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1 Introduction

Each minute in 2020, over 250,000 online meetings were held, more than 500 hours
of video were uploaded, and USD 1M was spent online [65]. At the end of the
year, approximately 64 ZB of data were created [126]. While you were reading this
introduction so far, more than 21 PB of data have been generated. This is roughly
equal to the storage of 21,000 high-end laptops.1 Despite these being estimates, a
large amount of data is being generated. Data is becoming a major part of our lives,
and a continued growth is expected. But why do we need such a vast amount of
data? And how can we take advantage of it?

Data is the oil of the 21st century, according to various experts around the world [9,
131, 30]. It promises to support any organization in making better decisions. Thus,
its applications are not bound to a specific sector. Examples are: cancer detection,
supply chain optimization, vehicular automation, churn prediction, or speech recog-
nition. These seem to have little in common, however, the underlying technologies
are similar. Combining all applications, it is estimated the big data and business
analytics market will be valued at USD 274 billion by 2022 [125].

Data is a resource, like oil, which does little on its own. It needs to be converted
to information, knowledge, or wisdom to deliver value. Some data is easy to pro-
cess. For example, the data generated by a motion sensor can directly be used to
turn on a bathroom light. Other data is difficult to interpret. For example, should an
autonomous vehicle brake when it observes a nearby pedestrian? When the pedes-
trian is expected to cross paths with the vehicle, it should. But no sensor exists
which directly predicts human behavior. Thus, additional data processing is re-
quired. Through recent developments in the fields of mathematics and computer
science, nowadays we can interpret more data. More in terms of all V’s of big data:
volume, variety, velocity, and veracity.

To appropriately convert data, different methods suit different scenarios. A common
approach is to classify methods on their purpose. A distinction can be made between
descriptive, predictive, and prescriptive analytics. Descriptive analytics attempts
to describe what happened in the past. For example, computing financial metrics
to describe how well an organization performed. Predictive analytics attempts to
predict what is going to happen. For example, predicting the sales volume of any
product for the upcoming year. Prescriptive analytics attempts to prescribe what
action to execute. For example, prescribing that a company should produce more
bicycles, as this market segment is expected to grow.

Despite its growth and recent technological developments, data remains a challenge
for decision makers. Unlike oil, data is practically infinite, reusable, and becoming
increasingly available. Additionally, substantial investment is often required before
the value of data is certain or even recognized. The main challenge lies in identify-
ing decisions and designing methodology for direct support. Auxiliary challenges

1A laptop having 1TB of storage; with an average reading speed of 238 words per minute [17].
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include data integration, analytical skills, security and privacy, infrastructure, and
synchronization [120].

In this dissertation, we propose various methods to interpret diverse data. We con-
tribute across the analytics spectrum with descriptive, predictive, and prescriptive
analyses. We implement part of these analyses through industry partnerships and
achieve results in practice. As these companies primarily operate in the mobility in-
dustry, most chapters in this dissertation focus on mobility. In the remainder of this
chapter, we introduce each of these analyses and highlight our main contributions.
Each chapter can be read on its own and independently of one another.

1.1 Descriptive analyses

The first category within the analytics framework is descriptive analytics. As stated
in the previous section, it concerns describing what happened. Typically, this con-
sists of registering, storing, and presenting data as accurately as possible. Most of
these tasks are executed by traditional business intelligence departments. However,
sometimes it is challenging to describe what happened and the raw data needs to be
processed. This could be caused by data quality issues such as missing data or hu-
man mistakes. Additionally, the raw data format might not be insightful or answer
any questions.

In this section, we introduce three descriptive analyses. The first concerns detecting
outliers in univariate time series, the second understanding human mobility choices,
and the third measuring the global effect of Covid-19 on human mobility.

Chapter 2 - Detection of Additive Outliers in Univariate Time Series

Describing what happened is straightforward if the collected data perfectly describes
so. However, this is often not what happens in practice. The inspiration for this
research is keeping track of inventory levels across stores scattered throughout the
Netherlands. Each store reports daily inventory levels. This generates a one-dimensional
series ordered in time. However, through system failures and communication issues,
data might not be reported or sent in duplicate. This generates so-called additive
outliers. We aim to detect these and improve data quality by resolving issues they
create.

In this research, we perceive an additive outlier as a surprisingly large or small value
occurring for a single observation in a time series. The detection of these outliers
is an important issue because their presence may have serious negative effects on
the analysis in many different ways. Existing methods to detect such outliers are
inadequate due to poor accuracy, high complexity, and long runtimes. We provide a
novel approach to detect additive outliers that overcomes the mentioned drawbacks.
We validate our approach by comparing against existing techniques and benchmark
performance. Experimental results on benchmark datasets show that our proposed
technique outperforms existing methods on several measures.

Chapter 2 is based on [citation t.b.d.].

Chapter 3 – Understanding Human Mobility for Data-Driven Policy Making

An advantage of collaboration with the industry is having access to unique datasets.
For this research, we were granted access to a rich dataset containing mobility trans-
actions. These contain daily choices made by individuals with respect to their travel
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behavior by car or public transport. Combining this with publicly available data re-
lated to congestion, we give a unique description of human mobility behavior.

In this research, we aim to identify the patterns of behavior which underlie human
mobility. More specifically, we compare commuters who drive in a car with those
who use the train in the same geographic region of the Netherlands. We try to un-
derstand the mode choices of the commuters based on three factors: the cost of the
transport mode, the CO2 emissions, and the travel time. The analysis has been based
on data consisting of travel transactions in the Netherlands during 2018 containing
over half a million records. The results can be used to stimulate behavioral change
proactively. Moreover, the data and results can also be utilized to improve trip plan-
ners.

Chapter 3 is based on [citation t.b.d.].

Chapter 4 – On the Relation between Covid-19, Mobility, and the Stock Mar-
ket

This dissertation was written in turbulent times, as a result of the worldwide Covid-
19 outbreak. This outbreak has consequences on many aspects of human behavior,
including mobility usage. In this research, we describe the effects of the Covid-
19 outbreak on mobility usage and the impact of Covid-19 measures undertaken.
We measure mobility usage globally in terms of vessels, flights, and vehicle activity
combined with train and bicycle online search behavior.

In this research, we argue the Covid-19 pandemic has brought forth a major land-
scape shock in the mobility sector. Due to its recentness, researchers have just started
studying and understanding the implications of this crisis on mobility. We con-
tribute by combining mobility data from various sources to bring a novel angle to
understanding mobility patterns during Covid-19. The goal is to expose relations
between the variables and understand them by using our data. This is crucial infor-
mation for governments to understand and address the underlying root causes of
the impact.

Chapter 4 will be published in PLOS ONE in early 2022, it has been confirmed ready
for production at 16-12-2021.

1.2 Predictive analyses

The second category within the analytics framework is predictive analytics. These
analyses build on the descriptive analyses and go one step further. After describing
what happened, they aim to predict what is going to happen. This requires different
methodology and a slightly different point of view. A major challenge in any pre-
dictive analysis is balancing historic performance (train), and future performance
(test). Often, it is relatively easy to gain a high train performance through overfit-
ting. However, a proper predictive analysis balances train and test performance and
generates reliable results.

In this section, we introduce three predictive analyses. The first concerns predicting
the travel behavior of individuals. The second aims to predict the effects of changing
physical store locations on sales volumes. The third analysis aims to forecast future
sales.

Chapter 5 – Predicting Travel Behavior by Analyzing Mobility Transactions
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After describing human mobility behavior in Chapter 2, we extend this research
toward predicting this behavior in the future. Their choices are analyzed on an ag-
gregated level to take privacy into account. The resulting model can be used to help
human decision-making, by proposing the right mobility types for any requested
travel plan. Currently, mobility types include public transport and car, however,
this can be extended towards shared mobility services.

In this research, we argue that urban planning can benefit tremendously from a bet-
ter understanding of where, when, why, and how people travel. Through advances
in technology, detailed data on the travel behavior of individuals has become avail-
able. This data can be leveraged to understand why one prefers one mode of trans-
portation over another. We analyze a unique dataset through which we can address
this question. We show that the travel behavior in our dataset is highly predictable,
with an accuracy of 97%. The main predictors are reachability features, more so
than specific travel times. Moreover, the travel type (commute or personal) has a
considerable influence on travel mode choice.

Chapter 5 is based on Slik and Bhulai (2020): Predicting Travel Behavior by Analyzing
Mobility Transactions.

Chapter 6 – Accessibility Analysis for Private Car and Public Transport: Compa-
rable Measures for Data-Driven Policymaking

Predicting human behavior can improve a wide range of business decisions. Ex-
tending our mobility-related analysis, we aim to predict the effects of physical store
placement on sales volume. A balance must be struck between placing stores and
reaching individuals swiftly. Placing too many stores results in a large operational
cost, however, placing too few stores results in lost sales. We achieve a balance by
thoroughly analyzing travel duration, predicting the willingness to travel, and pre-
dicting network effects such as cannibalism.

In this research, we argue that the disparity between the accessibility of areas through
different travel modes is essential for the choice of the mode of transport. Calcula-
tion of the travel times by different travel modes is, therefore, very important. Many
urban design decisions on infrastructure depend on these calculations. Develop-
ments in open data policies among urban data producers make this analysis more
tractable. In this paper, we apply a data-driven approach to travel time estimation
based on realized past travel times. We compare commuters who drive in a car with
those who use the train in the same geographic region of the Netherlands. First, we
propose a method to quantify the accessibility of areas for these different modali-
ties. Second, we show how these metrics can be used to determine optimal locations
based on the willingness to travel. The results can be integrated into planning soft-
ware to making data-driving decisions for policymaking.

Chapter 6 is based on [citation t.b.d.].

Chapter 7 – Overcoming the Self-Fulfilling Prophecy in Time Series Forecast-
ing

A common use case for predictive analysis is sales forecasting. Any organization
dependent on product sales would benefit tremendously from knowing what their
customers require in the coming weeks, months, or years. Various decisions can be
improved by knowing what is going to happen. However, the future is uncertain.
And this uncertainty might vary across sectors or product groups. Sales forecasting
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aims to predict future sales as accurately as possible through finding and extrapo-
lating patterns in historic sales data. We contribute to this field by finding robust
seasonal patterns through applying hierarchical clustering.

In this research, we observe two current challenges in time series forecasting are the
self-fulfilling prophecy and finding robust seasonal patterns. We argue that both
can be overcome through combining similar time series. We propose methodology
to extract robust seasonal patterns from low-level sales data through applying hier-
archical clustering. We validate our approach using a simulation experiment and a
real-life dataset containing over †2B of bicycle sales. Our simulation results show a
45% decrease in forecasting error and they quantify the effects of the self-fulfilling
prophecy on forecasting error. Our results on real-life data show a 15% performance
gain on the benchmark when applying clustering. Additionally, we show insights
on the effects of applying smoothing and forecasting sell-in vs sell-out data.

Chapter 7 is based on [citation t.b.d.].

1.3 Prescriptive analyses

The third category within the analytics framework is prescriptive analytics. These
analyses build on the predictive analyses and again go one step further. After pre-
dicting what will happen, they aim to prescribe what to do. Thus, a prescriptive
analysis partly contains a descriptive and a predictive analysis. Converting the pre-
dictions to actions also requires a slightly different point of view. Interesting chal-
lenges arise, such as the exploration-exploitation trade-off. It seems tempting to fully
exploit current knowledge and only execute the best action. However, it might be
better to explore other actions and learn from their consequences. In the long run,
a well-balanced approach will find the best possible action and adapt to a changing
environment.

In this section, we introduce two prescriptive analyses. The first concerns prescrib-
ing which email to send to which person at what time. The second concerns pre-
scribing to a robot which actions to take in order to perform a task.

Chapter 8 – Approximate Dynamic Programming for Optimal Direct Marketing

As illustrated in the first paragraph of this introduction, a large part of communica-
tion nowadays is digital. Especially for corporations, email has grown to become an
important channel. Interestingly, any email can be tracked by using so-called tracker
pixels. By doing so, the company can measure whether an email was opened, inter-
acted with, or whether it resulted in an online purchase. This data is highly suitable
for analysis. We aim to improve email marketing effectiveness through prescribing
which email to send next on an individual basis. Based on the historic behavior of
each user, we predict its interest in various email types and subsequently prescribe
which email to send next.

In this research, we argue that email marketing is a widely used business tool that
is in danger of being overrun by unwanted commercial email. Therefore, direct
marketing via email is usually seen as notoriously difficult. One needs to decide
which email to send at what time to which customer in order to maximize the email
interaction rate. Two main perspectives can be distinguished: scoring the relevancy
of each email and sending the most relevant, or seeing the problem as a sequential
decision problem and sending emails according to a multi-stage strategy. In this
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paper, we adopt the second approach and model the problem as a Markov decision
problem (MDP). The advantage of this approach is that it can balance short- and
long-term rewards and allows for complex strategies. We illustrate how the problem
can be modeled such that the MDP remains tractable for large datasets. Furthermore,
we numerically demonstrate by using real data that the optimal strategy has a high
interaction probability, which is much higher than a greedy strategy or a random
strategy. Therefore, the model leads to better relevancy to the customer and thereby
generates more revenue for the company.

Chapter 8 is based on Slik and Bhulai (2020): Approximate Dynamic Programming for
Optimal Direct Marketing.

Chapter 9 – Benefits of Social Learning in Physical Robots

The final chapter in this dissertation is unique, as the algorithm’s actions are directly
executed in real life. It concerns controlling a robot in a protected environment.
The robot has to execute a task, however, it needs to learn itself how to do so. It
does so by ’trying’ different actions and learning which actions are useful in which
situation. This behavior is learned and stored in a neural network, which is evolved
over generations through an evolutionary algorithm. We combine the experience of
a single robot with others, such that they can learn socially and in parallel.

In this research, we focus on robot-to-robot learning. This is a specific case of so-
cial learning in robotics that enables the ability to transfer robot controllers directly
from one robot to another. Previous studies showed that the exchange of controller
information can increase learning speed and performance. However, most of these
studies have been performed in simulation, where robots are identical. Therefore,
the results do not necessarily transfer to a real environment, where each robot is
unique per definition due to the random differences in hardware. In this research,
we investigate the effect of exchanging controller information, on top of individual
learning, in a group of Thymio II robots for two tasks: obstacle avoidance and forag-
ing. The controllers of the robots are neural networks that evolve using a modified
version of the state-of-the-art NEAT algorithm, called cNEAT, which allows the con-
version of innovations numbers from other robots. This research shows that robot-
to-robot learning seems to at least parallelize the search, reducing wall clock time.
Additionally, controllers are less complex, resulting in a smaller search space.

Chapter 9 is based on Heinerman et al. (2018): Benefits of Social Learning in Physical
Robots.

Scientific publications not contained in this dissertation:

• Slik and Bhulai (2019): Data-driven direct marketing via approximate dynamic pro-
gramming”,

• Slik and Bhulai (2020). Transaction-Driven Mobility Analysis for Travel Mode
Choices.
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2 Detection of Additive Outliers in
Univariate Time Series

2.1 Summary

An additive outlier appears as a surprisingly large or small value occurring for a
single observation in a time series. The detection of these outliers is an important
issue because their presence may have serious negative effects on the analysis in
many different ways. Existing methods to detect such outliers are inadequate due
to poor accuracy, high complexity, and long runtimes. In this paper, we provide a
novel approach to detect additive outliers that overcomes the mentioned drawbacks.
We validate our approach by comparing against existing techniques and benchmark
performance. Experimental results on benchmark datasets show that our proposed
technique outperforms existing methods on several measures.

2.2 Introduction

Outliers have been an actively studied research topic in the past years [24, 97, 82].
Through the exponential growth in data collected worldwide, data can represent a
wide range of real-life events [129]. Outliers might play a significant role in inter-
preting these data. Use cases include detection of fraud, intrusion, or faults, medical
informatics, monitoring traffic, and many more. Typically, outliers can be thought
of as observations that do not follow the expected behavior [15]. Various methodologies
have been proposed on this basis. However, this definition poses challenges. How
to define the expected behavior? And most importantly, who is to account for the
deviation? Is it the data or the expectation?

In this paper, we propose a novel detection method of outliers based on the dif-
ference between subsequent values in the series. The method defines an outlier as
"a large change followed by a large opposite change". This scopes the methodology to
so-called additive outliers, or spikes. We show that the proposed methodology has
the advantages of being intuitive, model-free, accurate, robust, and computationally
inexpensive. Disadvantages of the method are its applicability to additive outliers
only, and its dependence on two parameters that need to be set appropriately. We
compare our methodology amongst three state-of-the-art methods on nine real-life
use cases using hand-labeled definitions classified by five human experts.

Outliers in time series have typically been classified into five categories: Additive
Outlier (AO), Innovative Outlier (IO), Level Shift (LS), Transitory Change (TC), and
sometimes Seasonal Level Shift (SLS). As described in [69], an AO represents an
isolated spike, an LS a step function, a TC a spike that takes a few periods to disap-
pear, an IO effects that appear depending on the fitted ARIMA model, and an SLS
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FIGURE 2.1: A time series decomposed in three parts: trend, seasonal,
and the remainder. The raw data represents hourly averaged traffic
speed on a highway segment in the Netherlands and spans approxi-

mately 17 days.

a seasonally occurring level shift. An AO is typically related to missing or deleted
observations [82].

A main approach is to fit a model to the time series, which then is used as the ex-
pectation. Data can be compared against this expectation, and (probabilistic) ap-
proaches can be used to determine whether the difference is significant. Typically,
an ARMA, ARIMA, or SARIMA model is used to explain the data. The drawbacks of
this approach are that computing such a model might be computationally expensive
and the model itself might be influenced by outliers.

Various window-based approaches have been proposed in recent years. These meth-
ods do not aim to fit a model to the complete dataset. However, they use a sliding
window to generate an expectation. Methods include nearest neighbor methods,
such as K-Nearest Neighbors (KNN) or variations like KNN-CAD [42], and varia-
tions on Moving Averages (MA), such as EWMA, PEWMA, SD-EWMA, or TSSD-
EWMA [98]. Drawbacks of these approaches are the imposed parameters, the influ-
ence of outliers on the expectation, and nearest neighbor methods do not take into
account the ordering of the series. We develop a method that does not suffer from
these drawbacks.

The structure of this paper is as follows. First, we define our methodology in Sec-
tion 2.3 and highlight our design choices. Afterward, in Section 2.4, we illustrate
which methodologies we compare against what in the experimental setup. Next, we
describe the datasets used to evaluate our methodology in Section 2.5. Subsequently,
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FIGURE 2.2: Overview of the benchmark datasets

we describe our results in Section 2.6. Finally, Section 2.7 discusses our results, re-
marks, and future work.

2.3 Methodology

We define an additive outlier as “a large change followed by a large opposite change".
In our view, this is an intuitive definition which we will quantify in this section.
Critically, the definition consists of two parts, each in the opposite direction. By
explicitly using the time component of the series in this manner, the definition will
produce robust scores. We can construct a score for each data point in the series by
following the equations below. The intuition behind and explanation of each step is
mentioned thereafter.

Consider time series x1, . . . , xT 2 R of length T. First, we decompose the series into
trend, seasonal, and remainder components and remove the seasonal component.
This leaves us with the series series y1, . . . , yT 2 R. We argue that removing the
seasonal component can aid in detecting outliers, as the seasonal effect can explain
part of the variance of the data. Much research has been devoted to decomposing
time series, and robust approaches are available in open-source software such as
in [62]. Next, we define the median absolute value of the series as ˜|y|. Then, we
follow the equations below to compute our outlier score.

ct,b = b
yt � yt�1

max{|yt|, |yt�1|}
+ (1 � b)

yt � yt�1
˜|y|

(2.1)

c̆a = qct,b(a) (2.2)

ct,a,b =

8
><

>:

ct,b if ct,b < c̆0.25 � a(c̆0.75 � c̆0.25)

ct,b if ct,b > c̆0.75 + a(c̆0.75 � c̆0.25)

0, otherwise
(2.3)

st,a,b = max{0, ct,a,b ·�ct+1,a,b} (2.4)
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FIGURE 2.3: Distributions of local (left) and global (right) change for
use case inventory high.

Figure 2.1 visualizes the decomposition of one of the time series considered later
in this paper, named traffic. If the decomposition is proper, the remainder of the
fully decomposed time series is stationary. Therefore, we check if the remainder is
stationary through statistical tests before subtracting the seasonal pattern.

Equation 2.1 describes the change. In its basis, this is the difference between yt and
yt�1. However, this absolute change is not adequate; more insightful is a relative
change. Therefore, we compute and balance two relative changes: one relative to its
previous value (local) and one relative to all known values (global). These local and
global are balanced through parameter b. As described in [133], an adequate metric
to measure the relative difference between x and y is a function C : R2 ! R having
the following properties:

1. C(x, y) = 0 () x = y

2. C(x, y) > 0 () x < y

3. C(x, y) < 0 () x > y

4. C is a continuous and increasing function of x when y is fixed

5. C(x, y) = C(ax, ay), 8a : a > 0

6. C(x, y) = �C(y, x)

The local measure for relative change satisfies all properties, the global all except
the fifth. To ensure the measures are defined for positive and negative values of x
and y, we divide by absolute values. For the global change, we compare against the
median absolute value ( ˜|y|) to ensure the scale of the relative and absolute measures
are comparable. Generally, this balances both changes well, as Figure 2.3 displays
for a single use case. Also, we prefer the median over the mean as it is more robust
to outliers.

Equation 2.2 describes the a-quantile of ct,b.

Equation 2.3 describes a large change. Basically, we set the score to 0 when it lies
within factor a of its interquartile range (IQR). The IQR is a commonly used measure
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for classifying outliers. It is a robust measure which we prefer above comparing
against the standard deviation, as the impact of outliers on the standard deviation
can be large.

Equation 2.4 describes a large change followed by a large opposite change. This
is the final score we use in the classification of outliers. Intuitively, it is simply a
multiplication of the previous equation at time t, time t + 1, and the number -1. If
they are in the opposite direction, a positive number arises; if not, a negative number
or 0. We are not interested in values smaller than 0. Therefore, we take the maximum
of the score and 0. The resulting score equals 0 if both changes are in a similar
direction or if either one of them is within a of its IQR. The score is positive if both
changes are outside a of its IQR and in the opposite direction. A higher score implies
a larger outlier.

The code implementation in R is as follows:
score = function ( x , alpha , beta , seasonal _ period ) {

x = remove_ seasonal ( x , seasonal _ period )
x_bwd = s h i f t ( x , n=1 , f i l l =0)

change_ l o c a l = ( x − x_bwd) / pmax ( abs ( x ) , abs ( x_bwd ) )
change_ globa l = ( x − x_bwd) / median ( abs ( x ) )
change = beta * change_ l o c a l + (1 − beta ) * change_ globa l

q_25 = quantile ( change , . 2 5 ) [ [ 1 ] ]
q_75 = quantile ( change , . 7 5 ) [ [ 1 ] ]
change [ which ( q_25 − alpha * ( q_75 − q_ 25) < change \

& change < q_75 + alpha * ( q_75 − q_ 2 5 ) ) ] = 0
change [ c ( 1 , length ( change ) ) ] = 0 # b o u n d a r i e s

score = pmax ( 0 , −1* change * s h i f t ( change , n=−1 , f i l l =0 ) )
return ( score )

}

2.4 Experimental Setup

To evaluate our proposed methodology, we define the following experimental setup.
First, we select nine time series originating from real-life use cases. Next, we imple-
ment our method in R and compare it against three well-known benchmark meth-
ods. Further, we define a ground truth by relying on the opinion of five human
experts. Following, we classify all series in an online manner. Finally, we measure
the precision, recall, and F1-score and compare the performance amongst all models
accordingly.

The time series selected are described in detail in section 2.5. As we require experts
to hand label outliers, we do process the raw data to the aggregation level presented
in Table 2.1. Additionally, we limit the length of each series by filtering on the latest
known 400 data points.

The benchmarks used are Chen’s approach as proposed in [25], PEWMA as pro-
posed in [21], and KNN-CAD as proposed in [18]. These methods are implemented
in the R libraries tsoutliers and otsad. Both are considered well known, also repre-
sented through the fact that only these two packages are mentioned in the overview
presented in [61]. As all methods depend on their parameter settings, we run many
different parameters settings through an elaborate grid search and report on two
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FIGURE 2.4: Online evaluation of use case traffic at timestamp 230
(vertical line). Outliers classified so far (dotted lines) are imputed.

versions: (1) default, having the highest average score over all time series, and (2)
optimized, having the highest score optimized per time series. The highest score is
with respect to our evaluation criterion. We use the optimized implementation of
the PEWMA algorithm, through the OipPewma function.

The ground truth is required, as each method might have a different definition of an
outlier, which might result in different outlier classifications. We establish a commit-
tee of five human experts who each hand label all use cases to additive outliers. Each
expert works at Vrije Universiteit Amsterdam and has experience in the field of time
series analysis. Their task was simply to label the outliers in all series, without them
having knowledge of the methodology presented in this paper. A majority vote is
applied to create a final classification.

Most methods are evaluated in an online manner, as this most closely represents
their performance when implemented in real life. We focus on applications in which
timely classifying outliers is of the essence. An online evaluation implies splitting
the data in a train- and test set based upon time. The test set consists of the latest
known observations. The PEWMA and KNN-CAD methods have an online im-
plementation built-in. For our method, we create a test set of size 10. We impute
classified outliers in the train set with the previously known value, as visualized in
Figure 2.4. Due to runtime considerations, we do not recreate an online version of
Chen’s approach.

The performance is measured through computing the precision, recall, and F1-score.
These metrics are commonly used in binary classification problems. Each data point
in the time series will be classified as either outlier or not. We can count the True
Positive (TP), False Positive (FP), True Negative (TN), and False Negative (FN) rates.
Then, the metrics are defined as follows:

Precision =
TP

TP + FP
, (2.5)
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TABLE 2.1: Characteristics of all data sets. KPSS and ADF indicate
their respective p-values on the raw data, KPSS⇤ and ADF⇤ on the

remainder of the decomposed time series.
.

use case interval n min mean median max KPSS KPSS⇤ ADF ADF⇤

api hour 11160 0 2.65e + 3 2.57e + 3 78853 < 0.01 > 0.1 0.582 < 0.01
taxi hour 10320 8 1.51e + 4 1.68e + 4 39197 > 0.1 > 0.1 < 0.01 < 0.01

sales day 1514 0 7.25e + 1 2.80e + 1 3036 > 0.1 > 0.1 < 0.01 < 0.01
traffic hour 21517 7.8 9.86e + 1 9.85e + 1 188 > 0.1 > 0.1 < 0.01 < 0.01
flights day 282 36 2.41e + 2 2.41e + 2 654 0.014 > 0.1 0.056 < 0.01
twitter hour 15902 0 8.56e + 1 4.70e + 1 13479 > 0.1 > 0.1 < 0.01 < 0.01

ad exchange hour 1643 0.024 8.64e � 2 7.28e � 2 3.1269 > 0.1 > 0.1 < 0.01 < 0.01
inventory low day 653 1 3.59e + 0 4.00e + 0 8 < 0.01 > 0.1 0.908 < 0.01

inventory high day 560 36 9.59e + 1 9.90e + 1 154 < 0.01 > 0.1 0.588 < 0.01

Recall =
TP

TP + FN
, (2.6)

F1 = 2 ·
Recall · Precision

Recall + Precision
. (2.7)

In section 2.3, we advise running our approach on the raw series minus the seasonal
component. We implement the decomposition of the series through the mstl function
of [62]. To validate the decomposition, we use two statistical tests: the KPSS and the
ADF test. The KPSS test, proposed in [74], tests the null hypothesis that the time
series is stationary around a deterministic trend. The ADF test has an alternative
hypothesis that the time series is stationary.

Last, we execute an experiment to investigate the running time of each method as
a function of the time series length. To do so, we generate a seasonal univariate
time series of length N using the methods stsm.model and datagen.stsm as described
in [75]. We generate a time series of length 1e + 07 and classify outliers for each
method using an increasing length of the series. We stop if the runtime exceeds the
threshold of 60 seconds and repeat the experiment 10 fold. We cannot execute the
experiment on a longer series due to the limited amount of memory available to our
computer.

2.5 Data

We collect nine time series from various sources to evaluate the performance of our
methodology. These sources span a wide range of real-life applications and are all
generated by real-life events. Figure 2.2 shows an overview of the shape of each
series.

As the origin of each series is unique, each series has different characteristics. Ta-
ble 2.1 describes these in an aggregated manner. It displays the number of obser-
vations, interval level, general statistics, and the p-values of the KPSS and ADF sta-
tionarity tests after decomposing the series. The remainder of all datasets seem sta-
tionary, as for all KPSS tests, we do not reject stationarity, and for all ADF tests, we
do reject non-stationarity.
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TABLE 2.2: Performance (F1-score) by method and use case. Two pa-
rameter settings are displayed: one optimized for having the highest
average over all cases, the other for having the highest score per case

(indicated by ⇤).

use case tsoutlier tsoutlier⇤ KNN-CAD KNN-CAD⇤ PEWMA PEWMA⇤ custom custom⇤

api 0.89 0.91 0.50 0.50 0.60 1.00 0.89 0.89
taxi 0.00 0.00 0.00 0.14 1.00 1.00 1.00 1.00

sales 0.73 1.00 0.40 0.57 0.67 0.88 0.86 0.96
traffic 0.73 0.80 0.14 0.24 0.00 0.63 0.80 0.92
flights 0.73 0.80 0.18 0.20 0.50 0.83 0.29 0.83
twitter 0.89 0.89 0.29 0.43 0.63 0.91 0.36 0.75

ad exchange 1.00 1.00 0.44 0.44 0.87 0.96 0.77 1.00
inventory low 0.00 0.00 0.00 0.17 0.21 0.24 1.00 1.00

inventory high 1.00 1.00 0.29 0.29 0.21 0.50 0.80 1.00
average 0.69 0.71 0.25 0.33 0.52 0.77 0.75 0.93

The first use case, ad exchange, consists of online advertisement clicking rates, mea-
sured by cost-per-click (CPC). The data originates from the Numunta Anomaly Bench-
mark (NAB), as presented in [76]. These rates are measured hourly and are ex-
pressed by float values. At specific times, these rates might be unexpectedly high
for various reasons. The data contains a seasonal pattern on a daily level.

The api use case consists of data describing the average duration of API calls of a
critical system in the hospitality industry. It was provided to us on an aggregated
level through the company maintaining these systems. Monitoring these API calls
is critical in detecting the downtime of their services.

The flights use case describes daily flights departing from Schiphol airport in Am-
sterdam. The time window is February 2020 until August 2020, spanning the first
months of the Covid-19 outbreak in the Netherlands. This outbreak might cause
anomalies in the dataset. The data is made available through the AeroDataBox API,
on [4]. The data contains a seasonal pattern on a weekly level.

The inventory high and inventory low use cases both describe daily inventory levels
of bicycles at shops in the Netherlands. The first has a high average inventory level,
and the second has a low average inventory level. Constructing this data requires
communication between various systems, as the shops are not necessarily of the
same owner. This might be the cause of missing or duplicate data. The set is made
available confidentially for this research.

The sales use case describes daily sales data of a product used in the flow control
of industrial pipelines. Often, sales arise in batches. However, they are difficult to
separate from regular orders as they might not be classified properly. This dataset
was also made available confidentially for this research. A weekly seasonal pattern
is visible in the data.

The taxi use case describes the number of taxi trips made in New York City on an
hourly level. This source originates from the NAB. As indicated in their documenta-
tion, special events like the NYC marathon or a snowstorm might cause anomalies.
The data shows both a daily and weekly seasonal pattern.

The traffic use case describes the average speed of vehicles passing over a segment
of Dutch highway. These statistics are publicly available on the Nationale Data-
bank Wegverkeersgegevens (NDW) website through their expert module open data
on [90]. We average the statistics on an hourly level. Traffic jams, accidents, or con-
struction might be the cause of anomalies. The data contains a daily pattern.
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FIGURE 2.5: Runtime (seconds) vs time series length. From left to
right: tsoutlier (green), KNN-CAD (red), PEWMA (light blue), cus-

tom (blue), custom without seasonality (orange).

The twitter use case describes the number of mentions of the corporation Apple on
Twitter. The source of this dataset is the NAB, again. Anomalies might be caused by
various events centered around the company. As in most use-cases, the data shows
a daily seasonal pattern.

2.6 Results

Table 2.2 compares the performance of all methods on all use cases. We observe
large differences in both dimensions. Generally, our proposed method outperforms
the others with an average optimized F1-score of 0.93. PEWMA comes second with a
score of 0.77, followed by tsoutlier (0.71) and KNN-CAD (0.33). In six of the nine use
cases, our methodology achieves the highest score. Additionally, its minimum F1-
score is 0.75, which is much larger than the second-best minimum F1-score, which
is PEWMA with a score of 0.24. Looking at the default parameter settings, the min-
imum F1-score drops to 0.29, however, for all other methodologies the minimum
score on default parameters equals 0. The custom, tsoutlier, and PEWMA meth-
ods achieve a maximum F1-score of 1, however, KNN-CAD achieves a maximum of
0.57.

Table 2.3 compares the runtime of all methods on all use cases. It displays both
the average and standard deviation over multiple runs. We observe our proposed
methodology is the fastest on each use case. In total, it is approximately a factor 10
faster than PEWMA, a factor 100 than KNN-CAD, and a factor 100,000 than tsoutlier.
The runtime of tsoutlier is highly dependent on fitting the ARIMA model, which
typically shows challenges in seasonal times series such as traffic or flights.

Figure 2.5 visualizes the runtime of all methods as a function of the time series
length. We again observe large differences amongst the methods. The tsoutlier
method is slowest, KNN-CAD and PEWMA are relatively close, and our custom
method is fastest. We implemented two versions of our approach: one with and one
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TABLE 2.3: Runtime (seconds) compared by method and use case:
average and standard deviation. Averaged over 1000 trials, except

tsoutlier, which is averaged over 10 trails.

use case tsoutlier PEWMA KNN-CAD custom
api 5.2e + 01 ± 2.2e � 01 5.8e � 02 ± 2.0e � 02 1.4e � 01 ± 8.9e � 03 4.5e � 04 ± 8.7e � 04
taxi 1.4e + 02 ± 1.8e � 01 5.8e � 02 ± 2.1e � 02 1.4e � 01 ± 8.9e � 03 9.9e � 03 ± 3.7e � 03

sales 1.3e + 01 ± 1.1e � 01 5.6e � 02 ± 1.4e � 02 1.4e � 01 ± 1.8e � 02 3.4e � 03 ± 2.0e � 03
traffic 6.9e + 02 ± 8.8e � 01 5.8e � 02 ± 2.1e � 02 1.4e � 01 ± 9.1e � 03 3.4e � 03 ± 1.7e � 03
flights 2.0e + 02 ± 9.8e � 01 3.9e � 02 ± 1.4e � 02 9.4e � 02 ± 1.5e � 02 3.2e � 03 ± 1.7e � 03
twitter 4.7e + 01 ± 2.4e � 01 5.9e � 02 ± 2.2e � 02 1.4e � 01 ± 9.3e � 03 3.5e � 03 ± 2.0e � 03

ad exchange 3.4e + 01 ± 2.1e + 00 5.3e � 02 ± 1.4e � 02 1.3e � 01 ± 2.0e � 02 3.8e � 03 ± 2.7e � 03
inventory low 1.9e + 00 ± 1.4e � 02 6.0e � 02 ± 1.6e � 02 1.5e � 01 ± 1.9e � 02 4.3e � 04 ± 4.3e � 04

inventory high 5.3e + 01 ± 3.8e � 01 6.0e � 02 ± 1.6e � 02 1.4e � 01 ± 1.6e � 02 4.2e � 04 ± 7.4e � 04
sum 1.2e + 03 ± 6.9e � 01 5.0e � 01 ± 3.2e � 04 1.2e + 00 ± 2.1e � 04 2.9e � 02 ± 4.0e � 06

without the correction for seasonal effects. The latter version by far outperforms the
others, with a runtime of 1 second on a series of length 1e + 07.

Figure 2.6 visualizes the impact of the parameter b on the classification of use case
flights. Two extremes are used: 0 and 1. We can observe the parameter has the effect
we expected; setting b to 1 steers the classification towards outliers having a large
local effect and setting b to 0 steers the classification towards outliers having a large
global effect. The experts only classified the outlier at t = 170, which both parameter
settings classify correctly.

Figure 2.7 visualizes the classification of KNN-CAD and PEWMA using default pa-
rameters on use case inventory low. Both methods achieve low F1 scores, 0 and 0.2,
respectively. KNN-CAD only generates false positives and is not able to classify the
two outliers at timestamps t = 359 and t = 374. PEWMA does identify both out-
liers, however, generates many false positives. Remarkably, both methods classify
an outlier whilst the value of the series equals its value at the previous timestamp,
at t = 257 and t = 275.

2.7 Discussion

In the introduction, we claimed our proposed methodology has several advantages:
it is intuitive, model-free, accurate, robust, and computationally inexpensive. Through-
out this paper, we have substantiated each of these properties. It is intuitive, as its
definition is relatively simple and classified outliers are, as a result, explainable. It is
model-free, as the seasonal component is optional. Its accuracy is highlighted in an
optimized F1-score of 0.93, by far outperforming the second-best method, having a
score of 0.77. Its robustness is displayed in a minimum F1-score of 0.75, outperform-
ing the second-best method, having a minimum score of 0.24. Computationally it
is inexpensive, adding up to a 100.000 fold performance gain on real-life use cases,
and it is able to classify a fictional time series of one million data points within 2
seconds.

Two mentioned drawbacks of the methodology are its scope towards additive out-
liers only and its imposed parameters. The parameters are reduced to a minimum,
however, consisting of a (sensitivity) and b (balance local vs global). The scope to-
wards additive outliers is currently the largest limiting factor. However, it might be
possible to detect more outlier types following a similar logic as proposed in this pa-
per. For example, level shifts might be considered ’a large change not preceded and
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FIGURE 2.6: The influence of parameter b: detection on use case
flights using two parameter settings: a = 2 and b = 0 (red, plus)

and a = 2 and b = 1 (blue, cross).

followed by a large change’. Further investigation is necessary to evaluate whether
this is a solid approach.

As a result of its computational inexpensiveness, the methodology is highly suit-
able for big data sets. Nowadays, data is being generated by an increasing number
of sources. For example, sensors can generate data on a millisecond level. An-
alyzing these data requires methodology that can process the data at least faster
than it is being generated. Additionally, a sliding window-based approach using a
running median can be implemented to make the methodology applicable to data
streams.

The current methodology can be used for detecting consecutive outliers by adjusting
the input data. For example, if the time series consists of daily data, and we want to
check if a certain week is abnormally low or high, we can simply aggregate the data
before inserting it in the methodology.

Additionally, we could use our methodology for smoothing noisy data. As we eval-
uate and assign a score to each individual data point in the series, we could use this
score for smoothing. This can be done by taking a weighted average of the surround-
ing values, weighted inversely proportionate to the outlier score. Setting a to a low
value will consider each surrounding data point using a different weight.

The evaluation of methodologies is challenging, as different methods and experts
might give different results. We chose to tackle most of the issues by asking multiple
experts and through a majority vote establishing a ground truth. However, the chal-
lenge that not all methods classify similar outlier types remains. Our methodology is
scoped at additive outliers, whereas some benchmarks have a broader scope. There-
fore, it is expected that our methodology scores slightly higher than some bench-
marks. However, the observed difference in both the F1 score and runtime displays
the relevancy of our proposed methodology.
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FIGURE 2.7: Classification of experts, KNN-CAD, and PEWMA on
the last 200 timestamps of use case inventory low. Classified outliers
are marked per method: expert (black, square), KNN-CAD (blue,

cross), and PEWMA (red, plus).
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3 Understanding Human Mobility
for Data-Driven Policy Making

3.1 Summary

This study aims to identify the patterns of behavior which underlie human mobility.
More specifically, we compare commuters who drive in a car with those who use
the train in the same geographic region of the Netherlands. We try to understand
the mode choices of the commuters based on three factors: the cost of the transport
mode, the CO2 emissions, and the travel time. The analysis has been based on data
consisting of travel transactions in the Netherlands during 2018 containing over half
a million records. We show how this raw data can be transformed into relevant in-
sights on the three factors. The results can be used to stimulate behavioral change
proactively. Moreover, the data and results can also be utilized to improve trip plan-
ners.

3.2 Introduction

Commuting long times and distances has become a regular part of the daily routine
for most people. How people travel to work is in part a function of personal prefer-
ence, which has been discussed in terms of comfort in the vehicle, addressing issues
such as temperature, air quality, noise, vibration, light, and ergonomics [29]. How-
ever, the mode choice, also reflects contextual factors [107], including economics –
the cost and acceptability of different commuting modes due to travel times and CO2
emissions.

The continued expansion of commuting distance and time in cars has obvious envi-
ronmental consequences as it relies on fossil fuels. Pollution generated by cars has
health consequences for travelers [41, 137]. Commuting can also be stressful, and
the duration of the trip contributes to the stress experienced by workers [36, 138].
There are few studies that have looked at commuting experiences for mass transit
commuters. [119] found increased stress on crowded trains. Indices of stress were
reduced when train commutes were improved by route changes that shortened com-
muting time and enhanced predictability of the trip [138].

Few studies have directly compared riders across modalities, such as train versus
car commuting. Based on available information, one might predict that car com-
muting is less preferable than train commuting, particularly because of differences
in predictability and effort, both of which have been linked to stress [37, 72]. For ex-
ample, the vagaries of traffic and sudden onset of accidents or other kinds of traffic
jams make driving times for the commute to and from work unpredictable, espe-
cially in densely populated major metropolitan areas. Driving also requires constant
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TABLE 3.1: Mobility transactions dataset, sampled and containing fic-
tive values because of data privacy agreements.

type start_ts end_ts start_city end_city distance duration CO2
car 10/03/2018 07:45 10/03/2018 08:24 Utrecht Wageningen 49 39 7.02

train 28/11/2018 08:32 28/11/2018 09:20 Zandvoort Amsterdam 27 48 0.16
train 09/04/2018 16:51 09/04/2018 17:37 Amersfoort Zwolle 66 46 0.4
car 09/07/2018 14:00 09/07/2018 14:36 Beilen Groningen 52 36 8.71
car 21/01/2018 07:45 21/01/2018 08:33 Wijchen Den Bosch 39 48 6.82

attention and effort – more so as conditions worsen. Trains are likely to be more
predictable and less effortful as a mode of travel.

On the other hand, driving may afford a higher level of control for the driver. The
driver has more ability to influence the time of departure, route, and road speed.
[142] found that drivers in the UK had higher levels of perceived control than those
using other transit modes. Past research in other situations also indicates that control
may be an important factor in mode choice [45]. Car commuting affords a greater
degree of control over social interaction, a critical aspect of privacy. Indeed, if drivers
do have higher levels of perceived control than do train commuters, driving may be
a more preferred mode of travel.

In this paper, we compare commuters who drive in a car with those who use the train
in the same geographic region of the Netherlands. We try to understand the mode
choices of the commuters based on three factors: the cost of the transport mode, the
CO2 emissions, and the travel time. For this purpose, we use a rich dataset of mobil-
ity transactions by employees of a private company. We show how to transform the
data into relevant insights, such as congestion, to calculate the three above-stated
factors. This allows us to compute relevant statistics by predicting travel mode
choice. This predictive model, in turn, can be used for policy making and better
network decisions.

3.3 Problem formulation

The focus of this study is on understanding human travel behavior when it comes to
using the car and the train as travel modalities. Our approach is to compare how the
modalities train and car differ in terms of CO2 emissions, cost, and travel time?

We analyze two rich datasets: mobility transactions and highway sensors. Both col-
lect data based on real-life events through human interaction. The first challenge is
that the data cannot be used directly for analysis. We show that one should carefully
transform the data to avoid biases in the analysis. Another challenge is to quan-
tify congestion when traveling from A to B, based solely on highway sensors. We
develop a methodology to address both these challenges.

After we have transformed the data, we provide an analysis on the differences in
human behavior to explain why a modality choice between train and car is made?
This result can be used to predict modality choices, and we show how they can be
used in practice through a use case.
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FIGURE 3.1: Usage of the train throughout the weeks of the year, rel-
ative to the average number of transactions per week.

3.4 Methodology

We present various methodologies for answering our research questions. First, we
analyze a rich dataset containing mobility transactions. Hereafter, we explain how
to process and combine statistics related to congestion.

3.4.1 Mobility transactions

We first analyze a mobility data set that is unique in its kind. It has been made avail-
able for analysis under strict conditions by a private company providing mobility to
its customers through a mobility card. The data contains mobility transactions that
are registered through automated systems. In this section, we describe its origin,
show how to process such data, and present various statistics originating from an
exploratory analysis.

As in [121], the full dataset contains over half a million mobility transactions from
over a thousand employees originating from various companies and offices in the
Netherlands. The data analyzed concerns a period of one entire year, 2018. Amongst
other statistics, we know the transport type, start and end date and time, start and
end location, distance, duration, and costs of each transaction. In this paper, we
focus on a processed dataset containing trips with transport types ‘car’ and ‘pub-
lic transport’ only. Table 3.1 shows a representative sample of the most important
columns in the dataset, containing fictive values because of data privacy agreements.
Each record in Table 3.1 shows a mobility transaction. The ‘type’ specifies the modal-
ity used to travel: car or train. The transaction starts at timestamp ‘start_ts’ and ends
at timestamp ‘end_ts’. The starting location is given by ‘start_city’ and the desti-
nation location by ‘end_city’. The last three columns display the statistics on this
transaction: the distance measured in kilometers (‘distance’), the duration in min-
utes (‘duration’), and the CO2 emissions measured in kilograms (‘CO2’). The CO2
emissions are estimated through our own analysis, which is described in the last
paragraph of this section.

The raw data needs to be processed before it can be used to answer our research
question. Most importantly, we need to apply the appropriate filters. As the data is
gathered through automated systems, it contains transactions that we do not wish
to analyze. First, we filter out short trips. Most car trips are short, as a new trip
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FIGURE 3.2: People traveling simultaneously: (a) split by car (grey)
and train (blue); (b) split by weekdays and colored by working days

(grey) and weekend (blue).

is registered each time the engine is turned on or off. Also, for public transport, in
the Netherlands, some stations cannot be traversed without checking in and out at
each entrance. Thus, trips that have a duration (in time) shorter than a threshold are
filtered. Second, we filter trips having a highly similar start and end location. These
trips are difficult to analyze, as it is challenging to determine the true destination or
purpose of the trip. Third, we filter car trips starting and ending at gas stations. We
do not see these trips as the intended start or end locations of the users. They are
forced to visit gas stations in order to reach their destination. Also, some gas stations
are not accessible by public transport. In addition to filtering, we apply a correction
on the start and end locations of trips by public transport. The raw locations will
always be at stations. However, these are not the actual start and end locations of
the travel. We correct these locations by sampling a random address within the area
that is reachable within ten minutes by bike. Afterward, we re-compute the travel
time and distance using an API.

After gathering and processing the raw data, we can explore the data. We start by
looking at the usage of the train. Figure 3.1 shows the relationship between the week
of the year and the relative number of transactions by train. The percentage is rel-
ative to the mean number of train transactions per week. A clear relationship can
be observed between the train usage and the weeks containing holidays. In the first
week of the year, the train usage is at a low level of -22%. The weeks containing
the spring holidays, summer holidays, and the Christmas holiday all show a train
usage lower than -20%. Interestingly, around November and at the beginning of De-
cember, the train usage is relatively high. This might be explained by poor weather
conditions or a relatively low number of holidays during these weeks.

Next, we take a closer look at the time of the day at which people travel. For each
transaction in our dataset, we know the timestamp of the start and end. Therefore,
we can derive the number of people that are traveling at any minute of any day.
Figure 3.2 shows the results of this exercise. On the left (a), it shows the relative
number of people traveling during the day split by car (grey) and train (blue). On
the right (b), it shows the same information split by days during the week (grey)
and days during the weekend (blue). The numbers are relative to the maximum. In
both graphs, high peaks can be observed during typical commuting hours. How-
ever, clear differences are visible between trips by car and train. A much larger
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FIGURE 3.3: Distributions of travel duration split by car (grey) and
train (blue): (a) amongst all transactions; (b) amongst transactions

between Utrecht and Amersfoort.

number of people are traveling during the middle of the day, and a small peak can
be observed after lunch. Besides the graph split by train and car, large differences
are visible amongst days in the week. On the weekend, fewer people travel during
commute hours. Next to these differences, the number of people traveling is the
largest on Tuesday, the smallest on Sunday and during the workweek the lowest on
Friday.

Figure 3.3 compares the distribution of travel duration for car and train transactions.
On the left (a), we see that cars are more frequently used for relatively short trips. In
contrast, trains are generally used for relatively long trips. This could be explained
by the fact that the car might be faster. However, the right graph (b) seems to re-
ject this hypothesis. The travel time distribution for both train and car between two
specific cities in the Netherlands is shown here. The cities are Utrecht and Amers-
foort, both located in the center of the Netherlands. Between them, the travel time
distribution of the train is smaller than that of the car.

To further investigate the interaction between transport type and speed, we explore
two relations: that between trip length and speed; and that between trip length and
the frequency of occurrence. Figure 3.4 shows these graphs, for both car (grey) and
train (blue). If we want to approach answering the question of which transport
type is fastest, we need to consider both. On the left, we overall see an increasing
relation between trip length and average speed. Also, the average speed of the train
always lies below that of the car. On the right, we see a different distribution of
trip length for both transport types. The car is often used for relatively short trips,
whereas the train is used for relatively long trips. Thus, if we would simply compare
the average speed of all car transactions with all train transactions, we would get a
biased result.

Lastly, we combine transactions in our dataset to estimate the carbon footprint in
terms of CO2 emissions. Different transport types have different carbon footprints.
Regarding public transport, these figures are publicly available. In the Netherlands,
through [79]. However, for car transactions, these figures depend on a range of
factors, such as the engine, driving behavior, car weight, or outside temperature.
This makes it more difficult to quantify the footprint. However, the full dataset
contains fuel-related transactions. Each re-fuel of a car is stored as a transaction,
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FIGURE 3.4: Interaction between transport type and speed, for car
(grey) and train (blue): (a) interaction between trip length and aver-

age speed; (b) interaction between trip length and number of trips.

containing the volume and type of fuel used. Using these statistics, we can estimate
the amount of fuel burned for each car transaction in the full dataset. We join this
to the mobility transactions dataset, hereby creating the CO2 column. This can be
translated towards kilograms of CO2.

3.4.2 Congestion

Congestion is a factor that affects travel time. Depending on the location of the
congestion and the route, this might have a large or minor influence. Still, in [121],
we have shown that overall there is a relation between the departure time and the
expected travel time. Thus, if we want to make network-related decisions, we need
to measure and quantify congestion. In this section, we describe how to process
measurements related to congestion on roads.

In the Netherlands, the Nationale Databank Wegverkeersgegevens (NDW) tracks
the speed and volume of cars by using more than 37,000 sensors on federal roads.
These statistics are made available publicly through their data portal on a minute
level. Figure 3.6 visualizes these measurement sites. On the left (a), most measure-
ment sites in the Netherlands are shown. On the right (b), the sites within Ams-
terdam are shown. When closely studying the sites within Amsterdam, we can see
that sites are tied to a road segment, thus, being specific for a certain direction of
traffic flow. This allows us to compute statistics on both a micro and macro scale.
Our goal is to quantify congestion on the road at a specific time, between two spe-
cific locations, and in a certain direction. To do so, we need to process this data
appropriately.

The main challenges in processing the NDW data are finding relevant sites and de-
termining a congestion level for each site. Finding relevant measurement sites is
challenging as there are thousands of sites. However, we are only interested in those
sites covering the traveled route. We filter the relevant sites by fitting a rectangle
between the start and end coordinate of the corresponding trip. Depending on the
trip length, the width of the rectangle is adjusted. We only consider sites positioned
inside the rectangle. Next, we filter these sites on having a direction within a thresh-
old of 90 degrees of the general trip direction. We can determine the direction of the
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FIGURE 3.5: Differences in observed speed values depending on: (a)
time of day; (b) day within week.

traffic that the site is measuring because we know the ID and location of the next site
on the road segment.

Determining a congestion level for each measurement site is a challenge as well.
The sites can be located at different road types with different speed limits. To fur-
ther complicate this, the speed limit can vary throughout the day. Thus, we can-
not directly take the velocity of the traffic as a statistic of congestion. Instead, we
first derive the distribution of speed measurement values for each site. This can be
dependent on the time of the day. Using these distributions, we can convert each
measurement value to a congestion score by comparing it to the location of its cor-
responding distribution.

Figure 3.5 visualizes the distribution of observed speed values, split by two different
dimensions. On the left (a), it is split by time of day, and on the right (b), it is split
by day of week. Both graphs display observed values by a unique measurement
site. Whilst the differences on the right graph can be explained through congestion,
those on the left cannot. On the left, it is a site placed on a Dutch highway having
a different speed limit during the night. This limit is enforced through trajectory
speed control, so drivers are hesitant to exceed it. Remarkably, during the night,
some vehicles still drive at the same speed as the one allowed during the day. This
could be explained by limits on certain vehicles (e.g., heavy trucks) or due to habit.
The graph on the right (b), displays the observed values on a measurement site that
is sensitive to traffic jams. It compares speed values observed on Tuesday morning
with those observed on Sunday morning in November. We observe that the speed
values on Tuesday seem much lower than those on Sunday, which is intuitive as
more people travel on Tuesday morning (Figure 3.3).

Figure 3.7 visualizes the result of normalizing the observed speed values. It com-
pares two measurement sites in different parts of the country having a different
speed limit. One has a limit of 100 km/h (grey), the other a limit of 80 km/h (blue).
If a trip traverses both sites, we need to consolidate both, despite these differences.
The normalized speed values seem to achieve this. We observe that during the night
and the middle of the day, the normalized values are highly similar for both sites.
Both are close to, or slightly above 0. This is intuitive as the observed values lie close
to the speed limit. The speed values hardly exceed, but often lie underneath this
limit, thus, we expect a slightly positive normalized speed. During rush hours, we
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FIGURE 3.6: NDW measurement sites: (a) in the Netherlands; (b) sur-
rounding Amsterdam.

observe some differences. Those are intuitive as well, as they directly are a result of
the raw data values.

3.5 Results

This section highlights our most important findings from analyzing the mobility
transactions and congestion data sets.

Figure 3.8 compares the mobility transactions of cars and the train through three dif-
ferent statistics: CO2 emissions, cost, and speed. We observe a significant difference
in terms of CO2 emissions. Compared to a car, the train hardly emits CO2. When tak-
ing into account well-to-tank emissions, this difference grows even larger. Regarding
cost, the train is more expensive when looking at variable cost. However, when in-
cluding fixed costs, the train has a lower cost per kilometer. Looking at speed, we
observe that both transport types are relatively close. The car is slightly faster than
the train. The differences during rush hour are most prominent. The speed of the car
decreases during rush hour, whereas the speed of the train increases. This is likely
explained by congested roads and a higher number of trains scheduled during rush
hour.

Remarkably, the total cost of the car is twice as high as the cost of the train. The vari-
able cost is the leading cause, consisting of more than e0.30 per kilometer. When
making a fair comparison between car and train, we think both factors should be
taken into account. Besides, the observed difference in speed hardly changes look-
ing at both transport types. This might be because we average over the whole coun-
try, so local differences might be larger. The observed difference in CO2 is extreme,
however, it conforms with our expectations.

Figure 5.5 shows the result of computing the congestion between two locations. It
compares the normalized speed (low speed indicates high congestion) amongst the
hours within a day. All days in 2018 are averaged in making this graph. The mea-
surement sites taken into account lie between two cities in the Netherlands: Am-
sterdam and Almere. The normalized speed is computed in both directions, from
Amsterdam to Almere (blue) and from Almere to Amsterdam (grey). We focus on
these cities because a large part of the inhabitants of Almere work in and commute
to Amsterdam. This effect is visible in the computed congestion. Traffic heading
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FIGURE 3.7: Observed (a) vs normalized (b) speed values by mea-
surement sites having a speed limit of 100 km/h (grey) and 80 km/h

(blue).

towards Amsterdam is congested during both morning and evening rush hours,
whereas traffic heading towards Almere is only congested during the evening rush
hours.

3.6 Use Cases

The data analyzed in this research and the corresponding results can be used for pre-
dicting the modality choice of individuals. Understanding the relation between CO2,
cost, and time and modality choice allows us to do so accurately. In [121], we did so
with a 97% accuracy. This is largely based on the same mobility transactions dataset,
enriched with a generic dataset regarding reachability features, which quantify how
well the network of a modality is developed. Interestingly, the main predictors of
this model are the reachability features, more so than specific travel times. Addi-
tionally, the travel type (commute or personal) showed to have a large influence on
travel mode choice. The reliable predictions of this model can help users in their
decision-making. For example, we can send proactive messages to notify users of
alternative travel modes, or we can increase the visibility of relevant travel modes in
travel planners.

If the user allows us, we can notify them of alternative travel modes. This can be
relevant because users might lack the knowledge, construction or traffic jams are an-
ticipated, or because of policymakers wanting to stimulate behavioral change. In all
cases, we only want to send notifications to users with a certain probability of adjust-
ing their behavior. For instance, if a company wants to stimulate train usage to its
employees, they could notify all people within a certain distance or travel time from
their respective office. However, this ignores the relation between other modalities.
It could be that for an individual, the travel time using the train is 25 minutes and 10
minutes by using the car. These users will have a relatively low probability of trav-
eling by train. On the other hand, there might be users having 40 minutes of travel
time using the train and 30 minutes using the car. The second group of users would
have a higher probability of traveling by train. The model estimates these probabil-
ities, including more statistics than travel time, and helps select relevant users for
behavioral change.



28 Chapter 3. Understanding Human Mobility for Data-Driven Policy Making

FIGURE 3.8: Comparison of car (grey) and train (blue) through: (a)
CO2 emission by tank-to-wheel (dark) and well-to-tank (light); (b)
cost by variable (dark) and fixed (light); (c) speed outside (dark) and

during (light) rush hour.

Besides proactively stimulating behavioral change, we can use our data and results
to improve trip planners. These face the challenge of displaying the most relevant
modalities to their users. Using our insights, we can adjust the visibility of travel
modes based on the estimated probability they will be chosen. Currently, we can
balance train and car. In the future, we can extend the analysis to include more forms
of mobility by including shared concepts such as bikes, scooters, or cars.

3.7 Conclusion

In this research, we have developed methods for handling data sets containing mo-
bility transactions and congestion. In our opinion, we have shown promising results
for different use cases. Still, our methodology can be further improved. In this sec-
tion, we further discuss our findings and highlight potential improvements to our
methodology.

Our results comparing train and car mobility concerning CO2, cost, and speed re-
quire some side notes. First of all, we assume car trips are executed with one person
at a time. We could apply a general correction, however, we have little data to make
an educated guess. Therefore, we left the statistics as is. Regarding the CO2 emis-
sions, all our transactions in the dataset are based on data from 2018. Given the
electrification in the automotive industry, we expect this to impact the emissions.
Tank-to-wheel emissions might decrease, however, the emissions due to producing
an electric car might increase because of the battery production. Finally, we realize
that the historic data introduces a bias regarding speed. For example, transactions
that would take an extremely long time with public transport might not be executed,
hence not showing up in our dataset, thereby not influencing public transport speed
in our analysis.

We see the most significant potential for improvement in the methodology to mea-
sure congestion. This can be done in both selecting relevant measurement sites and
in better interpreting the speed values coming from them. We can improve on se-
lecting sites between an origin and destination by integrating a routing API to give
us exact routes between them instead of fitting a rectangle. Having these routes, we
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FIGURE 3.9: Quantifying congestion: congestion from Amsterdam to
Almere (blue) and from Almere to Amsterdam (grey) split by hour of

the day.

can focus only on the sites covering them. As a result of this, we would reduce the
number of measurement sites we take into account.

Further, we can better interpret the speed values resulting from each measurement
site by considering the speed limit on the corresponding road segment. We currently
implicitly derive this speed limit by analyzing the distribution of observations from
a specific measurement site. However, if a road segment is often heavily congested,
this might influence our derived limit.

Besides these methodological improvements, it would be relevant to incorporate
data on more modalities than the train and the car. The mobility transactions dataset
already contains more modalities, however, these volumes are too low to draw con-
clusions. For example, its structure is set up also to incorporate trips done by shared
scooters or shared cars. As these services become more common, we might be able to
observe a behavioral change in some scenarios towards these modalities. Addition-
ally, the Netherlands is well known for its usage of bicycles. Little data is generated
on those, as they do not contain sensors and it hereby requires manual effort to reg-
ister when and where these trips are made. Given the electrification in the bicycle
industry, we do expect more data to be generated in the future. Electric bicycles can
generate data through sensors, such as their motor, lights, lock, or anti-theft location
modules.
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4 On the Relation between
Covid-19, Mobility, and the Stock
Market

4.1 Summary

The Covid-19 pandemic has brought forth a major landscape shock in the mobil-
ity sector. Due to its recentness, researchers have just started studying and under-
standing the implications of this crisis on mobility. We contribute by combining
mobility data from various sources to bring a novel angle to understanding mobil-
ity patterns during Covid-19. The goal is to expose relations between mobility and
Covid-19 variables and understand them by using our data. This is crucial informa-
tion for governments to understand and address the underlying root causes of the
impact.

Introduction

One of the first visible impacts of the Covid-19 crisis was on transport, travel, and
mobility. Mobility explained a substantial proportion of variance in transmissibil-
ity [91]. The travel restrictions adopted to limit the spread of the disease led to dras-
tic reductions in travel and traffic. This had various implications. The disruption
in the flow of goods had severe economic consequences. The measures on mobil-
ity, traffic, and transport also had a substantial impact on the socio-economic sec-
tor.

The crisis has affected all forms of transport, from bicycles, cars, public transport,
maritime vessels, trains, and air flights [10]. The activity on global road transport
was almost 50% below the 2019 average by the end of March. Similarly, commer-
cial flights were almost 75% below by mid-April 2020 [66], while the global flight
network density reduced by 51% [128]. Therefore, a key question is how changes
in transport behavior affect each other due to Covid-19 and how they relate to the
economic progression worldwide.

In the recent past, there have been a number of crises that have caused major changes
in mobility patterns. For example, the Severe Acute Respiratory Syndrome (SARS)
crisis of 2003 significantly affected air traffic in specific regions. The volume of traffic
dropped by 35% [64]. Also, the non-essential trips with public transport dropped
by 50% during the peak of the pandemic [136]. It took almost four months for the
passenger numbers to return to pre-crisis levels.

The Avian Flu outbreaks of 2005 and 2013 and the Middle Eastern Respiratory Syn-
drome in 2015 also significantly impacted mobility. The demand for air travel in
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FIGURE 4.1: Vessel activity as of January 2020, split per continent.
Port enters and exits are included in the data to account for inter-
continental ships, exiting one continent and entering another. North
America (orange), South America (yellow), Asia (red), Europe (light

blue), and Oceania (green).

these cases returned back relatively quickly [64]. It is reasonable to assume that mo-
bility patterns of the Covid-19 disease will be more in line with the patterns of SARS.
The Covid-19 and SARS pandemics share the scale of the impact and the perceived
risks of contagion, which are more significant than other recent pandemics.

From a behavioral perspective, it is interesting to study the patterns in mobility and
the short- and long-term effects. This is crucial information for policymakers to un-
derstand and address the underlying root causes of the impact. For example, after
the terrorist attacks on 9/11, there was a drop in air traffic demand that lasted five
years after the attacks [28]. Studies contribute this to the risks and inconvenience of
flying after new security precautions were introduced.

The Covid-19 crisis could bring forth different changes than other crises in the past.
Business travel could be replaced by more video conferencing since the technology
has rapidly matured in a short period of time [50]. Reduction of demand for par-
ticular modes of transport could become permanent due to perceived risk [132]. A
model shift could happen to modes of transport that avoid contact with people to
have less perceived exposure to the virus [1]. Thus, a model shift could happen from
public transport to bicycles [108]. Governments can use this information in change
campaigns to change public behavior. This can influence which transport behaviors
are more permanent after the crisis.

In this paper, we combine mobility data from various sources to bring a novel angle
to understanding mobility patterns during Covid-19. We look at mobility data from
bicycles, maritime vessels, trains, car traffic, and air flights. First, we look at patterns
in between these modalities. Second, we relate the patterns to the Covid-19 cases
and measures, as well as the stock market. The goal is to expose relations between
mobility and Covid-19 variables and understand them by using our data.

The rest of this paper is structured as follows. In Section 4.2, we explain how we
obtained the data from the various data sources. We discuss our methodology for



4.2. Data 33

FIGURE 4.2: Flights activity as of March 2020, split per continent.
North America (orange), South America (yellow), Asia (red), Europe

(light blue), and Oceania (green).

the analysis of the data in Section 4.3. The results of the analysis are presented
in Section 4.4. We conclude the paper in Section 4.5 with a discussion on our re-
search.

4.2 Data

We gather data from various sources to answer our research questions. In this sec-
tion, we describe each source and give an initial insight into its contents. The sources
are related to the usage of mobility, economic indicators, and Covid-19 statistics. All
sources are on a global scale, covering countries on all continents except Antarctica.
The mobility types we consider are vessels, flights, vehicles, trains, and bicycles.
The economic indicators are extracted from various stock markets and Covid-19
data from official numbers by the corresponding countries. The sources are avail-
able on a daily level. However, to account for intra-week seasonality, we aggregate
all sources to a weekly level to perform our analysis. Additionally, in the current
section only, most graphs show the percentage change since the first known value
in the corresponding time range, on a weekly level, smoothed over four weeks. We
apply smoothing to apply visual focus on the general trend and take into account
the percentage change to create a fair comparison amongst the different continents.
All data is made publicly available through [104, 103, 105, 102, 101, 106].

Vessels

We use the real-time ais data from AISHub [6], which we collected over a time period
ranging from 2019-04-01 to 2020-12-01. The raw data is collected with an interval of
2-3 seconds. Using more than 600 ais stations, a total of 8.5 billion records of 4.8
million unique ship IDs have been retrieved. We focus on commercial and cargo
ships, including passenger ships, tankers, cargo, and fishing. We exclude ship types
such as military, medical, and towing.
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FIGURE 4.3: Vehicle activity as of January 2020, split per continent.
North America (orange), South America (yellow), Asia (red), Europe

(light blue), and Oceania (green).

To minimize the size of the data, we reduce the dataset to a single record per hour
and use this dataset to estimate the vessel activity. We define the vessel activity
for a port in time period t as the number of vessels entering and exiting the port.
To approximate if a vessel is inside a port, we assume a vessel i to be in port j ifq
(xi � xj)2 + (yi � yj)2  b holds. For this, (xi, yi) and (xj, yj) are the longitude and

latitude pairs of both the vessel location and the center of the port. We approximate
the visits using the port center coordinates of [59] instead of port shape files to speed
up the computation, since it has to be performed on all records of the extensive
dataset. From this, we track each vessel over time and assign a port visit if the ship
has been in the port for at least a = 3 consecutive hours. We set a to 3 as bulk
carriers and oil tankers move with the lowest average speed of 24 kilometers an
hour [5], indicating that at least 2 hours is required to pass the port without entering
it for b = 12 kilometers.

To finalize the vessel activity, we solely look at the data points where a vessel is
within the range of a port. From this, we assign an entrance activity if the vessel
moves into the range of a new port j at time t and is detected in the same port on
(or after) t + 3 without visiting another port in between. Therefore, if a vessel is only
detected once, it is assumed to be passing the port. Similarly, we define a port exit
when the vessel meets the entrance criteria and is seen in another port after t + 3.
We assign the exit time based on the last recorded time where vessel i was seen
in port j. With this, the defined vessel activity is relatively robust against sensor
downtime, which frequently occurs due to vessels shutting down the system within
a port.

Figure 4.1 visualizes the growth in vessel activity compared to the first week of Jan-
uary in 2020. We can observe large differences amongst the continents. Most notable
is South America, which has generally been decreasing throughout the year. Most
other continents show a dip around March and April. However, in November, they
are close to their original value in January.
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FIGURE 4.4: Online searches for train through Google as of January
2020, split per continent. North America (orange), South America

(yellow), Asia (red), Europe (light blue), and Oceania.

Flights

Similar to vessels, airplanes can be tracked in flight and on the ground through
surveillance technology. The data we gather regarding flights originates from the
system named ADS-B, as described by [143]. We collect daily statistics on multiple
airports throughout the world, using two sources.

Our primary source is the AeroDataBox API, which is available through [AeroDataBox].
This API collects data from external public data sources, community-maintained and
commercial databases. Their collected data can be queried through an API made
available on the RapidAPI platform.

Our secondary source is FlightRadar24, which can be accessed on their website
through [40]. They describe themselves as a global flight tracking service, collect-
ing real-time data on thousands of air crafts.

We do not track all flights in the world, however. We focus on departures from
commercial, cargo, and private flights. By focusing on departures, we attribute each
flight to the airport, and hereby country and continent from which it departs. Also,
we attribute the date and time to the departure time. This prevents counting flights
twice and, as the plane will generally depart from its arrival airport at a later time,
has a minimal impact on misclassifying flights to the correct country and timestamp.
We exclude canceled flights and count code-shared flights as a single flight (in case
one flight has multiple operators).

Regarding the tracked locations, we selected 24 major airports over the world. We
did so by analyzing our collected data. An estimate of the flight volume per airport
is also available through [141]. We selected a maximum of 5 airports per continent, a
maximum of 3 airports per country, and a minimum of 20 million passenger volume
in 2018. Section 4.6 lists all ICAO codes of the airports we track.

Figure 4.2 visualizes the flights data. First, we observe that the starting date of the
graph lies around March. The first data point in our database is the 24th of Febru-
ary. Second, we observe slight differences between the continents. Asia shows a
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FIGURE 4.5: Online searches for bicycle through Google as of January
2020, split per continent. North America (orange), South America

(yellow), Asia (red), Europe (light blue), and Oceania (green).

relatively large number of flights since February, which can be explained by the fact
that the Covid-19 outbreak started earlier. We possibly miss the part of the initial
decline. All other continents show a large decline in flight activity after the outbreak
in March.

Vehicles

We utilized connected vehicle data from 57 countries, distributed over the different
continents, with the majority of data collected in America, Asia, and Europe. The
data is aggregated on a daily level, where we introduce the traffic intensity on a daily
level as a representation of the number of active vehicles during the day. In other
words, the activity during time window t is approximated by the average number
of vehicles that operate during this time window. To reliably estimate the traffic
intensity, we solely focus on cities where we selected 400 large cities distributed over
the 57 countries.

Figure 4.3 visualizes the vehicle activity data. We observe a similar pattern to the
flight activity. Most continents show a decline in vehicle activity in March, with
the exception of Asia. After April, the traffic intensity of all continents is generally
increasing.

Train and Bicycle Search Activity

Besides ships, airplanes, and vehicles, two remaining and major transport types are
trains and bicycles. However, gathering data on these sources is challenging on a
global scale.

Typically, usage of bicycles is hardly registered, as they rarely contain sensors regis-
tering their usage. The electrification in the bike industry might change this, but it
is currently not available. A potential source could be fitness tracking apps. How-
ever, they typically focus on exercising and performance but hardly on commuting.
Besides, they do not publish their data for research purposes.
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FIGURE 4.6: Average stock indices growth as of January 2020, split
per continent. Africa (dark blue), America (orange), Asia (red), Eu-

rope (light blue), and Oceania (Green).

Train usage is challenging to retrieve as this is highly dependent on the respective
operator. Different countries typically have different operators, which typically have
a different method or granularity on which they publish data if they decide to pub-
lish these data. Given this research’s global scope, we decided to find an alternative
source to estimate train usage.

We estimate the usage of bicycles and trains by observing online search behavior.
Google publishes this information on a global scale at [47]. Using this tool, we ex-
tract relative indices for online search behavior through Google on the topics bicycle
and trains. We can do this over a time span of 2020, split by many countries in the
world.

Figure 4.4 visualizes the Google search activity for the topic trains. Surprisingly, the
impact of the Covid-19 outbreak on the search activity seems to be limited in South
America, compared to the other continents. Additionally, in Europe, the activity
grew to nearly the level of January 2020. However, it started decreasing again after
August. This can be explained by the second peak of Covid-19.

Figure 4.5 visualizes the Google search activity for the topic bicycles. This seems to
be the only mobility-related data source that has increased in activity after the first
Covid-19 peak in 2020. For all continents, there is a positive growth relative to Jan-
uary. This growth is most notable in North America and Europe, which might par-
tially be influenced by the seasonality. In summer, we expect more bicycle searches.
However, both South America and Oceania show a rising search volume as of April
2020, despite the ending of summer. This growth might be explained by the de-
crease in public transport availability. Also, cycling is one of the few outdoor activ-
ities that are possible under most Covid-19 related measures. People that usually
practice team sports like football, basketball, or field hockey might have switched to
cycling.
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FIGURE 4.7: Average raw material growth as of January 2020, split
per category. Energy (dark blue), Food & Fiber (orange), Grains (red),

Livestock & Meets (light blue), and Metals (Green).

Stock Markets

To obtain stock market information, we use the software implementation of [8]. For
this, we tracked 40 major country indices, 74 raw materials, 566 stocks composed
of the top-valued companies per index, and 148 currencies, of which 98 cryptocur-
rencies. The country indices are select from the Yahoo major world index list [144],
where we added the largest index of The Netherlands, Austria, Sweden, and Spain
to increase the coverage in Europe. All stock information is tracked over a time span
from 2020-01-01 to 2020-11-12. We transformed all market close prices on a daily
level from its listed currency to usd, using the close exchange rate between the for-
eign currency and usd.

Figure 4.6 visualizes the average stock index growth per continent. We can observe
a joint decline for all continents, where Oceania reacts slightly slower and recovers
faster compared to the other continents. After the 20th of March, the stock indices on
all continents are generally increasing.

Figure 4.7 presents the average stock index growth for various groups of raw ma-
terials. Apart from the energy sector, all material groups decline less extensively
compared to the average index per continent (Figure 4.6). The energy category suf-
fers from a strong decline of more than 50 percent. Metals experience the lowest
decline and the earliest recovery.

Covid-19 Cases

One of the most central datasets of this research is the global Covid-19 dataset. Our
primary source is the Covid-19 data repository of [32], sourced by the Center of Sys-
tems Science and Engineering (CSSE) at Johns Hopkins University. We extrapolated
the absolute registered corona cases and related deaths per country on a daily level.
We normalized the absolute deaths to deaths per 100,000 inhabitants to account for
strong differences of inhabitants per country.
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FIGURE 4.8: Covid-19 deaths per 100,000 inhabitants as of January
2020, split per continent. North America (orange), South America

(yellow), Asia (red), Europe (light blue), and Oceania (Green).

Figure 4.8 visualizes the normalized death per continent on a weekly level. Europe
shows a strong first peak around the end of April and a second one at the start
of November. Surprisingly, Europe shows a steep increase, followed by a strong
decline in the number of deaths. Contrary to Europe, North America shows more
consistent growth in the number of deaths and less intense waves. Surprisingly,
South America, Asia, and Oceania observe far fewer deaths. This might partially be
explained by differences in measuring and registering Covid-19 deaths.

Covid-19 Measures

The measures to fight Covid-19 are strongly varying over time and between different
countries or regions. To the best of our knowledge, there is no universal dataset
available with all corona measures on a country level. Therefore, we limit the data
collection of Covid-19 measures to The Netherlands in isolation. For this, we mainly
extrapolated the measures from the different press conferences, using the website of
the Dutch National Institute for Health (RIVM) [100].

From this, we obtained the following features: press conference date, the date the
measures take effect, the opening or closure of the primary schools, the secondary
schools, the universities, indoor sports, outdoor sports, and professions with close
contact such as hairdressers. In addition, we construct features for the number of
allowed visitors in restaurants, churches, home settings, and public spaces such as
concert halls and theaters.

Figure 4.9 visualizes the opening (green) and mandatory closure (blue) for different
segments.

4.3 Methodology

To answer our research questions, we split our methodology into three parts. First,
we combine the various mobility-related data sources into one dataset. Second, we
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FIGURE 4.9: Opening and mandatory closure for different business
segments. Opening (green), and mandatory closure (blue).

add corona and stock measures and investigate various relations in the resulting
dataset. Third, we investigate whether we can quantify the impact of the Covid-19
measures taken in the Netherlands.

4.3.1 Combining Mobilities

Combining the mobility-related data sources is a challenge, as their origin and data
structures are not aligned. We tackle this by defining a base dataset to which all
sources can be mapped. This dataset consists of the dimensions date and country.
We apply filters corresponding to the most limited dataset, which in our case con-
cerns flights. This dataset contains dates starting from the end of February, and is
limited to a selected number of airports and hereby countries. However, we still
cover major countries and the largest part of 2020. We aggregate the various sources
to a daily and country level, average the corresponding measure, and merge the re-
sult to the base dataset. The resulting dataset will contain for each country and date
the vessel, flight, vehicle, bike, and train measures. To adjust for weekly seasonality,
we aggregate this set to a weekly level.

4.3.2 Relation between variables

One of the goals of this paper is to find relationships between all statistics gathered
in this research. We do this by combining the data in an appropriate table, prepro-
cessing its contents, and applying a correlation test and dynamic time warping to
it.

First, we expand the mobility dataset we created in subsection 4.3.1 with corona
cases, corona deaths, and stock indices. We filter the stock data only to contain
country-related indices and average all indices within one country.
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FIGURE 4.10: Growth in global usage of mobility relative to March
2020, split per mobility type. Bicycle (red), vessel (green), train (light

blue), traffic (blue), and flights (orange).

Second, we preprocess the dataset. We standardize the measures to having a mean
of 0 and a standard deviation of 1. In addition, we compute lag variables. For each
measure, we compute measure_lag_i with i 2 {1, 2, . . . , 5}, in which the correspond-
ing measure is lagged by i weeks.

Finally, we investigate the relation between the resulting measures in terms of Pear-
son correlation and dynamic time warping. As described in [33], dynamic time
warping is a robust distance metric that allows an elastic shifting of the time axis,
to accommodate sequences that are similar. It compares points between two se-
quences in a many-to-one fashion, in contrast to the one-to-one fashion of the Pear-
son correlation. We implemented this procedure through the Python implementa-
tion of [44].

4.3.3 Impact of Covid-19 Measures

Quantifying the exact impact of Covid-19 measures is challenging as we solely have
the Dutch measures available, and many other causal effects play a role. We aim to
provide insights into the relation between corona deaths, mobility usage, and corona
measures. The constructed dataset contains the maximum allowed visitors for spe-
cific sectors and presents which sectors are closed or open. Due to the limited sample
size, a statistical test will not provide reliable and conclusive results. Therefore, we
aggregate all data on a weekly level and visualize the major changes in corona mea-
sures within the chart. With this, we aim to present potential relationships between
the three variables.

4.4 Results

In this section, we highlight our results in the same structure as described in the
Methodology.
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TABLE 4.1: Original time-series (lag=0) on rows and lagged variable
on columns. The diagonal, as well as correlations that are not signif-
icant (p > 0.05) are omitted from the table. We present each correla-
tion along with the best lag for the column variable (round brackets)
and its significance level: a (p < 0.05), b (p < 0.01), c (p < 0.001)

(superscript).
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Traffic 0.26a (5) �0.71c (0) 0.86c (0) �0.70c (0) 0.86c (1) 0.82c (3) 0.34b (0)
Cases 0.58c (0) 0.32b (5) �0.35b (2)
Deaths �0.77c (1) 0.58c (0) �0.74c (0) 0.73c (0) -0.85c (3) �0.74c (2)
Flights 0.94c (1) �0.74c (0) �0.78c (0) 0.91c (3) 0.84c (4) 0.39b (0)
Bicycles �0.85c (3) 0.81c (2) -0.86c (2) �0.85c (5) �0.85c (5) �0.42c (0)
Train 0.75c (0) �0.32b (0) �0.70c (0) 0.54c (0) �0.56c (0) 0.84c (0)
Stock 0.73c (0) 0.34b (5) �0.59c (0) 0.34b (0) �0.46c (0) 0.84c (0) �0.33b (4)
Vessel 0.47c (2) 0.26a (5) �0.33b (3) 0.45c (3) �0.48c (1) 0.29b (4) 0.35b (5)

4.4.1 Combining Mobilities

Figure 4.10 highlights the growth in the measured usage of the monitored mobil-
ity types, relative to the first of March 2020. The usage is measured in the manner
described before and averaged on a global scale. We can observe the usage of all mo-
bility types, except bicycles, has declined since March 2020. Flights show the largest
decline, followed by traffic and train. Vessel activity has not decreased much – all in
large contrast to the usage of bicycles, which shows a large increase in usage.

4.4.2 Relation between variables

Table 4.1 presents the strongest Pearson correlation coefficient, between the original
variable on the rows and the lagged variable on the columns. All variables on the
diagonal, as well as any non-significant (p > 0.05) variables, are omitted from the
table. We can observe some strong correlations across all variables where most are
significant. We see, for example, that both trains with lag 3 (columns) and traffic
with lag 1 (columns) highly correlate with flights (rows).

More interestingly, we can observe that corona deaths seem to correlate more with
the other variables, compared with corona cases. In addition, corona-related deaths
seem to have a direct negative correlation with traffic, flights, trains, and stocks and
a lagged negative correlation with vessels. The lagged deaths have a positive corre-
lation with bicycle searches.

Figure 4.11 highlights the correlation of traffic, flights, and stocks with the lagged
corona deaths. The lag of the corona death is presented on the x-axis. In other
words, it presents the correlation of the target variable with the corona deaths of x
weeks earlier. We can observe strong negative correlations of the target variables
with the lagged corona deaths. All three variables show a similar trend where the
negative correlation decreases as the lag of corona deaths increases. This indicates
that, for example, the reduced traffic intensity due to an increase in corona death is
almost recovered to the initial level after five weeks. In a similar way, flight intensity
recovers, but perceives a less strong recovery. This could potentially be due to the
fact that flight are booked and scheduled in advance, resulting in an increased re-
covery time compared to road traffic. Moreover, flights potentially experience more
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corona restrictions as they often cross borders. Stock prices recover faster compared
with traffic and flights.

FIGURE 4.11: Pearson correlation coefficient of traffic, flights, and
stocks, with the lagged corona deaths variable on the x-axis. It
presents the correlation between the target variable and the corona
deaths of x weeks earlier. Traffic (blue), Flights (orange), and Stocks

(grey).

Figure 4.12 shows the dynamic warping alignment plot of vehicle activity and corona
deaths in the Netherlands. This indicates that the corona death increase is running
ahead of the vehicle activity decline. It presents that the vehicle activity reacts slowly
to the number of corona deaths.

4.4.3 Impact of Covid-19 Measures

Figure 4.13 highlights the Corona deaths (top view) and the vessel, traffic, flight ac-
tivity (bottom view), in relation to the largest changes in corona measures. A steep
decline in both traffic and flights is visible after the first measures (closing all edu-
cation, public areas, and sports) take effect. The decline in mobility continues as the
maximum group sizes are further reduced to 3 people, and close contact professions
are closed. Slightly after the first peek in deaths, a series of measures is reduced,
resulting in a steady increase of mobility (3-5). A stable summer with a low number
of death and a slow increase in traffic, follows after removing the maximum number
of visitors for restaurants and reopening the gyms (6).

Surprisingly, the second wave of corona death with less strict measures that solely
reduce the number of visitors and gradually maximizes the allowed group sizes
from 6 to 2 (12-14), did not result in a decline in mobility. A rather stable pattern can
be identified, deviating from the first wave.

4.5 Discussion

In this paper, we presented and analyzed various relations between Covid-19, mo-
bility, and stock-related data sources. Collecting and comparing such a wide range
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FIGURE 4.12: Dynamic warping alignment plot between vehicle ac-
tivity per week and corona deaths per week in the Netherlands.

of data can only be done by making compromises. In this section, we will discuss
our results and main design choices.

Overall, the Pearson correlations in Table 4.1 show significant relations between
most variables. Especially Covid-19 deaths show strong correlations. This is in
contrast with the Covid-19 cases, which show fewer significant and overall weaker
correlations. This might be explained by deaths being registered more accurately or
cases having a higher dependency on testing strategies.

A strong negative correlation between Covid-19 deaths and mobility with a low lag
indicates that more deaths rapidly influences mobility in a negative way. The only
exception is bicycle searches with has a strong positive correlation with a small lag of
2 weeks, indicating that bicycle searches do not rapidly spike after the corona deaths
increase. Furthermore, we presented that traffic, flights and stock are negatively
influenced by increased corona deaths. But that this correlation decreases linearly
per week, where traffic is almost recovered to its original level within 5 weeks.

We present a strong correlation between death and the number of flights. However,
we have to state that this possible causal relationship is difficult to measure due to
the corona measures influencing this relation. Our reporting contains aggregations
over multiple countries, being directly impacted by the measures taken in all coun-
tries.

Deaths seem to be a more reliable estimator compared with cases. This could poten-
tially be related to different approaches for the registration of corona cases. How-
ever, the number of people in intensive care with corona might be a more reliable
metrics compared with the number of cases and the number of death. Unfortu-
nately, to the best of our knowledge, there is no publicly available dataset for the
number of intensive care patients.
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FIGURE 4.13: Corona deaths with growth in vessel, traffic, and flights
with respect to the major changes in corona measures. Corona deaths
(blue) and growth in vessel (green), traffic (orange), and flights (red).
(1) closing all education, sport, and public areas. (2) reducing group
sizes from 100 to 3 and closing close contact professions. (3) Open-
ing sports under 18 years. (4) Opening close contact professions and
sports for adults. (5) Open restaurants, increase group sizes from 3
to 6 and introduce mandatory face masks in public transport. (6) re-
move maximum visitors for restaurants and open gyms. (7) Reduce
restaurant capacity to 30. (8) Close restaurants and max group sizes

to 4. (9) Max group sizes to 2.

Regarding the flight data, we only have statistics available from February 2020 on-
wards. Ideally, we would cover the complete year, also as our other data sources did
start in January 2020. However, our data sources do not allow us to go further back
in time than six months. We could consider adding a ternary source for the flight
data. However, this adds complexity and additional cost to the project.

Regarding the stock data, it has to be noted that stock markets do not operate in
isolation. Markets in different time zones react to each other, resulting in some causal
effects which are not identifiable in our data. We overcome this to a large extend by
aggregation on a weekly level, but a small unmeasured causal effect remains.

In our current analysis, we do not take into account yearly seasonality. This season-
ality would be relevant in making a more accurate comparison between the usage of
the various modalities in 2020. For example, we know that bicycle usage correlates
with the weather, showing an increase in summer usage each year. However, we did
not include the seasonality aspect in our research as the majority of our data sources
have a time window of less than a year. Including seasonal relationships would re-
quire a time window of at least two years to reliably estimate the impact. Therefore,
a year from now, further research could focus on extending the dataset horizon to
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analyse seasonal patterns in the relationships.

In our current analysis, we do not include detailed statistics on a country or daily
level. Ideally, we would have covered this analysis in more detail, but we decided
to keep statistics compact and high-over. Exploring all variables on a lower level
of detail would reduce the readability of this paper. Therefore, we would suggest
further research based on the initial findings. Further research could focus on ex-
ploring the presented relation between death and flights on a country level, to better
estimate the causal relationship. Furthermore, we presented strong relationships for
Covid-19 deaths, in contrast with Covid-19 cases. Further research could could fo-
cus on the registration of Covid-19 cases and testing strategies, to evaluate how this
weaker relationship is established.

4.6 Appendix: Tracked Airports

List of tracked airports by ICAO code: ZBAA, OMDB, RJTT, ZSPD, ZGGG, EGLL,
LFPG, EHAM, EDDF, LEMD, KATL, KLAX, KORD, CYYZ, MMMX, SBGR, SKBO,
SPJC, SCEL, SBSP, YSSY, YMML, YBBN, NZAA
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5 Predicting Travel Behavior by
Analyzing Mobility Transactions

5.1 Summary

Urban planning can benefit tremendously from a better understanding of where,
when, why, and how people travel. Through advances in technology, detailed data
on the travel behavior of individuals has become available. This data can be lever-
aged to understand why one prefers one mode of transportation over another one.
In this paper, we analyze a unique dataset through which we can address this ques-
tion. We show that the travel behavior in our dataset is highly predictable, with an
accuracy of 97%. The main predictors are reachability features, more so than specific
travel times. Moreover, the travel type (commute or personal) has a considerable
influence on travel mode choice.

5.2 Introduction

The analysis of mobility is of key importance to tackle major urban planning chal-
lenges [121]. It is projected that by 2030, today’s 1.2 billion global car fleet could
double [16]. This has a big impact on the dynamics in urban areas: traffic delays,
unhealthy smog levels, noise, routine irritations of urban lives, and others. The in-
troduction of other modes of transportation can help to alleviate these mobility chal-
lenges. One can think of public transport, bikes, and trains, as well as shared services
or combinations thereof. In addition, [23] introduces many other (sub)urban trans-
formations and transit-oriented developments to improve urban lives. At the same
time, it is argued that in order to decide where to invest in requires a good under-
standing of the travel behavior of individuals and their underlying reasons.

Much research has been devoted to mobility patterns within cities. The gravity
model is the prevailing framework for discovering and modeling these patterns [146].
This model is rather data-intense, in the sense that it requires specific parameters fit-
ted from a continuous collection of traffic data. When these measurements are not
available or not complete, the gravity model cannot be applied. In response to that,
trip distribution models have been introduced [31, 127]. However, these models
also rely on context-specific parameters. In [135], the authors explain how radiation
models [118] can model mobility patterns based on only the population’s spatial
distribution as input.

Through advances in technology, trip information per individual can be recorded
more precisely. E.g., telematics modules in cars can record the time and location
when a car starts or turns off the engine. Travel cards issued by companies store
information on the usage of public transport, bikes at the start of the trip, and the
end of the trip. Such detailed information per individual allows one to perform
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FIGURE 5.1: Three categories of trips that are filtered from the data:
(a) gas stations; (b) round trips; (c) relatively short trips.

mobility analysis on a much more personalized level. The previously mentioned
mobility models cannot handle such a granularity of information and cannot be ap-
plied. Models have been introduced to analyze trip data from one mode of transport
to reveal travel patterns [81, 46]. However, such analyses do not reveal the underly-
ing reasons why an individual chooses one mode of transport over another one. In
the literature, there is a gap in analyzing these mobility choices at such granularity
due to the lack of high-quality data.

In this paper, we analyze the travel mode choices based on a unique dataset consist-
ing of mobility transactions on an individual level. This allows us to follow individ-
uals throughout the day and the year. We propose a measure to quantify the speed
of any transport type for any neighborhood and show how to combine relevant ex-
ternal data sources. By doing so, we can accurately predict travel mode choices.
Our model shows the opportunity to influence travel mode choices and gives the
potential to simulate the impact of infrastructure changes.

This paper is organized as follows. Section 5.3 describes the dataset and the data
preparation. Section 5.4 illustrates the impact of the data preparation and introduces
the models for understanding mobility. The results of the analysis are discussed in
Section 5.5. In Section 5.6, conclusions and recommendations for further research
are presented.

5.3 Data

The data used in this research is gathered from multiple sources by a company that
provides mobility to customers through a mobility card. Individuals can use differ-
ent travel modes using this card. The card enables one to use a car, all forms of public
transport, a taxi, car-sharing, and bike-sharing. The customers using this service are
all employed by one specific company in the Netherlands, which has multiple of-
fices spread throughout the country. Travel usage is registered through automated
systems and stored as transactions.

Car transactions are registered automatically by a built-in telematics module in the
cars, which have trip registration as their sole purpose. All collected transactions are
considered private; however, under strict conditions, analysis of this data is allowed.
Consequently, due to these conditions, we cannot directly determine the identities
behind the person identifiers in the data.
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FIGURE 5.2: Observed vs estimated travel time: (a) car; (b) public
transport.

The full dataset contains over half a million mobility transactions from over a thou-
sand employees. This concerns a period of one entire year, 2018. We filter the data
by individuals having access to both public transport and a telematics-enabled car.
For each mobility transaction, we know the transport type, start and end date and
time, start and end location, and costs. We have aggregated statistics for each indi-
vidual, such as the city of residence, lease category, and commute mileage. Other
individual-specific attributes such as age, gender, and fuel compensation are not
taken into account for privacy reasons.

Analyzing such a dataset imposes various challenges. In the next section, we dis-
cuss the data cleaning. Then we explain how to estimate statistics on the alterna-
tive travel mode. Repeating choices will be discussed in the subsequent section,
followed by a method to compute the start and end locations of public transport
transactions more accurately. We conclude with an examination of relevant external
data sources.

5.3.1 Data Cleaning

The dataset consists of all transactions of all individuals for the year 2018. However,
we do not consider all transactions in this research for various reasons. Specifically,
three categories of transactions are filtered: transactions to gas stations, transactions
with a similar start and end location, and relatively short transactions. Figure 5.1
visualizes the three categories. We filter out these transactions for reasons that we
will explain next.

Transactions departing or ending at gas stations are filtered as they are not consid-
ered the ‘true’ start or destination of a transaction. Typically, it is a compulsory stop
en route to a different destination. As all locations of gas stations in the Netherlands
are publicly available, these transactions can be filtered easily.

Transactions with a similar start and end location (within one transaction) are diffi-
cult to analyze as we do not know what happened during the trip. It is impossible
to calculate accurate statistics on alternative travel modes. Therefore, we filter trans-
actions of which the start and end location are within a distance of 200 meters.

Relatively short transactions are not considered either, since the availability of alter-
native modes can be questioned. Additionally, our focus is not on these short trips.
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FIGURE 5.3: Data processing: (a) model coefficients for re-estimating
car trips; (b) trade-off between variety and availability of data.

For example, if a transaction by car exists with a length of 1 kilometer, we could
compute statistics on public transport on this transaction. However, the resulting
statistics could be similar to those of walking. Therefore, we decided to filter all
trips with a distance shorter than 4 kilometers.

5.3.2 Estimating Statistics on the Alternative

The transactions contained within the dataset show statistics on the chosen mobility
type. For scenario analysis, we are interested in the statistics on the alternative.
Specifically, we are interested in the travel time, distance, and CO2 emissions. We
compute these by using external APIs. A wide variety of them is available, including
the Open Routing Service, Google Maps, Bing Maps, City Mapper, and Tripgo. We
chose to use the HERE API [here] for estimating statistics on car alternatives and the
TravelTime Platform API [134] for public transport. This choice is made based on the
availability and cost of the services. An estimate of CO2 emissions is made for cars
by analyzing all historical transactions of the individuals (including liters tanked),
and for public transport by using statistics from research on emission factors in the
Netherlands [79].

The performance of these APIs can be measured by requesting statistics on known
transactions and comparing those to the observed statistics. Figure 5.2 shows a com-
parison of observed and estimated travel times for (a) cars and (b) public transport.
The red line is used as a reference and has slope 1 in both graphs. Interestingly, es-
timated car travel times are slightly underestimated. This can be partially explained
by congestion. Concerning public transport, we can see that there is a significant
variance in the observed travel time for similar estimates. This can be explained by
irregularities in schedules and varying arrival times of individuals at stations.

To improve the accuracy of the estimates, we create a linear model on top of the API
estimation. For cars, this model is based on the API estimation, start hour of the
transaction, and a weekend indicator. For public transport, this model is based on
the API estimate and start hour of the transaction. The choice for these features is
based upon the significance of their results. The linear model results in an increase
of the coefficient of determination R2 from 0.835 to 0.873 for cars and from 0.759 to
0.814 for public transport.
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FIGURE 5.4: Estimating start and end locations: (a) addresses inside
(orange) and outside (blue) 10 minutes cycling from a station (orange
cross); (b) sample density of households within 10 minutes cycling

range.

Figure 5.3 (a) shows the model coefficients for re-estimating car trips. Interestingly,
there is a clear relationship between the start hour of a trip and the fitted model
coefficient on the data. During rush hours, in the morning and in the afternoon,
the model coefficients are positive; outside rush hours the coefficients are negative.
The highest model coefficient corresponds to the hour that is often considered as the
hour with the highest congestion level: 16:00. To simplify the model, we chose to
group all hours during the night in a category labeled as ’0’.

5.3.3 Start and End Locations

The start and end location of the transactions are difficult to interpret, as they only
provide an estimate of the ‘true’ start and end location. For cars, these locations
are generally close by, as parking spots are widely available. However, for public
transport, this can be assumed to be less accurate as the transactions provide us with
the check-in and check-out locations. These locations are always at stations.

To improve this estimation, we re-estimate the locations of public transport transac-
tions. Using the TravelTime Platforms Time Map feature, we calculate the area that
can be reached from each station in the Netherlands by 10 minutes of cycling. Com-
bining this with a data source containing coordinates of all addresses in the Nether-
lands (BAG), we compute all reachable addresses for all stations in the Netherlands.
Next, we sample one address for each transaction concerning public transport from
all reachable addresses from the corresponding station. We use this address instead
of the address that is shown in the raw data.

This process is visualized in Figure 5.4. On the left (a), all addresses within 10 min-
utes of cycling from a station are visualized. The station is located at the orange
cross, all addresses reachable within the 10-minute threshold are colored orange and
the others blue. The orange area resembles a circle, however, this is not necessarily
true. In some areas, there might be natural obstacles or little infrastructure. This will
influence the travel time towards these areas, and hereby the shape of the area. On
the right (b), the sample density is shown. In some neighborhoods, the addresses are
more densely packed and, therefore, should have a higher probability of being se-
lected. If we sample at random from all known addresses, we automatically correct
for the population density.
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TABLE 5.1: Quantifying repeating choices

Time PT Cost PT CO2 PT Time car Cost car CO2 car Similarity

77.42 22.3 7.82 42.21 4.9 7.83 n/a
77.36 22.3 7.82 42.29 4.91 7.85 0.001
77.78 22.3 7.82 42.24 4.91 7.84 0.002
78.59 22.3 7.82 42.1 4.9 7.83 0.006
42.26 9.61 3.37 28.56 2.97 4.74 0.788
92.86 15.27 0.41 63.37 8.75 13.99 0.922
138.57 32.63 0.88 109.28 19.83 31.69 2.036
197.97 49.01 7.77 120.82 23.05 36.84 2.421

5.3.4 Repeating Choices

A potential challenge with fitting models on the transactions is that the model be-
comes biased towards choices that are often repeated. For example, a person might
decide once on his or her commuting transport mode and hereafter execute it hun-
dreds of times. In contrast, an occasional trip to a specific destination might only
appear once. We want to present a dataset with variety to the models in order to
prevent the models from being biased towards choices that are repeated often. We
cannot filter based on the trip type, as individuals can commute to multiple offices,
can have business trips to similar locations, or change behavior over time.

To increase the variety of the data, we remove rows that are highly similar to oth-
ers. For this, we define the distance d(ri, rj) between record ri and rj as in Equa-
tion 5.1:

d(ri, rj) = Â
f ⇤ |ri � rj|

s
. (5.1)

In this equation, f is the vector with the feature importance acting as a weight, and
s is the feature standard deviations. The vector f is based on the features of the
model developed in Experiment 2 in Section 5.4.2. We sort the data by date and
time, partition by person id, and remove all rows that have a distance lower than a
certain threshold, for index j > i.

Determining the threshold implies balancing the variety and availability of the data.
Having a dataset with a large variety implies having low volume; having a dataset
with high volume implies having little variety. Figure 5.3 (b) visualized this trade-off
by showing the relation between the threshold and dataset size. A high similarity
score as threshold implies more choices are seen as similar, which results in lower
data volume. We empirically set the threshold to 0.04, which keeps roughly 30% of
the data.

Table 5.1 shows an example of how the repeating choices are identified. Taking
the first row as a reference, the distance between the following rows is computed
according to Equation 5.1. Taking the threshold of 0.04, rows 2, 3, and 4 will be
filtered. This does not guarantee the other rows will not be filtered, as the process
will be repeated from row 5 onward.
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FIGURE 5.5: Measuring congestion: (a) measurement locations: hav-
ing high (red) and low (green) congestion levels; (b) congestion lev-
els: from Amsterdam to Almere (blue) vs from Almere to Amsterdam

(orange).

5.3.5 External Sources

Besides the transactions and personal statistics, we use external data sources to cal-
culate features. This concerns data on congestion, reachability of neighborhoods,
and weather conditions.

Congestion is measured using data from the Dutch Nationale Databank Wegver-
keersgegevens (NDW). The NDW continuously measures the speed and volume of
cars driving over their sensors on federal roads. This concerns 37 thousand sensors
across the Netherlands, which report statistics by the minute. Figure 5.5 visualizes
this data. On the left (a), it shows the measurement locations on a highway around
Amsterdam. The congestion level is indicated by color, red meaning high congestion
and green meaning low congestion levels. Clearly, the highway is congested in a sin-
gle direction. On the right (b), it shows the normalized speed on all measurement
sites between two Dutch cities (Amsterdam and Almere) in opposite directions. The
graph shows that congestion in the morning is heavy in one direction, whereas the
opposite direction is hardly congested. This data allows us to quantify congestion
on the road at a specific time, between the start and end locations, and in the corre-
sponding direction for all transactions in our dataset.

A second feature we compute is the so-called ‘reachability’ of neighborhoods. This
captures the general speed of a particular transport type in a certain area. To com-
pute these, we start by taking the definition of a neighborhood from the Dutch CBS.
These neighborhoods are similar to postal code definitions. However, it provides a
higher detail level and is still feasible for this analysis. For each neighborhood in
the Netherlands, we compute the speed (distance over time) at which the 4,000 sur-
rounding neighborhoods can be reached by both a car and public transport. To com-
pute the travel time, we use the APIs selected in Section 5.3.2. To compute distance,
we take the celestial distance. Both measures are calculated between the building
lying closest to the center point of the neighborhoods. Next, we average these speed
values to gain one numeric value per neighborhood. The resulting measure is visu-
alized in Figure 5.6. It shows the reachability of the neighborhoods in the Randstad
region in the Netherlands by (a) public transport and (b) car.
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FIGURE 5.6: Measuring reachability of neighborhoods: (a) public
transport; (b) car.

Finally, we add statistics on weather conditions. This includes wind, rain, tempera-
ture, sunshine, wind speed, and rain duration. These statistics are historically made
available by the Dutch KNMI. They are measured on 50 locations spread through-
out the Netherlands. For each transaction, we take the measurement values from the
nearest station to the middle coordinate of the transaction.

5.4 Numerical Experiments

The data processing steps are pre-requisites to understand better and to predict
travel behavior. Therefore, we create multiple models for describing the mobility
transactions, define multiple experiments to assess the impact, and evaluate them
accordingly. These three steps are described in this section.

5.4.1 Models

We fit five different models on the mobility transactions. The first model is a model
familiar to the transport science field, a logit choice model. The other four models
are commonly used in the machine learning field: logistic regression, feedforward
neural network, gradient boosted decision trees, and random forest. The alternatives
for all models are using the car or using public transport, making it a binary prob-
lem. The models are evaluated using 5-fold cross-validation and are implemented in
Python. The logit choice model using the PandasBiogeme [14] package, the logistic
regression, neural network, and random forest using the scikit-learn [95] package,
and the gradient boosted trees using the xgboost [26] package. The logit model
is highly similar to the logistic regression model, however, they are implemented
through different libraries. The model parameters are determined by a grid search
procedure, the feedforward neural network performs best with a single hidden layer
containing 10 neurons.

5.4.2 Experiments

To highlight the impact of the data processing, we define four experiments. We
start by fitting models on relatively raw data and step-by-step work through the
processing steps to highlight their impact. The final experiment can be considered
the most realistic and important.
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• In Experiment 1, we take the raw data, filter it (Section 5.3.1), calculate features
on the alternative (Section 5.3.2), and fit the models. The features used by the
models are the travel time, costs, and CO2 emissions of both alternatives (car
and public transport).

• In Experiment 2, we take the data from Experiment 1, change the start and end
locations of public transport trips (Section ??), re-calculate the features on the
alternatives, and re-fit the models of Experiment 1.

• In Experiment 3, we take the data from Experiment 2, filter by removing re-
peating choices (Section 5.3.4), and re-fit the models of Experiment 2.

• In Experiment 4, we take the data from Experiment 3, add features, remove
correlated features, and re-define the models of the previous experiments. Added
features are as described in Section 5.3.5, combined with the aggregated per-
sonal statistics, and a classification of the transaction as indicated by the indi-
viduals (private, commute, or business).

5.4.3 Evaluation

For each experiment, we fit the models on the data. We evaluate the performance
by measuring the accuracy and the AUC [51]. Additionally, we use SHAP [84] to
measure the impact of all features for the machine learning models. The SHAP value
represents the impact on the model output. For each feature, it holds that the larger
its absolute SHAP value, the larger its importance.

5.5 Results

Table 5.2 shows the accuracy and the AUC of all four experiments. As a benchmark,
always predicting the car will result in an accuracy of 81% and an AUC of 0.50. The
random forest model shows to have the highest performance, accurately predicting
the mobility choice of 97% of the transactions in the last experiment. Generally,
the accuracy and the AUC of all models in all experiments is relatively high, with
minima of 88% and 0.91, respectively. The random forest outperforms the other
models in most experiments, closely followed by the gradient boosted trees.

As expected, the performance of the models is high in Experiment 1 and decreases
in Experiments 2 and 3. This can be explained as in the first experiment, unrealistic
start and end locations and repeating choices help the models boost their perfor-
mance. In Experiment 4, the performance increases, showing the relevance of the
external data sources. Especially the random forest and the gradient boosted trees
benefit. Surprisingly, the performance of the neural network decreases in Experi-
ment 4 and achieves lower performance than the logistic regression. This might be
attributed to overfitting and can possibly be prevented by a more advanced param-
eter selection procedure.

Figure 5.7 shows the feature importance for the random forest model of Experi-
ment 4. On the left (a), the mean absolute importance is shown. Interestingly, all
features related to the reachability of the neighborhood are important. Hereafter,
the indication for commute has a large impact. The specific travel times (time PT,
time car) show to be relatively unimportant in comparison. Congestion also seems
to have relatively little effect, as well as features corresponding to weather condi-
tions.
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TABLE 5.2: Experimental results: accuracy and (AUC)

Model Exp. 1 Exp. 2 Exp. 3 Exp. 4

Binary Logit 98% (0.99) 91% (0.91) 88% (0.92) 89% (0.93)
Logistic Regression 98% (0.99) 91% (0.91) 91% (0.93) 91% (0.94)
Neural Network 98% (0.99) 95% (0.97) 93% (0.96) 88% (0.92)
Gradient Boosted Trees 98% (0.99) 94% (0.95) 94% (0.91) 97% (0.99)
Random Forest 99% (0.99) 95% (0.97) 92% (0.95) 97% (0.99)

On the right (b), the impact of all feature values on the model outcome is shown. A
negative SHAP value (negative impact on the model outcome) implies that the pre-
diction tends to go towards public transport, a positive value towards the car. The
more extreme the SHAP value is, the higher the impact of the feature on the model
output. The results confirm our intuition, a low ratio (car over public transport) of
reachability results in a large negative impact. A low reachability by public transport
or a low travel time by car result in a large positive impact. Interestingly, personal
trips are preferred by car and commute trips by public transport. Also, a low com-
muting distance implies a preference for public transport. Lastly, congestion seems
to have a positive model impact, implying a slight preference for cars when roads
are congested.

5.6 Conclusion and Discussion

Our results show that the travel behavior in our dataset is highly predictable, as
we can predict the individual transactions with an accuracy of 97%. Compared to
the benchmark of 81%, this is a significant increase. Additionally, by quantifying
the importance of all features, we show insights into why travel behavior is pre-
dictable.

The main features contributing to the models are our proposed reachability fea-
tures. This conforms to our intuition; however, surprisingly, their importance is
much higher than the specific travel times of the specific transactions. The general
reachability of an area is more important for modal choice than the specific reacha-
bility. General reachability refers to the reachability of the neighborhoods, specific
reachability to that of the specific trip the person is planning. People might not take
the effort to check the travel times for the alternative and decide based on their gen-
eral knowledge of the destination (neighborhood) reachability. This insight can be
seen as an opportunity to inform individuals to stimulate behavioral change proac-
tively.

Besides the reachability, the travel type has a considerable influence on travel mode
choice. Commute trips are favored by public transport but private trips by car. This
might be influenced by the travel policy of the company or the ability to work during
public transport. The CO2 emissions of public transport also have relatively high
importance. However, this might be interpreted by the model as an indication of
whether the transaction contains bus trips. In the Netherlands, the train, metro,
and trams are relatively low on CO2 emissions. The emissions are high only when
transactions would involve the bus.

The features concerning congestion and weather are of little influence. The conges-
tion might be explained as roads are typically congested at the start and end of a
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FIGURE 5.7: Feature importance: (a) mean absolute importance; (b)
all feature values.

working day, and all persons in our dataset are employed. The SHAP values even
indicate that high congestion corresponds to a positive impact on model output,
meaning a higher probability of taking the car.

Our experimental setup shows that data processing is critical for the evaluation of
the models. If we would simply only execute the first experiment, we could present
models with even higher accuracy. However, they would explain modal choices in
a limited fashion. For example, public transport transactions can be predicted eas-
ily as their start and end location are at stations and travel times between stations
are relatively fast by public transport. Additionally, the experimental setup high-
lights differences between the models. In the first experiment, all models perform
similarly, however, in the final experiment differences are clearly visible.

5.7 Research Opportunities

The models developed in this research show promising results and give insights into
the mobility behavior of the individuals. Still, they can be improved and used for
further purposes.

Firstly, the models can be used to predict the impact of changes in infrastructure.
The mobility behavior of the individuals is incorporated into the models. When the
infrastructure changes, the features in the data change, and the mobility choices of
the individuals might as well. Our model can be used to quantify to what extent
investments in infrastructure lead to different mobility behavior.

Next, we can introduce more specialized models to gain more accurate predictions.
Specifically, the availability of alternatives and repeating choices can be incorporated
explicitly in a model. The advantage is that we can use more data to fit the model,
as currently, we filter the data on these conditions.

Additionally, we can introduce trip chaining. This incorporates the fact that trips
of individuals are linked throughout time and possibly influence each other. For
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example, if an individual first needs to take their children to school and after that
directly go to work, the modal choice for the trip to work is influenced by the trip
to the school. In the data presented in this research, we can follow the choices of an
individual throughout the day, hereby combining the trips that need to be executed
throughout the day. For example, if one of the destinations throughout this day has
historically only been executed by car, we need to take this preference into account
for the other trips during that day.

Furthermore, the estimation of start and end locations can be further improved. At
the moment, we take a constant travel time of 10 minutes by bike and consider the
buildings in the surrounding area weighted by population density. However, the
willingness to bike might vary per station and region. For example, the density of
stations in cities varies, which possibly has an impact on the willingness to bike.
Also, it might be more relevant for business trips to weight the buildings by the
number of employees.

Also, this research can be extended towards influencing the travel mode choice of in-
dividuals. We can use the predictions of the model to compare individuals amongst
each other, and amongst the expected behavior. If the choices of an individual differ
from a cluster or the expectation of the model, this might be an indication that the
behavior can be changed. This potential change can be communicated easily on an
individual level through a mobile application.

Finally, we can investigate whether we can influence the travel time of individuals.
We know the expected choices of individuals and we know the expected choices of
our whole population. We can combine these to spread the traffic flows on multiple
travel modes. This in order to minimize congestion or the stress on a system. Espe-
cially during crisis situations, such as the COVID-19 virus, such an extension could
be relevant.
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6 Predicting Travel Behavior by
Analyzing Mobility Transactions

6.1 Summary

The disparity between the accessibility of areas through different travel modes is
essential for the choice of the mode of transport. Calculation of the travel times by
different travel modes is, therefore, very important. Many urban design decisions
on infrastructure depend on these calculations. Developments in open data policies
among urban data producers make this analysis more tractable. In this paper, we
apply a data-driven approach to travel time estimation based on realized past travel
times. We compare commuters who drive in a car with those who use the train in
the same geographic region of the Netherlands. First, we propose a method to quan-
tify the accessibility of areas for these different modalities. Second, we show how
these metrics can be used to determine optimal locations based on the willingness to
travel. The results can be integrated into planning software to making data-driving
decisions for policymaking.

6.2 Introduction

Many advanced traveler information and transportation management systems de-
pend on an effective prediction of the accessibility of geographical areas. The anal-
ysis of accessibility is essential to study the interaction between transportation and
land use [12, 114]. Traditionally, accessibility has been calculated using the privately-
owned car as the subject. However, recent concerns on the environmental and social
sustainability of land use warrant the need to incorporate different modes of trans-
port in the accessibility analyses.

A significant disparity in accessibility over different modes of transportation can
have a major impact on equality in society. Several studies point out that many ur-
ban regions in the US and Europe provide better levels of access when using the
private car instead of public transport [55, 70, 71, 78, 113, 114]. Therefore, people
who are not driving financial, physical, or lifestyle-related reasons may face difficul-
ties accessing services and opportunities [89].

Travel time estimation can be done in several ways. For transportation by car, many
navigation systems use GIS software where road segment lengths are divided by
their corresponding speed limits providing estimates of the free-flow drive time.
The accessibility of areas is then reduced to the shortest path problem between the
origin and destination locations. This calculation disregards potential congestion.
This factor may significantly alter the travel time in an urban setting [27, 88, 145].
Studies have been published in which the travel time calculation is adjusted based
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on congestion (see, e.g., [55, 83]). The manner in which this is done is not reported
in detail.

Travel time estimation for public transport comes with different challenges. Public
transport is restricted to predefined routes and schedules that are time-dependent.
Assumptions relating to travel speeds along the route and the transfer times between
different lines may impact the correctness of the calculations [77]. Some studies take
all stages of the journey into account from the origin to destination location (e.g.,
walking to the public transport station, waiting times for arrivals, transfer times,
and walking times from the destination station to the final destination) [11, 77, 80].
Nowadays, this information is available through electronic journey-planning sys-
tems through APIs to provide such data for planning purposes.

This paper applies a data-driven approach to travel time estimation based on real-
ized past travel times. These travel times are, therefore, time-dependent. We com-
pare commuters who drive in a car with those who use the train in the same geo-
graphic region of the Netherlands. First, we propose a method to quantify the ac-
cessibility of areas for these different modalities. We define an area, compute travel
times, and finally propose a method to combine these into a comparable metric. Sec-
ond, we show how these metrics can be used to determine optimal locations based
on the willingness to travel. The results can be integrated into planning software to
making data-driving decisions for policymaking.

6.3 Methodology

In this section, we highlight the methodology for tackling our two research ques-
tions. First, we quantify the accessibility of areas for different modalities. Second,
we highlight the placement of physical locations to maximize the extracted potential
from a network.

6.3.1 Accessibility of areas

In this subsection, we propose a method to quantify the accessibility of areas for
different modalities. This is challenging as it heavily depends on the infrastructure,
the direction, and the demand for travel. These factors vary for different areas. To
tackle this, we first define an area, then compute travel times, and finally propose a
method to combine these into a comparable metric.

Defining areas appropriately is critical, as this heavily impacts the computational
effort of our method. Besides, it allows us to incorporate the demand for travel.
Computing travel statistics between coordinates on a granularity level of centime-
ters would require too much effort. Therefore, we aggregate our scope to so-called
areas. We do so by defining an area as the neighborhoods defined by the Statistics
Netherlands (CBS) in the Netherlands [22]. These neighborhoods are similar to a
postal code classification. They are based on the population and the economic den-
sity. Hence, they also give an indication of travel demand. The neighborhoods are
maintained and updated every year.

After defining an area, we need to compute travel times between them. The chal-
lenge of using an area (shape) instead of a coordinate is that, in the end, we still need
a pair of coordinates to compute travel statistics. We tackle this challenge by defin-
ing a coordinate to represent each area. We define this coordinate as the building
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FIGURE 6.1: Accessibility from Amsterdam: (a) shapes accessible
within 50 minutes by car (blue) and 60 minutes by public transport
(grey); (b) travel time to 4,000 closest (straight line distance) areas by

car.

located closest to the center of the area. We cannot simply take the center of the area,
as this might be in the middle of a park, body of water, or in a forest. The dataset
containing the location of all buildings in the Netherlands is available upon request
by the government through [68].

Computing travel statistics between coordinates can be done using various services
through their APIs. Depending on the rate limits of the chosen service, this can be
done for free. We used [134] to compute travel times and distances between most
areas. Figure 6.1 visualizes an example of travel times starting from the Olympic
Stadium in Amsterdam. On the left (a), the shape which is accessible by car (blue)
and public transport (grey) is shown. The travel time used for car is 50 minutes,
and for public transport 60 minutes. The difference is to take into account the time
required for parking. On the right (b), the figure visualizes the travel time to 4,000
closest areas (straight line distance) by car. Green represents a short travel time, and
red indicates a long travel time.

Having the definition of an area and structure for computing travel times in place,
we can quantify the accessibility. We do so by computing the travel time to all neigh-
boring areas within a certain range, calculating the velocity to each neighboring area,
and finally averaging all velocities. The range can be varied depending on the use
case (short versus long-range accessibility). We see the calculation of the velocity as
a different step, as we take into account the distance as the crow flies. This allows for
a better comparison amongst modalities, as the required travel distance depends on
the infrastructure of the corresponding modality. By taking the average over all ve-
locities, we automatically emphasize velocities to high-demand areas, as these areas
are smaller compared to low-demand areas. The resulting number represents veloc-
ity (km/h), which can be compared amongst different areas and modalities.

6.3.2 Placement of locations

The second problem we are considering is the optimal placement of physical loca-
tions: maximizing our achieved network potential with a fixed number of locations.
We do so while considering cannibalism and regional differences of various sorts.
The locations can be of various types, such as stores, offices, stations, or dealerships.
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FIGURE 6.2: Defining willingness to travel: (a) travel time versus
the extracted potential for densely (blue) and sparsely (grey) popu-
lated areas; (b) a map of densely (blue) and sparsely (grey) populated

postal codes in the Netherlands.

The potential can be broadly defined but generally depends on statistics like the
population density, the current sales distribution, or the purchasing power. We con-
sider the placement in aggregated areas, defined similarly to postal codes. However,
the method proposed is independent of this choice. In this subsection, we explain
how we compute the potential of a network, and we define a greedy algorithm for
finding a lower bound on an optimal placement.

Before we illustrate our approach, we must define the willingness to travel. We do
so by defining a curve that specifies the relation between the travel time to a loca-
tion and the percentage of achieved potential. An example of this curve, a sigmoid
curve, is shown in Figure 6.2(a). Generally, a location will achieve all of its potentials
if the travel time is short, and little if the potential if the travel time is long. The spe-
cific relation depends on the purpose of the analysis. It can be derived by using an
analysis of current customers or by using surveys. Additionally, the curve depends
on the location itself. For example, people living in sparsely populated areas might
be willing to travel longer compared to people living in densely populated areas. In
this research, we consider applying different curves depending on the population
density of an area. Figure 6.2 (b) visualizes different classifications of population
density on a map of the Netherlands.

Our approach starts by defining three input tables. These tables contain basic statis-
tics that are required for any approach to finding an optimal placement. A sample
of each table is shown below. Table 6.1 contains the travel times between postal
codes and a curve identifier. These travel times are computed as in Section 6.3.1.
The curve identifier specifies which curve is applicable for the corresponding postal
code (to_pc). Table 6.2 specifies the relationship between the travel time and the
maximum potential (percentage) that can be achieved. Multiple curves for different
postal codes can be considered. However, each postal code can only have a sin-
gle curve. Table 6.3 contains the absolute potential per postal code. This potential
can represent expected sales and can, for example, be computed by an analysis of the
current sales in combination with demographics such as population density, income,
age, family composition, or retail activity.
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TABLE 6.1:
Travel
time

pc pc_to travel_time curve_id
1000 1001 10 1
1000 1002 12 1
1001 1200 40 2

TABLE 6.2:
Travel
time
curve

travel_time curve_id potential
0 1 100%

15 1 50%
15 2 30%

TABLE 6.3:
Poten-

tial

pc potential
1000 20
1001 25
1002 18

TABLE 6.4: Sample of the resulting table. Postal code is abbreviated
with ‘pc’ and potential with ‘po’.

pc pc_to travel_time curve_id po_raw po_sum po_max po_correction po_achieved po_available po
1000 1001 10 1 80% 160% 80% 0.50 40.0% 25 10
1000 1002 12 1 80% 170% 80% 0.47 37.6% 18 6.8
1000 1400 40 2 10% 80% 50% 0.63 6.25% 10 6.3
1200 1001 28 1 50% 160% 80% 0.50 25.0% 25 6.3
1200 1002 20 1 55% 170% 80% 0.47 25.9% 18 4.7

Using these tables as input, we compute the total sales potential and network cov-
erage in the following way. As a basis, we filter Table 6.1 on pc to only containing
postal codes of locations in our considered network. Next, we left join Table 6.2
on travel_time and curve_id to convert travel time to potential (relative). If looking
at a single location, this potential would represent the achieved potential. How-
ever, when considering multiple locations, we need to correct for cannibalism. If
we would not do so, we could place n locations in a single postal code and achieve
n-fold the potential of this postal code.

Correcting the potential for cannibalism can be done by computing two statistics
from our intermediate table: the summed potential (potential_sum) and the max-
imum potential (potential_max) per postal code. We do so by grouping the table
created in the previous paragraph by postal code (pc_to). It is clear that the summed
potential of a postal code cannot exceed 100%. The maximum potential, however,
is less intuitive to take into account. It describes the potential that the most nearby
location tries to achieve. We argue that the summed potential cannot exceed the
maximum potential. An example might best illustrate why.

Suppose we choose one location, location 1, in postal code a. We only consider one
different postal code from which we can get potential, postal code b. Suppose the
travel time between them is 20 minutes, resulting in an achieved potential of 50%.
In this scenario, location 1 would get 50% of the potential from postal code b. Now
consider a second scenario by placing two additional locations (locations 2 and 3)
in postal code a. Locations 1, 2, and 3 all want to extract 50% potential from postal
code b. The summed potential would be 150%. We could correct this solely on the
summed potential by capping it to 100%. Location 1, 2, and 3 will each get 33%
potential by doing so. However, we think this overestimates the achieved potential.
From the perspective of postal code b nothing has changed. The travel time to the
closest location is in both scenarios is 20 minutes. However, the latter would have
twice the achieved potential. Thus, we propose that the summed potential cannot
exceed the maximum potential. In scenario 2, locations 1, 2, and 3 will each achieve
16.7% potential.

After correcting for cannibalism, we can finalize the computation. We left join Ta-
ble 6.3 on postal code (pc), multiply the achieved potential with the absolute poten-
tial, and sum the resulting potential column. An example of the final table is shown
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in Table 6.4.

Algorithm 1 Locations Selection
1: Input: L
2: Output: L⇤

3: L⇤
0 = ∆

4: for i 2 {1, . . . , N} do
5: L⇤

i = find_next_best(L, L⇤

i�1)
6: for l 2 L⇤

i do
7: L̄ = L⇤

i \ {l}
8: L⇤

i = find_next_best(L, L̄)
9: end for

10: end for

Algorithm 2 Find Next Best
1: Input: L and L⇤

2: Output: L⇤
new

3: p⇤ = 0
4: for l 2 L \ L⇤ do
5: Lnew = L⇤ [ {l}
6: pnew = calculate_potential(Lnew)
7: if pnew > p⇤ then
8: p⇤ = pnew
9: L⇤

new = Lnew
10: end if
11: end for

Now that we can compute the potential of a given network, we can find an optimal
network. Given a fixed number of locations, we want to maximize the potential. We
define a greedy algorithm, which finds a lower bound on an optimal placement. The
algorithm is a constructive algorithm that chooses one location in each iteration until
the number of required locations is reached. Algorithm 1 describes this procedure.
We are considering M possible locations, from which we need to pick N  M. The
input is the set of locations l1, . . . , lM 2 L, and the output is the set of chosen locations
L⇤. The set L⇤

i is defined as the locations chosen in iteration i, i 2 1, . . . , N.

6.4 Results

In this section, we highlight our most important findings from analyzing the acces-
sibility of areas and the placement of locations.

The accessibility of neighborhoods in the Netherlands is visualized in Figure 6.3. On
the left (a), it shows the accessibility by public transport; on the right (b), it shows
the accessibility by car. Both graphs clearly indicate the location of the existing in-
frastructure. Neighborhoods containing major train stops or highways are indicated
green. On the other hand, neighborhoods hardly containing any infrastructure are
indicated red. More notable are the differences between the graphs. Public transport
has a relatively large number of areas with low accessibility.

Computing the accessibility on a neighborhood level allows us to zoom in on spe-
cific areas and compare modalities. Figure 6.4 does exactly that for Amsterdam. We
observe large differences between public transport and car. Public transport shows
relatively high accessibility in the city center and relatively low accessibility outside
the city center. Regarding the car, it intuitively is the other way around: high acces-
sibility surrounding the city center, but not inside.

Figure 6.5 visualizes the output of the location placement procedure in two ways. On
the left (a), by plotting an instance of the achieved potential per postal code when
choosing 5 locations in the Netherlands based upon population density. Postal codes
from which we extract a high potential are colored green, postal codes from which
we extract a low potential are colored red. On the right (b), by highlighting the re-
lationship between the number of locations placed and the total achieved potential.
We observe that increasing the number of locations also increases the achieved po-
tential. However, there are diminishing returns. In our instance, we achieve 80%



6.5. Use Cases 65

FIGURE 6.3: Quantifying accessibility of the Netherlands by: (a) pub-
lic transport; (b) car. Relatively low accessibility is colored in red,

high in green.

using just 10 locations. Yet, we gain only 12% more potential by placing an ad-
ditional 15 locations. Extracting 100% of the network potential will require many
more locations.

6.5 Use Cases

The methodology developed in this research can be used for various use cases. In
this section, we would like to highlight two: placing mobility hubs and placing retail
buildings.

First, the accessibility of areas is especially useful when deciding on where to im-
prove existing infrastructure. This can, for instance, be improved by placing mobil-
ity hubs. In these hubs, travelers can switch between modalities or share mobility
services. These hubs need to be placed in locations relevant to potential customers,
i.e., where demand is high, but supply is low. We can quantify demand in terms
of population density and supply in terms of our computed accessibility. The rela-
tion between different modalities is also interesting; for instance, we can find areas
with high car accessibility but low public transport accessibility. By comparing these
figures, we can decide on where to place hubs quantitatively.

The methodology related to the placement of locations is especially powerful as it
can be used in various use cases. All use cases must have the characteristic that
travel time is a factor that influences the demand for a location. We can modify our
input tables to suit the specific needs, for example, when placing retail stores. First,
we can estimate the potential per postal code by analyzing the current customer
base, for instance, by looking at a certain age or income range. Next, we estimate the
willingness to drive. Depending on the store type, people might consider a certain
travel time or transport type to visit the store. We can fit a sigmoid curve on the
travel time of their preferred transport type. The locations considered might vary on
the current network, competitor networks, and a rough initial selection of available
locations. The travel time matrix remains intact regardless of the use case. Next, we
follow the methodology as described in Section 6.3.2 to get advice on the placement
of the stores.
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FIGURE 6.4: Quantifying accessibility of Amsterdam by: (a) public
transport; (b) car. Relatively low accessibility is colored in red, high

in green.

6.6 Discussion

In this research, we have shown methodology for quantifying the accessibility of
areas and placing physical locations to extract a maximal potential from a network.
In this section, we discuss our findings and highlight potential improvements to our
methodology.

Regarding the computation of the accessibility, we observe that postal codes around
the border of the Netherlands show remarkable values. Typically, we see the acces-
sibility lies in the extremes; it is either high or low. This can be explained by the
fact that we only take into account neighborhoods within the same country. In Lim-
burg (the most southern province of the Netherlands), for example, we compute the
accessibility by taking into account mainly other neighborhoods in Limburg. Com-
bining this with the fact that it is narrowly shaped and there are both a highway and
a railroad running through it, the resulting accessibility will be relatively high. If
there had not been a highway, the accessibility would have been low. We could im-
prove our computations by also taking into account neighborhoods of neighboring
countries.

Besides, the accessibility is currently computed only for postal codes containing
buildings. We computed travel times between postal codes and defined the cen-
ter as the building located closest to the geographical center of the area. However,
if there are no buildings in a postal code, we do not define the center of the postal
code and do not compute the accessibility. This results in a few white spots in our
analysis. We could impute the values for these postal codes by taking the average
accessibility of the surrounding postal codes, or redefining the center of them.

The methodology regarding the location placement is especially powerful, as the
achieved potential of one network configuration can be computed using a single
query. This query can be executed using a commonly used language, like MySQL.
This creates the opportunity to integrate the methodology into standardized tools.
By doing so, users can interact with the methodology. However, as with our other
methodology, it is not perfect. We see the main extension to include different forms
of transportation. The willingness to travel might vary per modality, and potential
customers might not have access to all modalities. Besides, we could attempt to
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FIGURE 6.5: Location placement based upon population density: (a)
extracted potential per postal code from when choosing 5 locations:
high (green) versus low (red); (b) relation between the number of lo-

cations placed and the extracted potential.

include congestion in the travel time. The travel time we are using is currently com-
puted by an API that does not take this into account. Also, we could refine the loca-
tion placement by including various statistics regarding the cost of the location. This
allows us to balance the trade-off between achieved potential and expenses.
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7 Overcoming the Self-Fulfilling
Prophecy in Time Series
Forecasting

7.1 Summary

Two current challenges in time series forecasting are the self-fulfilling prophecy and
finding robust seasonal patterns. We argue that both can be overcome through com-
bining similar time series. We propose methodology to extract robust seasonal pat-
terns from low-level sales data through applying hierarchical clustering. We vali-
date our approach using a simulation experiment and a real-life dataset containing
over †2B of bicycle sales. Our simulation results show a 45% decrease in forecast-
ing error and they quantify the effects of the self-fulfilling prophecy on forecasting
error. Our results on real-life data show a 15% performance gain on the benchmark
when applying clustering. Additionally, we show insights on the effects of applying
smoothing and forecasting sell-in vs sell-out data.

7.2 Introduction

In this paper, we focus on two challenges within time series forecasting: fitting ro-
bust seasonal patterns on volatile data and the self-fulfilling prophecy. We aim to
overcome both challenges through applying hierarchical clustering based on the
similarity of seasonal patterns. We have access to a unique, confidential dataset
consisting of over †2 billion of bicycle sales in western Europe to validate our ap-
proach.

To illustrate the first challenge, we take the bicycle industry as an example. Their
sales data suffers from large process influences. The model lineup, production plan-
ning, and component availability each introduce volatility in sales data. The model
lineup causes a high turnaround in products; over 50% of 2020 sales is e-bikes,
these did not exist a few years ago. Production causes sales peaks after produc-
tion batches, as current demand exceeds supply. Component availability causes the
production of some products to be temporarily impossible, as suppliers are facing
downtime due to Covid-19 lockdowns. Combined with a yearly seasonal period
this makes it difficult to estimate accurate seasonal patterns based on sales data.
Forecasting algorithms need multiple periods to estimate the seasonal component
accurately, especially if the data is volatile. Thus, algorithms will only be able to
forecast demand with reasonable accuracy after 2 to 5 years. For decision makers,
this is too late.
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The second challenge is the self-fulfilling prophecy. Simply put, it means that the
companies will work hard to make their own predictions come true. Through de-
mand planning, a company decides on how much product it expects to sell. Next,
production ensures this amount of products will be produced, and sales ensures
this amount will be sold. At the end of the year, all their decisions will show up
in the sales data. This sales data is once again used for estimating demand for the
next period. And so the cycle continues. Yet, there is a difference between sales
and demand. What if your initial forecast was off, and you are creating your own
truth?

An attempt to tackle both problems is to combine data from related time series. Pos-
sibly, one can fit seasonal patterns more rapidly and find the underlying demand
more accurately. When limited data is available across across multiple periods, the
potential of combining similar series within the same period might lead to more
data. Little data in series, more data in parallel. Various approaches have been pro-
posed to combine data when predicting a single series, mainly within the fields of
hierarchical clustering and cross-learning.

7.2.1 Hierarchical forecasting

Time series can often be represented in a grouped or hierarchical structure. This
structure might be geographical, for example, sales in a city can be aggregated to
region, country, continent, and the world. The structure can also be a product di-
mension. Hierarchical forecasting exploits this structure to generate better forecasts.
A main challenge is to compute accurate forecasts which are coherent across the ag-
gregation structure. That is, the sum of low-level forecasts (e.g., countries) must add
up to higher-level forecasts (e.g., continent). In addition to the ability to provide
coherent forecasts, hierarchical forecasting has the potential to (1) improve forecast
accuracy and (2) reduce the magnitude of the forecasting problem [39].

Multiple approaches to hierarchical forecasting have been developed. Many of those
are top-down or bottom-up approaches, or a combination [60]. The top-down ap-
proach forecasts on the highest aggregated level, and distributes to the lowest dis-
aggregated level through applying historic proportions. The bottom-up approach
forecasts on the lowest disaggregated level, and sums all the way to the highest
aggregation level. The so-called middle-out approach does both; it choose a mid-
dle ground and disaggregates down through historic splits and aggregates through
summing within the hierarchy. Typically, the lowest disaggregated level is volatile
and hereby difficult to forecast, and the highest aggregated level smooth and easier
to forecast. Both methods, however, show disadvantages. The bottom-up approach
is not ideal as it might be error-prone [48, 38] and the top-down approach is not ideal
because of information-loss [34, 57].

More recently, approaches have been proposed which reconcile multiple forecasts at
different levels within the hierarchy. The goal of these is to produce better forecasts
than either a top-down or bottom-up forecast. The optimal combination approach
forecasts all series at all levels of the hierarchy and optimally combines those to a
reconciled forecast [63]. This research is followed by the minimum trace (MinT) rec-
onciliation approach [140]. A slightly different approach to hierarchical forecasting
is proposed in [35] through introducing the game-theoretically optimal reconcilia-
tion (GTOP) method.
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However, the hierarchical or grouped structures within hierarchical forecasts are
typically made for political or business reasons, not for forecasting purposes. This
might lead to imbalanced hierarchies (e.g., both the USA and Monaco are countries,
however, the USA has over 8000x more inhabitants) and a large distance between
potentially highly correlated product categories (e.g., popcorn and movie tickets).
Therefore, we take the methods for hierarchical forecasting as an inspiration, how-
ever, we will propose a slightly different approach.

7.2.2 Cross-learning

Cross-learning models are trained across an entire time series dataset in order to ex-
tract information from multiple series and accurately predict individual ones [110].
Especially when data is limited, sparse, or highly correlated, it can improve fore-
casting performance [85]. Various approaches have been proposed and tested on
empirical data. The M competitions can be seen as a measure on how well fore-
casting methodology holds up against real-life data sets. These competitions have
been designed with the goal to learn from empirical evidence on how to improve
forecasting [87]. Cross-learning methods score high in this open-source and trans-
parent competition. The top three performing methods of the M4 competition apply
some form of cross-learning [86], and all top-performing methods of the M5 com-
petition do so as well [85]. This highlights the potential and usefulness of cross-
learning.

The methodology that we will propose in this research learns from multiple series
in order to generate a forecast for a single series. Thus, it can be viewed as a cross-
learning method.

7.2.3 Self-fulfilling prophecy

Sales are often confused for demand. However, there is a large difference. On the
one hand, demand might be understated. For example, a bicycle manufacturer ob-
serves 0 car sales in their data. Yet, we know demand for cars does not equal 0. On
the other hand, demand might be understated (constrained). For example, a manu-
facturer has a limited production capacity, thus, its sales cannot exceed this thresh-
old. Process influences are a main driver for differences between demand and sales.
This might have undesired effects in forecasting and might lead to a self-fulfilling
prophecy.

This effect has been observed in different fields. In economic decision-making, ev-
idence has been shown suggesting that speculative forecasts of economic change
can impact individual’s economic decision behaviour [96]. Within tourism cruise
demand forecasting, research has confirmed the tendency of published forecasts on
the market’s development becoming self-fulfilling prophecies [73]. Additionally, it
has been shown that an article published in The Economist containing a forecast on
the Thai share price index seems a case of self-fulfilling prophecy, rather than one of
good quality forecasting [56]. Even more severe, research has suggested that the use
of forecasts to drive policy is potentially destabilizing [20]. Whereas much research
has been devoted to historic sales on forecasts, little research has been devoted to the
effect of forecasts on future sales.
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7.2.4 Contribution and outline

In this paper, we propose methodology to extract robust seasonal patterns from low-
level sales data through applying hierarchical clustering. We break the imposed
hierarchy and create a new one based on similarity in the seasonal pattern of the
decomposed time series. We validate our approach using industry data and a sim-
ulation experiment. Additionally, we provide insights on the effects of smoothing
and sell-in vs sell-out sales data.

The outline of the paper is as follows. First, we describe the real-life data that was
made available under strict circumstances for this research. After, we describe the
proposed methodology for generating forecasts. Next, we outline the experimental
setup through which we validate our method. This section is followed by the results,
and finally the paper is wrapped up in the discussion.

7.3 Data

Under strict conditions, real-life data was made available for this research. This con-
sists of bicycle sales data in western Europe spanning multiple companies. The time
period ranges from 2015 until 2021, and the total revenue generated by these sales
concerns over †2B. A common use case for this data is forecasting next year’s sales
on a model family level. A model family is a group of bicycles grouped by size, color,
frame type, and component class. Our data consists of 84 model families.

Within this sales data, an important definition is the sales date. Despite recent de-
velopments in business to consumer (B2C) sales, bicycles are typically purchased at
dealers in physical stores. Therefore, the products are sold twice: when the dealer
makes a purchase from the brand, and when the customer makes a purchase from
the dealer. These are called sell-in and sell-out, respectively. Both show different
sales patterns and have their (dis)advantages. Our dataset contains both definitions,
as we are interested in exploring their differences.

The raw data needs to be processed before we can use it for our analysis. First, we
filter the data to contain a minimum sales volume of 10 bikes per month. Second,
we filter incomplete calendar years. For example, at the time of writing the year
2021 has not been fully accounted for, thus, we remove all 2021 data. After, we
filter model families on having at least 24 consecutive months (2 periods) of data
available. Besides, as the focus of this paper is on seasonal patterns only, we remove
linear trends for each model family. We do so through fitting a linear model using
the Python LinearRegressor class from scikit-learn [95] and subtracting the trend
from the raw sales quantities.

Lastly, we want to investigate the usefulness of applying a smoothing technique
to the sales data. As the sales quantities can be noisy at times, perhaps it might
be useful to smooth them before fitting a forecasting model. To do so, we dupli-
cate all our data and smooth all quantities on a model family level in the copied
half. The approach used for smoothing is LOESS smoothing, implemented in Python
through [19].
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FIGURE 7.1: Seasonal patterns (left) and data types (right) considered
for the simulation experiment. On the left, the default (blue) and re-
versed (orange) seasonal patter are displayed. On the right, demand

(dark blue), sales (red) and forecast (light blue) are shown.

7.4 Methodology

We propose a relatively simple approach. We apply hierarchical clustering to all
seasonal patterns extracted by any forecasting method on each series. The metric
applied to determine the distance between two patterns is a the Weighted Average
Percentage Error (WAPE). Comparable patterns will have a small distance and will
be combined more quickly. After setting a distance threshold which determines the
total number of clusters, we take a weighted average of all patterns in a cluster,
weighted on sales volume. Next, we apply this extracted pattern on each series in
the cluster.

Extracting the seasonal pattern from any forecast can be a challenge. Some methods
explicitly model the seasonal component. In that case, we can directly extract it. In
the other cases, one will have to de-trend the time series before applying the method-
ology. Typically, noise and the seasonal pattern will remain. This seasonal pattern
can be extracted by, e.g., averaging the de-trended series within the period.

The clustering technique applied is agglomerative hierarchical clustering, imple-
mented in Python using the cluster.hierarchy classes from [95]. As a linkage func-
tion, we use the complete (maximum) distances between all observations of two
clusters.

The number of clusters is a parameter which needs to be set beforehand. In this
research, we test 5 different parameter settings, on a logarithmic scale. These range
from clustering all seasonal patterns to clustering no seasonal patterns. Cluster level
0 corresponds to merging everything; cluster level 4 to merging nothing. Levels 1, 2,
and 3 lie on a logarithmic scale in between.

This approach shows parallels with cross-learning and hierarchical forecasting. The
comparison with cross-learning is intuitive, as the clustered seasonal patterns con-
tain information of various series combined. These pattern are hereafter used for the
prediction of each of the single series. The approach also shows parallels with hier-
archical forecasting. Essentially, we apply seasonal patterns in a top-down fashion
on single series. However, we break the imposed series by the data and create a new
hierarchy based on similarity of seasonal patterns.

We validate our approach using two experiments. The first concerns forecasting
demand on the real-life data. The second concerns a simulation experiment.
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Algorithm 3 Generating forecasts
1: result = ∆
2: data = read_data
3: data = process_data
4: for year do
5: for data_type do
6: for smoothing_method do
7: for model_family do
8: df = filter_data(year, data_type, smoothing_method, model_family)
9: for forecast_method do

10: method = forecast_method
11: fcst = generate_forecast(df, method)
12: result = append_forecast(result, fcst)
13: end for
14: end for
15: end for
16: end for
17: end for
18: result = cluster_forecasts(result)

7.4.1 Data experiment

The experiment on the real-life data aims to investigate the effect of different di-
mensions on forecasting results. The most important dimension is the cluster size of
the hierarchical clustering approach. Besides, we want to see if there is a difference
between forecasting accuracy amongst different data types (sell-in vs sell-out), fore-
casting algorithms, and smoothing approaches. We do so through generating many
different forecasts for all dimensions and evaluating the results.

The forecasting algorithms applied are ARIMA and Holt-Winters. These are well-
known and widely-used algorithms. The parameters of both methods are tuned
automatically to the data using their Python implementations auto_arima from [123]
and tsa.holtwinters.ExponentialSmoothing from [109] respectively. Besides, we use last
year’s sales as a benchmark.

The experiment basically consists of generating one high-dimensional dataset by
walking through multiple for-loops specifying the different dimensions. Each fore-
cast should predict one period ahead, i.e., one full year. Creating a forecast requires
the input of different dimensions: the year, data type, smoothing method, and model
family. We filter the data on all dimensions and generate a forecast using each fore-
casting method. This procedure is described in Algorithm 3. Once a forecast has
been made, it is appended to a table specifying all dimensions and the forecasted
quantity as columns.

The forecasts are evaluated by the WAPE, which is defined as:

Ân
t=1 |At � Ft|

Ân
t=1|At|

,

with At being the sales at timestamp t and Ft the forecast at timestamp t.
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FIGURE 7.2: Results from forecasting the empirical sales dataset.
Forecasting error (WAPE) on various bike models split by forecast-
ing method (left), by data type (middle), and by smoothing method
(right). 3 Outliers are excluded from the Holt-Winters forecast type,

its maximum WAPE corresponds to 310%.

To assess the impact of the different dimensions, we compute the WAPE per model
family and the corresponding dimension. This allows us to compute a range per
model family. Additionally, we compute the WAPE for each dimension value of the
corresponding dimension. To derive these statistics from our resulting dataframe,
we join the sales on year and month level, compute the absolute deviation, group
the dataframe per model family and dimension, and compute the WAPE by dividing
the sum of the absolute deviation by the sum of the weights (sales).

The clustering dimension is treated slightly differently; it is filtered out when evalu-
ating the other dimensions. This because it might impose a bias towards clustering.
We evaluate 5 clustering types, of which 4 cluster on different levels. If we would
not leave out the clustering when evaluating the other dimensions, 80% of the eval-
uation would include some form of clustering.

7.4.2 Simulation experiment

To validate the impact of the self-fulfilling prophecy on forecasting accuracy and to
assess the usefulness of clustering in preventing it, we set up a simulation experi-
ment. This is mainly motivated by the fact that using historic data we cannot quan-
tify the consequences of having a different forecast. Besides, in real-life we never
know the true demand underlying the sales. The experiment is simple in its basis.
We generate N time series having no trend, a seasonal pattern of length 12 (monthly),
and normally distributed noise with mean 0 and standard deviation of 0.5. The noise
is applied in a multiplicative manner. For half of the series we apply the seasonal
pattern in reverse. Figure 7.1 (left) visualizes the seasonal patterns.

We generate the time series in a year-by-year fashion. For each series, we generate
3 types of time series: (1) demand, (2) sales, and (3) forecast. The demand is equal
to that of the seasonal pattern. The sales is a weighted average of the demand and
forecast, controlled by a parameter r. The forecast is generated based on the sales.
Actually, we generate two forecasts. The first forecast is simply the historic aver-
age of the corresponding series. The second forecast extracts all seasonal periods by
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FIGURE 7.3: Simulation results: impact of process influences on
forecasting error (left) and impact of clustering on forecasting error
(right). On the left, different values for r are 100 (green), 75 (light
blue), 50 (red), 25 (orange), and 0% (dark blue). On the right, the fore-
casting is done excluding (yellow) and including (brown) clustering.

averaging, clusters them, and averages within the cluster. Figure 7.1 (right) visual-
izes a realisation of one period (year) of one series, consisting of the three different
types.

We are interested in the impact of two main effects: the parameter r and the fore-
casting method. To do so, we measure the forecasting accuracy in terms of Weighted
Average Percentage Error (WAPE) between the forecast and demand, weighted by
demand volume. In total, we run 10 simulations of 50 periods containing N=20 se-
ries, with 5 values of r.

7.5 Results

7.5.1 Data experiment

Figure 7.2 (left) visualizes the difference in forecasting error split by forecasting
method. In order of increasing WAPE, these are ARIMA (35.8%), the last year bench-
mark (36.3%), and Holt-Winters (59.5%). Interestingly, the benchmark outperforms
Holt-Winters and nearly the ARIMA model. The variance in error can possibly be
explained by the data quality of the different model families over which the visual-
ization was made.

Figure 7.2 (middle) highlights the impact of the data type (sell-in vs sell-out) on
forecasting performance. The results show a large difference between the two, sell-
in having a WAPE of 45.7% sell-out one of 38.6%. This is a relative difference of 18%.
This seems intuitive, as the sell-out is less influenced by the processes created by the
dealer and manufacturers.

Figure 7.2 (right) shows the impact of smoothing on forecasting performance. We
observe little difference between applying and not applying LOESS smoothing. Ap-
plying smoothing lead to a WAPE of 44.4% and not applying smoothing to a WAPE
of 43.1%. A few model families might benefit from smoothing, as the minimum
WAPE for LOESS smoothing is lower than that of not applying smoothing. How-
ever, further investigation is necessary to draw conclusions.
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Forecast method Cluster level 0 Cluster level 1 Cluster level 2 Cluster level 3 Cluster level 4

ARIMA 35.7% 35.8% 35.7% 35.8% 35.8%
Holt-Winters 56.6% 57.7% 58.7% 58.7% 59.5%
Last year 31.0% 32.4% 34.0% 35.0% 36.3%

TABLE 7.1: Forecasting error (WAPE) split by cluster level and fore-
cast method. A cluster level of 0 implies clustering the seasonal pat-
terns of all model families, a cluster level of 4 implies no clustering.

The levels in between scale down logarithmic.

Table 7.1 displays the results of applying hierarchical clustering on the seasonal pat-
terns of the forecasts. The results differ per forecasting method. ARIMA shows
hardly any difference, Holt-Winters shows a slight improvement, and the last year
benchmark shows a large improvement when applying clustering. The benchmark
even outperforms both the ARIMA and Holt-Winters model when applying any
form of clustering. The performance boost in terms of WAPE can be up to 15% (rel-
atively).

7.5.2 Simulation experiment

Figure 7.3 (left) shows the impact of process influences on forecasting error. A high
value for r implies a large process influence. We observe that the convergence to-
wards a low forecasting error is much slower if the process influence is larger. For
increasing values of r, the WAPE converges to approximately 4%, 5%, 9%, 21%, and
39% after 50 periods. Additionally, for the largest value of r, the forecast error con-
verges towards a larger value than its initial value. It seems that the forecast and
sales patterns settle on a different pattern that that of the demand.

Figure 7.3 (right) shows the impact of clustering on forecasting error. We observe a
large difference between using and not using clustering. Firstly, the forecast using
clustering converges much faster. After 2 periods with clustering a similar error is
observed as without clustering after 50 periods. Secondly, it seems that the approach
including clustering converges much faster. Even when accounting for the 10-fold
increase in data available to fit seasonal pattern on. After 5 periods, the clustering
approach as a WAPE of 15%, which is much lower than the 20% WAPE after 50 pe-
riods when not using clustering. After 50 periods of using the clustering approach,
the WAPE settles at a value which is nearly twice as low (11% vs 20%).

Figure 7.4 displays two cluster dendograms within one simulation run at two points
in time. After 1 period (left) and after 30 periods (right). The dendograms show large
differences. After period 1, the distances between the extracted seasonal patterns of
the products are much larger than those after 30 periods. Additionally, the distances
within the clusters are much smaller after 30 years. However, the distance between
the two clusters remains relatively large.

7.6 Discussion

Overall, we argue this research shows promising results. On real data, our hierarchi-
cal clustering approach shows never to harm forecasting error. On the contrary, two
out of three investigated forecasting approaches show an improvement. The results
on the simulated data are even more striking, as forecasting error decreases by 45%
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FIGURE 7.4: Cluster dendogram when linking seasonal patterns of
all products in the simulation experiment: period 1 (left) vs period 30

(right).

when applying clustering. Additionally, the simulation experiment quantifies the
large extend to which process influences impact forecasting fits.

The real data experiment shows one unexpected result: namely that more cluster-
ing always improves performance. This is surprising, as we expected a trade-off
amongst the cluster levels. More clustering should not necessarily lead to better
seasonal patterns. Our results can potentially be explained by the noisy data in the
bicycle industry. Besides, the ARIMA model does not seem to benefit from clus-
tering. This can be explained by the challenges the model showed on fitting the
data. The fitted ARIMA models show little variance in their predictions, which can
explain why clustering does not change the results much.

The last year benchmark performs remarkably well in comparison with both sta-
tistical approaches. This might be explained by the self-fulfilling prophecy. The
benchmark namely lies close to the approach the business uses to forecast their de-
mand.

The results from smoothing the data seem to make no difference. Given that little
data is available and the data is volatile, this is surprising. An explanation might
be that smoothing smooths all peaks, including seasonal ones. Besides, different
smoothing approaches with different parameters could have been chosen to further
investigate.

An interesting finding from the simulation experiment is that there seems to be a
self-reinforcing effect between forecast and sales. The speed-up in convergence ex-
ceeds the expected 10-fold increase, as data from 10 similar products is available.
This might be explained by the fact that forecasts close to the demand lead to sales
data that is close to the demand. In the next year, this sales data is ’richer’ compared
to that of sales data generated partly by a poor forecast. A better forecast leads to
better sales data, which in term leads to a better forecast, etc.

The simulation results also highlight the challenges faced in supply-driven markets.
The Covid-19 pandemic has led to shortages in many supply chains globally, leading
to markets changing from demand-driven to supply-driven. Pre-Covid, plenty of
products and material were available, whereas post-Covid, sales are influenced by a
much greater extend on process influences (supply). In the bicycle industry, business
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experts estimate that this process influence can contribute to approximately 80% of
sales.

Ideally, the scope of this paper would have been on full forecasting predictions, not
just on the seasonal pattern. However, we leave this for future research. For exam-
ple, changes in trend make it challenging to compare and reconcile various products,
leading to missed opportunities in clustering. Perhaps our methodology can be ex-
tended towards incorporating the full time series.
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8 Predicting Travel Behavior by
Analyzing Mobility Transactions

8.1 Summary

Email marketing is a widely used business tool that is in danger of being overrun by
unwanted commercial email. Therefore, direct marketing via email is usually seen as
notoriously difficult. One needs to decide which email to send at what time to which
customer in order to maximize the email interaction rate. Two main perspectives
can be distinguished: scoring the relevancy of each email and sending the most
relevant, or seeing the problem as a sequential decision problem and sending emails
according to a multi-stage strategy. In this paper, we adopt the second approach
and model the problem as a Markov decision problem (MDP). The advantage of
this approach is that it can balance short- and long-term rewards and allows for
complex strategies. We illustrate how the problem can be modeled such that the
MDP remains tractable for large datasets. Furthermore, we numerically demonstrate
by using real data that the optimal strategy has a high interaction probability, which
is much higher than a greedy strategy or a random strategy. Therefore, the model
leads to better relevancy to the customer and thereby generates more revenue for the
company.

8.2 Introduction

Customer communication is crucial to the long-term success of any business [122].
Research has shown communication effectiveness to be the single most powerful de-
terminant of relationship commitment [112]. Companies can choose from multiple
channels in reaching their customers. The recent rise of social media has expanded
the possibilities immensely. Most research focuses on email communication, though,
because it is relatively easy to collect data of every email sent and every interaction
resulting from the email on a customer level. Therefore, a thorough analysis of email
communication effectiveness is possible.

Currently, in most companies, domain experts determine the email strategy. Cus-
tomers are selected for emails based on business rules. These rules can be determin-
istic, such as matching the email’s language or gender with those of the customer.
However, they can also be stochastic, such as matching the (browsing) activity cate-
gories of a customer to the email category. Measurements suggest that a large frac-
tion of the emails are unopened, a larger portion of the emails do not even direct
customers to the company’s website, and almost all emails are not related to direct
sales. An increase in the interaction probability, therefore, directly leads to additional
revenue. This probability can be increased by a better recommendation process of
deciding which email to send at what time to which customer.
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The challenge faced in this research can be classified within the research field of rec-
ommender systems. A recommender system has as purpose to generate meaningful
recommendations of items (articles, advertisements, books, etc.) to users. It does so
based on the interests and needs of the users. Such systems solve the problem of
information overload. Users might have access to millions of choices but are only
interested in accessing a fraction of them. For example, Amazon, YouTube, Net-
flix, Tripadvisor, and IMDb use recommender systems to display content on their
web pages [99]. Similarly, one can use recommender systems to recommend certain
emails to users, thus, to determine when to send which email to which user.

Recommender systems have traditionally been classified into three categories: content-
based filtering, collaborative filtering, and hybrid approaches [2]. Content-based fil-
tering is a recommendation system that learns from the attributes (or the so-called
contents) of items for which the user has provided feedback [94]. By doing so, it
can make a prediction on the relevancy of items for which the user has not provided
feedback. Collaborative filtering looks beyond the activity of the user for which a
recommendation needs to be made. It recommends an item based on the ratings of
similar users [2]. Hybrid recommender systems make use of a combination of the
above-mentioned techniques in order to generate recommendations.

Although recommender systems might seem a good way to address the direct mar-
keting problem, they have some shortcomings. One of the major problems for rec-
ommender systems is the so-called cold-start problem. This concerns users or items
which are new to the system; thus, little information is known about them. A second
issue is that traditional recommender systems take into account a set of users and
items and do not take into account contextual information. Contextual information
might be crucial for the performance of a recommender system [3]. A third issue
is an overspecialization: “When the system can only recommend items that score
highly against a user’s profile, the user is limited to being recommended items that
are similar to those already rated” [2]. Lastly, recommender systems must scale to
real data sets, possibly containing millions of items and users. As a consequence,
algorithms often sacrifice accuracy for having a low response time [99]. When a data
set increases in size, algorithms either slow down or require more computational
resources.

The main contribution of this paper is that we address the mentioned shortcomings
of the traditional recommender systems by formulating the direct marketing prob-
lem as a Markov Decision Process (MDP). This framework deals with context and
uncertainty in a natural manner. The context (such as previous email attempts) can
be specified in the state space of the MDP. The uncertainty is addressed by the opti-
mal policy as an exploration-exploitation trade-off. The scalability of the algorithm
is addressed by limiting the history of the process to sufficient information such that
the state space does not grow intractably large. Furthermore, we test our model
with real data on a greedy and random policy as a benchmark. The results show
that our optimal strategy has a significantly higher interaction probability than the
benchmark.

In this paper, we expand on our work in [122] by doing a more thorough data analy-
sis, implementing an alternative method to solve the MDP, and by further elaborat-
ing on the discussion.

The organization of this paper is as follows. In Section 8.3, we describe the data
used for our data-driven marketing algorithm. Section 8.4 describes the model and
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FIGURE 8.1: Frequency of event types.

introduces the relevant notation. In Section 8.5, we analyze the performance of the
model and state the insights from the model. Finally, in Section 8.6, we conclude and
address a number of topics for further research.

8.3 Data

In this section, we describe the data used for this research. We explain the data,
comment on the data quality, filtering, and processing. Finally, we explore the data
by showing relevant statistics and visualizations.

The data is gathered from five tables of an international retailer from one complete
year and concerns: sales data, email sent data, email interaction data, customer activity
data, and customer data.

The sales table contains all orders that have been placed by each customer. This in-
cludes information on the product, price, and date. The email sent table contains all
emails sent to each customer. An email is characterized by attributes such as title,
category, type, gender, and date. The email interaction table is structured similarly
to the email sent table, however, it contains an interaction type. An interaction type
can be email open, link click, online purchase, email unsubscribe, or email deac-
tivation. The customer activity table contains for each customer its activity on the
retailer’s platform, such as browsing or clicking on the website. Finally, the customer
table contains characteristics of a customer, such as date of birth, country, city, and
gender.

Quality

The data used for this research is, for the large part, automatically generated. How-
ever, this does not guarantee its quality. Some issues appear when inspecting the
data.

First, according to the data, 232 countries exist. Although there is discussion on
the number of countries in the world, the United Nations (UN) recognizes a little
under 200 countries. Business rules can explain the high number of countries in
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FIGURE 8.2: Distribution of time until the first interaction with an
email.

the database, such as classifying a part of the business (e.g., customer services) as
a separate country. We tackle this issue by filtering on countries recognized by the
UN.

Second, some physical stores are classified as individual customers. This results in
these customers making hundredths of orders every year, creating much revenue.
For these reasons, they can easily be identified.

Last, a large part of the customers does not place orders or show activity. This might
be because one physical customer might have multiple accounts or devices through
which interactions are made. Additionally, bots or spam accounts might be classi-
fied as customers. Business rules and logic is applied to identify and consolidate;
however, this logic is not 100% accurate.

Processing

In this research, we analyze a vast amount of data. After filtering, we analyze ap-
proximately just over a million customers, but millions of emails, orders, and email
interactions. Just the size of the raw email table is larger than 200GB. Such amounts
of data cannot be processed on a standard, local machine. Thus, we used cloud tech-
nologies to process the data. The tables were queried using the Presto query engine.
The query results were analyzed using various Python scripts making use of Spark
(PySpark). In total, 14 queries and 22 Python scripts were written to explore data,
process data, and build models.

Filtering

Given the data size, data quality challenges, and to focus on relevant customers,
we filter the data. In the raw data, we have approximately 240 million unique cus-
tomers. However, this does not correspond to reality because business definitions,
falsely identified customers, or inactive customers inflate this number. We reduce
this to approximately 1 million customers by applying various filters. This proce-
dure is visualized in Figure 8.4. First, we exclude stores by limiting the number of



8.3. Data 85

FIGURE 8.3: Distributions of emails received and emails interacted
with by customers: average daily emails (left) and average daily in-

teractions (right).

purchases and the total order value of each customer. Next, we focus only on cus-
tomers that have ever placed an order, are registered (this excludes guest accounts),
are flagged as customer (excludes duplicate accounts), have indicated that they can
be contacted online, are situated in Europe, and have shown activity on the online
platform in the previous year.

Data exploration

The retailer has over 1 million unique active customers in its database. In total, a
little more than 132 million emails were sent, leading to around 34.5 million inter-
actions. The main interaction category is ‘email open’, which occurs over five times
more frequently than the second interaction category, ‘link click’. This is intuitive, as
an email needs to be opened in order to click a link. Even fewer emails are related to
direct online sales, and rarely an email leads to an unsubscribe or deactivation (see
Figure 8.1). The customers that interact with an email, usually do so within a few
hours. The majority even within one hour, with the number of interactions declining
by the hour afterward. Only after 24 hours, there is a slight increase in the number
of interacting customers (see Figure 8.2).

With the current email strategy, the retailer does not send the same emails to the
same customers. The average customer receives an email every other day and inter-
acts with an email every 10 days. Interestingly, some customers interact with more
than 1 email per day on average. The email interaction rate varies between the email
category and email type. The interaction rate of individual emails shows even larger
differences. This rate ranges from 3.4% to 67%. Figure 8.3 shows the average daily
emails received and the average daily interactions per customer. The distributions
of both statistics differ much. The average daily interactions look exponentially dis-
tributed by visual inspection, whereas the average daily emails received looks more
normally distributed.

In this research, we are mainly interested in delivering relevant communication to
the customers. Whether an email is relevant to a customer can be expressed by
whether the customer interacted with the email. We investigate two correlations
related to the email interaction rate. We do this by visualizing the relation with a
scatter plot (plotting a random sample of the data) and including a 95% confidence
interval for the mean. The confidence interval is created through a bootstrap proce-
dure.
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FIGURE 8.4: The various filters applied to the customer data.

Figure 8.5 (left) visualizes the correlation between the average number of emails re-
ceived and the number of interactions. The average daily interactions is positively
correlated with the average daily emails. This is intuitive, as it would benefit no
strategy to send more emails to a customer that does not interact with emails. Also,
it is impossible for a customer to interact with two emails if the customer only re-
ceived one. However, sending more emails does not necessarily mean more interac-
tions. Figure 8.5 (right) visualizes the correlation between the interaction probability
and total order value of a specific customer. The interaction probability is defined as
the number of interactions divided by the number of received emails for a specific
customer. The graph indicates that a higher interaction probability is correlated with
a higher-order value. When looking at the interaction probabilities of 0.3 and 0.4, the
confidence intervals for the mean total order value (averaged over all customers) are
non-overlapping. For a probability of 0.3, the confidence interval is [174.68, 180.71]
and for a probability of 0.4 this yields [189.02, 195.11]. Thus, customers that have a
higher interaction probability have a higher customer value (for interaction proba-
bilities smaller than 0.8).

8.4 Model description

We implement a discrete-time Markov decision process (MDP) for our email mar-
keting process. The MDP is defined by four entities: the state space S , the action
space A, the reward function r, and the transition function p.

We define a state s 2 S as a vector of the form s = (x0, x1, x2, y0, y1). Here, xi repre-
sents the (3 � i)th previous interaction of the customer for i 2 {0, 1, 2}. Similarly, yj
is defined as:

yj =

(
1, if (2 � j)th previous action led to an interaction,
0, otherwise,

(8.1)

for j 2 {0, 1}.

This choice for the state is partially inspired by [111], in which the state is defined as
the sequence of the past k items bought. We make a clear distinction between actions
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FIGURE 8.5: Scatter plots diagrams: # emails vs # interactions (left)
and interaction probability vs customer order value (right).

and interactions, an action meaning sending an email to a customer and an interac-
tion meaning the customer interacting with an email. The xi’s of the state space
represent a customer’s preference in content, and the yi’s represent the customer’s
sensitivity to emails. The parameters i = 3 and j = 2 have been empirically chosen,
leading to an approximate model. There is a trade-off between tailoring the model
for individuals and, more accurately, estimating the model parameters. The size of
the state space grows exponentially as i and j are increased, since |S| = |A|i 2j.

We define an action ai 2 A as an integer. This integer represents a combination of
email category and email type. An example of a category is ‘household products’
and an example of type is ‘special event’. In our data, 20 categories and 21 types
exist. However, not all combinations of category and type appear in the data. There-
fore, we focus on the 20 actions that occur most frequently. In this way, we reduce
the size of the action set by 95% at the cost of discarding 21% of the data.

The reward function represents the reward (business value) of a customer visiting
a state. We aim to maximize the communication relevancy to the customers. This
can be measured by customers interacting with emails. Thus, the reward function
should measure email interactions. We define the reward function as r(s) = y1 for
s = (x0, x1, x2, y0, y1). This function expresses whether the previous action leads
to an interaction. Conveniently, the last element in the state vector already does
so.

The transition probabilities are estimated by simply counting the occurrences of a
transition in the data. Specifically,

p(s, a, s0) =
C(s, a, s0)

Âs02S C(s, a, s0)
,

in which C(s, a, s0) is a function that counts the number of occurrences of transition-
ing from state s to state s0 when applying action a. To create the data to estimate these
probabilities, three steps are required. First, we collect on a daily level which action
and interaction was registered with which customer. Next, we compute the state of
each customer based on this information. Lastly, we aggregate all state changes of
all customers into one final table. These steps are visualized in Figure 8.6.

To summarize the implementation of the MDP, we present an example. This example
is visualized in Figure 8.7. The example highlights that when a customer is in state
st = (14, 6, 10, 0, 0) and action at = 17 is applied, we have a 19% probability of transi-
tioning to state st+1 = (6, 10, 17, 0, 1) (since p(st, at, st+1) = p

�
(14, 6, 10, 0, 0), 17, (6, 10, 17, 0, 1)

�
=
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FIGURE 8.6: The three data processing steps required for estimating
the transition probabilities.

0.19) and an 81% probability of transitioning to state st+1 = (14, 6, 10, 0, 0). Note that
for any st, only two possibilities exist for st+1.

Modeling considerations

Multiple challenges arise when modeling the problem as an MDP. Most of these have
been tackled by defining an appropriate MDP as done in the previous paragraphs.
However, some modeling choices remain, which are described next.

8.4.1 The unichain condition

In order for solution techniques to work for our model, the MDP needs to be unichain.
The unichain property states that there is at least one state s 2 S , such that there is a
path from any state to s [13]. A path from z0 to zk of length k is defined as a sequence
of states z0, z1, . . . , zk with zi 2 S with the property that p(z0, z1) · · · p(zk�1, zk) >
0.

The unichain property does not automatically hold when we take all states and state
transitions directly from the data. This is because the chain is partially observed,
so for some states, it is not observed that a specific action causes an interaction. For
some states, it might only be observed that the next possible state is the current state.
We solve this problem by removing all states for which fewer than 2 next states are
observed.

8.4.2 Estimation of transition probabilities

In our implementation, making the MDP unichain reduces the number of observed
states. A problem with the estimation of the transition probabilities is that some
probabilities are based upon thousands of observations, whereas others only on a
few observations. This introduces noise in the transition probabilities. To tackle this
challenge, we recursively remove state transitions that occur fewer than 50 times
and, if this leads to states being impossible to transition to, we also remove those
and transitions to those states.

The MDP is partially observed; we initially observe 86% of the theoretically possible
states. After filtering, we are left with 39% of possible states. This is a large reduction
in the number of observed states. However, it does ensure we focus on the most
relevant and frequently observed states. Figure 8.8 shows the distribution of the
number of observed transitions per state before filtering.

8.4.3 Exponential growth

Lastly, defining and solving an MDP can be difficult because of the exponential
growth of the state space due to the multiple components of the state, as discussed
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FIGURE 8.7: Example transition.

before, when setting the values of i and j. If the state space becomes too large, solving
the MDP might not be realistic. To ensure the MDP can be solved within a feasible
time period, we implement a custom version of the value iteration algorithm, taking
into account the following issues.

In our case, the set of possible next states, defined as E(s, a), only consists of 2 states.
This significantly reduces the run time of the algorithm. If we did not do this, the
algorithm would have to check the transition probabilities to and values of all 32,000
possible states.

We implemented the action set, A, as being dependent on the state, thus redefining
it as A(s). For some states, not all 20 actions are observed. So it is unknown to
the model what the transitions would be. Not taking into account these unknown
actions improves the performance of the algorithm.

Finally, we initialize E(s), A(s), and p(s, a, s0) for all s, a, and s0 in memory using
Python dictionaries. This allows for O(1) lookup steps of any probability, action set,
or the set of next states within the algorithm.

Finding the optimal policy

We find the optimal policy to the MDP by using two methods: value iteration and
Evolutionary Computing (EC). The field of Evolutionary Computing (EC) can be
seen as a family of algorithms that acts as a meta-heuristic. They can be applied to
finding the optimal value to an MDP and potentially generating near-optimal solu-
tions efficiently. We have not observed this way of using EC in the literature.

Inspired by nature, EC works with notations of an individual, population, gener-
ation, selection, recombination, and mutation [evolutionary_computing]. A gen-
eration is a population in a certain time period, a population consists of multiple
individuals, and an individual represents some solution to a problem. Individu-
als can recombine with other individuals to create offspring, and individuals can
be mutated. Selection operators determine which individuals pass on to the next
generation.

We view an individual as a strategy, thus, as a mapping from state to action. There-
fore, we represent an individual as a vector of integers hs1, . . . , sni, n = |S|, si 2 A, in
which si is a gene specifying which action to take in the state at index i in the list of
possible states. We can assign a fitness fi to individual i by applying a variation of
the value iteration algorithm, in which we do not follow the optimal but the current
strategy.
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FIGURE 8.8: Distribution of the number of observed transitions per
state.

We initialize the population by randomly generating individuals. We choose a pop-
ulation size of µ = 100, fitness proportionate parent selection, the uniform recombi-
nation operator, and the random reset mutation operator.

Regarding survivor selection, we use a l-µ ratio of 2, which means we generate
twice as many offspring as we have parents. We use a (µ + l) survivor selection
technique, we select survivors from the union of the current population and the
children. The survivor selection operator we use is a tournament selection procedure
of size k = 6. We sample k individuals from the set of parents and children, and
choose the individual with the highest fitness as a survivor. We repeat this process
until our new population size equals µ. Additionally, we use elitism, i.e., the best
individual from the old generation is always selected for the new generation.

Our termination condition is based upon time; we stop generating offspring after
running the algorithm for 24 hours.

Modeling Considerations

Next to the considerations of creating the MDP, two more challenges arise when
modeling the EC approach. They are described as follows.

8.4.4 Choice of components

The main challenge is choosing the components and the parameters they imply. We
make these choices based upon a grid search procedure. This procedure is time-
consuming, as most parameters influence the balance between exploitation and ex-
ploration, which concerns the algorithm’s performance in the short- and long-term.
It might seem that a parameter positively affects the fitness in the early generations.
However, when looking at a longer horizon, this might not be true.

8.4.5 Evaluation of strategies

The evaluation of strategies is time-consuming as well. To improve the performance,
we use a modified version of the value iteration algorithm, in which we only follow
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FIGURE 8.9: Comparing strategy performance: optimal vs. greedy
vs. random.

the given strategy. This has the advantage that not every action in every state should
be taken into account, and thus, the algorithm converges faster. To further reduce
the evaluation time, we decrease the convergence threshold # over the generations.
In this way, the evaluation of the population is faster in the first generations and
gradually slows.

8.5 Results

In this section, we present an analysis of the performance of the models. We analyze
the strategy performance by comparing three different strategies, all based on the
MDP framework: the optimal strategy, a greedy strategy, and a random strategy
(benchmark). The optimal strategy is calculated through value iteration, the greedy
strategy by choosing in each state the action with the highest interaction probability,
and the random strategy by randomly choosing an action in each state.

Figure 8.9 shows the resulting performance of the three strategies. The optimal strat-
egy has the highest long-run interaction probability, corresponding to a value of 65%.
The greedy strategy is second with a rate of 53%, and the random strategy with 30%.
Interestingly, the interaction rate of the optimal strategy is 23% higher than the rate
of the greedy strategy, showing that taking into account delayed rewards can highly
increase the strategy value. Both the optimal and greedy strategy perform better
than the random strategy, showing that using advanced strategies has a large im-
pact on the interaction rate.

Figure 8.10 highlights the effectiveness of each action type. This effectiveness is mea-
sured by dividing the frequency of an action within the optimal or greedy strategy
over the expected frequency of that action. It is measured in this way, since an ab-
solute measure would not be accurately representing the action performance, as in
some states only one action might be possible. So the absolute measure would not
represent how much the action is preferred over other actions. A comparison be-
tween the greedy and optimal strategy is made to highlight the difference between
short- and long-term rewards of the corresponding action.
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FIGURE 8.10: Action performance: frequency of an action within the
optimal or greedy strategy divided by the expected frequency of that

action.

Large differences are visible in action performance. Actions that perform well on
both the short- and long-term are action 7: the type retail clearance, 19: weekly
product releases in a specific category, and 6: new releases. Interestingly, some ac-
tions are highly beneficial for the long-term, but not beneficial for the short-term,
see., e.g., action 4. Actions that perform poorly are action 1, 14, 15, 16, or 17, which
are all weekly product releases. It seems that only the weekly product release in a
specific category (action 19) performs well.

Figure 8.11 shows the fitness of the best individual throughout the generations dur-
ing the run of the EC algorithm. This fitness curve increases rapidly in the first gen-
erations. However, the increase slows down as the generations pass. The algorithm
did not find the optimal strategy within the time limit of 24 hours, which corre-
sponds to running 297 generations. Given more time, the algorithm will find better
individuals and converge towards the optimal solution. The value of the optimal
strategy is highlighted by the dotted line. The orange line (the line with the lowest
maximum fitness) shows the maximum fitness found by a random search.

8.6 Conclusions and discussion

This research shows that the retailer can increase its relevance to its customers by
applying a different email strategy. Hereby, it possibly increases the revenue it gen-
erates. However, the strategy we developed is based on the data generated from the
retailer’s current email strategy. If the retailer starts experimenting with different
strategies, this might uncover patterns unknown to the current model and poten-
tially improve the optimal strategy we presented.

An interesting result of this research is the difference between the optimal and the
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FIGURE 8.11: Performance of EC: maximum fitness per generation

greedy strategy. The interaction rate of the optimal strategy is 23% higher, rela-
tively. Thus, the balance between short- and long-term rewards should be taken into
account when dealing with similar problems. If we had chosen to use traditional
methods, such as content-based or hybrid filtering, this result would not have been
directly visible. These methods do not explicitly include this balance, so during the
modeling process, it will be beneficial to try to include this balance.

Moreover, the results indicate a ‘reality gap’ between theory and practice. The in-
teraction rate of the random strategy (30%) is higher than the interaction rate of the
retailer’s current strategy (27%). This is probably because our model has fewer re-
strictions compared to real life. However, with the interaction rate of the optimal
strategy being 65%, the model shows to have potential.

Throughout this research, all data concerns the past. However, to measure the im-
pact of strategies more accurately, it would be better to measure the performance
in real-time. For example, through an A/B testing procedure. Additionally, an al-
gorithm like reinforcement learning could be used to learn the value of strategies
in real-time. This algorithm is known to balance short- and long-term rewards and
balance the trade-off between exploration and exploitation. It hereby tries to both
learn a better strategy and apply the best-known current strategy whilst executing
certain strategies.

Furthermore, we can extend the model by redefining actions. In this research, we
focused on emails. However, this channel is not tied to the model. In the future, the
same model can optimize push notifications of mobile applications, in exactly the
same manner as the current model does.

Our research results show that evolutionary computing is less efficient in finding the
optimal solution than the value iteration algorithm. The value iteration algorithm
converges below e within 20 minutes on the same machine. Potentially, the EC ap-
proach can be improved by choosing different operators. However, the algorithm
needs to be improved largely in order to match the speed of the value iteration al-
gorithm. On our MDP, the EC approach seems inadequate; however, in other cases,
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it might still be a good idea to implement. For example, an MDP where the action
space is larger and, therefore, the value iteration algorithm might have difficulties to
converge. In this case, the EC approach can deliver better strategies than random,
and if given enough time, approach the optimal solution.

Research opportunities

As with any model, the model we presented in this research is a simplification of
reality. The main impact is that, compared to real life, the model can choose between
more actions. In reality, not every action can be undertaken in every time period.
This can be improved by further restricting the action set, based upon the state. For
example, incorporating the previous action in the state and restricting the action set
based on this previous action.

Furthermore, the estimate of transition probabilities can be improved. At the mo-
ment, this estimation is based upon counting frequencies. However, when transi-
tions are not observed or observed infrequently, this estimation is unreliable and
these transitions are filtered. This leads to a further restricted state space. Instead of
removing these transitions, we could initialize a default probability from transition-
ing from a state to any other state. Or we could use machine learning techniques to
estimate these probabilities, as a transition probability might say something about
the transition probability of a similar action.
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9 Benefits of Social Learning in
Physical Robots

9.1 Summary

Robot-to-robot learning, a specific case of social learning in robotics, enables the abil-
ity to transfer robot controllers directly from one robot to another. Previous studies
showed that the exchange of controller information can increase learning speed and
performance. However, most of these studies have been performed in simulation,
where robots are identical. Therefore, the results do not necessarily transfer to a
real environment, where each robot is unique per definition due to the random dif-
ferences in hardware. In this paper, we investigate the effect of exchanging con-
troller information, on top of individual learning, in a group of Thymio II robots
for two tasks: obstacle avoidance and foraging. The controllers of the robots are
neural networks that evolve using a modified version of the state-of-the-art NEAT
algorithm, called cNEAT, which allows the conversion of innovations numbers from
other robots. This paper shows that robot-to-robot learning seems to at least paral-
lelise the search, reducing wall clock time. Additionally, controllers are less complex,
resulting in a smaller search space.

9.2 Introduction

To enable autonomous robots to operate reliably in an environment that is not fully
understood or known at design time, there is a need for self-learning robots. In such
a setting, the robots can learn individually, e.g., by encapsulating a self-sufficient
learning algorithm within the robot. These robots learn about and act in their envi-
ronment while completing a task.

The robotic controller that we consider for the robot to learn a task is a neural net-
work. This is a direct policy that maps the sensor inputs of the robot to actions. This
mapping, consisting of nodes and connections between the nodes, are evolved with
evolutionary algorithms.

Evolutionary algorithms are inspired by Darwins’ theory of survival of the fittest. In
nature, animals survive and procreate when they are more fit. Similarly, a robotic
controller is tested by observing the behaviour of the robot and is given a corre-
sponding fitness measure. The higher the fitness, the more chance this controller has
to procreate. Over generations, the quality of the controllers will improve and lead
to robots that are capable of executing a predefined task properly.

The robotic controllers are evolved online, while the robot is performing the task,
as opposed to offline learning, where only the best controller is transferred to hard-
ware. Online learning increases the difficulty of the learning process for two reasons.
First, if the robot is stuck in a difficult situation, e.g. a room with one small opening,
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the first and only priority is to recover from this situation. With offline learning, a
robot will be repositioned at the end of the controller evaluation. Second, it is impor-
tant that the whole population of controllers is performing well because the robot is
already performing the task. Therefore, the measurements of the performance in
this paper always include all individuals in the population.

The choice of online learning is perpendicular to the choice for a physical or simu-
lated platform. In this paper we choose a physical platform. Online learning on a
physical platform has the disadvantage to be slow.

Accelerating the learning process could be reached when a collective of autonomous
robots is used that can share knowledge, i.e. socially learn, to enhance the individual
learning process. Note that social learning in robotics is not the same as the widely
used definition of social learning: learning through observation of conspecifics. Re-
garding robots, we can add a type of social learning, that we call robot-to-robot
learning, based on the ability to transfer robot controllers directly from one robot
to another. (In common parlance this would be the robotic equivalent of “telepa-
thy”.)

The benefits of robot-to-robot learning have been shown in multiple simulation stud-
ies [43, 130, 67]. In particular, evidence by [58] and [115] suggests that robot-to-robot
learning can linearly decrease learning time, e.g. the fitness measure that four robots
can reach in two hours can be reached by eight robots in one hour when they learn
socially. Evidence by [52] showed that for a range of parameter settings, learning
speed usually increases when applying robot-to-robot learning. The learning speed
increase is lower for the better parameter setting, which are parameter settings that
result in a higher performance for the individual learning robot.

Implementations of a physical robotic collective learning a task are rare. The au-
thors of [53] implemented an obstacle avoidance task and [92, 116] looked at the
phototaxis task. These tasks are simple tasks that do not require the robot to have a
camera. The authors of [54] did use a camera for the relative complex foraging task.
This task demands from the robot to collect pucks to bring to a designated target
area. However, the controller evaluation time in this implementation was too short
(under 4 seconds) to score a goal, which resulted in the necessity to keep a variety
of behaviours in the population. Additionally, the robotic group size did not vary in
these studies. Therefore, no systematic study has been performed on the benefits of
robot-to-robot learning in a physical robotic group for multiple tasks and different
group sizes.

The main objective of this paper is to examine the increase in learning speed and
performance due to robot-to-robot learning, on top of individual learning, for vary-
ing robotic group sizes. Additionally, we hypothesized that robot-to-robot learning
will lead to more robust solutions, as each robot has small random differences. That
is to say, some cameras might be mounted under a marginally different angle for ex-
ample. Learning correct behaviour in experiments with more than one robot means
that optimal performance is generalised behaviour over an entire group. Intuitively,
more robust solutions are those that are less complex.

Learning is implemented by evolving neural networks with a state-of-the-art evolu-
tionary algorithm called NeuroEvolution of Augmenting Topologies (NEAT). NEAT
was designed as a general method that can be applied to any (robotic) task, and
for this study, we chose two tasks: obstacle avoidance and foraging. To observe
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the increase in learning speed and performance due to robot-to-robot learning, we
compare 1 learning robot with a group of 4 and 8 robots.

The robots operate in their own arena. Consequently, the performance of the robot
is only due to its own actions and not influenced by other robots in the same arena.
However, the robots do communicate across arenas. Removing this inter-robot col-
lision allows for a better comparison between the individuals and the robot-to-robot
learning experiments.

The NEAT algorithm is not directly applicable for robots that exchange knowledge.
We, therefore, propose an extension of NEAT, called cNEAT. This extension allows
the conversion of innovation numbers from other robots.

This paper shows promising results when applying robot-to-robot learning. We
show that on top of a parallelisation of the search, robots that learn socially are more
capable of retaining the best controllers. Additionally, the controllers are less com-
plex resulting in a smaller search space, which is extremely beneficial when using
physical robots. It is shown that a relatively complex task, such as the foraging, can
be learned within the hour. Therefore, online learning methods can be tested on real
robots for more complex tasks than currently possible.

9.3 Learning Mechanisms

9.3.1 Individual Learning Mechanism

Individual learning takes place through an encapsulating, self-sufficient learning
mechanism. The learning mechanism used in this paper is NEAT [124]. NEAT is a
state-of-the-art evolutionary algorithm that evolves both the topology and the con-
nectivity of artificial neural networks. In NEAT, an initial population of neural net-
works without hidden layer is randomly generated. These networks will be referred
to as individuals in the population.

Over generations, nodes and connections can be added to individuals. In order to
compare different individuals, the changes are stored as innovation numbers. In
the original implementation of NEAT, innovation numbers are only used within one
generation. As a result, identical innovations could have different innovation num-
bers when they occur in different generations. Therefore, networks that are similar
could have a larger distance measure and could be placed in different species. There-
fore, we propose to keep the innovation numbers over generations.

9.3.2 Robot-to-Robot Learning Mechanism

Next to the individual learning mechanism, a robot-to-robot learning mechanism
takes place as well. First, for every robot, all the individuals in the population are
evaluated. Thereafter, the robots exchange information. Each robot sends their best
controller to the others and from all received controllers, every robot chooses one
controller based on fitness proportionate selection. The robot adds this controller to
the population whereafter new offspring is created.

As noted before, NEAT can modify the topology of the neural networks during evo-
lution. Every structural modification in the network is identified by a unique inno-
vation number to enable alignment of genomes for recombination purposes. When
implementing NEAT with the possibility to exchange individuals as described for
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FIGURE 9.1: A first iteration of the conversion algorithm with two
conflicting node IDs.

robot-to-robot learning, care must be taken to avoid conflicting innovation num-
bers. Previous work [117] solved this by using timestamps as innovation numbers.
However, using timestamps results in a unique innovation for every mutation. This
results in the same problem as described before, where two similar networks result
in a larger distance than they actually might have. Thus, we propose an adjusted
approach called conversion NEAT (cNEAT).

9.3.3 cNEAT

When robot 1, R1, receives a network from robot 2, R2, R1 needs to match the node
IDs of the received network from R2 with that of its own. This is because R2 might
have assigned the same innovation ID number to a different innovation as opposed
to R1.

To solve this problem, R1 iterates over the nodes and converts the node IDs accord-
ingly. This ensures that:

1. the nodes of the received network from R2 that match a node innovation of R1
have the same ID;

2. the nodes that do not match with any innovation of R1 get a new ID that is not
assigned to any node of R1. This new innovation ID is thereafter added to the
list of node innovations of R1.

To better understand the conversion, we provide an example shown in Figure 9.1,
on the left. The node IDs of the receiving robot R1 are on top and the nodes of
the received network from R2 are on the bottom. The received network has two
conflicting IDs. Node ID 8 and 9 are placed between nodes 1 and 4. However, the
node innovations list of R1 claims that the node in that position should have ID 6
and 7.

Node 9 is in a more difficult situation than node 8: the ancestors node (ancestorFr
and ancestorTo) of node 9 do not match with the ones specified in the node innova-
tion list, due to the wrong assignment of node 8, that should be node 6. Thus, we
first need to convert node 8 into node 6 (shown in Figure 9.1, on the right), and only
then we will be able to match and convert node 9 into node 7.

It is important to note that the ancestors’ information of a node (ancestorFr and
ancestorTo) could help to understand the order of creation of the nodes. In fact, node
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FIGURE 9.2: The second and last iteration of the conversion algo-
rithm. The received network has one conflicting ID left (9 should be

7).

8 and 9 are both placed between node 1 and 4. However, node 8 was first created
(its ancestors are 1 and 4), and only during a next mutation node 9 was created (its
ancestors are 1 and 8). For that reason, the conversion of node 9 depends on the
conversion of node 8.

Hence, a conversion could trigger other conversions, because some wrong IDs could
avoid the matching between the ancestors of the node and the node innovations list.
As a result, after the first conversion shown in Figure 9.1, we can apply a second
conversion, shown in Figure 9.2.

The conversion algorithm needs to iterate over the node ID numbers several times
until all the conversion is performed. Within every iteration, the algorithm matches
the information about the position of a node (ancestors) and its ID with the node
innovation of the receiving robot (in our example R1): if the ID is wrong, the in-
formation of the node and every reference to it (e.g., ancestor information in other
nodes with references to that node) are converted to the ID used in R1.

Algorithm 4 summarises the individual and robot-to-robot learning mechanism in
pseudocode. The NEAT algorithm is a framework where the specific implementa-
tion for the variation and selection operators are not set. In the experimental setup,
the list of used parameters is provided to clarify the chosen mechanisms that we
used for our specific implementation.

9.4 Tasks

The learning mechanism is deployed on Thymio II robots to learn two tasks: obsta-
cle avoidance and foraging. The foraging tasks require the robot to collect pucks to
bring to a target area. We extend the standard Thymio set-up with a more powerful
logic board, a camera (only used for the foraging task), wireless communication, and
a high capacity battery. We use a Raspberry Pi 3 that connects to the Thymio’s sen-
sors and actuators and processes the data from the Raspberry Pi Camera. The WiFi
is integrated with the Raspberry Pi and enables inter-robot communication.
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Algorithm 4 Pseudocode of the algorithm that runs on every robot
initialise population of first generation (P1) with individuals i1, ..., in
while current generation  final generation

for every i in P
evaluate i
store f itness of i

sort the individuals based on fitness (i1 is best)
if robot-to-robot learning

send i1 to all other agents
receive best individual from all other agents
pick one individual r1 using fitness proportionate selection
apply the conversion method to r1
add r1 to the population

create offspring by:
adjusting specie fitness based on age
pick parent pool per specie
calculate number of specie offspring with roulette wheel selection
clone specie best
pick parents based on tournament selection
apply mutation or crossover and mutation
add offspring to specie

9.4.1 Obstacle Avoidance

The obstacle avoidance task requires the robot to drive as fast as possible through
an environment without hitting the walls. The network inputs are the 7 proximity
sensors around the robot and the outputs are the motor speeds for the left and right
wheel. Including the bias node, this results in an initial network of 16 weights. The
Thymio II robot in an empty environment for the obstacle avoidance task is shown
in Figure 9.3.

There is a common fitness function to evaluate the robots’ performance for the ob-
stacle avoidance task. Given an evaluation period of T time steps, this is measured
as follows:

f =
T

Â
t=0

strans ⇥ (1 � srot)⇥ (1 � vsens) (9.1)

where:

• strans is the translational speed, calculated as the sum of the speeds assigned to
the left and right motor and normalised between 0 and 1;

• srot is the rotational speed, calculated as the absolute difference between the
speed values assigned to the two motors and normalised between 0 and 1;

• vsens is the value of the proximity sensor closest to an obstacle normalised be-
tween 0 and 1.

9.4.2 Foraging

A foraging task requires the robot to collect pucks and bring them to the nest located
in a corner of the arena. The extended Thymio II and the environment is shown in
Figure 9.4.
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FIGURE 9.3: The environment with one robot for the obstacle avoid-
ance task. This setup is duplicated for the number of robots used in

the experiment.

We use the camera image to define three task-specific sensors: puck in sight, puck
in gripper and goal in sight. The goal is visible even if the robot does not have
a puck yet. This makes the task more complex. Additionally, we use the sum of
proximity sensors in the front and two proximity sensors in the back to determine
if the robot is colliding with the wall. As a result, the neural network controller has
6 inputs, including bias. The number of output nodes is again 2, where each node
corresponds to a wheel of the robot, indicating the speed. This results in an initial
network size of 14 weights.

The fitness of a robot is defined as:

f = c1 ⇥ nwalls + c2 · npuck + c3 · ngoal (9.2)

where:

• nwalls is the number of time steps the front and back proximity sensors are not
activated, meaning no wall is being hit;

• npuck is the number of pucks collected during an evaluation;

• ngoal is the number of goals scored during an evaluation;

The hyperparameters c1, c2 and c3 are empirically put at 1, 1.000 and 10.000 respec-
tively.

With online learning, the next individual inherits the state of the current individual
automatically. When the controller evaluation ends with a puck in the gripper, the
next individual starts with this puck without any effort. For this reason, a puck only
count as collected if the robot did not have a puck within its gripper before. This is
done by subtracting the fitness of the sum of the three time steps before to the fitness
at the current time step. This means that when a goal is actually scored, the robot
has a fitness of around 7000. If the fitness of the time step results in a negative value,
the fitness value is set to 0.
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FIGURE 9.4: The environment with one robot searching for the green
puck to bring to the red target location. This setup is duplicated for

the number of robots used in the experiment.

9.5 Experimental Setup

We distinguish two different sets of experiments: the obstacle avoidance task and the
foraging task. For each setup, we compare individual learning only and individual
and robot-to-robot learning together. The learning of the robot is conducted online,
i.e. the robot is not relocated between the evaluations and each controller is tested
starting from the location reached by the previous one.

For the foraging task, there is a necessity to calibrate the cameras of the robots auto-
matically before the start of every run, because the orientation of the cameras across
robots can be different. This orientation means that the size of the puck in each of the
frames that the robot shoots can vary. After the calibration, a hand-coded controller
is used to test the calibration process; the hand-coded controller should exhibit the
optimal behaviour: turning until the puck is in sight, drive straight until the puck
is in the gripper, turn until the goal is in sight, and drive straight to the goal. Be-
cause the quality of the camera is not what we want it to be, we added velcro on the
gripper and the puck. As a result, once the robot has the puck, the corresponding
sensor input of having the puck will be set to true until a goal is scored (even if the
robot does lose the puck). We choose this implementation because the camera is not
always accurate enough to see the colours appropriately.

Human intervention is necessary when the robot is in the corner facing the wall and
tries to turn right against the wall and the motor of the robot is not powerful enough
to push itself back. When the robot collects a puck for the foraging task, we relocate
the puck to a random position in the arena and place the robot just behind the black
square.

Robot-to-robot learning experiments are performed with a group of 4 and 8 robots.
A populations size of 24 is used for the individual learning experiments resulting in
a population size of 6 and 3 for the 4 and 8 robot setup respectively. The number of
generations is 19, restricted by battery capacity for the 1 robot experiment, and one
evaluation is 20 seconds for the obstacle avoidance task and 60 seconds for the for-
aging task. This results in a time required per experiment of the obstacle avoidance
task of around 160 minutes, 40 minutes and 20 minutes for 1, 4 and 8 robots. And
for the foraging task of 8 hours, 2 hours and 1 hour for 1, 4 and 8 robots. For all
experiments, 10 replicate runs are performed with different random seeds.
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FIGURE 9.5: Median (top) and maximum (bottom) performance with
interquartile range over generations for the obstacle avoidance (left)
and foraging task (right). The individual learning robot is presented
by the green colour. Robot-to-robot learning with 4 robots is pre-
sented in yellow and with 8 robots in red. The results are compiled

over 10 replicate runs.

The code for the implementation is available on the first author’s website. The
most important parameter settings for the NEAT algorithm are presented in Table
9.1.

9.6 Experimental Results

In this section, the experimental results of the tasks reported in Section 9.4 using the
setup described in Section 9.5 are discussed. Due to the small amount of runs, some
explanations are more qualitative than quantitative.

9.6.1 Performance

In Figure 9.5 we compare the median and maximum fitness, including interquartile
range, over generations for the obstacle avoidance task (left) and the foraging task
(right). The individual learning robot is presented by the green colour. Robot-to-
robot learning with 4 robots is presented in yellow and with 8 robots in red. From
these graphs, we can draw several conclusions.

First, for both tasks the performance improves over time, meaning that the robots
learn over time. For the obstacle avoidance task, the median performance is much
closer to the maximum performance than for the foraging task. This indicates that
the foraging task is more difficult to learn for the robot. Second, adding robot-to-
robot learning, results in a more robust median performance, showed by a smoother
curve. Although the median performance for the foraging task seems to increase
when using more robots, the maximum fitness seems to be lower when using 8
robots when looking at the interquartile range.

Figure 9.6 shows a more detailed view of the performance over time for the obsta-
cle avoidance task (top) and foraging task (bottom). It specifically shows the fitness
of the individuals over the generations for all 10 independent runs and all robot-
to-robot learning experiments. To explain this graph, pick one bar where the colour
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TABLE 9.1: System parameters, descriptions and used values.
Mutation and crossover parameters

pXover 0.75

chance to apply crossover
pMutation 0.25

chance to apply only mutation
pweightMutation 0.4

chance to apply mutation on weight
pWeightReplaced 0.05

chance to replace weight
pConnection 0.01

chance to enable / re enable a connection
maxPerturb 0.75

maximum allowed change on weight
pAddLink 0.1

chance to add a link
pAddNode 0.05

chance to add a node
Species parameters

speciesTarget 2

number of target species.
coeffExcess 1

used for species compatibility score
coeffDisjoint 1

used for species compatibility score
coeffWeight 0.7

used for species compatibility score
threshold 2

used for species compatibility score
thresholdChange 0.1

used to change threshold value
speciesAgeThreshold 8

age to count as old
speciesYouthThreshold 3

age to count as young
agePenalty 0.5

fitness multiplier for old individual
ageBoost 1.2

fitness multiplier for young individual
Other parameters

size 24

population size of all robots combined
survivalThreshold 0.6

top % individuals that can be parents
tournamentsize 2

size of tournament to select parent
copyBest TRUE

clone best specie individual previous generation
copyBestEver FALSE

clone best individual so far
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FIGURE 9.6: Fitness of the obstacle avoidance task (top) and foraging
task (bottom). The x-axis presents the individuals per generation. The
y-axis presents the run. The rows represents the results for 1, 4 and 8
robots. Within one run, the individuals are sorted on fitness of which
the colour reflects the value. When using multiple robots, the indi-
viduals of the final generation for all robots are combined and sorted

on fitness.

goes from green to red. This bar consists of dots, where each dot represents one indi-
vidual in the generation presented at the top of the column and the colour represents
the fitness of the individual. There are groups of 10 bars where each bar represents
one run. This block of 10 runs is shown for every generation, shown at the top of
the column, and the number of robots, shown at the right of the row. When using
multiple robots, the individuals of the final generation for all robots are combined
and sorted by fitness.

We can see that for the obstacle avoidance task, there are many well-performing
controllers, while for the foraging task the good controllers are sparse. However, the
effect of robot-to-robot learning seems to be similar: when a high performing con-
troller is found, there is more chance that the next generation has a high performing
controller too. This results in the smoother median curve of Figure 9.5. The differ-
ence in maximum performance for the foraging task shown in 9.5 can also be better
understood with this graph. It seems that a group of 4 robots is more capable of
keeping the good knowledge in the population than using a group size of 8. This
might be due to the decrease in population size from 6 to an even smaller size of 3
when using 4 and respectively 8 robots.

9.6.2 Network complexity

In Figure 9.7 we can see the median and interquartile range of the average number
of edges in the final generation over the 10 replicate runs for the obstacle avoidance
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FIGURE 9.7: Median network complexity with interquartile range at
the final generation for the obstacle avoidance task (left) and foraging
task (right). Network complexity is expressed as the average number
of edges in the network. The results are compiled over 10 replicate

runs.

task (left) and foraging task (right). The network complexity is expressed as the
number of edges, as the increase in the number of nodes already implies the increase
in the number of edges. We can confirm our hypothesis that the complexity of the
network significantly drops when the robotic group size increases, indicated by the
non-overlapping quartile range [93]. However, we must note that when using more
robots, the chances of creating extra nodes and edges go down because a higher
percentage of the population is used by the clone component of the algorithm.

9.6.3 Selection pressure

Although the algorithm that is running on every robot is the same and the same
parameters are used, the overall dynamics of the system are different. An analy-
sis of the selection pressure will show this. The selection pressure expresses the
correlation between the fitness of an individual and the number of offspring. We
specifically use the Kendall’s t-b measure explained in [49]. In short, it measures
the correlation between fitness and number of offspring. A high value for t-b indi-
cates a strong correlation between fitness and offspring and therefore high selection
pressure.

In Figure 9.8 the selection pressure over generations are shown for 1 (green),4 (or-
ange) and 8 (red) robots. On the left, the selection pressure is aggregated over all
robots, while on the right the selection pressure for the first robot is isolated, mean-
ing only one robot is chosen in the robot-to-robot learning experiments to express
the selection pressure.

Looking at the left graph, we can observe that the selection pressure for 1 robot is
a bit higher than for more robots. This is logical because the whole population is
divided over multiple robots and only the population of one robot is considered to
create offspring. While the overall best controller can be selected every time for the
1 robot experiment, it does not participate in the creation of offspring on the other
robots. As a result, the correlation between fitness and number of offspring is not as
high as the correlation of 1 robot.

The right graph shows the selection pressure on one robot (robot number 1). There-
fore, the selection pressure for the 1 robot experiments is identical to the left graph.
For the robot-to-robot experiments, we see an increase in the selection pressure but
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FIGURE 9.8: Selection pressure over generations for 1 robot (green), 4
robots (orange) and 8 robots (red), including interquartile range over
generations for the foraging task combined over all robots (left) and
robot number 1 (right), meaning that the results of only one robot are
presented for the robot-to-robot learning experiments. The results are

compiled over 10 replicate runs.

also an increase in volatility. This is because, on one robot, the population size de-
creases and the best controller has more impact on the creation of offspring when
using tournament selection.

9.7 Discussion and Conclusion

In this paper, the effect of robot-to-robot learning on the learning speed, performance
and network complexity using physical robots is investigated for two tasks.

We have shown that the median performance is more robust when using more
robots. Although the increase in robustness is not overwhelming, robot-to-robot
learning at least distributes the search and reduces the wall clock time needing to
learn a specific task without loss of performance compared to an individual learning
robot.

The increase in robustness of the median performance is probably because more
robots are more likely to retain the controllers of the good performing controllers.
A possible explanation for this is that good controllers are tested by multiple other
robots that all start at a different position. Even though the fitness function of a
foraging task is very stochastic, a good controller will probably perform well on one
of the other robots.

Additionally, we have shown that using more robots results in less complex con-
trollers. While this might be a logical result of our specific implementation details,
the fact remains that we can reach a similar performance level with less complex
controllers when using multiple robots. A decrease in controller complexity means
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that the search space is reduced: this is especially useful in a physical setup where
the time is an important restriction.

Observing the selection pressure showed that the overall dynamics change when us-
ing multiple robots, even though the algorithm on the specific robot remains identi-
cal. We showed that the selection pressure over all robots decreases while the selec-
tion pressure on the individual robot increases. This might result in an overall better
exploration versus exploitation balance.

One can argue that our specific implementation of robot-to-robot learning has a link
with parallel EAs and island models [7, 139]. Most of the work in parallel EAs and
island models are focussed mainly on runtime analyses [7]. Measuring this in ER
is of lower importance because the evaluation time of the robot is much larger than
the computational effort. Additionally, the fitness function in evolutionary robotics
is extremely stochastic. This is due to the specific location of the robot and the be-
haviour required in that location. This relevance of the location of the robot is not
present with parallel EAs and island models. Despite the differences, we do believe
that there are some common elements too. Especially, studying the effect of the num-
ber of islands/robots on the diversity of the whole population is of interest to both
fields.

It is clear that using multiple robots changes the dynamics of the learning algorithm.
However, based on the limited number of physical experiments executed in this
paper, we are unable to identify the explicit "magic" of robot-to-robot learning. In
future work we will return to a simulation platform for an in-depth analysis of the
impact of robot-to-robot learning. Because the robots learn in an online fashion,
the learning mechanisms in the physical robots and the simulation platform will
be identical. Therefore, we can use results in simulation to validate the physical
experiments.

To conclude, this paper showed some promising results when applying robot-to-
robot learning. It is shown that a complex task, such as the foraging, can be learned
within the hour due to robot-to-robot learning. Therefore, online learning methods
can be tested for more complex tasks than currently possible when using robot-to-
robot learning. This will hopefully help the field of ER to be a worthwhile alternative
to hand-coded robots for an environment not fully known to the designers.
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Each minute in 2020, over 250,000 online meetings were held, more than 500 hours
of video were uploaded, and USD 1M was spent online [65]. At the end of the year,
over 64ZB of data were created [126]. Data is becoming a major part of our lives,
and a continued growth is expected. In this dissertation, we demonstrate how to
drive decisions based on data. We propose various methodology and contribute
to different fields. Additionally, we implement part of the work through industry
partnerships and achieve real-life results.

Data is the oil of the 21st century, according to various experts around the world [9,
131, 30]. Its promise is to support any organization in making better decisions. The
comparison with a natural resource, like oil, seems to make sense, as data does lit-
tle on its own. It needs to be converted to information, knowledge, or wisdom in
order to deliver value. By 2022, organizations will have figured a way to deliver
part of its promised value, resulting in an estimated 274 billion USD global indus-
try [125].

However, unlike a natural resource, data is practically infinite, reusable, and becom-
ing increasingly available. Therefore, novel challenges arise. A main, current chal-
lenge lies in identifying decisions and designing methodology for direct support.
Often, substantial investment is required before the value of these supportive analy-
ses is certain or even recognized. Auxiliary challenges include data integration, an-
alytical skills, security and privacy, infrastructure, and synchronization [120].

Through nine independent chapters we propose methodology in which these chal-
lenges are tackled. The first three chapters of this dissertation concern descriptive
analyses. These analyses aim to describe what happened. Intuitively, this seems a
simple task, however, various technical or human errors can establish a challenge.
The consecutive three chapters concern predictive analysis. These analyses build
on descriptive analyses and aim to predict what is going to happen. A main chal-
lenge is to find meaningful, robust patterns and prevent overfitting. The final two
chapters concern prescriptive analytics. These analyses build on predictive analyses
and aim to prescribe what to do. A main challenge is to balance the exploration of
new knowledge and the exploitation of current knowledge in order to prescribe an
optimal strategy.

After the introduction in Chapter 1, we develop novel methodology for detecting ad-
ditive outliers in Chapter 2. We perceive an additive outlier as a surprisingly large
or small value occurring for a single observation in a time series. The detection of
these outliers is an important issue because their presence may have serious nega-
tive effects on the analysis in many different ways. Existing methods to detect such
outliers are inadequate due to poor accuracy, high complexity, and long runtimes.
In this research, we provide a novel approach to detect additive outliers that over-
comes the mentioned drawbacks. We validate our approach by comparing against
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existing techniques and benchmark performance. Experimental results on bench-
mark datasets show that our proposed technique outperforms existing methods on
several measures.

In Chapter 3, we aim to identify the patterns of behavior which underlie human mo-
bility. More specifically, we compare commuters who drive in a car with those who
use the train in the same geographic region of the Netherlands. We try to understand
the mode choices of the commuters based on three factors: the cost of the transport
mode, the CO2 emissions, and the travel time. The analysis has been based on data
consisting of travel transactions in the Netherlands during 2018 containing over half
a million records. The results can be used to stimulate behavioral change proactively.
Moreover, the data and results can also be utilized to improve trip planners.

In Chapter 4, we argue the Covid-19 pandemic has brought forth a major landscape
shock in the mobility sector. Due to its recentness, researchers have just started
studying and understanding the implications of this crisis on mobility. We con-
tribute by combining mobility data from various sources to bring a novel angle to
understanding mobility patterns during Covid-19. The goal is to expose relations
between the variables and understand them by using our data. This is crucial infor-
mation for governments to understand and address the underlying root causes of
the impact.

In Chapter 5, we argue that urban planning can benefit tremendously from a better
understanding of where, when, why, and how people travel. Through advances in
technology, detailed data on the travel behavior of individuals has become available.
This data can be leveraged to understand why one prefers one mode of transporta-
tion over another. We analyze a unique dataset through which we can address this
question. We show that the travel behavior in our dataset is highly predictable, with
an accuracy of 97%. The main predictors are reachability features, more so than
specific travel times. Moreover, the travel type (commute or personal) has a consid-
erable influence on travel mode choice.

In Chapter 6, we argue that the disparity between the accessibility of areas through
different travel modes is essential for the choice of the mode of transport. Calcula-
tion of the travel times by different travel modes is, therefore, very important. Many
urban design decisions on infrastructure depend on these calculations. Develop-
ments in open data policies among urban data producers make this analysis more
tractable. In this paper, we apply a data-driven approach to travel time estimation
based on realized past travel times. We compare commuters who drive in a car with
those who use the train in the same geographic region of the Netherlands. First, we
propose a method to quantify the accessibility of areas for these different modali-
ties. Second, we show how these metrics can be used to determine optimal locations
based on the willingness to travel. The results can be integrated into planning soft-
ware to making data-driving decisions for policymaking.

In Chapter 7, we observe two current challenges in time series forecasting are the
self-fulfilling prophecy and finding robust seasonal patterns. We argue that both
can be overcome through combining similar time series. We propose methodology
to extract robust seasonal patterns from low-level sales data through applying hier-
archical clustering. We validate our approach using a simulation experiment and a
real-life dataset containing over †2B of bicycle sales. Our simulation results show a
45% decrease in forecasting error and they quantify the effects of the self-fulfilling
prophecy on forecasting error. Our results on real-life data show a 15% performance



Summary 121

gain on the benchmark when applying clustering. Additionally, we show insights
on the effects of applying smoothing and forecasting sell-in vs sell-out data.

In Chapter 8, we argue that email marketing is a widely used business tool that
is in danger of being overrun by unwanted commercial email. Therefore, direct
marketing via email is usually seen as notoriously difficult. One needs to decide
which email to send at what time to which customer in order to maximize the email
interaction rate. Two main perspectives can be distinguished: scoring the relevancy
of each email and sending the most relevant, or seeing the problem as a sequential
decision problem and sending emails according to a multi-stage strategy. In this
paper, we adopt the second approach and model the problem as a Markov decision
problem (MDP). The advantage of this approach is that it can balance short- and
long-term rewards and allows for complex strategies. We illustrate how the problem
can be modeled such that the MDP remains tractable for large datasets. Furthermore,
we numerically demonstrate by using real data that the optimal strategy has a high
interaction probability, which is much higher than a greedy strategy or a random
strategy. Therefore, the model leads to better relevancy to the customer and thereby
generates more revenue for the company.

In Chapter 9, we focus on robot-to-robot learning. This is a specific case of social
learning in robotics that enables the ability to transfer robot controllers directly from
one robot to another. Previous studies showed that the exchange of controller infor-
mation can increase learning speed and performance. However, most of these stud-
ies have been performed in simulation, where robots are identical. Therefore, the
results do not necessarily transfer to a real environment, where each robot is unique
per definition due to the random differences in hardware. In this research, we inves-
tigate the effect of exchanging controller information, on top of individual learning,
in a group of Thymio II robots for two tasks: obstacle avoidance and foraging. The
controllers of the robots are neural networks that evolve using a modified version
of the state-of-the-art NEAT algorithm, called cNEAT, which allows the conversion
of innovations numbers from other robots. This research shows that robot-to-robot
learning seems to at least parallelize the search, reducing wall clock time. Addition-
ally, controllers are less complex, resulting in a smaller search space.

In conclusion, this dissertation proposes various methodology to interpret diverse
data. These methodologies enable organizations to drive decisions based on data.
Curiously, the timing of this research is opposite to the implied timing of this frame-
work. One would expect to start with descriptive analyses and end with prescriptive
ones. However, there exists a gap between research and practice. University courses
typically focus on predictive and prescriptive analyses. Throughout the develop-
ment of this thesis, however, we observed plenty of descriptive challenges exist in
the industry.
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