improves as the network grows larger.

Computation time

Next, we take a look at the computation time of the various policies. If computation
time would not be an issue, then using OPT is an obvious choice. However, solving MDP
exactly quickly becomes problematic when the instance size grows, as the size of the state
space grows exponentially in I. In our experiments, the main issue with solving the MDP
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exactly for larger instances was not the running time of policy iteration, but the size of
the array with transition probabilities (i.e., |S| × |S| × |A|). As a result, computing the
OPT policy breaks down for even moderate-sized networks (e.g., I = 7, d = 6).

To compare the computational performance of OSI and OSIA, we plot the computation
time for determining these policies against I (Figure 3.7) and the number of demand
locations J = d2 (Figure 3.8). Here, we use a single randomly generated graph for each
data point. The OSI policy is computed faster then the optimal, but still requires solving
a set of |S + 1| Bellman equations. Storing a |S + 1| × |S + 1| matrix of coefficients for the
system of Bellman equations becomes infeasible, which is why we can only determine the
OSI policy for small values of I and J . The computation time of the OSIA policy shows
significantly slower growth in I and J than that of OSI. Moreover, it does not require
storing large data structures, and makes it feasible to obtain a good policy for problem
instances of realistic size.

Figure 3.7: Computation time as a function of the number of trucks I (J = 625)

The computation time of the OSIA heuristic is reasonable for the systems used in our
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Figure 3.8: Computation time as a function of the number of demand locations J (I = 7)

numerical experiments. The algorithm is meant to be used in the offline regime, only once
for a given network, and produces look-up tables indicating the dispatching decision to be
made for each state of the system. Moreover, in our experiments we ran approximation
Algorithm 2 sequentially for each state. In real-life applications, the OSIA computation
time can be significantly decreased by means of parallelization.

3.6 Conclusion

In the present chapter we studied a dispatching problem in a fire department where two
trucks have to be dispatched to an incident location, and the decision is to be made
on which idle trucks to send. We modelled the region served by a fire department as a
connected graph and formulated the dispatching problem as an MDP. The optimal policy
was obtained by solving the MDP exactly using policy iteration.

Using small problem instances, we showed that the current practice of sending the
two closest trucks can be far from optimal, with optimality gap reaching 50% in certain
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cases. As obtaining the optimal policy for large problem instances is computationally
infeasible, we also derived a one-step-improvement OSI policy, that can be obtained
faster and for larger problem instances than OPT. In our experiments, however, OSI still
remained computationally infeasible for problem instances of realistic sizes. Therefore,
we introduced the OSIA policy that incorporates an approximation scheme into the
OSI policy computation procedure. The OSIA policy performed close to the optimal
performance with optimality gap of about 2%, and significantly lower computation time
that allows for solving problem instances of realistic size.

We considered two types of stochastic behaviour in driving time when two trucks are
dispatched to the same incident location. If two trucks traverse the same edge in a graph
we assume their travelling times to be either independent of each other (uncorrelated),
or the same (correlated). Our experiments show that introducing correlation makes
a difference compared to sending two closest trucks, even if the load is small. Since
performance is measured based on response time, sending two closest is not necessarily
optimal.

As discussed in Section 3.5.2, analytically characterizing the optimal policy for general
networks seems untractable, due to the complex network dynamics that may propagate
even small perturbations throughout the network. However, we are optimistic that for
small network instances or specific network structures (such as linear networks), one may
be able to obtain structural results on the optimal policy. Doing this for both the case
with and without correlation may lead to interesting insights into where and how these
two optimal policies differ.

The work in this chapter can be extended in several interesting ways. First, instead of
only considering perfect or no correlation between the driving times, we could allow for
intermediate levels of correlation by assuming that the driving time on a single edge is
hyperexponential instead of exponential. By coupling only one of the branches of this
distribution we can accommodate any correlation coefficient. Second, one could allow for
driving time distributions beyond exponential. Changing the driving time distribution
does not affect the MDP formulation, but rather the immediate costs. So one would
have to generalize Proposition 3.3.1. Note that if we use a heavy-tailed distribution, the
results can potentially show a more significant advantage of using the OPT policy instead
of CF. We expect a larger optimality gap for CF in the case of heavy-tailed driving
time distribution since the larger variance in response time necessitates more careful
dispatching. Third, the MDP formulation itself can be enhanced by allowing more than
two trucks to be dispatched to an incident, and we can generalize the definition of the
response time accordingly. This would entail changing the action space from all actions
that dispatch at most 2 trucks to those that dispatch at most k trucks. The main difficulty
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in making this extension lies in computing the immediate cost P(R(a(f , j), j) > t∗) for
those actions a that dispatch more than two trucks. If only the first truck to arrive is
relevant, the costs can be computed along the lines of Proposition 3.3.1, by conditioning
on the realizations of the driving times of all trucks. If the performance metric depends
on more than just the first truck to arrive, generalizing the results obtained here may
be more complex. Finally, when two trucks are dispatched from the same station, we
may assume that each takes a different path in order to avoid driving-time correlation.
Including this in the model may result in the optimal policy and heuristics to dispatch
trucks from the same station more often.
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3.7 Appendices

In this section we provide supplementary materials to the main body of the chapter.

3.7.1 List of Notations

J = {1, ..., J} Set of demand locations / nodes in a graph

E Set of edges in a graph

I ⊆ J Demand locations containing a fire station

I = |I| Number of fire stations

Ci Number of fire trucks with the base station
i ∈ I

λj Arrival rate of new fires at a location j ∈ J

1/µ Expected time a truck remains busy after
being dispatched

ρ =
∑
j∈J λj

Iµ Load of the system, that is, the amount of
work per fire truck per time unit

fi Number of idle trucks at a station i ∈ I

ei Vector of length I with ith element equal to
1, and all other elements equal to zero

f = (f1, ..., fI) Vector representing the state of the system

a(f , j) = (a1(f , j), ..., aI(f , j)) The dispatch action taken if a new fire starts
at a location j when in state f

0 ≤ ai(f , j) ≤ fi Number of trucks dispatched from station
i ∈ I

S = {(f1, ..., fI)|0 ≤ fi ≤ Ci ∀i ∈ I} The system state space
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s(i, j) Shortest path between nodes i and j in a
graph

Ti,j =
∑
e∈s(i,j)Xe Traveling time between nodes i and j, where

Xe ∼ exp(1)

T0 Traveling time from a neighboring region to
any demand location

R(a, j) Response time to a fire at a location j given
a dispatch decision a

τ =
∑
j∈J λj + µ

∑
i∈I Ci Transition rate out of any state

A(f) Actions space in state f ∈ S

g∗ Average cost incurred per time unit

h∗(f) Relative cost incurred over infinite time hori-
zon when starting in state f ∈ S compared
to paying g∗ every time unit

σj(k) ∈ I Fire station that is the base station for the
kth closest truck to location j, assuming that
truck is idle

ki, i = 1, 2 Number of the closest and the second-closest
idle truck in the list σj(k), j ∈ J , k ∈
{1, . . . ,

∑
i Ci}

J(f , t) Expected total cost under the CF policy dur-
ing the time interval [0, t] starting from state
f

T Parameter of the OSIA heuristic indicating
the time it takes for the system to get into
the steady state by assumption

79



3.7. Appendices

Di Arrival rate of requests for the truck at sta-
tion i

ρi = Di/µ Load of the M/M/1/1 queue representing
fire station i

pi Busy probability of station i

t∗ Response time threshold

γ Parameter that defines the response time
threshold t∗ for a given graph as a fraction
of the maximum traveling time between two
nodes

3.7.2 Proof of Proposition 3.3.1

Proof. The first statement can be readily proven by using the independence of Y1 and Y2:

P (min{Y1, Y2} > t∗) = P (Y1 ≥ t∗)P (Y2 ≥ t∗).

Substituting in the distribution of Y1 and Y2 we obtain the desired result.
For the second statement we condition on the value of Y0 to obtain the following

expression:

P (Y0 + min{Y1, Y2} > t∗) =

∫ ∞
y0=0

fY0
(y0)P (min{Y1, Y2} > t∗ − y0)dy0

=

∫ t∗

y0=0
fY0

(y0)P (Y1 > t∗ − y0)P (Y2 > t∗ − y0)dy0

+

∫ ∞
y0=t∗

fY0
(y0)dy0.

By substituting the distribution function of Y0, Y1 and Y2, and exchanging the order of
integration and summation we obtain

P (R(a, j) > t∗) =

∫ t∗

y0=0
fY0

(y0)

w1−1∑
n=0

(t∗ − y0)n

n!
e−t
∗+y0

w2−1∑
m=0

(t∗ − y0)m

m!
e−t
∗+y0dy0

+

w0−1∑
n=0

t∗n

n!
e−t
∗

=

w1−1∑
n=0

w2−1∑
m=0

∫ t∗

y0=0
fY0

(y0)
(t∗ − y0)n+m

n!m!
e−2t∗+2y0dy0 +

w0−1∑
n=0

t∗n

n!
e−t
∗
.
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Expanding (t∗ − y0)n+m yields

P (R(a, j) > t∗)

=

w1−1∑
n=0

w2−1∑
m=0

∫ t∗

y0=0

yw0−1
0

(w0 − 1)!
e−y0

1

n!m!

n+m∑
l=0

(n+m

l

)
t∗l(−y0)n+m−le−2t∗+2y0dy0

+

w0−1∑
n=0

t∗n

n!
e−t
∗

=

w1−1∑
n=0

w2−1∑
m=0

n+m∑
l=0

e−2t∗ t∗l(−1)n+m−l

n!m!(w0 − 1)!

(n+m

l

)∫ t∗

y0=0
yn+m−l+w0−1
0 ey0dy0

+

w0−1∑
n=0

t∗n

n!
e−t
∗
,

completing the proof.

3.7.3 Additional Numerical Results

In this section we provide computational results for a wider range of parameters, supporting
the findings in the main text. Tables 3.7, 3.6 and 3.8 show the relative improvement of
OPT, OSI and OSIA over the CF policy in terms of fraction of late arrivals, depending
on the number of fire trucks I and the size of the network d. The heuristics performance
improves as both I and d increase, suggesting that their performance is better for larger
networks and with more trucks. Table 3.9 shows the relative improvement of OSIA over
CF for ρ = 0.02 and I = 7 for larger values of d. We see that as I and d grow larger, the
gap with CF continues to increase as well.

model
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Table 3.6: Aggregate performance evaluated over 150 random graphs (ρ = 0.02, γ = 0.6)

uncorrelated correlated

III ddd Policy min mean max min mean max

3

4

OPT 0.0% 3.4% 27.8% 0.0% 4.8% 25.6%

OSI 0.0% 3.4% 27.8% 0.0% 4.8% 25.6%

OSIA -2.5% 1.9% 20.5% -2.9% 4.0% 20.3%

5

OPT 0.0% 5.7% 36.5% 0.0% 6.8% 34.3%

OSI 0.0% 5.7% 36.5% 0.0% 6.8% 34.3%

OSIA -0.2% 2.9% 26.3% -0.8% 5.2% 31.7%

6

OPT 0.0% 4.8% 32.8% 0.0% 5.5% 37.4%

OSI 0.0% 4.8% 32.8% 0.0% 5.5% 37.4%

OSIA -4.0% 2.8% 20.6% -5.4% 4.1% 31.6%

7

OPT 0.0% 5.7% 49.2% 0.0% 6.0% 45.0%

OSI 0.0% 5.7% 49.2% 0.0% 6.0% 45.0%

OSIA -1.4% 3.6% 36.4% -2.1% 4.8% 35.4%

4

4

OPT 0.1% 8.4% 54.5% 0.0% 11.1% 62.5%

OSI 0.1% 8.4% 54.5% 0.0% 11.1% 62.5%

OSIA -3.4% 4.6% 25.5% -3.9% 8.7% 62.4%

5

OPT 0.3% 9.0% 63.4% 0.4% 11.3% 67.9%

OSI 0.3% 9.0% 63.3% 0.4% 11.3% 67.9%

OSIA -0.7% 4.5% 44.1% -2.0% 8.7% 58.8%

6

OPT 0.2% 9.5% 56.9% 0.3% 12.2% 60.7%

OSI 0.2% 9.5% 56.9% 0.3% 12.2% 60.7%

OSIA 0.1% 5.1% 41.6% -2.6% 9.5% 59.1%

7

OPT 0.4% 10.3% 74.7% 0.6% 12.0% 77.3%

OSI 0.4% 10.3% 74.6% 0.6% 12.0% 77.3%

OSIA -0.5% 6.0% 55.3% -0.6% 9.1% 71.4%

5

4

OPT 0.3% 13.6% 72.1% 1.1% 17.6% 78.2%

OSI 0.3% 13.6% 72.0% 1.1% 17.4% 78.0%

OSIA -0.8% 8.1% 33.1% -1.5% 14.7% 76.5%

5

OPT 0.3% 14.4% 58.7% 1.3% 15.8% 63.7%

OSI 0.3% 14.4% 58.6% 1.3% 15.7% 63.0%

OSIA 0.1% 7.5% 37.3% -3.3% 11.9% 59.9%

6

OPT 0.5% 15.7% 69.2% 1.0% 17.4% 73.4%

OSI 0.5% 15.6% 68.4% 1.0% 17.3% 73.1%

OSIA 0.2% 8.6% 57.7% -3.7% 13.5% 66.5%

7

OPT 0.7% 17.7% 81.3% 0.7% 18.0% 81.3%

OSI 0.7% 17.6% 80.5% 0.7% 17.9% 80.6%

OSIA 0.3% 11.2% 59.3% -9.1% 14.0% 79.1%

6

4

OPT 1.3% 18.0% 66.7% 1.4% 20.0% 76.7%

OSI 1.3% 17.9% 65.2% 1.4% 19.8% 75.7%

OSIA 0.5% 11.5% 42.9% -1.2% 16.7% 69.8%

5

OPT 1.3% 19.1% 72.9% 1.2% 20.9% 75.0%

OSI 1.3% 19.0% 69.4% 1.2% 20.7% 74.8%

OSIA 0.7% 11.2% 51.8% 0.8% 17.2% 67.3%

6

OPT 0.6% 20.5% 74.4% 1.0% 22.0% 73.2%

OSI 0.6% 20.2% 73.5% 1.0% 21.7% 72.6%

OSIA -0.3% 11.7% 61.6% -14.3% 17.3% 64.5%

7

OPT 1.2% 22.8% 81.0% 1.8% 24.1% 82.3%

OSI 1.2% 22.5% 79.5% 1.8% 23.9% 81.4%

OSIA 0.7% 14.2% 62.9% 1.5% 19.3% 73.6%
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Table 3.7: Aggregate performance evaluated over 150 random graphs (ρ = 0.04, γ = 0.6)

uncorrelated correlated

III ddd Policy min mean max min mean max

3

4

OPT 0.0% 4.9% 27.9% 0.0% 5.7% 25.9%

OSI 0.0% 4.9% 27.9% 0.0% 5.7% 25.9%

OSIA -3.0% 3.4% 21.6% -3.8% 4.8% 23.0%

5

OPT 0.0% 7.3% 34.6% 0.0% 7.7% 33.7%

OSI 0.0% 7.3% 34.6% 0.0% 7.7% 33.7%

OSIA -0.3% 5.4% 32.6% -1.3% 6.5% 33.6%

6

OPT 0.0% 6.4% 32.0% 0.0% 6.5% 35.5%

OSI 0.0% 6.4% 32.0% 0.0% 6.5% 35.5%

OSIA -3.9% 4.9% 24.3% -5.4% 5.4% 32.8%

7

OPT 0.0% 7.2% 45.7% 0.0% 7.3% 43.7%

OSI 0.0% 7.2% 45.7% 0.0% 7.3% 43.7%

OSIA -1.7% 5.6% 38.6% -0.7% 6.2% 38.6%

4

4

OPT 0.1% 10.2% 44.2% 0.0% 12.5% 57.4%

OSI 0.1% 10.2% 44.2% 0.0% 12.5% 57.4%

OSIA -3.3% 6.8% 36.9% -7.6% 10.1% 57.0%

5

OPT 0.6% 10.8% 52.7% 0.7% 12.4% 59.0%

OSI 0.6% 10.8% 52.5% 0.7% 12.4% 58.9%

OSIA -0.9% 7.8% 45.4% -0.3% 10.4% 58.5%

6

OPT 0.4% 11.5% 51.1% 0.6% 13.5% 57.4%

OSI 0.4% 11.5% 51.1% 0.6% 13.5% 57.4%

OSIA 0.3% 8.5% 41.8% -0.9% 11.4% 52.9%

7

OPT 0.8% 12.2% 63.3% 1.0% 13.4% 66.7%

OSI 0.8% 12.2% 63.2% 1.0% 13.4% 66.7%

OSIA 0.5% 9.3% 56.9% -1.2% 11.1% 65.4%

5

4

OPT 0.8% 16.8% 65.9% 1.7% 19.9% 70.6%

OSI 0.8% 16.7% 65.5% 1.7% 19.7% 69.6%

OSIA -0.7% 11.8% 57.6% -1.0% 17.2% 68.0%

5

OPT 0.9% 17.8% 56.5% 1.2% 18.8% 61.9%

OSI 0.9% 17.6% 56.3% 1.2% 18.6% 61.4%

OSIA 0.4% 11.9% 39.8% -2.0% 15.1% 56.0%

6

OPT 1.1% 18.6% 57.7% 1.9% 19.6% 59.5%

OSI 1.1% 18.4% 57.6% 1.9% 19.3% 59.4%

OSIA 0.9% 13.6% 52.6% -0.9% 16.2% 58.2%

7

OPT 1.4% 21.2% 75.1% 0.9% 21.0% 76.5%

OSI 1.4% 20.9% 74.2% 0.9% 20.8% 75.5%

OSIA 1.1% 16.5% 68.1% 0.4% 18.1% 74.4%

6

4

OPT 2.5% 22.4% 62.8% 2.7% 24.1% 69.3%

OSI 2.5% 22.0% 62.0% 2.7% 23.6% 69.1%

OSIA 1.3% 15.2% 42.7% -1.8% 20.1% 67.3%

5

OPT 3.1% 23.7% 65.1% 2.8% 24.9% 69.4%

OSI 3.0% 23.3% 63.0% 2.8% 24.5% 67.3%

OSIA 2.4% 16.5% 50.3% 1.9% 20.8% 62.5%

6

OPT 1.5% 24.9% 68.4% 2.1% 25.9% 70.3%

OSI 1.5% 24.4% 65.0% 2.1% 25.3% 68.9%

OSIA 0.8% 17.9% 56.0% -15.0% 21.6% 63.8%

7

OPT 2.9% 27.3% 73.1% 3.7% 28.1% 73.6%

OSI 2.9% 26.9% 72.2% 3.7% 27.5% 72.0%

OSIA 1.4% 20.5% 66.3% 3.4% 23.7% 67.7%
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Table 3.8: Aggregate performance evaluated over multiple random graphs (ρ = 0.1, γ = 0.6)

uncorrelated correlated

III ddd Policy min mean max min mean max

3

4

OPT 0.0% 5.5% 20.5% 0.0% 5.8% 19.7%

OSI 0.0% 5.5% 20.5% 0.0% 5.8% 19.7%

OSIA -2.6% 5.2% 20.5% -3.5% 5.5% 19.7%

5

OPT 0.0% 7.4% 25.1% 0.0% 7.5% 25.2%

OSI 0.0% 7.4% 25.1% 0.0% 7.5% 25.2%

OSIA -0.6% 7.1% 24.8% -1.4% 7.2% 25.0%

6

OPT 0.0% 6.7% 24.8% 0.0% 6.6% 26.6%

OSI 0.0% 6.7% 24.8% 0.0% 6.6% 26.6%

OSIA -2.6% 6.4% 24.0% -3.7% 6.3% 26.6%

7

OPT 0.0% 7.1% 32.4% 0.0% 7.1% 34.5%

OSI 0.0% 7.1% 32.4% 0.0% 7.1% 34.5%

OSIA -1.9% 6.8% 31.9% -2.3% 6.9% 34.4%

4

4

OPT 0.1% 9.6% 25.7% 0.0% 11.4% 37.3%

OSI 0.1% 9.6% 25.7% 0.0% 11.3% 37.3%

OSIA -0.1% 8.9% 24.8% -0.2% 10.8% 37.2%

5

OPT 1.0% 10.3% 34.6% 0.9% 11.4% 42.5%

OSI 1.0% 10.2% 34.3% 0.9% 11.3% 42.4%

OSIA -0.5% 9.7% 34.4% -0.7% 10.9% 42.4%

6

OPT 1.1% 11.0% 31.2% 1.2% 12.3% 37.1%

OSI 1.1% 11.0% 31.2% 1.2% 12.3% 37.1%

OSIA 1.1% 10.4% 31.0% 1.1% 11.9% 37.0%

7

OPT 1.4% 11.3% 39.2% 1.2% 12.2% 42.5%

OSI 1.4% 11.3% 39.0% 1.2% 12.1% 42.4%

OSIA 1.1% 10.8% 38.9% 0.3% 11.7% 42.4%

5

4

OPT 2.2% 16.0% 46.6% 2.5% 18.6% 50.6%

OSI 2.2% 15.8% 46.1% 2.5% 18.2% 49.8%

OSIA -3.0% 13.2% 45.6% -2.5% 16.6% 49.7%

5

OPT 2.3% 16.6% 41.0% 2.3% 17.9% 43.2%

OSI 2.3% 16.3% 40.7% 2.3% 17.6% 42.8%

OSIA -0.2% 13.9% 38.8% -0.3% 15.9% 40.9%

6

OPT 2.4% 16.8% 37.4% 3.5% 17.9% 39.8%

OSI 2.3% 16.5% 37.1% 3.5% 17.6% 39.5%

OSIA 0.8% 14.4% 35.6% -1.0% 16.0% 37.5%

7

OPT 2.7% 19.7% 52.4% 1.6% 20.2% 54.9%

OSI 2.7% 19.3% 51.6% 1.6% 19.8% 54.4%

OSIA 0.9% 17.4% 49.5% -0.4% 18.5% 54.2%

6

4

OPT 4.9% 20.7% 46.2% 5.1% 23.4% 51.0%

OSI 4.9% 20.2% 45.7% 5.1% 22.6% 50.3%

OSIA 1.0% 15.8% 43.0% -0.5% 20.3% 49.2%

5

OPT 7.1% 21.8% 43.2% 6.1% 24.1% 48.8%

OSI 7.0% 21.3% 41.9% 6.0% 23.4% 47.1%

OSIA 2.2% 17.3% 40.2% 2.8% 20.9% 44.7%

6

OPT 4.0% 22.7% 49.2% 4.7% 24.6% 52.3%

OSI 4.0% 22.0% 47.5% 4.7% 23.7% 50.9%

OSIA 1.4% 18.4% 45.2% 2.3% 21.6% 50.8%

7

OPT 6.0% 24.8% 53.6% 5.4% 26.5% 54.6%

OSI 6.0% 24.1% 52.4% 5.3% 25.7% 53.2%

OSIA 2.8% 20.7% 48.8% 2.3% 23.4% 49.8%
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Table 3.9: Aggregate performance of OSIA over 50 random graphs (ρ = 0.02, γ = 0.6, I = 7)

uncorrelated correlated

ddd min mean max min mean max

7 0.5% 18.8% 81.4% 1.9% 24.1% 76.1%

8 1.2% 16.0% 59.0% 0.9% 19.9% 57.6%

9 0.5% 20.3% 88.4% 2.0% 28.5% 81.4%

10 1.0% 22.3% 89.0% 2.0% 26.2% 83.7%
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4
Real-time Dispatching and Relocation of

Emergency Service Engineers

In this chapter we consider a network of geographically distributed capital goods, main-
tained by a set of service engineers who are expected to respond quickly to machine
breakdowns. We are interested in the question which service engineers to dispatch to
what breakdowns, and how to relocate these engineers to maintain good coverage. We
propose and evaluate a range of scalable dispatching and relocation heuristics inspired
by an extensive research literature in the domain of emergency medical services. We
compare the proposed heuristics against each other using comprehensive simulation ex-
periments, and benchmark the best combination of dispatching and relocation heuristics
against the optimal policy. We find that this combined heuristic performs close to optimal,
while easily scaling to realistic-sized networks, making it suitable for practical applications.

The work in this chapter is based on [85]: A. Pechina, D. Usanov, P.M. van de Ven,
and R.D. van der Mei. Real-time Dispatching and Relocation of Emergency Service
Engineers. European Journal of Operational Research, 2019. In revision.
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4.1 Introduction

Capital goods are both expensive and essential to the business of their users, and fre-
quent unplanned downtime may have significant repercussions. Consider for instance the
reputation damage suffered by train companies unable to maintain the train schedule, or
the potentially life-threatening consequences of a broken MRI scanner. In order to ensure
continuous operation of these capital goods, manufacturers of such products typically
provide post-sale support, which may include installation, warranties, spare parts supply
and maintenance services. Providing good post-sale support is an important revenue
source and competitive advantage for manufacturers [77]. In 2006, after-sales services
accounted for 40% of the profit of a sample of 120 large US manufacturing companies [61].

An essential component of post-sale support is corrective maintenance, i.e., repairing
machines that have suffered breakdowns. In practice, a certain service level (e.g., the
percentage of failures that should be fixed within a certain time threshold) is determined
in the service contract between a manufacturer and the user. Failure to meet these service
levels may result in penalties for the manufacturer.

To meet these ever-tightening service level agreements for corrective maintenance, a
manufacturer must be able to quickly dispatch the necessary resources to the site of a
breakdown. Since the capital goods are geographically dispersed (e.g., located in many
different hospitals), this requires a carefully planned network of spare part warehouses and
service engineers. Establishing such networks requires striking a delicate balance between
maintaining customer satisfaction and achieving low operational costs [76]: building a
large number of warehouses would for instance guarantee fast response times, but this is
very costly. Similarly, maintaining many service facilities and employing a large number
of service engineers is costly for a manufacturer. Thus, creating a cost-effective mainte-
nance network requires both careful planning of the service facilities and warehouses, and
managing the scarce resources in an efficient manner.

While the problem of managing a spare parts network has been extensively studied
in research literature (see, e.g., [117] for an overview), managing service engineers has
received little attention so far. Moreover, certain service networks (e.g., software systems
support) do not require spare parts at all. Because of this, we focus here on the problem
of how to best manage service engineers.

Service engineers are typically located at geographically dispersed base stations, from
which they can be quickly dispatched to the site of a breakdown. Here we assume that
the location of these base stations and the number of service engineers are given, and we
are interested in the question of how to manage the service engineers. This includes the
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Figure 4.1: Example of a dispatching decision

following decisions: (i) which service engineer to dispatch to a breakdown; (ii) should we
dispatch one right away or wait for a nearby engineer to become available; (iii) to which
base station should we send an engineer who just finished a repair; and (iv) once a service
engineer is dispatched to repair a machine, should we relocate idle service engineers to
improve the coverage of the region.

Together, these decisions form a trade-off between responding quickly to a current
breakdown on the one hand, and maintaining good coverage for future breakdowns on the
other hand. The goal is to find a dispatching-and-relocation policy that minimizes the
long-term costs caused by violations of the service level agreements with customers. This
is a complicated problem due to the fact that dispatching and relocation decisions always
increase coverage of one part of the region, but at the same time decrease coverage of
another part. Making a decision requires finding a good balance between the possible
costs from failures that are already reported and potential costs from future failures.

Consider, for example, a situation depicted in Figure 4.1. The yellow circles centered
around the base stations represent the areas reachable within a given time limit from
those base stations. If a call arrives from a customer location 6, the decision should be
made which service engineer (from base station 1 or from base station 2) to dispatch.
The first service engineer is closer to the customer and can arrive earlier. However, if
the closest service engineer is dispatched, customer locations 1-5 are too far from the re-
maining idle engineer. If a failure occurs in one of these locations, it cannot be fixed in time.
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We divide the policy for managing service engineers into two parts: dispatching and
relocation. The dispatching policy is responsible for dispatching service engineers to
emergency calls, so it answers the following two questions:

(i) Should a newly reported failure be assigned to one of the idle service engineers or
should it be served by one of the busy engineers after he finishes his current job?

(ii) Which service engineer should be dispatched to the customer?

The relocation policy prescribes the base location of the idle service engineers according
to the system state. It answers two questions:

(i) Should idle service engineers be relocated from their current base stations to different
ones to improve coverage?

(ii) To which base station should we send a service engineer that just finished a job?

Traditionally, Markov decision theory can be used to find optimal policies. However,
for realistic-sized problem instances this approach is often infeasible due to computational
complexity and high memory usage. Instead, we look for scalable dispatching and reloca-
tion heuristics that perform close to optimal. Although management of service engineers
is not well-studied in the research literature, we observe that the problem is close to that
of Emergency Medical Services (EMS), which also deals with dispatching and relocation
of resources [108]. Recently, much progress has been made in dispatching and relocation
for EMS. In this chapter we adapt both dispatching and relocation heuristics from that
domain to our setting, and show that these perform surprisingly well in this setting as well.

We compare the performance of these heuristics by means of simulation over a wide
range of parameters, to assess whether there is an approach that performs best for any
type of system. In addition, we formulate the model as a Markov Decision Process
(MDP), and benchmark the best performing heuristic against the optimal policy for a
small instance.

To summarize, in this chapter we make the following contributions:

1. We introduce a new model for dynamic dispatching and relocation of service
engineers, and formulate it as an MDP;

2. We adapt a number of dispatching and relocation heuristic from the EMS literature,
and conduct an extensive computational studies, where we compare the performance
of the proposed algorithms.
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The remainder of the chapter is organized as follows. Section 4.2 gives an overview
of related literature. In Section 4.3, we present the model and formulate it as a Markov
decision process. Different dispatching and relocation heuristics are discussed in Sections
4.4 and 4.5, respectively. Numerical experiments are presented in Section 4.6. Finally,
Section 4.7 contains conclusions and suggestions for further research.

4.2 Literature Review

The problem of real-time management of service engineers arises in the context of spare
parts management in a service logistics network. There is extensive research in the area of
spare parts management (see [117] for an overview). Most of it focuses on operations for
spare parts. One such recent work is by Tiemessen et al. [101], where the authors study
the problem of dynamic dispatching of spare parts on a network with multiple customer
classes. To our knowledge, there is very limited research on real-time service engineer
management. In [8] and [55] the authors study optimal repairmen allocation policies
in a simplified setting, for instance ignoring the geographical locations of the engineers.
The work closest to ours is by Drent et al. [23], where the authors showed the benefit
of deviating from the closest-first dispatching policy, as well as proactively relocating
service engineers. However, the authors used a stylized grid-like type of network with
deterministic repair and traveling times, where service engineers could reside anywhere
on the grid.

The field of EMS is well-studied and is closely related to our setting. There are
however a number of crucial differences between these two application areas. For instance,
in our setting there is only a finite number of machines that can break down, and each
breakdown affects the rate at which new ones occur. This is in contrast to EMS, where
the ongoing incidents do not affect the arrival rate of new incidents. Moreover, many
crucial parameters such as the load, coverage area, target response times and service
times differ between these two settings, necessitating the present study. It is also worth
noting that to our knowledge there is no comprehensive comparison between heuristics
in the EMS area, and this study is a first step towards that as well. In this chapter, we
introduce a new model for dynamic management of service engineers, and develop several
heuristics inspired by the research in the field of EMS.

In the remainder of this section we outline the most relevant results from the area of
EMS operations. For an extensive overview of recent work on location, relocation and
dispatching of ambulances, we refer to [7]. We organize our literature review according to
the type of methods used. First, we discuss Integer Linear Programming (ILP) based
approaches. Then we discuss results obtained using MDP theory, followed by several
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heuristics that were successfully used for dispatching and relocation. Finally, we cover
those references that use Approximate Dynamic Programming (ADP) for dynamic EMS
management.

ILP-based approaches. A compliance table is a policy that precomputes the
optimal locations depending on the number of available service units. Every time this
number changes (e.g., when a call arrives, or when a service is finished), idle service
units are repositioned according to the compliance table. A method called Maximum
Coverage Relocation Problem (MCRP) was introduced in [31] to compute compliance
tables, where for each number of available servers the coverage was maximized. The algo-
rithm was later extended in [108] to the Maximal Expected Coverage Relocation Problem
(MEXCRP). MEXCRP compliance tables incorporate the busy fraction of the ambulances.

The problem of choosing a service unit that can be best dispatched to a new emergency
call can also be formulated as an ILP. According to the computational study of Jagtenberg
et al. [49], it can even outperform other dispatching policies that use more information
about the state of the system.

MDP-based approaches. A common way to find the optimal policy is to model the
system as an MDP with either continuous or discrete time. For small systems the optimal
policy can be found, for instance, using policy or value iteration [48, 124]. For real-life
systems, however, the state space is often too large and the problem is computationally
intractable. One way to address this problem was considered in [48]: instead of finding
the exact optimal policy, the authors perform a limited number of value iteration steps,
and compare the results for different numbers of steps with other policies.

Heuristics. Another approach to tackle the problem of large state space is to make
decisions in real time rather then precomputing the best desicion for each possible state.
This applies to both relocation and dispatching problems. The first real-time relocation
model was proposed in [30]. It is based on the Double Standard Model [29], and maximizes
the demand covered by at least two vehicles. It also minimizes the relocation costs, so
the relocation history is taken into account. Another relocation model, maximizing the
preparedness of the system (i.e., the capacity of the system to answer future demands),
was introduced in [2]. The authors proposed a method to find a relocation policy that
minimizes travel times.

In [47] the Dynamic Maximal Expected Coverage Location Problem (DMEXCLP)
heuristic was proposed for redeployment of service units that just finished their service.
The heuristic is based on calculating the expected covered demand and choosing the
new location of the service units accordingly. This research was later extended in [109],
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where relocation was allowed not only after the service completion but also right after
dispatching a service unit. The authors also studied how different restrictions, such as a
restriction on the maximum distance of a relocation, influence the performance of the
system. Two types of regions (rural and urban) were considered and it was shown that
the optimal strategy depends on the type of the region.

The same ideas can be used for making dispatching decisions. In [30] the authors
proposed choosing, among all service unites that can reach the incident location in time,
the one that leads to the minimal relocation time. Dispatching a service unit that
causes the smallest decrease in preparedness was proposed in [2]. In [49] the expected
covered demand was used instead, and the obtained dispatching policy outperformed the
commonly used closest-first dispatching policy. Further research also incorporated the
possibility of waiting for a busy service unit to finish its service, instead of dispatching an
idle one [110].

ADP-based approaches. In [71] an ADP approach using so-called approximate pol-
icy iteration was proposed for dynamic ambulance management. The authors considered
the problem of ambulance redeployment upon completion of their job, for a system with
no other types of relocation and a fixed closest-first dispatching policy. More recently,
in [93] the same framework was used to optimize both the dispatching policy and the
redeployment of ambulances upon service completion. Finally, in [79] the authors consid-
ered a general problem of ambulances dispatching and relocation, with the possibility to
reposition idle ambulances and to put incoming calls into a queue.

4.3 Model

We consider a service region consisting of a set of identical machines K = {1, ...,K} and
a set of base stations R = {1, ..., R}. Locations of the machines and the base stations are
fixed, and the traveling times between each pair of locations are deterministic and known.
Let M = {1, ...,M} denote the set of service engineers. Each service engineer is rested at
one of the base station when idle.

The time until the next breakdown of a working machine is exponentially distributed
with rate λ. Upon the breakdown of a machine, exactly one service engineer is needed to
repair it, and the repair time of each machine is exponentially distributed with rate µ.
This repair time does not include the traveling time required for a service engineer to
reach the location of a machine. However, the repair starts immediately after a service
engineer arrives to the location of a broken machine, assuming all the necessary tools
and spare parts needed for repair are available upon arrival. A service engineer can be
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dispatched immediately after a failure occurred, or the failed machine can be put in a
queue waiting for a service engineer to be assigned. The time between the failure and the
arrival of a service engineer to the failure location is called response time. If the response
time exceeds the time limit t∗, costs are incurred. We discuss the costs structure later in
this section.

We consider the state of the system immediately after one of the following events
happen:

1. a failure of a machine;

2. end of repair;

3. arrival of a service engineer at a base station;

4. arrival of a service engineer at a machine location.

The event e is described by the tuple (et, el), where et ∈ {1, 2, 3, 4} indicates the type
of the event, and el ∈ {1, ..., L} the event location. The location can be either a broken
machine or a base station, with the total number of locations L = K +R. Let lk indicate
the location of machine k ∈ K, and lr the location of base station r ∈ R.

Let κk denote the state of machine k ∈ K. Here κk = 0 if machine k is working,
κk = −1 if machine k is in repair, and κk = t if machine k has been waiting for repair for
t time units. Note that immediately after failure of machine k, its state is κk = 0 despite
the machine is broken, as its elapsed waiting time is 0 time units. This plays a role when
defining the number of broken/working machines in a given state. That is, if the event
type is et = 1, the number of broken machines is

∣∣{k ∈ K : (κk 6= 0) ∨ (el = lk)
}∣∣. The

state of all machines is represented by the vector κκκ = (κ1, ..., κK).

We describe the state of all service engineers by the vector ηηη = (η1, .., ηM ). Here
ηm = (lm, dm) describes the state of service engineer m, where lm indicates the destination
of that service engineer, and dm indicates the remaining time left to reach the destination.
If the service engineer m is residing at a location l (either doing a repair or waiting at a
base station), then lm = l and dm = 0.

The state of the system immediately after an event e is described by the tuple (t, e,κκκ,ηηη),
where t is the time of the event. We use t(s), e(s), κκκ(s), ηηη(s) to represent each component
of a given state s. The state space is infinitely large, with non-recurrent states, as the
time is included in the state description.
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4.3.1 Actions

Whenever an event occurs, an action is taken. The set of possible actions is defined by
the type of event et. Below we formulate the action space per event type, but first we
introduce additional notation and general assumptions regarding feasible actions. We
assume that only idle service engineers are allowed to be dispatched to a broken machine.
We denote the set of all idle service engineers in state s by F(s) =

{
m ∈M | lm(s) ∈ R

}
.

Note that the service engineer who is still on the way to the base station is consid-
ered idle, and can be dispatched for repair. In that case, we assume that the service
engineer first reaches the base station and then immediately departs to the machine
location. We assume, however, that relocation of traveling idle service engineers is
not allowed. We do this to avoid situations when an idle service engineers is contin-
uously relocated from one station to another, never reaching his/her destination. Let
F0(s) =

{
m ∈ M | lm(s) ∈ R, dm = 0

}
denote the subset of idle service engineers that

are not traveling. Let also denote the set of broken machines that are waiting in the
queue in state s by Q(s) =

{
k ∈ K | {m ∈M | lm(s) = k} = ∅

}
.

Event type et = 1et = 1et = 1. In case of a new failure, the action consists of a dispatching decision
and a relocation decision. At this point, dispatching is allowed only to the newly broken
machine, but not to the machines in the queue. One of the idle service engineers F(s) can
be dispatched to the new breakdown, or a machine can be put in the queue. If dispatching
is done, a relocation is allowed of one of the remaining stationary idle service engineers
from his/her current location to another base station. However, if the repair request is
put in the queue, relocation is not allowed. Let the binary vector XXX of length M represent
the dispatching decision, and the binary M ×R matrix YYY the relocation decision. Here
Xm = 1 indicates that service engineer m is dispatched for repair, and Ymr = 1 indicates
that service engineer m is relocated to base station r. The action space can be formally
described as

A1(s) =

{
(XXX,YYY ) |Xm = 0, m /∈ F(s); Ymr = 0, m /∈ F0(s), r ∈ R;∑

m∈M
Xm ≤ 1;

∑
m∈M,
r∈R

Ymr ≤ 1;

∑
m∈M,
r∈R

XmYmr = 0;
(

1−
∑
m∈M

Xm

) ∑
m∈M,
r∈R

Ymr = 0

}
, (4.1)

where the constraints ensure that at most one idle service engineer is dispatched, at most
one other idle stationary service engineer is relocated, and relocation is done only upon
dispatching.
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Event type et = 2et = 2et = 2. When a service engineer finishes repairing a machine, we can either
allocate that service engineer to one of the base stations or dispatch to one of the broken
machines in the queue. No relocation of other service engineers is allowed in this case. In
[85] the authors included the possibility of relocating one other idle service engineer for
this type of event. However, the best performing heuristic in that study did not make use
of such extra relocations. Assuming that the potential gain from one extra relocation is
marginal, we exclude the possibility of extra relocation to reduce computational complex-
ity of the ADP approach. Moreover, using the same action space for both approaches
makes the comparison cleaner.

Let the binary vector ZZZ = (Z1, ..., ZL) represent the redeployment decision. Here
Zl = 1 indicates that the service engineer that just finished a repair is redeployed to
location l, where l is the location of either one of the base stations or one of the machines
in the queue. The corresponding action space is given by

A2(s) =

{
ZZZ | Zl = 0, l /∈ {lk : k ∈ Q(s)} ∪ {lr : r ∈ R},

∑
l∈L

Zl = 1

}
, (4.2)

where the constraints ensure that the service engineer is redeployed to either a base
station or a machine from the queue.

Event type et = 3et = 3et = 3. When a service engineer arrives at a base station, he can be
immediately dispatched to one of the machines in the queue or left idle at that base
station. Relocation of any sort is not allowed in that case. Let the binary vector
UUU = (U1, ..., UK) represent the dispatching decision. Here, Uk = 1 indicates that the
service engineer that just arrived at a base station is dispatched to machine k ∈ Q(s).
The action space can be written as

A3(s) =

{
UUU | Uk = 0, k /∈ Q(s),

∑
k∈K

Uk ≤ 1

}
, (4.3)

where the constraints ensure that the service engineer is dispatched to at most one ma-
chine from the queue. Note that A3(s) is empty if and only if the queue is empty in state s.

Event type et = 4et = 4et = 4. Once a service engineer arrives at a broken machine, he immediately
starts repairing the machine. In that case no action is taken, hence

A4(s) = ∅. (4.4)
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4.3.2 Transitions

We describe evolution of the system via the stochastic process {sn}n∈N embedded on
decision epochs. To that end, we need to derive the distribution of time until the next
transition for a given state sn and action an, as well as the transition probabilities.

Given state sn and action an, the next state sn+1 is defined by the function sn+1 =
Φ(sn, an, ω(sn, an)), where the random element ω(sn, an) determines the next event. The
next event can be either a failure of one of the working machines, the end of an ongoing
repair, or an arrival of one of the traveling service engineers to his/her destination. Let
d(sn, an) denote the minimum remaining distance in time units over all traveling service
engineers after action an is taken in state sn. Let d(sn, an) =∞ if there are no traveling
service engineers. Let also W(sn) denote the set of all working machines and H(sn) the
set of machines in repair in state sn. Note that those sets are not affected by the action
an. Recall that the time until breakdown of each machine in W(sn) is exponentially
distributed with rate λ, and the time until the end of repair of each machine in H(sn) is
exponentially distributed with rate µ. Hence, the time until the next event is distributed
as the minimum of d(sn, an) and an exponentially distributed random variable Γ(sn) with
rate η(sn) = λ|W(sn)|+ µ|H(sn)|.

The probability that the next event is of type et(sn+1) = 1 or et(sn+1) = 2 is equal to

P (Γ(sn) < d(sn, an)) = 1− e−η(sn)d(sn,an).

Then the probability that the next event is

• the failure of machine k ∈ W(sn) equals

λ

η(sn)
(1− e−η(sn)d(sn,an)),

if W(sn) 6= ∅, and 0 otherwise;

• the end of repair of machine k ∈ H(sn) equals

µ

η(sn)
(1− e−η(sn)d(sn,an)),

if H(sn) 6= ∅, and 0 otherwise;

• the arrival of a service engineer to his/her destination equals

e−η(sn)d(sn,an),

if there are traveling service engineers after action an is taken in state sn (i.e.,
s(sn, an) <∞), and 0 otherwise.
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The state of all service engineers immediately after action an is taken in state sn
is updated in a straightforward manner by changing destinations and remaining dis-
tances accordingly. Upon realization of the next event e(sn+1) and transition time
min{Γ(sn), d(sn, an)}, the state sn+1 is obtained as follows. The time is equal to
t(sn+1) = t(sn) + min{γ(sn), d(sn, an)}, where γ(sn) is the realization of Γ(sn). If
the next event is the repair of machine k, its state is set to κk = 0. Waiting times of all
machines in the queue are increased by min{γ(sn), d(sn, an)}, and traveling times of all
traveling service engineers are decreased by min{γ(sn), d(sn, an)}. If the next even is an
arrival of a service engineer at a machine k, the state of that machine is set to κk = −1.

4.4 Dispatching Heuristics

The dispatching policy determines when and which service engineer to assign to a call,
based on the current state of the system. When a breakdown occurs, a customer wants
a service engineer to arrive on scene as quickly as possible. However, when a service
engineer is dispatched from one of the base stations, the coverage of the customers around
this base station decreases, which may lead to high future costs. Thus, a good dispatching
policy finds a balance between minimizing immediate costs and future costs.

In order to focus fully on the problem of dispatching, in this section relocation is not
allowed. In Section 4.5 we consider the complementary problem of varying the relocation
policy while keeping of fixed dispatching policy. So after service completion, the engineer
returns to the his preallocated base station. The initial allocation of service engineers to
base stations is made to maximize the expected covered demand and is a solution to the
ILP problem (4.29) described in Appendix 4.8 below.

In our comparative study we consider the following five dispatching policies:

DP1: Closest-first dispatching (without waiting);

DP2: Maximal coverage dispatching (without waiting);

DP3: Maximal expected coverage dispatching (without waiting);

DP4: Minimal response time dispatching with unknown remaining repair time;

DP5: Minimal response time dispatching with known remaining repair time.

In Section 4.4.1, we consider dispatching heuristics DP1 - DP3 that put a call into
the queue only if there are no idle service engineers (no waiting). Otherwise, a service
engineer has to be dispatched immediately. In Section 4.4.2, we discuss DP4 and DP5
that allow calls to be put into the queue even if idle engineers are available. A comparison
of all dispatching policies based on simulation can be found in Section 4.6.2.

98



Chapter 4. Real-time Dispatching and Relocation of Emergency Service Engineers

4.4.1 Dispatching Policies without Waiting

Recall from (4.1) that in the event of type et(s) = 1, the set of all possible actions is
described by a vector X that represents the dispatching decision, and a matrix Y that
represents the relocation decision. As in this section relocation is not allowed, all elements
of the matrix Y are always set to 0. We do the same for the relocation matrix Y for
et(s) = 2, see (4.2).

In this section, when a call arrives in the system with at least one idle service engineer,
an engineer is dispatched immediately. Recall that F(s) denotes the set of all idle service
engineers in state s, so for any state s with F(s) 6= ∅ and event et(s) = 1, the set of
possible actions from (4.1) reduces to

A1(s) =

{
(X,Y ) |

∑
m∈F(s)

Xm = 1, Ymr = 0 ∀m ∈ F (s) , r ∈ R
}
.

If F(s) = ∅, then the call is put in the queue and no decision should be made. Note also
that under these restrictions the set of possible actions for e(s) = 3 is empty, as a call
cannot be put in the queue if there is an idle service engineer in the system.

DP1. Consider state s with the event et(s) = 1 (i.e., a call arrives from machine k)
and F(s) 6= ∅. To describe the dispatching policy, we need to calculate the vector X
depending on state s. The simplest and most widely used dispatching policy in practice
is the so-called closest-first policy. Under this policy, the closest idle service engineer is
always dispatched to a call. So

Xm = 1 ⇐⇒ m = arg min
n∈F(s)

(dlnk + dn) ,

where dlnk is the distance in time between the destination of the service engineer n and
the source of the call, the machine k.

DP2. One of the possible metrics of the expected system performance is coverage,
i.e., the number of machines covered by at least one service engineer. When a call arrives,
for each idle service engineer m that can reach machine k in time, the remaining coverage
of the system without him/her is defined as:

coverage(m) =
∑

k′:κk′=0

I {∃n ∈ F(s) : n 6= m, dlnk′ ≤ t∗} .

Then in coverage-based dispatching, the service engineer that leaves most machines covered
by others is dispatched. If there are no service engineers that can reach the source of the
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call in time, then the remaining coverage is calculated for all idle service engineers and
the one with the biggest remaining coverage is dispatched. In case there are multiple
service engineers maximizing the remaining coverage, the closest one is dispatched.

DP3. Note that the coverage only estimates the performance of the system for the
next call. Alternatively, one can calculate the expected covered demand, the fraction of
calls that will be answered in time by the system. As the expected covered demand is hard
to compute, for computational study we use the approximation described in Appendix
4.8. Similar to the coverage based approach, first we calculate the remaining expected
covered demand after dispatching each of the idle service engineers that can reach the
broken machine in time, and dispatch the one with the highest remaining expected covered
demand. If there are no idle service engineers that can reach the machine in time, we
instead do this procedure for all idle service engineers.

4.4.2 Dispatching Policies with Waiting

Under the dispatching policies discussed in the previous subsection, an idle service engineer
is always dispatched when a call arrives. However, in practice it may occur that a service
engineer close to the new breakdown will finish its repair earlier than any idle service
engineer can reach the breakdown, in which case it may be better to wait for the busy
service engineer to finish, and dispatch him/her instead.

Inspired by this, we extend the closest-first dispatching policy to the dispatching
policy that chooses a service engineer with the smallest response time. For a service
engineer m whose destination is a base station r (i.e., lm = r) the response time to a call
from machine k is calculated as rt(k,m) = dm + dlmk. For a service engineer m whose
destination is machine k′ (i.e., lm = k′) the response time consists of the distance left to
machine k′, the length of repair and the distance from machine k′ to machine k. Then the
response time equals rt(k,m) = dm + trepair + dk′k. We consider two situations: when
the length of repair can be estimated upon arrival of a service engineer to the machine
(DP5) and when it stays unknown (DP4). If the length of repair trepair is not known, it
can be estimated from its distribution. We estimated it by an αth percentile of the repair
time distribution. Throughout the computational study we take α = 80%.

In the extended closest-first policy the service engineer m = arg minn rt(k, n), that
minimizes response time, is assigned to the call. If m ∈ F(s) then the service engineer is
dispatched immediately. If the service engineer m is busy, then the call is placed in the
queue.
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4.5 Relocation Heuristics

The relocation policy is responsible for the location of idle service engineers. The simplest
relocation policy is the static policy, where each service engineer is assigned to a base
station and resides there when idle. In Appendix 4.8 we discuss how to compute the
static allocation of the service engineers that maximizes the expected covered demand.
We assume that this policy is used when the dispatching policies are studied in isolation.
However, when a service engineer is dispatched to a call, a large area of the region may
become uncovered and it may be beneficial to reallocate other idle service engineers. In
our system we allow one idle service engineer to change the destination either when one
of the service engineers is dispatched or finishes a repair.

For our comparative study we choose the following five heuristic relocation policies:

RP1: Static policy;

RP2: MCRP compliance tables;

RP3: MEXCRP compliance tables;

RP4: DMEXCLP heuristic without constraints;

RP5: DMEXCLP heuristic with constraints.

In this section we consider four relocation policies, in addition to the static policy
(RP1). Policies RP2 and RP3 are compliance tables constructed according to two different
algorithms. The compliance table relocation policy is the one where location of service
engineers depends only on the number of idle service engineers. The locations of the idle
engineers are ignored, as well as the state of the machines. This allows us to reduce the
number of considered situations and precompute relocation actions for larger systems.
We present these approaches in Sections 4.5.1 and 4.5.2, respectively. Policies RP4 and
RP5 are heuristic relocation policies based on the DMEXCLP heuristic introduced in [47].
The main difference between this heuristic and compliance tables is that decisions are
made in real-time, that allows to use the information about the current location of service
engineers and the state of the machines. We construct two versions of the DMEXCLP
heuristic: one with no restrictions and one with restrictions on relocation, in Section 4.5.3.

4.5.1 MCRP Compliance Tables

The first type of compliance table is the Maximum Coverage Relocation Problem (MCRP)
compliance table that aims to maximize the probability that the next call is answered in
time. Consider a system with M service engineers. Then a compliance table consists of
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M levels, where level m contains the allocation solution for m idle service engineers in
the system. If one of them is dispatched, other service engineers are relocated according
to level m− 1. If one of the service engineers becomes idle after finishing a repair, then
the idle service engineers are relocated according to level m+ 1.

Denote by zmk the indicator of the fact that at the level with m idle service engineers
the machine k is covered (meaning that at least one service engineer can reach it in

time), Then at the level m we want to maximize
∑K
k=1 zmk, i.e., the number of covered

machines. If xmr is the number of service engineers at the base station r at level m, then
zmk ≤

∑
r∈Nk xmr, k = 1, . . . ,K, where Nk is the set of all base stations from which the

machine k can be reached in time.

Recall that we allow to relocate at most one service engineer at a time. To include
this restriction in the ILP formulation, we introduce non-negative variables αmr that
represent the number of service engineers that arrived at base station r after going from
level m+ 1 to level m. Then xmr − xm+1,r ≤ αmr, r = 1, . . . , R, m = 1, . . . ,M − 1, and∑R
r=1 αmr ≤ 1, r = 1, . . . , R, m = 1, . . . ,M − 1. As these constraints connect different

levels of the compliance table, the ILP problems cannot be solved separately for each level,
and we construct an ILP formulation for the whole table. Let Sm be the event of having
m idle service engineers in the system. Then the objective function can be formulated as∑M
m=1 P (Sm)

∑K
k=1 zmk. An accurate approximation of probabilities P (Sm) is provided

in Appendix 4.8, equations (4.23). Finally, we are in position to provide the formulation
for the MCRP compliance table:

max
∑
m∈M

P (Sm)
∑
k∈K

zmk (4.5)

s.t. zmk ≤
∑
r∈Nk

xmr, k ∈ K,m =M (4.6)

∑
r∈R

xmr = m, m ∈M (4.7)

xmr − xm+1,r ≤ αmr, r ∈ R, m = 1, . . . ,M − 1 (4.8)∑
r∈R

αmr ≤ 1, m = 1, . . . ,M − 1 (4.9)

αmr ≥ 0, r ∈ R, m = 1, . . . ,M − 1 (4.10)

xmr ∈ {0, 1, . . . ,m}, r ∈ R, m ∈M (4.11)

zmk ∈ {0, 1}, k ∈ K, m ∈M (4.12)
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4.5.2 MEXCRP Compliance Tables

Consider a system where the number of idle service engineers is larger than the number
required to cover all machines. In the MCRP approach presented in Section 4.5.1, if each
machine is covered by a service engineer, the location of the remaining service engineers
does not affect the coverage. This may lead to inefficient allocation of service engineers.
The MEXCRP compliance tables introduced in [108] can solve this problem. In this
algorithm, the main goal is to optimize expected covered demand, not the number of
covered machines.

The problem can again be formulated as an ILP. Let the binary variable ymki,
m = 1, . . . ,M , k = 1, . . . ,K, i = 1, . . . ,m, equal 1 if and only if in the configuration for
m idle service engineers machine k is covered by at least i service engineers. Denote by
Pmki, m = 1, . . . ,M , k = 1, . . . ,K, i = 1, . . . ,m, the probability that in the configuration
for m idle service engineers a call from machine k is responded to by the ith closest
service engineer. For a given number of idle service engineers m, this probability can be
approximated using equation (4.27) in Appendix 4.8. The MEXCRP compliance table
formulation is as follows:

max
∑
m∈M

∑
k∈K

m∑
i=1

Pmkiymki (4.13)

s.t.

m∑
i=1

ymki ≤
∑
r∈Nk

xmr, k ∈ K, m ∈M (4.14)

∑
r∈R

xmr ≤ m, m ∈M (4.15)

xmr − xm+1,r ≤ αmr, r ∈ R, m = 1, . . . ,M − 1 (4.16)

R∑
r=1

αmr ≤ 1, m = 1, . . . ,M − 1 (4.17)

αmr ≥ 0, r ∈ R, m = 1, . . . ,M − 1 (4.18)

xmr ∈ {0, 1, . . . ,m}, r ∈ R, m ∈M (4.19)

ymki ∈ {0, 1}, k ∈ K, m ∈M (4.20)
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4.5.3 DMEXCLP Heuristics

When compliance table relocation policy is used, the state that is achieved after relocation
does not depend on the current state of the system, only on the number of idle service
engineers. In contrast, the DMEXCLP heuristic uses all the information about the current
state to make a decision. This approach is more flexible than the compliance tables. We
consider the DMEXCLP heuristic relocation policy introduced in [47] and adjust it for
our model.

There are two types of decision moments:

1. When a service is completed and there are no jobs assigned to the service engineer
that just became idle. In this case, that service engineer must be allocated to one
of the base stations.

2. When an idle service engineer is dispatched to an incident, it should be decided
whether one of the other idle service engineers should be relocated or not.

According to the DMEXCLP relocation policy, the action that maximizes the ex-
pected covered demand is always chosen. In the first case, one service engineer is added
sequentially to every base station, the expected covered demand is calculated, and the
base station that leads to the best result is chosen. In the second case, all pairs of base
stations (r1, r2), with at least one service engineer at the base station r1, are considered.
We calculate the improvement in the expected covered demand after the relocation of
a service engineer from station r1 to station r2. Suppose that (r′1, r

′
2) is the pair with

the maximum improvement. If this improvement is positive, then we decide to relocate
a service engineer from station r′1 to station r′2. If the maximum improvement is not
positive, then no relocation happens. Note that for both situations the expected covered
demand is computed only for the working machines.

The problem of large relocation times leading to the possibly poor performance can
appear. In [111] the authors impose restrictions on the relocations as a solution to
this problem. There are three possible parameters that can be used to describe these
restrictions. In the first type of decision moment the maximum relocation distance can
be set. In this case, the best station is chosen among all stations within this distance
from the machine where the service engineer is located. If there are no such base stations
then the choice is made between all base stations. In the second type of decision moment
the restriction can be imposed not only on the maximum relocation distance, but also on
the minimum improvement in the expected covered demand. If the maximum relocation
distance is set, than only the pairs (r1, r2) with smaller distance are considered. If there
are no such pairs, the relocation is forbidden. Note that this distance can differ from the
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distance for the first type of decision. If the minimum improvement threshold is set, then
the relocation happens only if the improvement in expected covered demand exceeds this
threshold. Setting this threshold to 0 means no restrictions are imposed. Choosing a
threshold larger than the number of machines leads to no relocation.

The optimal restriction parameters depend on the type of the system. However, there
are no known results on how to find the optimal parameters for a given system. In
the computational study in Section 4.6.3 below we consider this policy with different
parameters and study the improvement that can be gained by parameter tuning.

4.6 Numerical Experiments

In this section we present the setup and the results of our numerical experiments. To
compare different policies we use simulation. In Section 4.6.1 we describe the type of
the systems we use in our simulations, and the parameters defining the properties of the
systems that affect the policies’ performance. Section 4.6.2 presents the results comparing
the dispatching policies introduced in Section 4.4 to each other with no relocation allowed.
Next, in Section 4.6.3 the relocation policies from Section 4.5 are compared to each other,
given a fixed dispatching policy. Finally, in Section 4.6.4 a heuristic policy based on the
combination of the best dispatching and relocation policy from the previous sections
is compared against the optimal policy for a small problem instance. We present the
results of numerical experiments in tables for a limited set of parameter values. In the
Appendix 4.8 we provide extended tables for a wider range of systems.

4.6.1 Setup of the Numerical Experiments

In our computational experiments, the networks are generated randomly as follows. First,
we define a square on a Euclidean plane and generate the coordinates of the base stations
within that square uniformly at random. After that, the coordinates of the machines
are sampled at random such that each machine is within the distance of t∗ units from at
least one station. We only consider networks where each base station covers at least one
machine. After the locations of the machines and the base stations are determined, the ser-
vice engineers are allocated to the base stations such that the expected covered demand is
maximized. This is done by solving an integer program that we formulate in Appendix 4.8.

The size of the square is determined by the combination of the time limit t∗ and
the density parameter d. The higher the density for a given value of t∗, the smaller the
square, meaning that the map is more dense with each node covered by more stations on
average. An example of how d affects the network structure can be seen in Figure 4.2.
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Figure 4.2: Networks of different density d, given t∗ = 20, K = 40, R = 10

The two maps are randomly generated for two values of d and the same values of t∗, R
and K. The base stations are connected with an edge to the machines they cover. The
map with low value of d is more sparse. In sparse networks, the machines are covered
by fewer stations, and the distances are larger compared to t∗. On the one hand, if the
distances are large, relocation might be not desirable as it takes more time. On the other
hand, in sparse networks the same station may cover multiple machines if there are more
machines than stations. In that case, relocation from a full station to an empty one upon
a incident may be beneficial for the system performance. The map with high value of d
has smaller distances and more connecting edges. If the map is dense, then the machines
are located closer to each other, meaning that a busy service engineer may potentially
respond quicker to a nearby incident than the closest idle one. In that case, the optimal
policy might be putting the new incident in the queue instead of dispatching an engineer
immediately.

The other two parameters affecting the policy performance are the breakdown rate
λ and the service rate µ. These two parameters together define the load of the system;
that is, the fraction of time the service engineers are busy responding to incidents. In our
experiments, we fix the parameter λ and control the load via µ. The larger µ the faster
the service engineers fix the breakdowns, and hence, the lower the load.

4.6.2 Comparison of Dispatching Heuristics

In this section we show the performance of the policies described in Section 4.4. To this
end, we generate systems with different parameters and compare the fraction of calls
answered in time under each of the five policies DP1-DP5. Relocation is not allowed,
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meaning that each service engineer is allocated to a fixed base station according to the
model in Appendix 4.8, and returns there after repairing a machine. The starting state
for all policies is the same, chosen to maximize the expected covered demand.

We test the policies in a simulation. The number of machines, the number of bases
and the failure rate are fixed at K = 20, R = 12 and λ = 0.01, respectively. We then
change the number of engineers M , the map density d, the time limit t∗, and the the
repair rate µ. Those parameters in combination control the geographical structure of the
service region and the load. For each combination of parameters we randomly generate
10 different maps, and run a simulation over a time horizon of 1000 time units. For our
first experiment we compare the policies DP1, DP2 and DP3 used on the same maps.
For each simulation run, we measure the fraction of calls responded to within the time
limit t∗. Table 4.1 contains the obtained results for a range of parameter values. One can
see that the three policies perform very close to each other for all systems, and there is
no policy that performs the best across all instances. The performance decreases with
load (the load increases for larger M and lower µ). We also observe that the performance
of all three policies decreases with the increase of t∗ for a given density d. This effect is
particularly pronounced when d and the load are small. Increasing the time limit t∗ for a
fixed density d results in the maps with larger distances compared to the average repair
time.

M d t∗t∗t∗
µ = 0.2µ = 0.2µ = 0.2 µ = 0.05µ = 0.05µ = 0.05

DP1 DP2 DP3 DP1 DP2 DP3

10

0.3
5 0.92 0.92 0.93 0.78 0.79 0.78

20 0.38 0.36 0.37 0.29 0.28 0.28

2
5 0.99 1.00 1.00 0.94 0.95 0.95

20 0.87 0.86 0.86 0.73 0.72 0.73

13

0.3
5 0.98 0.98 0.98 0.92 0.93 0.94

20 0.84 0.82 0.82 0.64 0.60 0.62

2
5 1.00 1.00 1.00 0.99 0.99 0.99

20 0.98 0.98 0.98 0.93 0.94 0.94

Table 4.1: Fraction of calls answered in time for the policies DP1, DP2 and DP3

As the difference in performance between the first three policies is negligible, we
then compare the simplest policy DP1 against the policies DP4 and DP5 in a separate
experiment. Again, the three policies DP1, DP4 and DP5 are used in a simulation run on
10 randomly generated maps for each combination of parameter values. The obtained
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simulation results can be found in Table 4.2. For most of the systems, both policies with
waiting outperform (or at least perform as well as) the traditional closest-first policy.
The maximum relative improvement is over 50%. It increases with the decrease in map
density and load, and increase in traveling times (recall that the traveling times increase
with t∗ for a given d). In dense maps it is more likely that the machines are close to each
other, and waiting can be beneficial only if the service times are relatively low compared
to the traveling times. Comparing the performance of policies DP4 and DP5, one can
see that including the remaining repair time leads to an improved performance, although
marginal. Policy DP4, however, is probably more realistic, as it does not assume that the
repair times are known up front, just their distributions.

M d t∗t∗t∗
µ = 0.2µ = 0.2µ = 0.2 µ = 0.05µ = 0.05µ = 0.05

DP1 DP4 DP5 DP1 DP4 DP5

10

0.3
5 0.92 0.95 0.96 0.79 0.81 0.83

20 0.37 0.83 0.85 0.31 0.54 0.64

2
5 0.99 0.99 0.99 0.94 0.95 0.95

20 0.86 0.97 0.97 0.72 0.79 0.88

13

0.3
5 0.98 0.98 0.98 0.92 0.93 0.92

20 0.77 0.92 0.94 0.67 0.79 0.84

2
5 1.00 0.99 0.99 0.99 0.98 0.99

20 0.98 0.95 0.98 0.94 0.93 0.96

Table 4.2: Fraction of calls answered in time for the policies DP1, DP4 and DP5

4.6.3 Comparison of Relocation Heuristics

In this section we present simulation results comparing different relocation policies. The
dispatching policy is fixed to the policy DP4 as it is the best performing policy from
Section 4.6.2.

As mentioned in Section 4.5.3 above, there are three parameters that define restrictions
for the policy RP5. Those are the maximum relocation distance upon redeployment
after repair is finished, the maximum relocation distance upon dispatching, and the mini-
mum performance improvement for relocation upon dispatching. To fit these parameters
for the RP5 policy, we simulated the system for the first and the second parameters
equal to 0.5t∗, t∗, 2t∗ and 100t∗, and the third parameter equal to 0, 1, 5 and 100. The
best result for each type of the system was chosen and used as an input for the policy RP5.
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ddd t∗t∗t∗
µ = 0.2µ = 0.2µ = 0.2 µ = 0.05µ = 0.05µ = 0.05

RP1 RP2 RP3 RP4 RP5 RP1 RP2 RP3 RP4 RP5

0.3
5 0.93 0.69 0.71 0.89 0.98 0.76 0.70 0.70 0.85 0.95

20 0.77 0.43 0.43 0.48 0.92 0.52 0.25 0.25 0.43 0.82

2
5 0.97 0.87 0.89 0.99 0.99 0.87 0.92 0.96 0.98 0.99

20 0.92 0.74 0.79 0.79 0.97 0.64 0.49 0.55 0.75 0.96

Table 4.3: Fraction of calls answered in time for the policies RP1-RP5 combined with DP4

The relocation policies are compared using simulation. We set K = 20, R = 10 and
λ = 0.01. This time we also fix the number of service engineers equal to M = 13. For
each type of the system we generate 10 random maps, run simulation for each of the
maps, and measure the fraction of calls responded to within the time limit for each of the
five policies. The results can be found in Table 4.3. One can see that compliance tables
(RP2 and RP3) demonstrate poor performance for most systems. The only type of the
systems for which RP2 and RP3 perform better than the static policy RP1 is those with
high density and repair times much larger than t∗. The reason is that both the MCRP
and MEXCRP algorithms ignore distances, so when these are large, those policies lead to
inefficient relocations and poor performance.

Policy RP4 outperforms compliance tables for all systems because it uses more
information about the state of the system to make relocation decisions. However, it also
ignores the distances, so for maps with large distances and small density we observe that
it performs worse than the static policy. Finally, policy RP5 leads to good results for
all of the systems. The fraction of calls answered in time stays above 80%, even for the
systems with high load, where all other policies result in less than 60% of calls answered
in time. The difference in performance between RP5 and RP4 shows the importance of
relocation restrictions and accurate tuning of the parameters of these restrictions.

4.6.4 Optimal Policy Performance

In this section, we benchmark the best performing heuristic against the optimal policy.
Heuristic policy is combined of the dispatching policy DP4 and the relocation policy
RP5 (i.e., minimal response time + DMEXCLP). To obtain the optimal policy, we use
the discrete-time model described in Appendix 4.8. Due to computational complexity of
finding the optimal policy, we do this only for one small system depicted on Figure 4.3.
There are two base stations, two service engineers, and four machines. The failure rate is
λ = 0.01 and the repair rate is 1. The time limit is set to t∗ = 3.
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Figure 4.3: Sample map with two base stations (RB) and four machines (DN)

We use policy iteration to derive the optimal policy. Then we run 10 iterations of
simulation under the optimal policy and under the heuristic. The obtained average
fraction of calls answered in time is 0.87 for the optimal policy and 0.82 under the
DP4+RP5 heuristic policy, which is 5.7% less than the optimal performance. We see that
the heuristic performs close to the optimal at least for this instance. Unlike the optimal
policy, however, it can be easily derived for real-life systems with significantly larger state
spaces.

4.7 Conclusion

In this chapter, we studied the problem of real-time management of service engineers.
We drew inspiration from the vast research in EMS domain to develop a number of
scalable heuristics that lead to a low number of late arrivals to the emergency calls.
We compared the performance of multiple heuristics, examining if there is any that
works well irrespective of the network structure. We conducted extensive computational
experiments where a range of dispatching and relocation policies were compared against
each other for various types of systems. One of the best combined policies was then
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tested in a simulation against the optimal policy showing close to the optimal performance.

The dispatching policies were compared with the relocation policy fixed to a static
one, where idle service engineers reside at preassigned base stations. Five dispatching
policies were compared in a simulation for systems with different parameters. Parameters
defining the system include the number of service engineers, the repair rate, the time
limit and the map density. The policy that assigns the service engineers with the smallest
response time outperformed other policies for most of the systems we considered. We
showed that it may be beneficial not to dispatch an idle service engineer immediately
upon a break down of a machine, but wait for another service engineer to finish repair.
We also demonstrated that accurate estimation of repair time can lead to improvement in
performance, although only for the systems with high load.

The performance of five relocation policies was measured with the fixed dispatching
policy that always chooses the service engineer with the minimal response time. For most
of the systems, compliance tables performed worse than the closest-first policy, except for
those where the distances are small compared to the average repair time. The numerical
results favor the DMEXCLP relocation policy. However, its performance depends on the
choice of the restriction parameters, such as the maximum distance of relocation and the
minimum improvement in the expected covered demand. Without these restrictions it
performs worse than the closest-first policy for systems with large distances. However,
when the restriction parameters are carefully chosen, it outperforms other policies by up
to 60% in terms of fraction of calls answered in time.
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4.8 Appendices

In this section we provide supplementary materials to the main body of the chapter.

4.8.1 Discrete-Time Model Formulation

In this section, we construct a discrete-time approximation of the original process for-
mulated in Section 4.3. To that end, we discretize time and the service region. The
service region is approximated by rounding all distances to the integers. Recall that for
the continuous time model, we look at the state of the process at each moment an event
happens. In the discrete-time model we look at the state of the process at each time
point, where several events can happen between subsequent time points. The resulting
process has a finite state space that allows us to perform the policy iteration algorithm.
In practice, the length of the time unit is an important decision to make. Small duration
of the time unit provides good approximation of the real process, however it may also
lead to a large state space that is computationally intractable.

We then define the state space based on the continuous-time model, ensuring it is
finite. For the continuous-time process the state is described by a tuple s = (t, e, η, κ),
where t is the time, e is the event, η is the state of the service engineers and κ is the state
of the machines. For the discrete-time process, we look at the state of the process at each
time unit. So the time in state sn is deterministic t(sn) = tn = n, and the optimal action
in state s should not depend on time t(s). We then omit the time component of state in
the discrete-time version of the process. The vector η contains the pairs of destinations
and distances to those destinations for each service engineer. For the discrete-time model,
however, distances take only integer values, so there is only a finite number of possible
locations of service engineers. Vector κ contains the state of each of the machines: the
waiting time if the machine is broken, 0 if it is working, and −1 if it is in repair. To have
a finite number of possible states for each machine, the waiting time is bounded by the
time limit t∗. If the waiting time of a broken machine k reaches t∗, its state remains
unchanged (κk = t∗) until the repair starts.

In the discrete-time process more than one event can happen during the transition
from state sn to state sn+1 (for example, two machines may break down). Hence, we
define the event e as a triplet of sets e = (K1,K2,Ma), where K1 is the set of machines
that got broken during the last time unit, K2 is the set of machines that got repaired
during the last time unit, and Ma is the set of service engineers that arrived to their
destinations during the last time unit. It is possible that no events happened during the
transition, and all three sets are empty.
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Transitions

To determine transition probabilities, we need to derive the probability of a certain event
e = (K1,K2,Ma) happening in a given state s. This probability depends only on the first
two components, as the last component Ma is deterministic and depends only on the
previous state of the system. The probability that a working machine will break down
during one time unit is p = 1− e−λ, and the probability that a repair in progress will end
during one time unit is q = 1− e−µ. Denote by W (s) the number of all working machines
in state s, and by H(s) the number of machines in repair. Then the probability of event
e = (K1,K2,Ma) happening in state s is equal to

P (s, e) = P (s,K1,K2) = p|K1|(1− p)W (s)−|K1|q|K2|(1− q)H(s)−|K2|.

The next state sn+1 of the process depends only on the current state sn of the process,
the action an taken, and the random components of the event (K1 and K2):

sn+1 = Φ (sn, an,K1,K2) .

Actions

Let F (s) = {m ∈ 1, . . . ,M | lm(s) ∈ R} denote the set of all idle service engineers,
and Q(s) the set of all machines in the queue in state s. Note that Ma ⊆ F (s) and
K1 ⊆ Q(s). An action a in state s consists of three binary matricesXXX, YYY and ZZZ. MatrixXXX
describes the dispatching decision for all machines in the set Q(s). Let Xmk = 1 if service
engineer m is dispatched to machine k, and Xmk = 0 otherwise. Matrix YYY describes the
redeployment decision for the service engineers that finished repairing machines in the set
K2. Let Yml = 1 if service engineers m is redeployed to location l, and Yml = 0 otherwise.
Matrix ZZZ describes the relocation decision. Let Zmr = 1 if service engineer m is relocated
to base station r, and Zmr = 0 otherwise. The action space in state s is given by

A(s) =

{
(XXX,YYY ,ZZZ) |

∑
m∈F(s)

Xmk +
∑

m∈M:lm(s)∈K2

Ymk ≤ 1 ∀k ∈ Q(s);

∑
l∈Q(s)∪R

Yml = 1 ∀m ∈M : lm(s) ∈ K2;

∑
m∈F(s),
r∈R

Zmr ≤ 1;
∑

m∈F(s),
r∈R,
k∈Q(s)

XmkZmr = 0;

I(
∑

m∈F(s),
k∈K1

Xmk = 0)I(K2 = ∅)
∑

m∈F(s),
r∈R

Zmr = 0

}
,
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where the constraints ensure that not more than one service engineer is dispatched to
each broken machine, each service engineer that finished a job is redeployed to exactly one
location, at most one relocation is made and the relocated service engineer differs from
the dispatched ones, relocation is done only if at least one service engineer was dispatched
to one of the newly broken machines or at least one service engineer finished a repair.

Costs

We apply the following cost structure. If a call arrives from machine k and a service
engineer does not reach this machine within the time limit t∗, a cost 1 is incurred. More-
over, a small cost 0 < ε� 1 is incurred per time unit of waiting for service over t∗. This
second penalty is used to ensure dispatching is done by the optimal policy. Our goal is to
find actions that minimize the long-run discounted penalty. All travel costs and other
operational costs are ignored, but could be readily added to the model.

Denote by c(sn, an, sn+1) the costs incurred during the transition period from state
sn to state sn+1 when action an is taken. The first component is a unit penalty for each
machine who’s waiting time exceeds t∗ during transition. The extra costs are incurred for
the total waiting time over t∗. Then in total

c(sn, an, sn+1) =| {k ∈ K | κk(sn) < t∗ and κk(sn+1) = t∗} |
+ ε| {k ∈ K | κk(sn) = t∗} |.

It is important to note that our goal is to maximize the fraction of calls answered in time.
The penalty ε is introduced only to prevent the situation of leaving some machines broken
forever, which would otherwise be optimal. So ε is set to be small. In the computational
experiments, we set ε = 0.001, so it does not affect the optimal policy.

Optimality equations

Consider a discounted version of the process {sn, n = 0, 1, . . . } with discount factor
γ [89]. Denote by Vπ(s) the expected total discounted costs under policy π when starting
in state s:

Vπ(s) = E

[ ∞∑
n=0

γnc(sn, π(sn), sn+1) | s0 = s

]
.

If policy π∗ is the optimal policy, then Vπ∗(s) satisfies the Bellman optimality equation:

Vπ∗(s) = min
a∈A(s)

{Ea [c(s, a, s′) + γVπ∗(s
′)]} , ∀s ∈ S,
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where s′ = Φ (s, π(s), ω(s, a)) is the next state of the process when action a is taken in
state s, and

π∗(s) = arg min
a∈A(s)

{Ea [c(s, a, s′) + γVπ(s′)]} , ∀s ∈ S.

Due to the curse of dimensionality, finding the optimal policy π∗ is computationally
intractable for realistic-sized systems. Hence, in Sections 4.4 and 4.5 we focus on various
scalable heuristic approaches to the above problem.

The state of the discrete-time process is represented by a triplet s = (e, η, κ). As the
set of possible states of service engineers and machines, and the set of possible events
are all finite, the state space of the process is finite. As the transitions and the costs
depend only on the current state and the random component, the resulting process is a
finite-state Markov decision process.

4.8.2 Expected Covered Demand Approximation

In this section we derive an approximation of the expected covered demand, where we
follow the procedure introduced by Larson [63, 64], and apply it to the model described
in Section 4.3. Given the locations of the service engineers, the expected covered demand
estimates the long-term fraction of calls that will be answered in time. We use this metric
for several dispatching and relocation policies (see Sections 4.4 and 4.5).

First, we consider the process C = {Cn, n = 1, 2, . . . }, that approximates the num-
ber of broken machines in the nth state of the original process sn, n = 1, 2, . . . , where
Cn = | {k ∈ K | κk(sn) 6= 0 or e = ‘machine k breaks down’} |. We compute the steady-
state distribution of this process.

The time until breakdown of a machine is exponentially distributed with rate λ. The
time a machine stays broken is also exponentially distributed with rate µ̂. This time
includes the traveling time of a service engineers and the duration of the repair. If all
service engineers are busy, and the machine is put in the queue first, then the waiting
time in the queue is not included.

The process C is a Markov process. The state space of the process is {0, 1, . . . ,K}
(see Figure 4.4), so it is a finite-state process. There are two possible transitions from a
state Cn with k broken machines:

• The event in state sn+1 is of type “a machine breaks down”. Then Cn+1 = k + 1.
The rate of this transition is equal to λ(K − k). (This transition is not possible if
k = K.)
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• The event in state sn+1 is of type “a repair ends”. Then Cn+1 = k − 1. The rate
of this transition µ̂ ·# machines in repair = µ̂ ·min{k,M}. (This transition is not
possible if k = 0.)

Let P (k) denote the stationary probability of being in state k. Then the balance
equations for Cn can be formulated as follows:

λKP (0) = µ̂P (1),

(λ(K − k) + µ̂k)P (k) = λ(K − k + 1)P (k − 1) + µ̂(k + 1)P (k + 1), k = 2, . . . ,M − 1,

(λ(K − k) + µ̂M)P (k) = λ(K − k + 1)P (k − 1) + µ̂MP (k + 1), k = M, . . . ,K − 1,

µ̂MP (K) = λP (K − 1).

One can check that

P (k) =


(
K
k

) (
λ
µ̂

)k
P (0), k = 0, . . . ,M − 1,

k!
M !Mk−M

(
K
k

) (
λ
µ̂

)k
P (0), k = M, . . . ,K

(4.21)

is the solution of the balance equations. Adding the normalization equation
∑K
k=0 P (k) = 1

to the system we get

P (0) =

[
M−1∑
k=0

(
K

k

)(
λ

µ̂

)k
+

K∑
k=M

k!

M !Mk−M

(
K

k

)(
λ

µ̂

)k]−1
. (4.22)

Using these formulas one can calculate P (k) for k = 0, 1, . . . ,K. Now, let Sm be the
event of having m busy service engineers, then

P(Sm) =

{
P (m), m = 1, . . . ,M − 1,∑K
k=M P (k), m = M.

(4.23)

Figure 4.4: State diagram of the discrete-time process C
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We consider a system where relocation is not allowed. It means that each service
engineer is assigned to a base station, and returns to that base station after each re-
pair. Suppose that the system is in state s where all service engineers are at their
base stations. Assume that the dispatching policy is fixed per machine, such that if

machine k breaks down, we first send the service engineer m
(k)
1 . Then, if that service

engineer is busy, m
(k)
2 is dispatched, and so on. Assume also that first we try to send

the service engineers that can reach the machine within the time limit, and, if all of
them are busy, the service engineers that cannot arrive on time. An example of such dis-
patching policy is the closest-first policy that always dispatches the closest service engineer.

Let us compute the probability that service engineer m
(k)
i is dispatched to machine k,

meaning that all service engineers m
(k)
1 , . . . ,m

(k)
i−1 are busy. If Bi is the event that service

engineer m
(k)
i is busy, Fi is the event that service engineer m

(k)
i is idle, and Sm is the

event that there are m busy service engineers in the system, then

P (B1 . . . Bi−1Fi) =
M∑
m=i

P (B1 . . . Bi−1Fi|Sm)P(Sm)

=
M∑
m=i

P(Sm)P (Fi|SmB1 . . . Bi−1)P (Bi−1|SmB1 . . . Bi−2) . . .P (B1|Sm) .

(4.24)

The probabilities P (Sm) can be computed using equations (4.23). Other terms can
be approximated by assuming that all service engineers have the same load and are
independent of each other. Under these assumptions we get

P (B1|Sm) =
m

M
,

P (B2|SmB1) =
m− 1

M − 1
,

...

P (Fi|SmB1 . . . Bi−1) = 1− m− i+ 1

M − i+ 1
=

M −m
M − i+ 1

.

(4.25)
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Finally, we can approximate

P (B1 . . . Bi−1Fi) =

=

M∑
m=i−1

P(Sm)P (Fi|SmB1 . . . Bi−1)P (Bi−1|SmB1 . . . Bi−2) . . .P (B1|Sm)

≈
M∑

m=i−1

P(Sm) ·
M −m
M − i+ 1

· · · · ·
m

M

=

M∑
m=i−1

(M −m)P(Sm) ·
m!(M − i)!

(m− i+ 1)!M !
.

(4.26)

Let us denote

Pi =

M∑
m=i−1

(M −m)P(Sm) · m!(M − i)!
(m− i+ 1)!M !

, i = 1, . . . ,M. (4.27)

Let the binary variable zki equal 1 if the ith closest service engineer to machine k can
reach it in time. The probability that a call from machine k will be answered in time is∑M
i=1 Pizki, and the expected covered demand can be approximated by

1

K

K∑
k=1

M∑
i=1

Pizki. (4.28)

Note that for a given system all parameters needed to calculate expression (5.1) are
known, except for the parameter µ̂. This parameter is hard to calculate in practice as it
depends on the policy. For computational study, we first assume µ̂ = 1/(t∗ + 1/µ) and
then run several iterations of simulation to find a better approximation for µ̂.

4.8.3 Optimal Allocation of Service Engineers

In this section we formulate an ILP problem that finds the optimal allocation of the
service engineers to the base stations maximizing the expected covered demand.

Let the decision variables xr, r = 1, . . . , R, represent the number of service engineers

at base station r, and zki indicate if service engineer m
(k)
i can reach machine k in

time. The objective function is the expected covered demand that we approximate
with equation (5.1). The total number of service engineers is M , so

∑R
r=1 xr = M .

The variables zki, k = 1, . . . ,K, i = 1, . . . ,M , and the variables xr, r = 1, . . . , R, are
connected by the equation

∑M
i=1 zki =

∑
r∈Nk xr, k = 1, . . . ,K, where Nk is the set of
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all bases from which machine k can be reached in time. The problem can be formulated
as follows:

max

K∑
k=1

M∑
i=1

Pizki

s.t.

M∑
i=1

zki ≤
∑
r∈Nk

xr, k = 1, . . . ,K,

R∑
r=1

xr ≤M,

xr = 0, 1, 2, . . . , r = 1, . . . R,

zki ∈ {0, 1}, k = 1, . . . ,K, r = 1, . . . , R,

(4.29)

where constraints are relaxed with inequalities. The total number of decision variables is
R+KM and the total number of constraints equals K + 1.

4.8.4 Extended Computational Results

In this section, we provide computational results for a wider range of parameter values.
Tables 4.4 and 4.5 compare the different dispatching policies. The performance of the
relocation policies is presented in Table 4.6.
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MMM ddd t∗t∗t∗
µ = 0.2µ = 0.2µ = 0.2 µ = 0.1µ = 0.1µ = 0.1 µ = 0.05µ = 0.05µ = 0.05 µ = 0.02µ = 0.02µ = 0.02

DP1 DP2 DP3 DP1 DP2 DP3 DP1 DP2 DP3 DP1 DP2 DP3

10

0.3

5 0.92 0.92 0.93 0.88 0.88 0.89 0.78 0.79 0.78 0.44 0.44 0.42

10 0.81 0.79 0.79 0.76 0.73 0.74 0.60 0.57 0.57 0.33 0.33 0.31

20 0.38 0.36 0.37 0.32 0.32 0.32 0.29 0.28 0.28 0.25 0.25 0.24

50 0.23 0.24 0.24 0.26 0.26 0.26 0.22 0.23 0.23 0.22 0.22 0.21

1

5 0.96 0.97 0.97 0.94 0.95 0.95 0.89 0.90 0.89 0.61 0.62 0.60

10 0.91 0.92 0.91 0.86 0.87 0.87 0.76 0.76 0.76 0.44 0.45 0.42

20 0.59 0.56 0.57 0.54 0.54 0.53 0.45 0.45 0.45 0.29 0.30 0.29

50 0.34 0.34 0.35 0.34 0.34 0.34 0.37 0.37 0.37 0.28 0.29 0.28

2

5 0.99 1.00 1.00 0.98 0.98 0.98 0.94 0.95 0.95 0.75 0.75 0.73

10 0.97 0.97 0.98 0.95 0.95 0.96 0.90 0.90 0.90 0.62 0.63 0.61

20 0.87 0.86 0.86 0.81 0.82 0.81 0.73 0.72 0.73 0.47 0.47 0.46

50 0.53 0.52 0.52 0.49 0.49 0.50 0.50 0.50 0.50 0.45 0.45 0.44

13

0.3

5 0.98 0.98 0.98 0.96 0.97 0.97 0.92 0.93 0.94 0.80 0.81 0.79

10 0.94 0.94 0.95 0.92 0.93 0.93 0.88 0.89 0.89 0.68 0.68 0.67

20 0.84 0.82 0.82 0.73 0.68 0.69 0.64 0.60 0.62 0.44 0.43 0.42

50 0.32 0.33 0.33 0.32 0.32 0.32 0.29 0.30 0.30 0.28 0.29 0.28

1

5 0.99 1.00 1.00 0.98 0.99 0.99 0.97 0.97 0.97 0.86 0.88 0.87

10 0.98 0.98 0.99 0.96 0.96 0.97 0.94 0.95 0.95 0.80 0.82 0.80

20 0.90 0.89 0.91 0.91 0.91 0.91 0.84 0.83 0.83 0.62 0.61 0.60

50 0.44 0.45 0.45 0.43 0.43 0.43 0.44 0.45 0.45 0.40 0.40 0.40

2

5 1.00 1.00 1.00 1.00 1.00 1.00 0.99 0.99 0.99 0.93 0.94 0.94

10 1.00 1.00 1.00 0.99 0.99 0.99 0.98 0.98 0.98 0.90 0.91 0.91

20 0.98 0.98 0.98 0.96 0.96 0.97 0.93 0.94 0.94 0.81 0.79 0.79

50 0.65 0.63 0.63 0.60 0.60 0.60 0.58 0.56 0.56 0.58 0.58 0.58

16

0.3

5 0.99 0.99 0.99 0.99 0.99 0.99 0.97 0.98 0.98 0.93 0.94 0.94

10 0.98 0.99 0.99 0.96 0.97 0.97 0.95 0.96 0.96 0.90 0.91 0.91

20 0.94 0.95 0.96 0.92 0.92 0.93 0.91 0.90 0.91 0.81 0.81 0.80

50 0.51 0.51 0.51 0.52 0.50 0.53 0.48 0.46 0.48 0.41 0.41 0.41

1

5 1.00 1.00 1.00 0.99 1.00 1.00 0.99 0.99 1.00 0.96 0.97 0.97

10 0.99 0.99 0.99 0.99 0.99 0.99 0.98 0.98 0.98 0.94 0.95 0.95

20 0.97 0.98 0.98 0.97 0.97 0.97 0.95 0.96 0.97 0.89 0.90 0.90

50 0.68 0.67 0.68 0.63 0.61 0.63 0.61 0.60 0.60 0.53 0.53 0.53

2

5 1.00 1.00 1.00 1.00 1.00 1.00 0.99 1.00 1.00 0.98 0.99 0.99

10 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.98 0.98 0.99

20 0.99 0.99 1.00 0.99 0.99 1.00 0.98 0.98 0.99 0.96 0.96 0.97

50 0.90 0.89 0.90 0.88 0.86 0.87 0.82 0.80 0.80 0.78 0.77 0.75

Table 4.4: Fraction of calls answered in time for policies DP1, DP2 and DP3 (K = 20, R = 12, λ = 0.01)
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MMM ddd t∗t∗t∗
µ = 0.2µ = 0.2µ = 0.2 µ = 0.1µ = 0.1µ = 0.1 µ = 0.05µ = 0.05µ = 0.05 µ = 0.02µ = 0.02µ = 0.02

DP1 DP4 DP5 DP1 DP4 DP5 DP1 DP4 DP5 DP1 DP4 DP5

10

0.3

5 0.92 0.95 0.96 0.88 0.90 0.92 0.79 0.81 0.83 0.48 0.49 0.48

10 0.80 0.91 0.90 0.74 0.85 0.87 0.61 0.73 0.77 0.31 0.41 0.42

20 0.37 0.83 0.85 0.33 0.80 0.78 0.31 0.54 0.64 0.21 0.23 0.31

50 0.24 0.64 0.54 0.23 0.52 0.52 0.22 0.43 0.41 0.21 0.22 0.21

1

5 0.97 0.97 0.98 0.94 0.94 0.96 0.86 0.87 0.88 0.63 0.59 0.59

10 0.92 0.96 0.97 0.88 0.90 0.92 0.74 0.81 0.83 0.48 0.50 0.55

20 0.60 0.93 0.91 0.59 0.83 0.86 0.44 0.63 0.78 0.31 0.30 0.43

50 0.35 0.76 0.77 0.32 0.71 0.70 0.33 0.57 0.60 0.30 0.28 0.30

2

5 0.99 0.99 0.99 0.98 0.98 0.99 0.94 0.95 0.95 0.72 0.73 0.73

10 0.97 0.98 0.98 0.94 0.96 0.97 0.89 0.91 0.92 0.65 0.64 0.66

20 0.86 0.97 0.97 0.83 0.94 0.94 0.72 0.79 0.88 0.49 0.53 0.63

50 0.54 0.88 0.87 0.50 0.84 0.87 0.45 0.71 0.72 0.43 0.34 0.43

13

0.3

5 0.98 0.98 0.98 0.96 0.95 0.97 0.92 0.93 0.92 0.79 0.79 0.79

10 0.94 0.97 0.97 0.93 0.94 0.94 0.88 0.90 0.91 0.69 0.73 0.73

20 0.77 0.92 0.94 0.78 0.90 0.91 0.67 0.79 0.84 0.43 0.56 0.69

50 0.31 0.83 0.77 0.31 0.77 0.77 0.30 0.69 0.70 0.28 0.41 0.56

1

5 0.99 0.99 0.99 0.98 0.99 0.99 0.95 0.96 0.97 0.86 0.86 0.86

10 0.97 0.99 0.98 0.97 0.96 0.97 0.94 0.93 0.95 0.81 0.78 0.81

20 0.91 0.96 0.96 0.88 0.95 0.96 0.80 0.89 0.92 0.62 0.67 0.80

50 0.44 0.89 0.90 0.42 0.83 0.84 0.42 0.79 0.81 0.40 0.47 0.66

2

5 1.00 0.99 0.99 0.98 0.99 0.99 0.99 0.98 0.99 0.94 0.87 0.90

10 0.99 0.98 0.99 0.99 0.98 0.99 0.97 0.96 0.97 0.91 0.85 0.91

20 0.98 0.95 0.98 0.97 0.95 0.98 0.94 0.93 0.96 0.82 0.83 0.90

50 0.64 0.93 0.91 0.64 0.93 0.91 0.58 0.90 0.93 0.53 0.61 0.82

16

0.3

5 0.99 0.99 0.99 0.98 0.98 0.99 0.97 0.98 0.97 0.94 0.92 0.91

10 0.98 0.98 0.99 0.97 0.97 0.98 0.96 0.95 0.96 0.90 0.90 0.90

20 0.94 0.97 0.97 0.92 0.94 0.96 0.90 0.93 0.95 0.81 0.81 0.89

50 0.52 0.90 0.88 0.47 0.89 0.89 0.48 0.83 0.85 0.40 0.64 0.79

1

5 1.00 1.00 1.00 0.99 0.99 0.99 0.98 0.99 0.99 0.96 0.94 0.94

10 0.98 0.99 0.99 0.99 0.98 0.99 0.98 0.98 0.98 0.94 0.93 0.90

20 0.98 0.98 0.98 0.97 0.96 0.97 0.94 0.94 0.97 0.89 0.87 0.91

50 0.70 0.94 0.93 0.65 0.92 0.91 0.59 0.89 0.91 0.56 0.76 0.84

2

5 1.00 1.00 0.99 0.99 0.99 0.99 1.00 0.98 0.98 0.98 0.97 0.95

10 1.00 0.99 0.99 1.00 0.99 0.99 1.00 0.98 0.98 0.97 0.93 0.94

20 0.99 0.98 0.98 0.99 0.96 0.99 0.99 0.95 0.97 0.95 0.90 0.94

50 0.90 0.96 0.96 0.86 0.96 0.96 0.86 0.92 0.94 0.77 0.83 0.93

Table 4.5: Fraction of calls answered in time for policies DP1, DP4 and DP5 (K = 20, R = 12, λ = 0.01)
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µµµ t∗t∗t∗ ddd RP1 RP2 RP3 RP4 RP5

0.2

5

0.3 0.93 0.69 0.71 0.89 0.98

1 0.94 0.79 0.81 0.95 0.99

2 0.97 0.87 0.89 0.99 0.99

10

0.3 0.86 0.58 0.57 0.72 0.95

1 0.91 0.74 0.75 0.85 0.97

2 0.94 0.82 0.87 0.94 0.99

20

0.3 0.77 0.43 0.43 0.48 0.92

1 0.83 0.61 0.62 0.64 0.96

2 0.92 0.74 0.79 0.79 0.97

0.1

5

0.3 0.86 0.70 0.73 0.91 0.96

1 0.87 0.84 0.85 0.96 0.98

2 0.94 0.92 0.95 0.98 0.99

10

0.3 0.83 0.57 0.56 0.69 0.94

1 0.84 0.74 0.74 0.81 0.96

2 0.88 0.81 0.85 0.94 0.99

20

0.3 0.70 0.32 0.31 0.47 0.91

1 0.75 0.58 0.58 0.60 0.95

2 0.83 0.69 0.73 0.75 0.97

0.05

5

0.3 0.76 0.70 0.70 0.85 0.95

1 0.80 0.83 0.86 0.95 0.97

2 0.87 0.92 0.96 0.98 0.99

10

0.3 0.66 0.46 0.47 0.68 0.91

1 0.71 0.64 0.64 0.81 0.95

2 0.77 0.82 0.86 0.93 0.98

20

0.3 0.52 0.25 0.25 0.43 0.82

1 0.56 0.37 0.38 0.58 0.91

2 0.64 0.49 0.55 0.75 0.96

Table 4.6: Fraction of calls answered in time for policies RP1-RP5 (K = 20, R = 10, M = 13, λ = 0.01)
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5
Approximate Dynamic Programming for
Real-time Dispatching and Relocation of

Service Engineers

In this chapter, we continue addressing the questions of how to dispatch service engi-
neers to breakdowns, and how to relocate idle engineers between base stations. We
develop an Approximate Dynamic Programming (ADP) approach to produce dispatching
and relocation policies, and propose two new algorithms to tune the ADP policy. We
conduct extensive computational experiments to compare the ADP policy against two
benchmark policies by means of simulation. These demonstrate that the ADP approach
can generate high-quality solutions that outperform both benchmarks across a wide
range of networks and parameters. We observe significant improvements in terms of frac-
tion of late arrivals over the two benchmarks, without increasing the average response time.

The work in this chapter is based on [104]: D. Usanov, A. Pechina, P.M. van de Ven,
and R.D. van der Mei. Approximate Dynamic Programming for Real-time Dispatching and
Relocation of Emergency Service Engineers (2019). Manuscript submitted for publication.
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5.1 Introduction

As in Chapter 4, we are interested in the question of how to manage service engineers
in the most efficient way. This includes decisions on which engineer to dispatch to a
new maintenance job, whether to relocate engineers to different base stations when gaps
in the coverage arise, and whether to hold off on certain demand in order to wait for
nearby service engineers to complete their existing job. In this chapter we develop another
heuristic that is based on Approximate Dynamic Programming (ADP).

In Chapter 4 we considered a general network structure and compared a wide range of
heuristics taken from the research literature on a closely related problem of dispatching
and relocation of EMS. We identified the heuristic with the best performance in almost
all cases. In our work we use that algorithm as one of the benchmarks.

ADP relies on approximating the value function found in MDPs by a linear combina-
tion of easily computable basis functions. When the basis functions and their coefficients
are selected carefully, such an approximation may yield sub-optimal but excellent policies
that do not suffer from the scalability issues encountered with MDPs. For an excellent
discussion of various ADP techniques, we refer to [88]. ADP was successfully used in many
application areas. Some important examples include fleet management [97], dynamic
container allocation [62], spare parts and supply chain management [96, 27], capacity
allocation in service industry [94] and healthcare [3]. The ADP approach was also ap-
plied to the problem of ambulance dispatching and relocation. In [71], ADP was used
for ambulance redeployment upon completion of service, assuming a fixed closest-first
dispatching policy and no other relocations. In [93], the authors used ADP to optimize
both dispatching and redeployment of ambulances that finish their jobs. More recently,
in [79] the authors formulated a general model where the new incidents can be put in a
queue, and there is a possibility to relocate idle ambulances.

The contribution of this chapter is threefold:

1. We develop a new relocation and dispatching policy based on ADP for the model
studied in Chapter 4, with a number of basis functions introduced for the ADP
approach.

2. We introduce two algorithms for fine-tuning ADP in our setting. The two algorithms,
genetic algorithm and tabu search, tune the coefficients of the basis functions based
on the actual performance of the corresponding policy, rather than on making a
close approximation of the value function.

3. We conduct extensive computational experiments, where the ADP policies obtained
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with both tuning algorithms are compared against two benchmark policies for
various types of systems of realistic size. The benchmark policies are the heuristic
algorithm used in Section 4.6.4 and the closest-first dispatching policy commonly
used in practice. We show that the ADP policies outperform both benchmarks on
various types of networks. By tuning the ADP cost function appropriately it is
possible to significantly reduce the fraction of late arrivals while maintaining the
same level of average response time observed under the benchmark policies.

The remainder of the chapter is organized as follows. The benchmark heuristic is
described in Section 5.2. Section 5.4 introduces the ADP approach together with the
tuning algorithms. Numerical experiments are presented in Section 5.5. Finally, Section
5.6 contains concluding remarks and discussion.

5.2 Benchmark Heuristic

In this section we briefly describe the combined dispatching and relocation heuristic policy
used in Section 4.6.4, that consists of the best combination of dispatching and relocation
heuristics studied in Chapter 4. Below we describe the two parts the heuristic consists of.
One is responsible for dispatching service engineers to broken machines, and the other
part for relocation of idle service engineers between stations as well as allocation to base
stations of service engineers that just became idle.

Dispatching. The dispatching decision is made based on the notion of response time.
For an idle service engineer m response time rt(k,m) to machine k is the distance in
time units from the current destination lm to the machine location lk plus the remaining
distance to the current destination dm. That is, rt(k,m) = dlmlk + dm. For a busy service
engineer m the response time is a random variable RT (k,m) = dlmlk + dm + T rep, where
T rep is an exponentially distributed repair time. The estimation is done using an αth

percentile of the repair time distribution. Throughout the computational study, we take
α = 80%. Thus, for a busy service engineer m the response time to machine k is estimated
as rt(k,m) = dlmlk + dm + T rep80%. This ensures with probability 0.8 that the real response
time is smaller than the estimation.

The dispatching policy works as follows. If the service engineer m = arg minn rt(k, n),
that minimizes response time, is idle, then that service engineer is dispatched immediately.
If the service engineer m is busy, then the call is placed in the queue. When a busy service
engineer finishes a repair, he/she is dispatched to the closest machine from the queue,
unless the queue is empty.
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Relocation. The relocation of service engineers is done using the DMEXCLP heuristic
introduced in [47] and adjusted for our model. This heuristic is used either when an idle
service engineer is dispatched to a new breakdown, or when a service engineer finishes a
repair and the queue is empty. In the first case, the heuristic considers relocating one
of the rest idle stationary service engineers to another base station. In the second case,
the heuristic allocates the service engineer that just finished the job to one of the base
stations.

The DMEXCLP algorithm uses the notion of the expected covered demand. To estimate
the expected covered demand, we use the procedure introduced by Larson [63, 64], and
apply it to the model described in Section 4.3. Given the locations of the service engineers,
the expected covered demand estimates the fraction of new requests that will be answered
in time, and is approximated by

1

|W(s)|
∑

k∈W(∫)

∑
i∈M

Pizki(s), (5.1)

where W(s) is the set of working machines in state s, zki(s) is a binary variable indicating
if the ith closest service engineer covers machine k in state s, and Pi is the probability
that the first i− 1 closest engineers are busy and the ith closest service engineer is idle.
Note that machine k is considered covered if there is at least one service engineer m, such
that rt(k,m) ≤ t∗. The exact procedure for estimating Pi is described in Section 4.8.

According to the DMEXCLP algorithm, the action is selected that maximizes the
expected covered demand (5.1), given that it satisfies certain constraints. In the case
when a service engineer becomes idle, that service engineer is allocated sequentially to
each base station that is reachable within a certain time threshold T1, then the resulting
expected covered demand is computed using equation (5.1) for the obtained configuration,
and the base station that leads to the best result is chosen. If there are no base stations
within the given time threshold T1, then all base stations are considered. In the case
when a service engineer is dispatched to a new breakdown, we consider all pairs of base
stations (r1, r2) that are within T2 time units from each other, and with at least one
service engineer at the base station r1. The improvement in the expected covered demand
is computed upon relocation of a service engineer from station r1 to station r2. If this
improvement is larger than a given parameter ∆, the relocation is made. If the gain in
the expected covered demand is smaller than ∆, or if there are no pairs of base stations
within T2 traveling time from each other, no relocation is made. In the computational
study in Section 5.5.2 we tune the parameters T1, T2 and ∆ separately for each system
using grid search.
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5.3 Model Cost Structure

In Section 4.3 we described the problem as an MDP. In this section we complete the
MDP formulation with the cost structure of the problem.

Our main objective is to maximize the fraction of failures responded to within the
time limit t∗. We define the cost structure accordingly. If a machine breaks down, and a
service engineer does not reach this machine within the time limit t∗, then a penalty 1
is incurred. Apart from that, a small penalty 0 < ε� 1 is paid per time unit of service
delay over t∗. The penalty ε is introduced only to prevent broken machines being ignored
once they have experienced a service delay greater than t∗. So ε should not be too small
to avoid unreasonably large waiting times.

Let c (sn, an, sn+1) denote the costs incurred during the transition period from state
sn to state sn+1 when action an is taken. The transition costs are computed as follows. A
unit cost is incurred for each broken machine whose waiting time exceeds the time limit
t∗ during the transition. An additional penalty ε is incurred per unit of waiting time over
t∗ for each broken machine. Then in total

c(sn, an, sn+1) =
∑

k=1,...,K

I{κk(sn+1) ≥ t∗}I{κk(sn) < t∗}+ εD, (5.2)

where D is the total time the machines where waiting for service in the period (tn, tn+1]
that is over the time limit t∗ and is equal to

D =
∑

k=1,...,K

I {κk(sn+1) > t∗}min (t(sn+1)− t(sn), κk(sn+1)− t∗)

+
∑

k=1,...,K

I {κk(sn) ≥ 0} I {κk(sn+1) = −1}

×min (t(sn+1)− t(sn), κk(sn) + t(sn+1)− t(sn)− t∗) .

The first component of D is the total waiting time over t∗ during the transition period
for all machines k such that κk(sn+1) > t∗. The second component accounts for the event
of type et(sn+1) = 4 (a service engineer arrives at a machine), and adds the waiting time
over t∗ of the corresponding machine.

5.4 Approximate Dynamic Programming

With the ADP approach, the goal is to approximate the value function as a linear combi-
nation of several so-called basis functions, and choose actions using by substituting this
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approximation into the optimality equations. The idea is that the resulting policy will be
close to optimal if the value function approximation is.

Let us first formulate the optimality equations. Consider the process {sn, n = 0, 1, . . . }
introduced in Section 4.3 with a discount factor 0 < γ < 1. Let Vπ(s) denote the expected
total discounted costs under policy π when starting in state s:

Vπ(s) = E

[ ∞∑
n=0

γt(sn)c(sn, π(sn), sn+1) | s0 = s

]
.

If policy π∗ is the optimal policy, then Vπ∗(s) satisfies the Bellman optimality equation

Vπ∗(s) = min
a∈A(s)

{
Ea
[
c(s, a, s′) + γt(s

′)−t(s)Vπ∗(s
′)
]}

, ∀s ∈ S,

where s′ = Φ (s, a, ω(s, a)) is the next state of the process when action a is taken. We
denote

π∗(s) ∈ arg min
a∈A(s)

{
Ea
[
c(s, a, s′) + γt(s

′)−t(s)Vπ∗(s
′)
]}

, ∀s ∈ S.

Note that there might be multiple minimizing actions in the above expression, leading to
multiple optimal policies. In that case, π∗ refers to an arbitrary optimal policy. In the
remainder of this chapter, we denote V (s) := Vπ∗(s) for ease of presentation.

To overcome the problem of a large (infinite in our case) state space, the ADP
approach suggests to use an approximation V̂ (s) of V (s) that can be computed explicitly
for any state s. We approximate V by V̂ , a linear combination of several basis functions
ϕi(·), i = 1, . . . , I, i.e.,

V̂ (ααα, s) = α0 +

I∑
i=1

αiϕi(s),

where ααα = (α0, . . . , αI) is a vector of coefficients, and the approximate optimal policy is
defined by

π̂(α, s) = arg min
a∈A(s)

{
Ea
[
c(s, a, s′) + γt(s

′)−t(s)V̂ (α, s′)
]}

, ∀s ∈ S. (5.3)

As the state space of the process {sn, n = 0, 1, . . . } is countably infinite, the optimal
action can not be computed in advance for each state. But if for each action a ∈ A(s)
we could compute Ea[c(s, a, s′) + γt(s

′)−t(s)V (s′)] offline, then being in state s we can
find the optimal action a, as the action space is finite. In practice, the expected costs
Ea[c(s, a, s′) + γt(s

′)−t(s)V (s′)] can be still hard to compute, even though the distribution
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of s′ given s and a is known (see Section 4.3). This is due to the fact that the state
space is infinite. We estimate the value of Ea(·) using Monte Carlo simulation, where the
next state s′ is sampled G times. Then for each realization s′g, g = 1, ..., G we compute

the future costs c(s, a, s′g) + γt(s
′
g)−t(s)V (s′g) and use the average of these costs as an

approximation of the expected future costs. In our computational experiments we use
G = 30.

The choice of basis functions is very important for the performance of the approach.
First, they should be straightforward to compute for any state s. Second, they should
jointly capture characteristics of the optimal value function, in order to obtain an accurate
approximation. We discuss our choice of basis functions in Section 5.4.1. Given a set of
basis functions, the approximation is finalized by tuning the vector of coefficients ααα. We
propose two metaheuristics to do this: a genetic algorithm and tabu search. We discuss
these approaches in Section 5.4.2.

5.4.1 Basis Functions

In this section we discuss the basis functions we consider for our model. Some of them
capture the ability of the system to respond to future breakdowns (e.g., the number of
uncovered machines and expected covered demand), while others capture future penalties
for decisions made in the past (e.g., the number of unassigned calls and the number of
unreachable calls).

Number of unreachable machines. Consider a machine for which a service
engineer was already dispatched but he/she is still on the way and is not going to reach
that machine in time. If its downtime did not yet exceed the time limit t∗, we did not yet
incur a penalty for this breakdown, but will in the future. The first basis function ϕ1(·)
represents the number of such machines:

ϕ1(s) =

∣∣∣∣{k ∈ K | 0 < κk(s) < t∗
}
∩
{
lm(s), m ∈M

}∣∣∣∣.
Number of unassigned requests. Each unassigned repair request in the current

state may result in future costs. First, this request may be responded to late leading to a
penalty. Second, when a service engineer is going to be dispatched to the machine, the
remaining coverage will decrease, which may in turn lead to costs for future simultaneous
breakdowns. The second basis function counts the number of unassigned repair requests
in state s:

ϕ2(s) =

∣∣∣∣{k ∈ K \ {lm(s), m ∈M} | (κk(s) > 0) ∨ (et(s) = 1) ∧ (el(s) = lk)
}∣∣∣∣.
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Number of missed unassigned requests. The missed requests are those with
waiting time larger than the time limit t∗. The missed unassigned requests are already
incurring costs. Such requests also still require dispatching of a service engineer, which
results in a decrease in coverage. At the same time as part of the costs is already incurred,
such requests cannot be considered equal to other unassigned requests. The number of
unassigned requests in state s that already passed the time limit is defined as follows:

ϕ3(s) =

∣∣∣∣{k ∈ K \ {lm(s), m ∈M} | κk(s) ≥ t∗
}∣∣∣∣.

Number of uncovered machines. A machine is considered covered if there is at
least one service engineer with the estimated response time less then t∗ time units. For
each pair of machine k and service engineer m the response time rt(k,m) is computed
according to the procedure described in Section 5.2. If a machine is not covered in state s
and a failure occurs, then this will result in costs, so the number of uncovered machines is
an important metric. We consider only working machines as only those can break down:

ϕ4(s) =

∣∣∣∣{k ∈ K | (κk = 0) ∧ (lk 6= el(s)) ∧ (rt(k,m) > t∗ ∀m ∈M)
}∣∣∣∣.

Expected covered demand. In Section 5.2, we describe the relocation policy based
on maximizing the expected covered demand that proved to perform well in Chapter 4.
Therefore, we include the expected covered demand in the set of basis functions:

ϕ5(s) =
1

|W (s)|
∑

k∈W(s)

∑
i∈M

Pizki(s).

Average response time. The last function is the average response time to the
working machines. First, the response time rt(k,m) is estimated for each pair of service
engineer m and machine k. Then for each demand node we choose the smallest response
time over all service engineers and calculate the average over all machines. So, if W(s) is
the set of working machines in state s, then

ϕ6(s) =
1

|W (s)|
∑

k∈W(s)

min
m∈M

rt(k,m).

Future basis functions. All basis functions described above characterize the current
state of the system. However, when we make a dispatching or relocation decision, we
are not interested only in the state right after the decision is made, but also in the state
upon arrival of the relocated repairman. Following [79], for each basis function ϕi(s)

we introduce two additional basis functions ϕ
(1)
i (s) and ϕ

(2)
i (s) which characterize the
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state of the system after the arrival of the closest and the second-closest (respectively)
traveling service engineer to their destinations.

Let s(1) denote the state of the system after the arrival of the closest traveling service
engineer to his/her destination, and s(2) the state of the system after the arrival of the
first two closest traveling service engineers to their destinations, assuming that the system
is initially in state s and no other events occur. The future basis functions are computed

as ϕ
(1)
i (s) = ϕi(s

(1)) and ϕ
(2)
i (s) = ϕi(s

(2)). Note that if there are no traveling repairmen,

then ϕ
(1)
i (s) = ϕ

(2)
i (s) = ϕi(s).

5.4.2 Tuning the ADP Policy

Standard methods for tuning the ADP policy aim at fitting the coefficients ααα so that
V̂ (ααα, s) ≈ Vπ∗(s) for each state s, in hope that the obtained policy shows close to optimal
performance. In this case, the coefficients ααα in (5.3) are chosen such that the distance

between the optimal value function VVV π∗ and V̂α̂Vα̂Vα, the total discounted costs under the
ADP policy with coefficients ααα, is minimized:

min
ααα
||VVV π∗ − V̂α̂Vα̂Vα||p. (5.4)

One of such algorithms is called approximate policy iteration, where the current policy
value function is evaluated in a simulation, and the coefficients are iteratively updated
using linear regression, that is, the value p = 2 is used in (5.4). As noted in [70], despite
some of the advantages of approximate policy iteration (e.g., ease of understanding and
implementation), it also has drawbacks that might lead to low quality solutions in terms
of actual performance in terms of fraction of late arrivals. We implemented approximate
policy iteration, but observed consistently poor performance despite convergence to low
values of the mean squared error in the linear regression. Note that the choice of an
action in a given state under the ADP policy (5.3) depends on the relative difference in
value function for different states, rather than on the actual values. As our goal is to
obtain a high performance policy rather than to fit the value function in (5.4), we resort
to heuristics that tune the coefficients ααα based on the corresponding performance in a
simulation.

Genetic algorithm

The first approach we propose is a genetic algorithm. Genetic algorithms draw inspiration
in evolution and natural selection, and are widely used for optimization problems [123].
The key concepts of genetic algorithms are:

• Population: each individual/solution is a part of a pool;
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• Selection: the fittest individuals survive;

• Crossover : the fit individuals reproduce, propagating their fit genes;

• Mutation: sometimes new characteristics appear by accident.

In our case an individual is a vector of coefficients ααα, and a population is a set of
vectors ααα(n), n = 1, . . . , NGA, where NGA is the size of the population and one of the
parameters of the algorithm. In each iteration of the algorithm, the population is updated
using mutation, crossover and selection. The population is initialized by adding random
vectors to the same vector α(0). In our experiments we set all elements of vector α(0)

equal to 1, except those corresponding to the expected covered demand, for which the
coefficient is set to −1. To produce an individual of an initial population, we then add a
random value to each element of α(0) drawn from a uniform distribution U(−1, 1).

During each iteration of the algorithm, a new population is constructed as follows.
First, the crossover operator is used, where NGA pairs of candidate solutions are randomly
selected from the current population and the average of each pair is chosen as a candidate
for the next population. Second, the mutation operator is applied to each candidate
solution from the current population. Given a solution ααα(n), the mutation operator adds
a vector, the ith component of which is normally distributed with mean 0 and standard

deviation AGA|ααα(n)
i |. Here, AGA is the parameter of the algorithm, and is referred to as

mutation amplitude. This way, together with the current population, after mutation and
crossover is done, we obtain 3N candidate solutions for the next population.

Finally, the selection is done to produce the next population, where NGA solutions
are chosen out of the 3NGA candidates. To measure fitness of a candidate solution, we
run simulation with the corresponding ADP policy. Simulation starts from the same state
of each candidate, and the fitness of a given candidate solution is measured as the costs
per machine failure observed in a simulation (see the cost structure in Section 5.3). Note
that the larger the time horizon of simulation, the better is an estimation of the solution
fitness, but the larger the computational time of the algorithm. In our experiments, we
set the time horizon equal to 500/(λK).

All 3N solutions of the new population are evaluated by means of simulation: the
system is simulated under corresponding policies from the same initial state and the
fraction of calls answered in time is observed. Then only the qGANGA best performing
and (1− qGA)NGA randomly chosen candidate solutions survive and constitute the next
population. Here, the fraction of fittest candidate solutions qGA is the parameter of he
algorithm. The algorithm stops after a certain number of iterations. The scheme of the
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algorithm is depicted in Figure 5.1.

Figure 5.1: Genetic algorithm

Tabu search

Tabu search is a high-level metaheuristic technique that guides other local search heuristic
methods and is constructed in such a way that allows to escape local optima [32]. The
main idea is to allow moves to worse solutions and prevent cycling back to the local
optima with the help of the so-called tabu lists. Here, we introduce the main concepts of
the tabu search metaheuristic:

• Incumbent solution: the current solution representing the current state of the
algorithm. Tabu search performs a walk in the search space through a sequence of
incumbent solutions. The best found solution is the outcome of the algorithm.

• Move: a procedure of obtaining a new feasible solution from the incumbent solution.

• Neighborhood : determined by the move and represents all the feasible solutions that
can be reached by moving from the incumbent one.

• Tabu list : a list of restrictions that impose limitations based on certain attributes of
the recently performed moves. The tabu list has a limited size, it is based on a short
term memory and prevents the search to return to the recently visited solutions.
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• Tenure: a number of iterations of the algorithm a tabu restriction stays in the tabu
list.

The algorithm has two phases: (1) the diversification phase and (2) the intensification
phase. First, it performs a certain number of iterations in the diversification phase,
followed by a certain number of iterations in the intensification phase that starts from
the best found solution of the diversification phase. In the diversification phase, the focus
is on exploring the neighborhood and escaping the local optima. In each iteration, the
algorithm moves to the best found candidate solution from the neighborhood, even if it is
worse than the current incumbent solution. In the intensification phase, the goal is to
find the local optimum around the best found solution of the diversification phase. The
movement to a new incumbent solution is allowed only if it is better than the current one.

The move operator works as follows. Given an incumbent solution ααα, the move
operator adds a random vector to it, ith component of which is normally distributed with
mean 0 and standard deviation ATS |αi|, unless i is in the tabu list. The tabu list contains
the indices of the coefficients in the incumbent solution that are not allowed to change, as
well as the remaining number of iterations those indices will stay in the tabu list. The size
of the tabu list TLS is one of the parameters of the algorithm. The tabu list is initialized
as an empty set. In the end of each iteration, the remaining number of iterations is
decreased by one. If it becomes zero, a new set of TLS indices is chosen as tabu with the
remaining number of iterations equal to tenure TLT , another parameter of the algorithm.
In the diversification phase, the tabu indices are chosen as non-tabu indices that changed
the most in the last iteration, and in the intensification phase those that changed the least.

We initialize the algorithm with the incumbent solution α(0) defined the same way
as in the genetic algorithm. At every iteration NTS candidates are obtained from the
incumbent solution using the move operator. The candidate solutions are estimated
first by the surrogate fitness function, and then a subset of fTSNTS good candidate
solutions is estimated by the primary fitness function. Both fitness functions are measured
as costs per machine failure observed in a simulation. The only difference is that the
surrogate fitness is computed over a shorter time horizon to quickly identify potentially
good candidates. Those are further evaluated in a larger simulation. Using surrogate
fitness allows us to better explore the neighborhood at a lower computational cost. In our
experiments, we use the time horizon of 30/(λK) time unites for the surrogate fitness,
and 500/(λK) for the primary fitness. If more than fTSNTS candidates result in zero
surrogate fitness (this may happen when the quality of the incumbent solution improves),
the corresponding time horizon is doubled.

At the end of each iteration, the algorithm updates the incumbent solution and the
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tabu list. If in the intensification phase the incumbent solution does not change, then
the move amplitude is decreased by 10% before the next iteration. The algorithm stops
after a certain number of iterations in the diversification and intensification phases. If
necessary, the cycle can repeat starting from the incumbent solution. In the numerical
experiments in Section 5.5 we perform only one such cycle.

5.5 Numerical Experiments

In this section, we present the results of our numerical experiments. The setup of the
experiments is as described in Section 4.6.1. In Section 5.5.1, we study the parameters
of the two ADP tuning algorithms presented in Section 5.4.2. In Section 5.5.2, we use
simulation to compare the ADP policies obtained by both tuning algorithms against the
heuristic described in Section 5.2 and the closest-first policy.

5.5.1 Parameters of the ADP Tuning Algorithms

In this section, we discuss the important parameters of the two ADP tuning algorithms,
genetic algorithm and tabu search, introduced in Section 5.4.2. There are two criteria that
affect the choice of the values for each of the parameters. The first one is the convergence
rate, that is, how quickly in terms of the number of iterations the algorithm finds good
quality solutions. The second criterion is the computational time, that is, how much time
the algorithm spends per iteration. The right balance should be found so that the good
solution are found within a reasonable amount of time. In all experiments in the rest of
this section we use the randomly generated network shown in Figure 5.2 with K = 8,
R = 3, M = 5, t∗ = 10, λ = 0.01 and µ = 0.1. The fitness of each solution is measured in
terms of cost per incident incurred in a simulation.

Number of basis functions

First, we determine if there are basis functions that do not contribute to the quality of the
solutions found. The more basis functions are included, the more complex the problem
becomes, as each extra basis function adds an extra dimension to the search space. This
leads to large computational times. In our experiments, we discovered that when an ADP
tuning algorithm is ran with the six main basis functions ϕ1(·), . . . , ϕ6(·), the coefficients
corresponding to the functions ϕ4(·) and ϕ6(·) are driven to zero, meaning that these
two basis functions have insignificant effect on the quality of the ADP policy. Since the
number of uncovered machines and the average response time seem to contain redundant
information about the state of the system, we consider omitting the corresponding main
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Figure 5.2: Network used to test the parameters of the ADP tuning algorithms

and future basis functions. Figure 5.3 demonstrates the convergence of the genetic algo-
rithm depending on the number of basis functions used. Here, ‘6’ corresponds to the six
main basis functions, ‘4’ to the main basis functions excluding ϕ4(·) and ϕ6(·), ‘8’ to the
previous four plus the corresponding one-step-ahead future basis functions, ‘12’ to the
previous eight plus the corresponding two-steps-ahead future basis functions. The fitness
of the best solution in a population is plotted against the number of iteration.

Note that the initial populations are different for different sets of basis functions,
and the solutions are sampled at random. So, the quality of the initial population does
not depend on the set of basis functions used. It can be seen from Figure 5.3 that
using six main basis functions instead of four does not contribute to the quality of the
obtained policies. Adding the one-step-ahead future basis functions, however, boosts the
performance of the policies. Including the two-steps-ahead future basis functions further
improves the quality of the best found policy, although the effect is marginal. A similar
effect is observed when running the tabu search algorithm. In Section 5.5.2 we use twelve
basis functions with both algorithms when tuning the ADP policy.

Parameters of genetic algorithm NGANGANGA, AGAAGAAGA, qGAqGAqGA

Figure 5.4 presents the effects of the genetic algorithm parameters on the fitness con-
vergence, where the best population fitness is plotted per iteration. It can be seen that
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Figure 5.3: Genetic algorithm convergence for different sets of basis functions. NGA = 50, AGA = 1,
qGA = 0.8

increasing the population size NGA has a positive effect. It, however, directly affects
the computation time, as in each iteration a simulation is run for every solution in the
population. Hence, the choice should be made depending on the computational resources
to ensure that the policy can be obtained within a reasonable amount of time. In Sec-
tion 5.5.2, we use NGA between 50 and 100 depending on the system. The mutation
amplitude AGA and the fraction of fittest qGA do not affect computation time, but do
influence the convergence of the algorithm. Both parameters should not be too high or
too low. When tuning the ADP policy with genetic algorithm in Section 5.5.2, we set
AGA = 0.7 and qGA = 0.8.

Parameters of tabu search fTSfTSfTS, TLSTLSTLS, TLTTLTTLT

The parameters NTS and ATS of the tabu search algorithm demonstrate similar influence
as the NGA and AGA parameters of the genetic algorithm. Therefore, we do not discuss
them here. In our computational experiments in Section 5.5.2, we use the values between
200 and 400 for NTS , and we set ATS = 0.7. The first tabu search specific parameter
we consider is fTS . It is intuitive that the larger its value, the better the convergence
in fitness, as for larger values of fTS a bigger part of the neighborhood is explored in
each iteration. It is also intuitive that this leads to larger computation time, as in each
iteration more solutions from the neighborhood are evaluated with the primary fitness
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(a) NGANGANGA (AGA = 1, qGA = 0.8)

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Iteration

0.05

0.10

0.15

0.20

0.25

Be
st

 fi
tn

es
s

0.1
0.5
1.5

(b) AGAAGAAGA (NGA = 50, qGA = 0.8)
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(c) qGAqGAqGA (NGA = 50, AGA = 1)

Figure 5.4: Genetic algorithm convergence with six main basis functions

function. When fitting ADP policies in Section 5.5.2, we set fTS = 0.3. Figure 5.5 shows
how the parameters TLS and TLT affect the algorithm convergence, where the average
primary fitness of the best candidates in the neighborhood is plotted per iteration of
a diversification phase. These parameters have no effect on computation time, but do
influence the convergence of the algorithm and should be chosen carefully. In the example
shown in Figure 5.5 increasing TLS helped to find a better neighborhood, but at a cost
of making more iterations. Increasing TLT , however, did not help converging to a good
neighborhood. Note that the right choice of these parameters depends on the number of
basis functions used. In Section 5.5.2, we set TLS = 3 and TLT = 2 in combination with
twelve basis functions.
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(a) TLSTLSTLS

(NTS = 400, ATS = 1, fTS = 0.3, TLT = 1)
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Figure 5.5: Tabu search convergence with six main basis functions

5.5.2 ADP Performance

In this section, we compare the ADP policy against the heuristic policy (Heuristic) de-
scribed in Section 5.2 and the closest-first (CF) policy that always dispatches the closest
engineer and does not perform relocations. We consider various types of systems by
changing the parameters µ, d and t∗. We fix λ at 0.01 and the size of the networks
with K = 40, R = 7 and M = 10, which is realistic for many real life maintenance
networks. For each combination of the parameters 10 random networks are generated
as described in Section 4.6.1. For each of the networks the ADP policy is tuned with
both genetic algorithm (GA) and tabu search (TS). The two ADP policies are then
compared against the Heuristic and the CF policies using simulation over the time horizon
of 1000/λ = 100000 time units. The performance of the policies is measured with the
cost per incident (computed according to (5.2) with ε = 0.01 and referred to as Cost),
fraction of late arrivals (FLAR), and average response time (ART). Both ADP tuning
algorithms were parallelized and ran on the 16-core nodes of a cluster computer.

Table 5.1 presents the obtained results. Note that our main objective was to minimize
FLAR. Therefore, we chose the value of ε such that there is no notable decrease in
ART compared to the other two policies. The ADP policy obtained with both tuning
algorithms significantly outperforms both CF and Heuristic in terms of FLAR for all
considered types of the systems. There is almost no increase in ART, and in some cases
ART is also decreased by a large margin. The ADP policy performs especially good for
the systems with larger distances and higher load, those where relocations contribute
most to reducing response time to future incidents.
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Table 5.1: ADP performance on various types of systems, ε = 0.01

µµµ ddd t∗t∗t∗ Metric CF Heuristic ADP GA ADP TS

0.1

0.3

20
Cost 1.68 1.26 1.35 1.40
FLAR 97.0% 79.4% 74.4% 73.8%
ART 90.7 65.1 78.5 84.6

5
Cost 0.49 0.39 0.38 0.35
FLAR 46.1% 36.7% 34.3% 32.7%
ART 6.9 5.7 5.8 6.1

2

20
Cost 1.07 0.85 0.56 0.63
FLAR 87.3% 60.2% 40.7% 46.3%
ART 39.4 42.4 32.2 33.2

5
Cost 0.15 0.16 0.14 0.15
FLAR 15.0% 15.7% 13.1% 14.3%
ART 3.5 3.3 4.5 4.6

0.5

0.3

20
Cost 1.46 1.58 0.85 0.96
FLAR 95.6% 80.8% 49.2% 58.6%
ART 69.7 96.2 52.1 54.6

5
Cost 0.11 0.13 0.09 0.10
FLAR 10.4% 10.1% 9.1% 9.3%
ART 3.5 5.4 3.2 3.7

2

20
Cost 0.80 0.88 0.30 0.31
FLAR 68.2% 70.9% 23.3% 24.2%
ART 29.2 27.7 21.9 22.2

5
Cost 0.02 0.02 0.02 0.02
FLAR 2.0% 1.9% 1.7% 1.8%
ART 2.7 3.0 3.4 3.2
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Table 5.2: ADP performance with ε = 0.001

µµµ ddd t∗t∗t∗ Metric CF Heuristic ADP GA

0.1

0.3

20
Cost 1.04 0.84 0.49
FLAR 97.0% 80.1% 28.5%
ART 90.7 61.1 225.1

5
Cost 0.46 0.34 0.38
FLAR 46.1% 34.3% 33.8%
ART 6.9 5.3 44.8

2

20
Cost 0.89 0.63 0.20
FLAR 87.3% 59.9% 9.3%
ART 39.4 44.2 124.1

5
Cost 0.15 0.15 0.12
FLAR 15.0% 15.2% 12.2%
ART 3.5 3.3 4.4

As already mentioned before, the ADP cost structure (5.2) allows flexibility in terms
of prioritizing FLAR against ART. If, for example, it is not important how large the
waiting time of a broken machine is, given that it is over t∗ time units, the ε parameter
can be reduced to reflect that. Table 5.2 shows the performance of the ADP policy for a
subset of systems used in Table 5.1, with ε = 0.001.

For all the considered systems, both the genetic algorithm and the tabu search were
able to find good solutions within a couple of days, and in some cases within a few hours.
Note that the parameters NGA and NTS of the ADP tuning algorithms that affect both
solution quality and computation time, as well as the number of performed iterations,
were chosen such that the good policies are obtained for all systems within a reasonable
amount of time. For any given system, the ADP policy can be further improved by
increasing NGA and NTS and/or the number of iterations. The choice between the
genetic algorithm and the tabu search depends on the computational resources available.
In our experiments, when parallelized and ran on the 16-core nodes of a cluster computer,
the genetic algorithm was able to find good quality solution about twice faster than the
parallelized tabu search. However, when run sequentially, the tabu search was a few times
faster.

5.6 Conclusion

In this chapter, we studied the problem of dynamic dispatching and relocation of ser-
vice engineers. We considered the model introduced in Chapter 4 and developed an
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ADP approach to the problem. To that end, we proposed a number of basis functions
and demonstrated in the computational experiments which of them are most important
for finding a high performance policy. We also introduced two algorithms for tuning
the coefficients of the basis functions in the ADP approach. We conducted extensive
computational experiments, where we studied the parameters of the proposed ADP
tuning algorithms, and compared the ADP approach against the two benchmark poli-
cies, closest-first policy and a heuristic algorithm that proved to perform well in Chapter 4.

We showed that the ADP based policy outperforms both benchmarks for various types
of systems, with most significant improvements for those with larger distances and higher
loads. For the types of systems used in the study, we observed significant improvement
over the best benchmark in terms of FLAR, without loss in ART. As it is computed
offline and only once for each given type of system, the ADP policy is computationally
tractable for real-life applications. Additionally, by modifying the cost structure with a
single parameter ε, it is possible to strike the desirable balance between the fraction of
late arrivals and the average response time.
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6
Integrating Condition-Based Maintenance into

Dynamic Spare Parts Management

In this chapter we introduce a new model where the concept of condition-based main-
tenance is combined in a network setting with dynamic spare parts management. The
model facilitates both preventive and corrective maintenance of geographically distributed
capital goods as well as relocation of spare parts between different warehouses based on
the availability of stock and the condition of all capital good installations. We formulate
the problem as a Markov decision process, with the degradation process explicitly incorpo-
rated into the model. Numerical experiments show that that significant cost savings can
be achieved when condition monitoring is used for preventive maintenance in a service
network for capital goods.

The work in this chapter is based on [105]: D. Usanov, P.M. van de Ven, and
R.D. van der Mei. Integrating Condition-Based Maintenance into Dynamic Spare Parts
Management (2019). Manuscript submitted for publication.
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6.1 Introduction

Capital goods such as MRI scanners, lithography machines, aircraft, or wind turbines
are subject to deterioration and require maintenance over their lifetime. Continuous
operation of such assets is crucial, as failures can have significant negative effects. Ad-
vancements in condition monitoring techniques facilitate tracking the degradation process
of capital goods in real time. This creates a tremendous potential for implementing
preventive maintenance policies that use sensor data to indicate which spare parts should
be replaced before a breakdown happens. This type of preventive maintenance is called
condition-based maintenance (CBM), and it can be extremely useful to mitigate the risks
related to downtime of capital goods.

The existing research on CBM is focused on optimizing control limits and/or main-
tenance intervals for one single- or multi-component machine. However, these works
typically ignore the fact that these machines are parts of a network comprising many
machines distributed across different geographical locations, and the spare parts supply
distributed over a number of stock points to ensure short response times to failures. The
research literature on dynamic spare parts management in a service network is primarily
focused on optimal corrective maintenance and relocation of spare parts, where the failures
are typically assumed to follow a Poisson process and cannot be predicted.

In this chapter we integrate the CBM concept into a network setting with dynamic
spare parts management. This allows us to relocate spare parts between stock points and
perform proactive maintenance of machines based on stock levels and the condition of
all machines. Figure 6.1 illustrates how incorporating CBM changes the complexity and
the dynamics of the service network. The state space increases, as each of the machines
has more than just two possible condition states (perfect and failure), as it is typically
assumed in the research literature on dynamic spare parts management. However, this
provides more information about the overall state of the network, and therefore, enables
more educated decision making. For instance, instead of relocating a spare part upon
failure of one of the machines, it might be better to preventively repair another machine
that is close to failure. Using the information obtained through condition monitoring can
improve both maintenance and relocation activities, and boost the performance of the
service network.

We consider a single-component machine and assume a Markovian degradation process,
where a machine moves through a sequence of intermediate states before it reaches the
failure state. This is a common assumption in research literature (see for example [56, 53]).
A number of such machines are spread across a service region, and we optimize corrective
and preventive maintenance actions, as well as proactive relocation of spare parts between
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(a) (b)

Figure 6.1: Integrating CBM into dynamic spare parts management

stock points. We show that, by introducing condition monitoring into a network setting,
significant improvements can be achieved in reducing total expected costs, independent
of the cost structure.

To summarize, in this chapter we make the following contributions:

1. We propose a new model, where condition-based maintenance is integrated into the
dynamic spare-parts management;

2. We formulate the problem as a Markov Decision Process (MDP), and conduct
numerical experiments showing that incorporating CBM can significantly reduce
the maintenance costs.

The remainder of this chapter is organized as follows. In Section 6.2, we provide
brief review of the relevant literature. Section 6.3, presents the model and the MDP
formulation. In Section 6.4 we numerically evaluate the impact of CBM the optimal policy
performance. Conclusions and suggestions for further research are made in Section 6.5.
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6.2 Literature Review

The research most related to our work comes from the two streams of literature: dynamic
dispatching and relocation of spare parts, and condition-based maintenance. Although
attention to both topics seems to increase in recent years, to the best of our knowledge,
there has been no research on combining these two concepts. Below we make a brief
overview of the latest work in the two domains.

Dispatching and relocation of spare parts considers operational level decision making
in maintenance service networks. Proactive and reactive allocation of stock in spare
parts networks is commonly referred to in research literature as lateral transshipment.
For a comprehensive overview of the research done on lateral transshipments we refer
to [121, 83]. In [118] the authors consider an inventory model with fixed inventory level
and two warehouses, both facing Poisson demand for spare parts. They provide an exact
analysis of the model that derives an optimal policy for allocation of demand to warehouses.
In [101] a dynamic demand allocation rule is developed that is scalable for spare parts
networks of realistic size. The authors show that significant cost savings can be achieved
with their approach compared to the static allocation rule commonly used in practice,
where the closest warehouse is used to fulfill the demand. An interesting contribution
is made in [84], where the authors consider relocating additional stock when satisfying
real-time demand. Recent developments include [28, 74], where proactive relocation of
stock is studied along with the reactive policies.

The recent works on condition-based maintenance include [126, 86, 125, 22]. In [126]
the authors study a multi-component system where each component follows a stochas-
tic degradation process according to the so-called random coefficient model. A joint
maintenance of components whose condition falls below a control limit is performed at
scheduled downs. Those control limits together with the maintenance interval are subject
to optimization. In [125] the authors consider condition-based maintenance of a single
component that is a part of a complex system. This component follows a stochastic
degradation process for which the authors use the random coefficient model and Gamma
process. A control limit policy is analyzed, with maintenance actions taken at scheduled
or unscheduled downs related to other components of the system. A single component
model with stochastic degradation process is also studied in [86]. The authors consider an
application for a manufacturing system and look into joint optimization of control limit
and production quantity of the lot-sizing policy. Another way to model the degradation
process is using Markov process with discrete states. In [22] the authors consider a single-
component system that follows Markovian degradation process with two intermediate
states and study the optimal control limit policy of such system.
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Our work is different from these streams of research literature, as we consider a generic
model where both reactive and proactive allocation of stock is allowed in real-time, along
with condition-based maintenance.

6.3 Model

We consider a network of identical single-component machines supported by a set of
local warehouses and a central warehouse. The state of each machine is completely and
continuously observable. Replacement of components happens either preventively or
correctively upon a failure. Let I = {0, 1, ..., I} be a set of warehouses, with i = 0 - central
warehouse with ample capacity. Let J = {1, ..., J} be a set of machines.

We assume that the lifetime of a machine is Cox distributed with N > 0 phases [60].
We choose Cox distribution because it allows to approximate any random variable with
positive support. Denote the condition of a machine j ∈ J by Cj ∈ {0, 1, ..., N}, where
0 corresponds to failure and N to the perfect condition. A machine stays in each state
n ∈ {1, ..., N} for an exponential amount of time with parameter µn, then it moves either
to the ’failure’ state 0 with probability αn < 1 or to the state n−1 with probability 1−αn.
Note that from state 1 the machine moves to state 0 with probability 1, so α1 = 1. Upon
breakdown, a spare part is dispatched to that machine from either a local or the central
warehouse. The downtime of a machine due to corrective maintenance includes traveling
time and repair time, and we assume it is exponentially distributed with parameter µ0.
A machine can be preventively repaired at any point in time. We assume that there
is no downtime of a machine in this case, so a spare part is replaced instantly. This is
a common assumption in literature, as preventive maintenance is typically easier than
corrective, and the corresponding downtime does not include delivery of a spare part.
After a spare part is replaced, either correctively or preventively, a machine moves back
into the ‘perfect’ state N .

If a failure occurs, a spare part is to be dispatched immediately either from a local
warehouse, or from the central warehouse. Once a spare part is dispatched from a local
warehouse, a replenishment order is placed. The replenishment lead time is exponentially
distributed with parameter γ. If a spare part was dispatched from a local warehouse i, a
relocation of a single spare part from one of the other warehouses to the warehouse i is
allowed. We assume that such relocations happen instantaneously. This is a reasonable
assumption, as the traveling times between warehouses are typically low compared to the
average time between consecutive failures of capital goods.

If the condition of a machine degrades but it is still not in a failure state, we consider
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two types of actions. We may decide to repair this machine preventively, and do up to
one relocation the local warehouse from which a spare part is dispatched. Alternatively,
we may decide to not repair the machine, and do up to one relocation between any two
local warehouses. These relocations are intended to better distribute stock across the
network, and reduce future downtime.

Let C = (C1, ..., CJ), F = (F1, ..., FI), P = (P1, ..., PI), where Fi ≥ 0 and Pi ≥ 0
denote the stock level and the pipeline stock (replenishment orders) at warehouse i,
respectively. Denote by K =

∑
i∈I (Fi(t) + Pi(t)) the aggregate inventory level. Note

that K always remains constant, as each time a spare part is dispatched, a new one is
ordered immediately and added to the corresponding pipeline stock. Let X = (F ,P ,C, j)
with j ∈ {0, 1 . . . , J}, denote the state of the system immediately after the condition of
machine j ∈ J changes or a replenishment order arrives (j = 0). Let also a(X) = (x, y, z)
represent the action in state X. Here, x ∈ {−1, 0, 1, ..., I} indicates the warehouse from
which a spare part is to be dispatched, y ∈ {−1, 1, ..., I} indicates the warehouse from
which a spare part is to be relocated, and z ∈ {−1, 1, ..., I} the warehouse to which a
relocated spare part should be placed. The value x = −1 corresponds to the case when
no dispatching is made, y = z = −1 to the decision not to relocate a spare part.

6.3.1 Actions

We consider two types of actions. The first type includes both dispatching a spare part
and relocating another spare part to the warehouse from which the dispatching was made.
Relocating a spare part is not necessary and is only considered if a part was dispatched
from a local warehouse. This type of action can be made either correctively upon a failure,
in which case repair is required, or preventively when a machine’s condition degrades but
the machine is still functioning. Let W(XXX) ⊆ I denote the set of local warehouses that
have at least one spare part in stock in state XXX. For a state XXX = (F ,P ,C, j), Cj < N ,
the type-1 action space is defined as

A1(X) ={(x, y, z)|x ∈ W(XXX), y ∈ W(XXX) \ {x}, z = x} (6.1)

∪ {(x, y, z)|x ∈ W(XXX) ∪ {0}, y = −1, z = −1}.

The second type of action includes only relocations. These are allowed upon a change
of a machine state that does not result in a failure. In this case, a single relocation is
allowed between any pair of local warehouses as long as the origin warehouse has a spare
part available. For a state XXX = (F ,P ,C, j), Cj > 0, the type-2 action space is defined as

A2(X) ={(x, y, z)|x = −1, y ∈ W(XXX), z ∈ I \ {y}} ∪ {(−1,−1,−1)}. (6.2)

Thus, the total action space is A(X) = A1(X) ∪ A2(X).
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We denote by Xa(t) the state of the system at time t under decision rule a. The
process {Xa(t)}t≥0 is a continuous-time Markov process, with the following state space:

S =
{

(F ,P ,C, j)|Fi ≥ 0, Pi ≥ 0 ∀i ∈ I;
∑
i∈I

(Fi + Pi) = K;

Cj ∈ {0, 1, ..., N} ∀j ∈ J ; j ∈ {0, 1, ..., J}
}
.

6.3.2 Transitions

In this subsection we define transition rates between states corresponding to decision
epochs. We consider the following four types of events when the state of the system
changes:

1. arrival of a replenishment order at local warehouse i;

2. failure of machine j;

3. degradation of machine j that is not a failure;

4. repair of machine j.

Given the machines’ condition vector C, let Cj,n denote a vector that is obtained
from C by setting its j-th component to n, so Cj,nk = Ck ∀k 6= j and Cj,nj = n. We
denote as ek the vector of length I with the k-th element equal to 1 and all other ele-
ments equal to 0 for k ∈ {1, ...I}. Finally, e0 and e−1 both denote a zero vector of length I.

Assume that the system is in state X = (F ,P ,C, j) immediately after an event
occurred at machine j and before an action is taken. Remember that we set j = 0 if the
last even is an arrival of a replenishment order. We want to define the transition rate
qaaa
(
(FFF ,PPP ,CCC, j), (FFF ′+,PPP ′,CCC ′, j′)

)
from each state (FFF ,PPP ,CCC, j) to each possible next state

(FFF ′+,PPP ′,CCC ′, j′) that is determined by an action aaa and the next event j′. The following
types of transitions are possible in our model.

Type 1. Last event: replenishment at warehouse i ∈ {1, .., I}; action: aaa = (−1,−1,−1).
The last event is a replenishment at a local warehouse i. In that case only one action is
possible, and that is to do nothing. The state of the system immediately after the action
is taken is XXX = (FFF ,PPP ,CCC, 0). The transition rates then depend on the next state, and are
defined as follows.

1. Next event: replenishment at k, Pk > 0. The corresponding transition rate is

qaaa
(
(FFF ,PPP ,CCC, 0), (FFF + eeek,PPP − eeek,CCC, 0)

)
= Pkγ.
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2. Next event: failure of machine j, Cj > 0. The corresponding transition rate is

qaaa
(
(FFF ,PPP ,CCC, 0), (FFF ,PPP ,CCCj,0, j)

)
= αCjµCj .

3. Next event: degradation of machine j, Cj > 1. The corresponding transition rate is

qaaa
(
(FFF ,PPP ,CCC, 0), (FFF ,PPP ,CCCj,Cj−1, j)

)
= (1− αCj )µCj .

4. Next event: repair of machine j, Cj = 0. The corresponding transition rate is

qaaa
(
(FFF ,PPP ,CCC, 0), (FFF + eeek,PPP − eeek,CCCj,N , j)

)
= µ0.

Type 2.1 Last event: failure of machine j ∈ J ; action: aaa = (x, y, z) ∈ A1(FFF ,PPP ,CCC, j).
The last event is a failure of machine j, and the action is to dispatch a spare part from a
warehouse x. The action may also include a relocation of one spare part from warehouse
y to warehouse z = x. The state of the system immediately after the action is taken is
XXX = (FFF − eeex1{y = −1} − eeey,PPP + eeex,CCC, j). The transition rates are defined as follows.

1. Next event: replenishment at k, (PPP +eeex)k > 0. The corresponding transition rate is

qaaa
(
(FFF ,PPP ,CCC, j), (FFF − eeex1{y = −1} − eeey + eeek,PPP + eeex − eeek,CCC, 0)

)
= (PPP + eeex)kγ.

2. Next event: failure of machine l, Cl > 0. The corresponding transition rate is

qaaa
(
(FFF ,PPP ,CCC, j), (FFF − eeex1{y = −1} − eeey,PPP + eeex,CCC

l,0, l)
)

= αClµCl .

3. Next event: degradation of machine l, Cl > 1. The corresponding transition rate is

qaaa
(
(FFF ,PPP ,CCC, j), (FFF − eeex1{y = −1} − eeey,PPP + eeex,CCC

l,Cl−1, l)
)

= (1− αCl)µCl .

4. Next event: repair of machine l, Cl = 0. The corresponding transition rate is

qaaa
(
(FFF ,PPP ,CCC, j), (FFF − eeex1{y = −1} − eeey,PPP + eeex,CCC

l,N , l)
)

= µ0.

Type 2.2 Last event: degradation of machine j ∈ J ; action: aaa = (x, y, z) ∈ A1(FFF ,PPP ,CCC, j).
The last event is a degradation of machine j that is not a failure. A spare part from a
warehouse x is dispatched for preventive maintenance of the machine. The action may
also include a relocation of one spare part from warehouse y to warehouse z = x. As
preventive maintenance assumed to be done instantaneously, the state of the system
immediately after the action is taken is XXX = (FFF − eeex1{y = −1} − eeey,PPP + eeex,CCC

j,N ). The
transition rates are defined as follows.
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1. Next event: replenishment at k, (PPP +eeex)k > 0. The corresponding transition rate is

qaaa
(
(FFF ,PPP ,CCC, j), (FFF − eeex1{y = −1} − eeey + eeek,PPP + eeex − eeek,CCCj,N , 0)

)
= (PPP + eeex)kγ.

2. Next event: failure of machine l, Cl > 0. The corresponding transition rate is

qaaa
(
(FFF ,PPP ,CCC, j), (FFF − eeex1{y = −1} − eeey,PPP + eeex,CCC

j,N l,0, l)
)

= αClµCl .

3. Next event: degradation of machine l, Cl > 1. The corresponding transition rate is

qaaa
(
(FFF ,PPP ,CCC, j), (FFF − eeex1{y = −1} − eeey,PPP + eeex,CCC

j,N l,Cl−1, l)
)

= (1− αCl)µCl .

4. Next event: degradation of machine j. The corresponding transition rate is

qaaa
(
(FFF ,PPP ,CCC, j), (FFF − eeex1{y = −1} − eeey,PPP + eeex,CCC

j,N−1, j)
)

= (1− αN )µN .

5. Next event: repair of machine l, Cl = 0. The corresponding transition rate is

qaaa
(
(FFF ,PPP ,CCC, j

)
, (FFF − eeex1{y = −1} − eeey,PPP + eeex,CCC

j,N l,N , l)
)

= µ0.

Type 3 Last event: degradation or repair of machine j ∈ J ; action: aaa = (x, y, z) ∈
A2(FFF ,PPP ,CCC, j).
The last event is either a repair of machine j or a degradation that is not a failure. No
preventive maintenance is done, so x = −1. However, a relocation of one spare part
between any two warehouses y and z is possible. The state of the system immediately
after the action is taken is XXX = (FFF − eeey + eeez,PPP ,CCC, j). The transition rates are defined as
follows.

1. Next event: replenishment at k, Pk > 0. The corresponding transition rate is

qaaa
(
(FFF ,PPP ,CCC, j), (FFF − eeey + eeez + eeek,PPP − eeek,CCC, 0)

)
= Pkγ.

2. Next event: failure of machine l, Cl > 0. The corresponding transition rate is

qaaa
(
(FFF ,PPP ,CCC, j), (FFF − eeey + eeez,PPP ,CCC

l,0, l)
)

= αClµCl .

3. Next event: degradation of machine l, Cl > 1. The corresponding transition rate is

qaaa
(
(FFF ,PPP ,CCC, j), (FFF − eeey + eeez,PPP ,CCC

l,Cl−1, l)
)

= (1− αCl)µCl .
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4. Next event: repair of machine l, Cl = 0. The corresponding transition rate is

qaaa
(
(FFF ,PPP ,CCC, j), (FFF − eeey + eeez,PPP ,CCC

l,N , l)
)

= µ0.

Uniformization
To be able to compute the optimal policy, we uniformize our Markov process Xa(t).

To do so, we introduce the constant τ = γK + J maxn∈{0,...,N} µn that is larger than
the total transition rate from any state, and add the following dummy transitions that
make the total transition rate from any state equal to τ . We add the following dummy
transitions for each type of transition described above with aaa = {−1,−1,−1}.

Type 1:

qaaa
(
(FFF ,PPP ,CCC, 0), (FFF ,PPP ,CCC, 0)

)
= τ −

I∑
k=1

Pkγ −
∑
l∈J1

αClµCl −
∑
l∈J2

(1− αCl )µCl − µ0|J0|

= τ −
I∑
k=1

Pkγ −
∑
l∈J1

µCl − µ0|J0|

= τ −
I∑
k=1

Pkγ −
∑
l∈J

µCl ,

where J0 = {l ∈ J : Cl = 0}, J1 = {l ∈ J : Cl > 0} and J2 = {l ∈ J : Cl > 1}.

Type 2.1:

qaaa
(
(FFF ,PPP ,CCC, j), (FFF − eeex1{y = −1} − eeey ,PPP + eeex,CCC, 0)

)
= τ −

I∑
k=1

(PPP + eeex)kγ −
∑
l∈J

µCl .

Type 2.2:

qaaa
(
(FFF ,PPP ,CCC, j), (FFF − eeex1{y = −1} − eeey ,PPP + eeex,CCC

j,N , 0)
)

=τ −
I∑
k=1

(PPP + eeex)kγ

−
∑
l∈J

µCl + µCj − µN .

Type 3:

qaaa
(
(FFF ,PPP ,CCC, j), (FFF − eeey + eeez ,PPP ,CCC, 0)

)
= τ −

I∑
k=1

Pkγ −
∑
l∈J

µCl .
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6.3.3 Costs

We consider a generic cost structure that would allow to study various types of settings and
examine the effects of different actions on the optimal policy. We incorporate the following
cost components that are common in research literature on lateral transshipments and
CMB. Let ccs and cps be fixed setup costs for corrective and preventive maintenance,
respectively, given that a spare part is dispatched from a local warehouse. In case a spare
part is dispatched from the central warehouse, the costs ce are incurred, independent
of the type of maintenance. Let crs denote the setup costs incurred per relocation, and
cr - the replenishment setup costs. Assume that for each pair of local warehouse i and
machine j the corresponding response time Rij is deterministic and known. A fixed
penalty ccl is incurred if response time to a failed machine is larger than a given time
threshold t∗, and an extra penalty of ccp per time unit of delay over t∗. We assume that,
in case a spare part is dispatched from the central warehouse, response time is always
smaller than the time threshold t∗, independent of the machine. The immediate costs of
action a(X) = (x, y, z) in state X = (F ,P ,C, j) can be computed as follows:

c(X,a(X)) =

=


ce if x = 0,
ccs + cr + (ccl + ccp(Rxj − t∗))1{Rxj > t∗}+ crs1{y > 0} if x > 0 and Cj = 0,
cps + cr + crs1{y > 0} if x > 0 and Cj > 0,
crs1{y > 0} if x = −1.

6.3.4 Optimality Equations

We formulate the problem as an infinite-horizon discounted MDP. Let V (XXX) denote the
expected total discounted costs under the optimal policy, when starting in state XXX. Then
V (XXX) satisfies the Bellman equations:

V (XXX) = sup
aaa∈A(XXX)

c(XXX,aaa) +
∑
X′X′X′∈S

λp(X ′X ′X ′|XXX,aaa)V (X ′X ′X ′)

 , (6.3)

where λ < 1 is a discount factor.

6.4 Numerical Experiments

In this section we conduct a number of experiments to study the performance and the
structure of the optimal policy. To compute the optimal policy, we use the policy iteration
algorithm with the maximum number of iterations set to 1000. All experiments are run
in Python 3.7 on a computer with 8 GB RAM, Intel Core i5-5250U 1.6 GHz processor,
running Linux Fedora 30.
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Figure 6.2: Examples of problem instances. The warehouses are connected to the machines that are
reachable within t∗ time units

6.4.1 Experimental Setup

Parameters. The following parameters are fixed throughout all experiments: the time
threshold t∗ = 10, the discount factor λ = 0.95, the number of warehouses I = 2, the
number of machines J = 2, and the inventory level K = 2. Note that we only consider
small problem instances, as due to the curse of dimensionality, it would be infeasible to
derive optimal policy for multiple instances and for a wide range of parameter settings.
We also assume µi = 1 (i = 0, 1, ..., N), and αi = 0 (i = 2, ..., N). To study the system
performance under the different levels of workload, we introduce the load parameter
ρ = J

NγK . For given values of ρ and N , we adjust γ accordingly.

Response times. An important component of a problem instance is a matrix RRR of
fixed response times Rij between each pair of warehouse i and machine j. The matrix RRR
is used to compute the immediate costs in Section 6.3.3. For a given random seed, we
construct it as follows. Machines and warehouses are allocated at random within a square
of size 33× 33 in terms of time units, such that each warehouse is within t∗ = 10 time
units from at least one machine, and each machine is within t∗ = 10 time units from at
least one warehouse. The response times Rij are then computed as the corresponding Eu-
clidean distances. Figure 6.2 presents two examples of problem instances used in this study.

Policy types. To study the effects of different types of actions on the policy performance,
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and in particular, the effects of condition-based maintenance, we introduce the following
five types of policies that are defined by limiting the original action spaces (6.1) and (6.2)
as follows:

1. Closest-First corrective maintenance (CF).
With this policy type only corrective maintenance is done, using the closest available
spare part in terms of response time. The central warehouse stock is used only if all
local warehouses are empty. The corresponding action space is defined as follows:

ACF (X) =


{(x, y, z)|x = arg min

i∈W(XXX)
Rij , y = −1, z = −1}, Cj = 0, W(XXX) 6= ∅,

{(0,−1,−1)}, Cj = 0, W(XXX) = ∅,
{(−1,−1,−1)}, otherwise.

Note that with this policy type there is exactly one action per state. So, there is no
need to use policy iteration, and the value function can be obtained by solving a set
of linear equations:

V (XXX) = c(XXX,aaaCF (XXX)) +
∑
X′X′X′∈S

λp(X ′X ′X ′|XXX,aaaCF (XXX))V (X ′X ′X ′),

where aaaCF (XXX) is the action taken in state XXX under the CF policy.

2. Optimal Corrective maintenance (OC).
With this policy type only corrective maintenance is done that is subject to op-
timization as in equations (6.3). The corresponding action space is defined as
follows:

AOC(X) =

{
{(x, y, z) ∈ A1(X)|y = −1}, Cj = 0,

{(−1,−1,−1)}, otherwise.

3. Optimal Corrective maintenance with Relocation (OCR).
With this policy both corrective maintenance and relocation actions are optimized,
given that no preventive maintenance is done. Relocation is also allowed upon a
change of a machine state that is not a failure. The corresponding action space is
defined as follows:

AOCR(X) =

{
A1(X), Cj = 0,

A2(X), otherwise.

4. Optimal Corrective & Preventive maintenance (OCP).
With this policy type both corrective and preventive maintenance are subject to
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optimization, and no relocations are allowed. The corresponding action space is
defined as follows:

AOC(X) = {(x, y, z) ∈ A1(X)|y = −1}

5. Optimal Corrective & Preventive maintenance with Relocation (OCPR).
The last policy type corresponds to the full action space defined in Section 6.3.1:

A(X) = A1(X, j) ∪ A2(X, j).

Performance measures. Solving the Bellman equations gives a value function VVV with
the total expected discounted costs per state. To measure the policy performance we use
the weighted average of the components of VVV , where the steady state probabilities under
the optimal policy are used as the weights. The steady state probabilities vector πππ is
computed by solving the system of linear equations:{

πππPPP = πππ,∑|S|
i=1 πππ = 1,

where PPP is the matrix of transition probabilities under the optimal policy. The weighted
average of the value function is denoted by υ = πππ′VVV .

For the policy types 2 to 5 we also report the relative improvement over the CF policy
denoted by ∆. For example, for the optimal OCPR policy we define

∆OCPR =
υCF − υOCPR

υCF
× 100%.

6.4.2 Different Cost Settings

In this section we study the performance of the different policies depending on the cost
setting and the load. The general assumption we make when choosing the values for cost
parameters are aligned with the research literature on spare parts management and are
as follows. The setup costs for relocation and dispatching preventively are lower than
the setup costs for dispatching correctively from a local warehouse. Dispatching from
the central warehouse has higher setup costs than corrective dispatching from a local
warehouse. as it is supposed to be done only in emergency situations.

We study the policies’ performance under different values of the load parameter
ρ. For each combination of the cost parameters and the load ρ, 30 random instances
are generated as described in Section 6.4.1, and the average performance is computed.
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Table 6.1: Average performance of the policies per cost setting and load over 30 problem instances

Average υυυ Average ∆∆∆

Cost setting ρρρ CF OC OCR OCP OCPR OC OCR OCP OCPR

1

1 7.19 7.12 6.57 6.98 6.57 1.0% 8.6% 2.9% 8.7%

0.7 5.37 5.29 4.79 4.89 4.54 1.5% 10.8% 9.0% 15.6%

0.5 4.02 3.94 3.50 3.48 3.16 2.1% 13.0% 13.6% 21.5%

0.3 2.54 2.46 2.13 2.09 1.85 3.3% 16.3% 17.6% 27.3%

2

1 63.67 63.62 63.19 62.18 61.89 0.1% 0.8% 2.3% 2.8%

0.7 46.03 45.97 45.58 41.49 41.22 0.1% 1.0% 9.9% 10.5%

0.5 33.30 33.24 32.90 28.10 27.86 0.2% 1.2% 15.6% 16.3%

0.3 19.91 19.85 19.60 15.74 15.57 0.3% 1.6% 21.0% 21.8%

3

1 5.24 5.15 4.48 5.15 4.48 1.7% 14.4% 1.7% 14.4%

0.7 3.55 3.45 2.84 3.28 2.84 2.8% 20.0% 7.6% 19.8%

0.5 2.38 2.28 1.74 2.01 1.62 4.5% 26.8% 15.7% 32.0%

0.3 1.25 1.15 0.74 0.93 0.63 8.3% 40.6% 25.7% 49.8%

Table 6.1 presents the obtained results.

The immediate costs in Section 6.3.3 depend on seven parameters, and it is infeasible
to cover all possible cases. Hence, we choose the following three different cost settings:

1. cp = 0.05, cr = 0, ccs = 1, ccl = 1, cps = 0.2, crs = 0.2, ce = 10;

2. cp = 0.1, cr = 0, ccs = 10, ccl = 1, cps = 0.2, crs = 0.2, ce = 100;

3. cp = 0, cr = 0, ccs = 0, ccl = 1, cps = 0, crs = 0, ce = 10.

Setting 1 corresponds to machinery of moderate criticality, where it is important
to address breakdowns within the given time limit. The delay in response time is also
penalized, although not significantly. Setting 2 corresponds to critical machinery, where
breakdowns are very costly independent of response time. There is also a larger penalty
for the delay in response time. Setting 3 corresponds to the case where breakdowns are
not critical as long as they are taken care of within the time limit. For all three cost
settings we choose relocation and preventive maintenance setup costs to be noticeably
lower than the corrective setup costs and equal to each other.

For each cost setup and each value of the load parameter ρ we generate 30 different
problem instances. For instances and compute the average performance of the optimal
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policy for each of the policy types. The obtained results are reported in Table 6.1. We
observe that the largest improvement over the CF policy is obtained under the cost setting
3 for all of the other policy types. Note that for the cost setting 2, where breakdowns are
critical, optimal corrective maintenance and relocation have only marginal effect, while
preventive maintenance results in a significant reduction in costs. For cost settings 1 and
3 doing relocations (OCR) has a bigger effect than doing preventive maintenance (OCP).
Independently of the cost settings, all four types of policies with decision optimization
improve over CF, with OCRP showing the best performance. The relative improvement
over CF increases as the load ρ decreases, which is intuitive, as there are more opportunities
to deviate from the CF policy.

6.4.3 Importance of Better Condition Diagnostics

With better diagnostics we can more accurately identify at which point of a degrada-
tion process a machine is. We model improvement in diagnostics by decomposing the
degradation process in a larger number of intermediate steps, that is, by increasing N
while keeping the load ρ fixed. We consider the cost setting 1, and as before, use 30
instances per parameter setting. Table 6.2 shows that the average ∆ of OCP and OCRP
policies increases significantly with N for different loads. This means the contribution
of preventive maintenance grows with N , demonstrating the importance of accurate
diagnostics.

6.4.4 Balancing Relocation and Preventive Maintenance

In this section we show an example of how relocation actions are balanced with preventive
maintenance actions in the optimal OCPR policy. We consider the problem instance from
Figure 6.2a and fix the parameters ρ = 0.5 and N = 2. We vary the cost components cps
and crs in range [0, 1.5] each, with other components fixed as in the cost setting 1. For
each combination we compute the total number of states where relocation (preventive
maintenance) is done in the optimal policy, divided by the total number of states where
relocation (preventive maintenance) is possible. In Figure 6.3 this metric is plotted against
cps and crs for both prevention and relocation actions. We observe that both types of
actions take place in the optimal policy while both cps and crs are relatively low. When
one of the two cost components increases, the optimal policy leans towards either of the
two with lower setup costs, and when both cps and crs are large, the optimal policy does
not include either relocation or preventive maintenance actions.
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Table 6.2: Average performance of the policies for different N over 30 problem instances

Average υυυ Average ∆∆∆

ρρρ NNN CF OC OCR OCP OCPR OC OCR OCP OCPR

1

2 7.19 7.12 6.57 6.98 6.57 1.0% 8.6% 2.9% 8.7%

3 6.69 6.64 6.20 5.71 5.44 0.8% 7.4% 14.7% 18.7%

4 6.03 5.99 5.62 4.70 4.55 0.7% 6.8% 22.1% 24.5%

5 5.42 5.39 5.07 3.73 3.65 0.6% 6.4% 31.2% 32.7%

6 4.89 4.86 4.59 3.10 3.23 0.6% 6.2% 36.6% 33.9%

0.5

2 4.02 3.94 3.50 3.48 3.16 2.1% 13.0% 13.6% 21.5%

3 4.06 4.00 3.95 2.98 2.93 1.6% 2.8% 26.6% 28.0%

4 3.88 3.83 3.84 2.27 2.14 1.4% 0.9% 41.6% 45.0%

5 3.64 3.59 3.39 1.74 1.75 1.2% 6.8% 52.0% 51.7%

6 3.39 3.35 3.09 1.35 1.36 1.1% 8.9% 60.1% 59.9%

Figure 6.3: Relative number of states with relocation / preventive maintenance actions in the optimal
OCPR policy as a function of cps and crs
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6.5 Conclusion

The work in this chapter is a pioneering contribution to the field of dynamic spare parts
management. We introduce the concept of condition-based maintenance into the problem
of dynamic dispatching and relocation of spare parts in a service network, and study the
effects of this on the optimal policy. With the degradation process explicitly incorporated
into the model, preventive maintenance of the machines and proactive relocation of spare
parts become possible based on the current condition of all machines in the network as
well as the availability and spatial distribution of resources.

We formulate the problem as an MDP, and study the optimal performance of various
types of policies to evaluate the relative contribution of introducing CBM in a spare parts
network. To that end, we conduct numerical experiments with a different cost settings,
and show that the policies that use the information about the condition of the machines
outperform those not doing so. We also demonstrate that better condition diagnostics
can further improve the CBM based policy performance.

Due to the curse of dimentionality, solving MDP is computationally infeasible for
large networks. Hence, in this work we only consider small problem instances. Given
the benefits of introducing CBM on a network that we show in this chapter, further
research should focus on developing scalable heuristic approaches to the problem that
would work for the problem instances of realistic sizes. Another interesting direction for
further research is the parametric study of the degradation process. One could consider
the effects of the corresponding parameters on the policy structure and its performance.
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Summary

Emergencies such as a breakdown of an MRI-scanner or a domestic fire demand a timely
response. This means that the resources required for addressing such incidents (spare
parts and fire trucks, respectively) need to be stored in relative proximity of potential
incidents and dispatched on short notice. This necessitates a network of locations close to
potential emergencies where the resources are stored. Operators of such service networks
face the following operational questions:

1. How should resources be distributed over the service area and dispatched in response
to an emergency?

2. How can the performance of emergency services be improved by proactive relocation
of resources?

Answering this type of questions is essential to achieve the required timely response. In
this thesis, we introduce the concept of Emergency Resource Networks (ERN’s), unifying
and extending results from the heretofore disjoint application areas of maintenance ser-
vices and emergency services. More specifically, we focus on the following two examples
of ERN’s: maintenance services for capital goods and fire fighting emergency services. We
address a number of operational problems from these application areas, while drawing
inspiration from the research in both domains.

In Chapter 2, we start by studying one of the major problems faced by fire fighting
services. Fire departments are designed and operated to minimize the response time to
fires and other incidents requiring fire department presence. To this end, fire stations are
positioned throughout the service area of a fire department to allow for a fast response
to any incident, irrespective of its location. However, large gaps in coverage may arise
in the case of a major incident that requires many nearby fire trucks over a long period

173



of time, substantially increasing response times for emergencies that occur subsequently.
We address this problem and propose a heuristic for relocating idle trucks during a major
incident in order to retain good coverage. This is done by solving a mathematical program
that takes into account the locations of the available fire trucks and the historic spatial
distribution of incidents. This heuristic allows the user to balance the coverage and the
number of truck movements. By introducing the ‘willingness to relocate’ parameter to
the algorithm, we provide the user with a tool to measure the value of making addi-
tional relocations. Using extensive simulation experiments we test the heuristic for the
operations of the Fire Department of Amsterdam-Amstelland (FDAA), and compare it
against three other benchmark strategies in a simulation fitted using ten years of historical
data. We demonstrate substantial improvement over the current relocation policy used by
FDAA, and show that smartly relocating during major incidents may lead to a significant
improvement in performance. Additionally, we numerically illustrate the trade-off between
the number of relocations and the system performance.

Fire departments typically dispatch the closest fire truck(s) available whenever a new
incident happens. However, it is not obvious that the policy of always dispatching the
closest truck(s) minimizes the long-run fraction of late arrivals, since it may leave gaps
in the coverage for future incidents. Careful dispatching is even more important when
multiple trucks are required, since the potential coverage gap is much larger compared to
the single-truck case. Moreover, when dispatching multiple trucks, the uncertainty in the
trucks’ driving times plays an important role, in particular due to possible correlation
in driving times of the trucks in case their routes overlap. In Chapter 3, we discuss
optimal dispatching of fire trucks, based on a particular dispatching problem that arises
at the FDAA, where two fire trucks are sent to the same incident location for a quick
response. We formulate the dispatching problem as a Markov Decision Process, and
numerically obtain the optimal dispatching decisions using policy iteration. We show that
the fraction of late arrivals can be significantly reduced by deviating from current practice
of dispatching the closest available trucks. We also show that driving-time correlation can
have a non-negligible impact on decision making, and if ignored, may lead to a drastic
performance decrease. As the optimal policy cannot be computed for problems of realistic
size due to the computational complexity of the policy iteration algorithm, we propose
a dispatching heuristic based on a queueing approximation for the state of the network.
We show that the performance of this heuristic is close to the optimal policy for a wide
range of parameter settings, and requires significantly less computational effort.

In Chapters 4 and 5, we turn to the field of maintenance services for capital goods.
Capital goods such as complex medical equipment, trains and manufacturing machinery
are essential to their users’ business, and thus have stringent up-time requirements. Re-
sponsive maintenance is crucial for meeting these requirements, which in turn relies on
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the timely availability of both spare parts and service engineers. In these two chapters,
we consider a network of geographically distributed capital goods, maintained by a set of
service engineers who can respond quickly to machine breakdowns. We are interested in
the question which service engineers to dispatch to what breakdowns, and how to relocate
these engineers to maintain good coverage. In Chapter 4, we propose and evaluate a range
of scalable dispatching and relocation heuristics inspired by the extensive research litera-
ture in the domain of emergency medical services. We compare the proposed heuristics
against each other using comprehensive simulation experiments, and benchmark the best
combination of dispatching and relocation heuristics against the optimal policy. We find
that this heuristic performs close to optimal, while easily scaling to realistic-sized networks,
making it suitable for practical applications. In Chapter 5, we develop an approximate dy-
namic programming (ADP) approach to produce dispatching and relocation policies, and
propose two new algorithms to tune the ADP policy. We conduct extensive computational
experiments to compare the ADP policy against two benchmark policies, the best heuristic
from Chapter 4 and the closest-first dispatching policy. These demonstrate that the ADP
approach can generate high-quality solutions that outperform both benchmarks across a
wide range of networks and parameters. We observe significant improvements in terms of
fraction of late arrivals over the two benchmarks, without increase in average response time.

Finally, in Chapter 6, we consider the problem of dynamic dispatching and relocation of
spare parts. We introduce a new model where the concept of condition-based maintenance
is incorporated in a network setting with dynamic spare parts management. We consider
a network of single-component machines and assume a Markovian degradation process,
where a machine moves through a sequence of intermediate states before it reaches the
failure state. A number of such machines are spread across a service region, and we
optimize corrective and preventive maintenance actions, as well as proactive relocation of
spare parts between stock points. We show that, by introducing condition monitoring into
a network setting, significant improvements can be achieved in reducing total expected
costs, independent of the cost structure.
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Samenvatting

Noodgevallen zoals een defect van een MRI-scanner of een woningbrand vragen om een
snelle reactie. Dit betekent dat de ‘middelen’ die nodig zijn om dergelijke incidenten aan
te pakken (reserveonderdelen, brandweervoertuigen) aanwezig moeten zijn in de nabijheid
van potentiële incidenten en heel snel moeten kunnen worden ingezet. Dit vereist een
netwerk van locaties in de buurt van potentiële noodsituaties waar de middelen zijn
gestationeerd. Operators van dergelijke servicenetwerken worden vaak geconfronteerd
met de volgende operationele vragen:

1. Hoe moeten middelen worden verspreid over het servicegebied en hoe moeten ze
worden ingezet in noodgevallen?

2. Hoe kunnen de prestaties van hulpdiensten worden verbeterd door slimme, proactieve
relocaties van middelen?

Het beantwoorden van dit soort vragen is essentieel om de vereiste korte responstijden
te realiseren. In dit proefschrift wordt het concept van Emergency Resource Networks
(ERN’s) gëıntroduceerd, waarbij de resultaten van de toepassingsgebieden van onderhouds-
diensten enerzijds en van hulpdiensten anderzijds worden gëıntegreerd en uitgebreid. Meer
specifiek richten we ons op de volgende twee voorbeelden van ERN’s: onderhoudsdiensten
voor kapitaalgoederen en brandweerhulpdiensten. We bestuderen een aantal operationele
problemen uit deze toepassingsgebieden, terwijl we inspiratie putten uit het onderzoek in
beide domeinen.

In Hoofdstuk 2 beginnen we met het bestuderen van één van de grootste problemen
waarmee brandweerdiensten te maken hebben. Brandweerdiensten zijn erop gericht om de
responstijd op branden en andere incidenten die aanwezigheid van de brandweer vereisen
te minimaliseren. Daartoe worden brandweerkazernes over het hele servicegebied van een
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brandweer verspreid om snel op elk incident te kunnen reageren, ongeacht de locatie van
het incident. Er kunnen zich echter grote gaten in de dekking voordoen in het geval van een
groot incident dat gedurende een lange periode veel nabijgelegen brandweerauto’s vereist,
waardoor de responstijden voor noodgevallen die voordoen zich tijdens zo’n groot incident
aanzienlijk toenemen. We pakken dit probleem aan en ontwikkelen een heuristiek voor het
proactief verplaatsen van inactieve brandweervoertuigen tijdens een groot incident om een
goede dekking te behouden. Daartoe formuleren we een optimalisatieprobleem dat reke-
ning houdt met de huidige locaties van de beschikbare brandweerwagens en de geografische
verspreiding van incidenten. Door deze heuristiek kan de gebruiker de dekking en het
aantal voertuigbewegingen afwegen. Door de parameter ‘bereidheid om te verplaatsen’ in
het algoritme te introduceren, bieden we de gebruiker de mogelijkheid een afweging te
maken tussen het aantal relocaties enerzijds en de prestatie anderzijds. Aan de hand van
uitgebreide simulatie-experimenten testen we de heuristiek voor de bedrijfsvoering van de
brandweer van Amsterdam-Amstelland (FDAA), en vergelijken we deze met drie andere
benchmarkstrategieën in een simulatie op basis van tien jaar aan historische ritgegevens.
We tonen een substantiële verbetering aan ten opzichte van het huidige relocatiestrategie
van de FDAA en laten zien dat slim verplaatsen tijdens grote incidenten kan leiden tot een
aanzienlijke verbetering van de prestaties. Bovendien illustreren we de afweging tussen
het aantal verplaatsingen en de systeemprestaties aan de hand van numerieke voorbeelden.

Brandweerdiensten sturen meestal de dichtstbijzijnde beschikbare brandweerwagen(s)
op weg wanneer zich een nieuw incident voordoet. Het is echter niet vanzelfsprekend dat
de strategie om altijd de dichtstbijzijnde vrachtwagen(s) uit te geven de lange-termijn
fractie van late aankomsten minimaliseert, omdat deze strategie ‘gaten’ in de dekking
voor toekomstige incidenten kan laten. Zorgvuldige relocatie is nog belangrijker wanneer
meerdere wagens nodig zijn, omdat het potentiële ‘gat’ in de bedekking veel groter is in
vergelijking met het geval met één enkel brandweervoertuig. Bovendien speelt bij het
uitgeven van meerdere vrachtwagens de onzekerheid in de rijtijd van de brandweertrucks
een belangrijke rol, met name vanwege de mogelijke correlatie in rijtijden van de trucks
als hun routes elkaar overlappen. In Hoofdstuk 3 bestuderen we de optimale uitgifte
van brandweerwagens, op basis van een specifiek toewijzingsprobleem dat zich bij de
FDAA voordoet, waarbij twee brandweervoertuigen naar dezelfde incidentlocatie worden
gestuurd voor een korte reactietijd. We formuleren het uitgifteprobleem als een Markov-
beslissingsprobleem en verkrijgen numeriek de optimale uitgiftebeslissingen met behulp
van zgn. policy-iteratie. We laten zien dat de fractie van late aankomsten aanzienlijk kan
worden gereduceerd door af te wijken van de huidige praktijk van het uitgeven van de
dichtstbijzijnde beschikbare brandweervoertuigen. We laten ook zien dat de correlatie in
rijtijden een niet te verwaarlozen invloed kan hebben op de optimale strategie, en dat het
negeren hiervan kan leiden tot een drastische prestatievermindering. De optimale strategie
kan niet worden berekend voor problemen van realistische omvang vanwege de complexiteit
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van het algoritme. Daarom stellen we een uitgifteheuristiek voor op basis van een wachtri-
jbenadering voor de status van het netwerk. We laten zien dat de prestaties van deze
heuristiek dicht bij de optimale strategie liggen en aanzienlijk minder rekenkracht vereisen.

In Hoofdstukken 4 en 5 richten we ons op het gebied van onderhoudsdiensten voor
kapitaalgoederen. Kapitaalgoederen zoals complexe medische apparatuur, treinen en
productiemachines zijn essentieel voor de activiteiten van hun gebruikers en stellen daarom
strikte eisen aan de up-time. Goede onderhoudsstrategieën zijn cruciaal om aan deze
eisen te voldoen, en zijn op hun beurt afhankelijk van de tijdige beschikbaarheid van
zowel reserveonderdelen als onderhoudsmonteurs. In deze twee hoofdstukken beschouwen
we een netwerk van geografisch verspreide kapitaalgoederen, onderhouden door een set
onderhoudsmonteurs die snel kunnen reageren op machinestoringen. We zijn gëınter-
esseerd in de vraag welke servicemonteurs naar welke storingen moeten worden gestuurd
en hoe deze monteurs het best kunnen worden gereloceerd om een goede dekking te
behouden. In Hoofdstuk 4 ontwikkelen en evalueren we een reeks schaalbare uitgifte-
en relocatieheuristieken, gëınspireerd door de uitgebreide onderzoeksliteratuur op het
gebied van medische noodhulp. We vergelijken de heuristieken met elkaar met behulp
van uitgebreide simulatie-experimenten en vergelijken de beste combinatie van uitgifte-
en relocatieheuristieken met de optimale strategie. We laten zien dat deze heuristiek
bijna optimaal presteert, terwijl hij gemakkelijk kan worden opgeschaald naar realistische
netwerken, waardoor het geschikt is voor praktische toepassingen. In Hoofdstuk 5 on-
twikkelen we een ADP-benadering om relocatie- en uitgiftestrategieën te berekenen en
stellen we twee nieuwe algoritmen voor om de ADP-benadering te finetunen. We voeren
uitgebreide numerieke experimenten uit om het ADP-benadering te vergelijken met twee
benchmarkstrategieën, de beste heuristiek uit Hoofdstuk 4 en de closest-first strategie.
De resultaten laten zien dat de ADP-aanpak uitstekende oplossingen kan genereren die
beter presteren dan de beide benchmarks over een breed scala van parametersettings. We
zien aanzienlijke verbeteringen in termen van fractie van late aankomsten ten opzichte
van de twee benchmarks, zonder dat de gemiddelde responstijd toeneemt.

Tot slot beschouwen we in Hoofdstuk 6 het probleem van dynamische uitgifte en
verplaatsing van reserveonderdelen. We introduceren een nieuw model waarbij het concept
van condition-based maintenance is opgenomen in een netwerkomgeving met dynamisch
management van reserveonderdelen. We beschouwen een netwerk van machines met één
component en gaan uit van een Markov-degradatieproces, waarbij een machine een reeks
tussenliggende toestanden doorloopt voordat deze de foutstatus bereikt. Een aantal van
dergelijke machines is verspreid over een serviceregio en we optimaliseren zowel correctieve
als preventieve onderhoudsstrategiën, evenals proactieve relocatie van reserveonderdelen
tussen voorraadpunten. De resulaten laten zien dat door het monitoren van de toestand
in een netwerkomgeving significante verbeteringen kunnen worden bereikt bij het verlagen
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van de totale verwachte kosten, onafhankelijk van de kostenstructuur.
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