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1

INTRODUCTION

Nowadays, deep learning is a popular topic. From face recognition to chatGPT to
photo editing to text-to-image, deep learning has become increasingly important in
our daily lives, and a lot of research has been conducted in this field. However, as
with everything in life, deep learning comes with a package of costs and limitations.
The amount of data and computer power it takes to train models is significant.
Besides hardware issues, improving these models may raise even bigger concerns,
such as the societal impact. What happens when deep learning is used for improper
purposes? Some serious side effects we will point out at the end of almost every
chapter.

In this thesis, we will explore a variety of deep learning models and their applications.
This section will provide background information and notations, and we will show
how the topics are intertwined. In Section 1.1, we give brief background informa-
tion about discriminative modeling and explain what the aim of deep learning is to
improve the business process for businesses operating in agriculture. Section 1.2
explains a complex open problem in generative modeling and introduces a general
structure of how two generative models, namely, a normalizing flow and variational
autencoder, learn the density distribution of data. Note that our proposed gener-
ative model, i-DenseNets, originates from the normalizing flow. Additionally, the
variational autoencoder forms the base idea behind neural compression models.
Section 1.3 demonstrates how the variational autoencoder inspires neural com-
pression models and what similarities they have in common. We continue with a
brief overview of this thesis, including some challenges that are faced. Finally, we
illustrate the ideas behind the images that are created for this thesis.

1.1 PA R T I : D I S C R I M I N AT I V E M O D E L S

In the early 1980s, back-propagation networks [80] were invented. The predecessor
of what we now know as convolutional neural networks (CNNs). But it was not until
late 2012 for a big breakthrough that brought convolutions to life. In [74], the AlexNet
CNN was introduced that won the ImageNet challenge [114] by achieving record-
breaking results. For the ImageNet challenge, participants are asked to label a dataset
that consists of millions of high-resolution images. This may be with a technique
of the participant’s choice. Solving the ImageNet challenge with discriminative
modeling requires a model to classify a high-dimensional input image. The images
belong to a certain class, e.g., ’racket’, ’lion’, or ’candle’. Specifically, deep learning
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models, implemented as a discriminative model, model the following conditional
distribution:

p(y |x), (1.1)

where y and x are the random variables representing the data distribution. From
here on, we let x ∈ Rd be a high dimensional image with dimensionality d . In
computers, a pixel is typically stored in uint8. Therefore, a pixel value is x ∈ {0,1, . . . ,
255}. Hence, y represents the corresponding label of an image. After the challenge,
the field developed at an accelerated pace, introducing new CNNs [56, 60, 118] and
breathed new life into computer vision.

Nowadays, CNNs are widely deployed for computer vision purposes to solve tasks
such as image classification, image segmentation, or object detection. They are
utilized in different domains to solve real-world problems. One of these domains is
agriculture. With a growing world population, food production needs to increase
significantly in the future. Additionally, deep learning and artificial intelligence (AI)
are becoming increasingly popular for decision-making. The combination of AI
and the agrifood industry is essential to realize the goals for food production and to
improve business processes. An example of such improvement is the automation
of time-consuming jobs such as detecting diseases in plant leaf images [41] or
identifying plant species [83].

Part I introduces a discriminative modeling task to improve the business process
of a seed breeding corporation operating in agriculture. Seed breeding ensures
the development of seeds for climate-changing conditions and to preserve the
diversity of the seeds. The aim of seed breeders is to deliver high-quality seeds to
their customers and stay competitive with the market. An important aspect of seed
breeders is their ability to make early predictions on the growth success of seedlings
kept in a growth chamber, which saves time and space for other seedlings. More
specifically, for this research, we classify the (un)successfulness of white cabbage
seedlings. In Chapter 3, we will elaborate on various machine learning methods,
including five different CNN types. We demonstrate how to deploy machine learning
methods and how they aid the prediction of the successfulness of white cabbage
seedlings based on only an image. We show that the growth success of white cabbage
seedlings can be best predicted with CNNs, and from a collection of famous CNNs,
AlexNet achieves the best performance. With an accuracy of 94% AlexNet could
be deployed as an early warning tool to aid professionals in making important
decisions.

Modeling discriminative tasks with deep learning is a successful and popular method
to predict labels from data. However, when these models are trained on specific
data, in practice, the models only achieve good performance on trained data but fail
on never-before-seen images.

1.2 PA R T I I : G E N E R AT I V E M O D E L I N G

Although deep learning classifiers are powerful, they are known to fail on never-
before-seen images, so-called outliers. A complex open problem in machine learning
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is the estimation of a distribution for high-dimensional data, such as images. Deep
learning models that try to estimate an unknown distribution are called generative
models. Generative models are known to the public for their ability to generate
realistic-looking images, generate text, or nowadays are even capable of generating
images from a text sentence. They are getting more and more integrated into our
daily lives and aiding users in various ways. They are utilized in applications such as
face recognition, photo editing, ChatGPT, GitHub Copilot, etc. Despite their many
successes, these models are still in progress and do not fully solve the problem of
estimating the true data distribution of high-dimensional data; rather, they estimate
it. Resolving the high dimensional density estimation problem is key to assessing,
for example, the perfect generation of all different types of data. This may be drug
discovery or simulation of complex environmental processes. Additionally, these
models may even estimate uncertainty, making it appealing for anomaly detection.
Challenges lie in the difficulty and instability of training these models.

In deep learning, there are many types of generative models that try to model the
true probability distribution of high-dimensional image data:

p(x), (1.2)

where p(·) is the probability density function and x is the high dimensional unknown
image data distribution. Famous, well-known examples that try to estimate the
unknown data distribution are generative adversarial networks [46], variational
autoencoders (VAEs) [67], normalizing flows [108] or diffusion models [113].

Generative models, such as VAEs and normalizing flows, use a latent variable model
to learn p(x). Therefore, let z ∈Rdz , be a latent variable with dimensionality dz . The
base probability density distribution for both models: p(z), is usually modeled as a
standard Gaussian distribution: N (0, I ) and known as the latent space. After a model
is fully trained, which we will explain later on, an unlimited number of samples can
be drawn from its latent space. Sampling follows the following procedure. First,
sample:

z ∼ p(z), (1.3)

where z represents a sample drawn from the standard Gaussian distribution. To
sample a reconstructed image x, we use the following conditional distribution:

x ∼ p(x|z). (1.4)

VAEs and normalizing flows are optimized differently. A VAE is a probabilistic model
that consists of an encoder, decoder, and latent space. Typically, we let z ∈Rdz be a
lower dimensional latent space dz < d than the dimensionality of a high dimensional
image. The encoder does not directly model p(z|x), as this results in an intractable
computation. Therefore, variational inference is used to approximate p(z|x) with
q(z|x) [67]. Variational inference approximates complex distributions by measuring
the distance between two distributions with the Kullback-Leibler (KL) divergence,
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as this is computationally tractable. q(z|x) is typically modeled by a deterministic
Gaussian distribution. The KL divergence consists of a trade-off that consists of
maximizing the evidence lower bound (ELBO) as it cannot be minimized exactly.
The probabilistic decoder p(x|z) of a VAE can be modeled by e.g., a categorical
distribution. Where p(x|z) = Categorical(x| f (z)), here f (z) are the probabilities for
the categorical distribution and f (·) is modeled by a neural net. The expected
log-likelihood is then given by:

LV AE =Ez∼q(z|x)

[
log p(x|z)︸ ︷︷ ︸

decoder

]
−K L

(
q(z|x)||p(z)

)︸ ︷︷ ︸
encoder bottleneck

, (1.5)

where the decoder part measures the likelihood of x given z. The encoder bottleneck
part counts the bits per dimension.

Normalizing flows model p(x) a bit differently than VAEs, but consist of a similar
structure. Hence, now we let dz = d , be exactly the dimensionality of an image.
Furthermore, whereas VAEs use variational inference to approximate p(z|x), normal-
izing flows model this directly by using the change-of-variables formula. Therefore,
they use a bijective function defined as f :Rd →Rd . As f is invertible, its inverse is
defined as F = f −1. Now we can map an image directly to the latent space z = F (x),
sample a latent variable z ∼ p(z) and model a reconstructed image by modeling
x = f (z). The log-likelihood is then given by:

log p(x) = log p(z)+ log |det JF (x)| , (1.6)

where JF is the Jacobian of F at point x. A normalizing flow computes the exact log-
likelihood and therefore seems very attractive. However, there are downsides, such
as, the latent space that is as high dimensional as the image itself and computation
of the Jacobian determinant is computationally very expensive.

In Part II, we will explore a special type of normalizing flow that aids the high-
dimensional density estimation problem. In Chapter 4, we extend an already ex-
isting model known as Residual flows [11, 24] and introduce a new version called
i-DenseNets. Deep learning architectures based on DenseNets are very successful
in supervised learning tasks. However, it was unknown how to integrate this for a
normalizing flow, which is constrained to Lipschitz. Therefore, we derive the math-
ematical conditions for DenseNets to be invertible, which allows them to be used
as a generative model. Note that Chapter 4 consists of two papers merged together,
where the first paper [4] uses smaller i-DenseNet architectures to experiment and
explore the model capabilities. After its success, we further explored i-DenseNet in
[5] and built upon this work by introducing a new activation function, which also
integrates a concatenation that is constrained by Lipschitz continuity. Finally, we
show how these models are not only successful in generating new images compared
to their predecessors, but also can be successfully deployed as hybrid models that
can be both generative and discriminative models.

As generative models demonstrate to aid in closing the gap in estimating the true
data distribution, they also draw inspiration from neural compression models.
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1.3 PA R T I I I : N E U R A L C O M P R E S S I O N

With the growing amount of data worldwide, compression plays a fundamental part
in data storage and transmission. The aim of compression is to optimize digital con-
tent such as cloud and streaming services. Besides being successful in discriminative
modeling or estimating high-dimensional data distributions, deep learning can also
be utilized to compress data. In fact, there is even a strong connection between gen-
erative modeling with VAEs [67] and neural image compression models, such as the
mean-scale hyperprior [8, 9, 95, 145]. VAEs and compression models both have an
encoder-decoder-like structure. Yet, instead of modeling the encoder stochastically
as the VAE does, image compression models, model the encoder deterministically.
On a high level, this simplifies the learning objective of the VAE in Equation (1.5) to:

LVAE =Ez∼q(z|x)

[
log p(x|z)+ log p(z)−

=0︷ ︸︸ ︷
log q(z|x)

]
(1.7)

= log p(x|E(x))︸ ︷︷ ︸
likelihood

+ log p(E(x))︸ ︷︷ ︸
rate

, (1.8)

where E(·) is a discrete encoder and:

q(z|x) =
{

1, if z = E(x)

0, otherwise.
(1.9)

Compression loss is typically defined as:

Lcompression = d (x,D(E(x)))︸ ︷︷ ︸
distortion

−λ log p(E(x))︸ ︷︷ ︸
rate

, (1.10)

where D(·) is the decoder, d(·) is a distance metric and λ is a parameter that determ-
ines the rate-distortion trade-off. The likelihood in Equation (1.8) and distortion
in Equation (1.10), have common similarities as they both measure the distance
between the approximation using latent variable z and the true data. The rate in
Equation (1.8) and in Equation (1.10) are the same. These count the bits it takes to
encode an image. For the compression loss, there is an extra parameter λ added to
measure the distortion. Additionally, compression models use an entropy model
for: pZ (E(x)), which is the base distribution. In VAEs, the latent space pZ (z) is
also modeled with a base distribution. Furthermore, image compression models,
such as the mean-scale hyperprior, form the base of the video compression model:
scale-space flow [2].

Lastly, Part III introduces the compression topic. Compression comprises the pro-
cess of sending data, such as images or videos, from user to user. An important
aspect is to compress data in such a way that it maintains good data quality (little
distortion) and the transfer costs are as little as possible (low rate) after the com-
pression process. While there are several models deployed for image compression,
these models break for video since video contains an extra dimension that breaks
the structure and results in a high dimensional problem. Chapter 5 uses a frequently
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used neural image compression model known as the mean-scale hyperprior [8, 9,
95]. We show how to only further optimize the latent of pre-trained mean-scale
hyperpriors to improve the compression performance without the need to re-train
the entire network. This method is especially useful when a limited computational
budget is available. In Chapter 6, we develop two neural video compression models,
based on the scale-space flow [2], that focus on regions of interest (ROIs) of the
user. The advantage of these models is that they compress ROIs with higher accur-
acy than non-ROIs. As a result, this makes transferring videos more efficient while
maintaining high overall quality.

O V E R V I E W

Recall that this thesis is partitioned into three parts. In each part, we aid the deep
learning developments by extending existing models and explore the capabilities.
Each part provides its own qualities and characteristics and is sectioned as follows:

• Part I provides a practical business application of deep learning for a corpora-
tion operating in agriculture. In Chapter 3, we aim to predict white cabbage
seedling images with machine learning algorithms. This is a hands-on ap-
proach where we examine how these algorithms behave and how they can be
deployed in practice.

• Part II covers a more theoretical topic of generative modeling. In Chapter 4, we
improve the density estimation performance of a generative model. Therefore,
we provide the necessary theory on how to derive Lipschitz bounds for our
proposed model, i-DenseNet.

• Part III is all about neural compression. In this part, we show large-scale applic-
ations of deep neural nets to aid neural image and video compression models.
In Chapter 5, we propose a method on how to improve the compression per-
formance of a frequently used neural image compression model without the
need to re-train an entire pre-trained network. Finally, Chapter 6 demon-
strates the first neural video compression model that is able to compress ROIs
with more visual quality than non-ROIs.

Besides the impressive range of applications deep learning is developed for, it also
comes with limitations and faces challenges. In general, these models require
massive amounts of high-quality data. For example, image data for discriminative,
generative and neural compression models, require to contain little artifacts. Addi-
tionally, each model requires to take specific and different pre-processing steps to
create a stable model. Therefore, it may be more straightforward in some cases to
use traditional methods. For instance, if there were only 100 images of white cabbage
seedlings for research, it may be more effective to train a logistic regression model
than a deep neural net. Since a deep neural net performs poorly when trained with
little data. Secondly, these networks lack interpretability or explanation, making it
not always useful for companies to explain their output to their customers. Lastly,
especially for generative modeling, we experienced that these models require a
significant amount of computing resources, which is not always available. Therefore,
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focusing on more efficient architectures or smaller architectures with comparable
performance as larger models is crucial for the implementation of deep learning on
devices. Besides, this makes it more accessible for research.

T H E S I S I M A G E S

In a world where technology is developing rapidly, many of us probably use AI
in our digital lives, albeit without even knowing it. Starting this thesis, chatGPT
and generating images from text were not publicly born yet. Hence, with the rise of
chatGPT, I greedily take part in it. My life became easier in many ways, for inspiration
on how to write a sentence differently, saving time on technical coding problems, or
even fixing LATEX issues. In return, this improved the speed of my thesis but also came
with a laziness cost, to say the least. Therefore, it probably comes as no surprise that
the images for the cover and parts in my thesis are generated with a stable diffusion
model. Every generated image in this thesis represents the topics, combined with a
hint of my own artistic expression.

C O V E R

PA R T I - I M P R O V I N G B U S I N E S S P R O C E S S E S The image in this part shows
generated seedlings on a computer. The seedlings look a lot like the real white
cabbage seedlings from the research.

PA R T I I - H I G H D I M E N S I O N A L D E N S I T Y E S T I M A T I O N The second part of
the thesis shows a child painting. The image represents newborn generative models
as their existence dates back to only a few years ago. Nowadays, these models learn
to generate data, which often comes with limitations and boundaries, as you will
experience when working with them. Just like children, they are quickly developing
and learning, but they are not there yet.

PA R T I I I - C O M P R E S S I O N In general, the application of neural image and
video compression models is wide-ranging. From uploading images on webpages to
compressing video games. The image in the final part represents a videogame-like
environment with a blurry background and pixelated figures in the foreground.
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3

DEEP LEARNING FOR WHITE CABBAGE SEEDLING
PREDICTIONS

Abstract
In this research, we classify white cabbage seedling images with ma-
chine learning to improve the business process of a seed breeding
company operating in agriculture. We deploy several algorithms that
track the seedling growth over a period of four days. The models are
trained to predict the (un)successful growth of the seedlings. We find
that convolutional neural networks outperform the other models, with
AlexNet being the best-performing model. On the test set, AlexNet clas-
sifies 94% of the seedlings accurately with an area under the curve of
0.95. Additionally, this model can be further deployed to automate the
seedling grading process as an early warning tool to aid professionals
in making important decisions.

Based on [3]:
Yura Perugachi-Diaz, Jakub M. Tomczak, Sandjai Bhulai
Deep learning for white cabbage seedling prediction
Elsevier, Computers and Electronics in Agriculture,
Volume 184 (2021), pages 1–9.



333

14 D E E P L E A R N I N G F O R W H I T E C A B B A G E S E E D L I N G P R E D I C T I O N S

3.1 I N T R O D U C T I O N

Recently, deep learning has become an increasingly popular method to solve prob-
lems in areas such as image classification, speech recognition, and video analysis
[79]. A big advantage of deep learning is the ability to process unstructured data
(e.g., images), without the need for feature extraction methods. In particular, the
Convolutional Neural Networks (CNNs) are known for their ability to recognize
patterns in images.

In agriculture, an important factor of crop yield is determined by the growth of plants.
In practice, part of the plants never emerge from the ground, or will never mature.
This will eventually result in yield loss for farmers and food loss for the consumer.
However, professionally analyzing plant growth is a time-consuming job. A growing
body of work aims to automate agricultural processes using deep learning, see, e.g.,
Lee et al. [83] identify plant species, Ferentinos [41] detects diseases in plant leaves,
and Zhang et al. [148] identify agriculture machinery.

In this chapter, we study white cabbage (Brassica Oleracea) seedlings. The seed-
lings are tracked during their growth in a phytotron in which the temperature and
amount of light are regulated. Their growth is captured at four specific moments
in time. Furthermore, after a period of 14 days, the resulting plants are evaluated
by professionals. Our goal is to identify which seedlings will grow successfully as
early as possible. In order to predict the outcome, we propose using CNNs. We
experimentally show that CNNs outperform traditional methods compared on both
loss and accuracy. Further, we find that as seedlings mature, growth success can be
better predicted.

The main contributions of this chapter are: (1) Predicting if a white cabbage seedling
is going to grow successfully with high accuracy. (2) Analyzing how time influences
the growth predictability of seedlings. (3) Comparing traditional methods with deep
learning models. This research shows that it is possible to classify white cabbage
seedlings over time with around 94% accuracy. The CNN outperforms the Multi-
Layered Perceptron and Logistic Regression model.

The chapter is organized as follows; Section 3.2 gives an overview of literature per-
forming similar research. Section 3.3 describes the data, shows the chosen models,
implementation, and how the models were trained. Section 3.4 describes the ex-
periments and provides an analysis of the results. Finally, Section 3.5 provides
a conclusion with further research for the development of image recognition for
seedling growth.

3.2 R E L AT E D W O R K

With the rise of deep learning, image analysis has become increasingly popular in
agriculture. More researchers are employing technologies and methods by integ-
rating deep learning to improve and automate work [150]. Besides deep learning,
traditional statistical methods are tried and tested for crop prediction or disease pre-
diction. Prabhakar et al. [107] examined Yellow Mosaic disease on eight blackgram



333

3.3 M AT E R I A L S A N D M E T H O D S 15

plant leaves using a Multinomial Logistic Regression (MLR) model. Kalisz et al. [66]
examined multiple regression to assess the yield and nutrient of Chinese cabbages
Taisai and Pak Choy White.

Except for traditional statistical methods, the use of deep learning models has started
to become increasingly popular. Lee et al. [83] examined the identification of plant
leaves. Kumar et al. [75] benchmarked hand-crafted leaf images against raw leaf
images using the pre-trained network from Krizhevsky et al. [74]. In Ferentinos [41],
five popular CNNs were able to detect diseases in plant leaf images, containing 58
classes. Teimouri et al. [125] detect weed species and growth stages of weeds by
counting the number of leaves of 18 different weed species, using the pre-trained
Inception-v3 network [121]. Besides plant detection, other areas in agriculture are
involving deep learning as well. Zhang et al. [148] identify 13 different types of
agricultural machinery images using a ResNet, Inception-v3, and AMTNet.

There is limited literature concerning white cabbage prediction. This chapter
provides an overview of the performance of three different methods, which are
modeled to predict the (un)successful growth of a white cabbage seedling, and gives
a recommendation. A traditional statistical method, Logistic Regression, and sev-
eral types of deep learning frameworks, Multi-Layered Perceptron, and CNNs are
deployed, trained, and tested. The Logistic Regression model serves as a baseline
for making a clear comparison with deep learning models. Furthermore, we show
that CNNs obtain a more accurate prediction than the traditional method or other
deep learning models. The dataset contains gray-scale seedling images on days four
to seven. To assess the performance of the models, the same validation set is used
to test, compare, and select the models. Further, to evaluate the experiments, the
models are selected on loss and accuracy. The best-performing models per species
are tested on a test set to assess the ROC curve with the corresponding AUC score.
The overall best-performing model, AlexNet, obtains on the test set the highest
accuracy of 94%, the lowest loss of 0.175, and the highest AUC-score of 0.95 on day 7.
In general, CNNs are known for their ability to accurately analyze high-dimensional
data and show to be well suited for this type of research.

3.3 M AT E R I A L S A N D M E T H O D S

3.3.1 Data description

The data examined was retrieved from a seed breeding corporation operating in
agriculture, known as Bejo Zaden: https://www.bejo.com. The data consists of
images of white cabbage seedlings, where the photos of the seedlings are taken on
days four, five, six, and seven. The reason for this is that seedlings on days earlier
than day four are still covered in soil and are not visible in a photo. Seedlings older
than day seven are (mostly) overlapping each other, for which individual information
gets lost. The seeds are sowed in trays of 150 seedlings each, see Figure 3.1. They
are kept under controlled circumstances in a growth chamber, which is called a
phytotron. For this species, the seedlings receive 16 hours of fluorescent light at a
temperature of 20 degrees Celsius, and receive 8 hours of darkness at a temperature

https://www.bejo.com
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of 15 degrees Celsius. On day 7, the seedlings are watered. On day 14, the quality
of the seedlings is determined by professionals. The seedlings are classified into six
different classes based on their growth and maturity. Specifically, classes 5 and 6
are considered to represent a successfully grown seedling; the remaining classes are
considered to be unsuccessful. On days four, five, six, and seven photographs of the
trays are taken. The size of each image is 1280×1024 pixels, where the pixels are
gray-scaled and contain values between 0 (black) and 255 (white) (see Figure 3.1).

1 1

1 1

0 00 00 00 0

Figure 3.1: From left to right indicate seedlings on days 4, 5, 6, and 7, respectively. In the first
row, a successful seedling is shown. The second row shows an unsuccessful seedling with
some moss surrounding its area.

There are 88 trays per day available, each containing 150 labeled seedlings, for a
total of 13,200 seedlings. The seedlings are followed over time, and therefore, no new
seedlings have been added for other days. Since photographs are taken of entire trays,
the seedlings are cropped individually and matched with their corresponding label.
See Appendix A.1 for more details on the cropping process. Cropping each seedling
individually from the entire image results in a variety of different resolutions per
seedling, which vary between 64 and 75 pixels per image. Since each of the models
requires a fixed input size, all individual seedling images were slightly downscaled
to a resolution of 64×64 with the Python package PIL.

3.3.2 Models

Three different models are examined to classify the data. The first model is the
Logistic Regression model (LR), which is used to set a baseline for image prediction.
The second model is a Multi-Layered Perceptron (MLP). This is a frequently-used
deep learning model in machine learning. The third model is a CNN, known for its
ability to capture information from an image. In general, we model the classification
of white cabbage seedling images as follows. We let x(t ) ∈Rd be an image with d
pixels for t ∈ {4,5,6,7}, which represents the day the photo was taken. An image
consists of d = 64× 64 = 4096 pixels. Let y ∈ {0,1} denote whether the seedling
successfully grows or not. This suggest p(y |x(t )) as a probabilistic classification
model.
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Logistic Regression

A widely used (statistical) method for classification tasks is the LR where we model
the probability of y as follows for t ∈ {4,5,6,7}:

p(y = 1 |x(t )) =σ(wT x(t ) +b) = 1

1+exp(−(wT x(t ))+b)
, (3.1)

where p(y = 0 |x(t )) = 1 − p(y = 1 |x(t )), σ(·) represents the logistic sigmoid and
w ∈ Rd , b ∈ R express the parameters [15]. Note that the LR is equivalent to a
single-layer perceptron. Important properties of this model are that the model is
computationally cheap to run and easy to interpret. The model in Equation (3.1)
performs well when data is linearly separable. However, this model cannot capture
more complicated input patterns.

Multi-Layered Perceptron

The MLP is able to model more complicated functions compared to logistic regres-
sion by stacking multiple layers. The non-linear activation function in-between each
layer is capable of capturing non-linearity in the data. An example of a two-layer
MLP is given as follows:

p(y = 1 |x(t )) =σ(wT
2 h+b2), where h = g (W1x(t ) +b1), (3.2)

where g can be any non-linear activation function, and the final layer connected to
the output uses the sigmoid. The MLP has the ability to learn non-linear mappings,
which makes this model powerful Goodfellow et al. [45]. A downside is that this
model is computationally expensive when building a large MLP.

In this research, we use the 500-MLP and (1000, 500)-MLP architectures for our ex-
amination. The 500-MLP is the model in Equation (3.2), where h has dimensionality
500, and the (1000, 500)-MLP has two hidden layers with dimensionality 1000 and
500, where the non-linearity g is modeled by the ReLU function. Claudiu Ciresan
et al. [30] and Ganesh et al. [43] show that these architectures proved to obtain the
best results for the classification of the MNIST [81] dataset.

Convolutional Neural Network models

A CNN is a subclass of the MLP and is known for its ability to capture patterns
occurring in images. While the MLP makes use of matrix multiplications where
every input signal interacts with the output signal, the CNN replaces at least one
matrix multiplication with convolutions. In between convolutions, the weights
are shared by using kernels. By making the kernel window smaller than the input,
fewer parameters are stored compared to the MLP, which reduces computations
and, therefore, needs less memory. CNNs tend to train easier when the network is
deep and there is a lot of data available Goodfellow et al. [45].

Normally, training a deep learning model requires a large amount of training data,
which might not always be available to the user. A more effective way to train a deep
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learning model without gathering more data is the one with transfer learning [101].
Transfer learning is a method aimed at increasing the performance of a task by the
use of pre-trained models. Transfer learning utilizes a network that is already trained
on a large dataset. Typically, CNNs are pre-trained on ImageNet, which contains
more than one million images. Literature shows that transfer learning is well suited
for small datasets [74, 101].

We model p(y = 1 |x(t )) using one of four CNN architectures: (i) AlexNet [74], (ii)
DenseNet [60], (iii) ResNet [56], and (iv) VGG [118]. Since there was a limited amount
of data available (only 13,200 images), transfer learning was used and improved the
model’s performance compared to non-pre-trained CNNs. Therefore, we employed
one architecture of each model species, namely DenseNet121, ResNet101, and
VGG16. Further, pre-trained networks typically use three input channels (RGB),
whereas our data is a single channel (grey-scale). For that reason, the single channel
is repeated three times to make it compatible with pre-trained networks.

3.3.3 Pre-processing

The aim of pre-processing is to improve performance and obtain faster convergence.
A frequently used pre-processing step for image recognition is the normalization of
the data. Therefore, we normalized the data by dividing each seedling image by 256
and subtracting it with 0.5 to be in the range [−0.5,0.5].

Another frequently used technique is data augmentation. Especially with high
dimensional images, augmentation can greatly improve model performance Good-
fellow et al. [45]. Augmentation includes transformations of the input images such
as cropping, flipping, and rotating and has shown to be successful [139]. Krizhevsky
et al. [74] suggest augmentation to reduce overfitting by using translations and
horizontal reflections. Following [45, 74, 139], a number of augmentations were
used to improve model performance: (i) 90 degrees random rotations, (ii) random
horizontal flip, (iii) random vertical flip, and (iv) random affine transformations.

The pre-processing of this research was conducted in Python 3.7.2. The models used
were trained and tested using PyTorch 1.3.0 [103]. All models were trained using
the GPU of an NVIDIA-SMI GTX1080 card, in a Linux environment Debian GNU
operating system.

3.3.4 Training, validation and test set

The data was split into a training, validation, and test set. The training dataset was
used to train the models. The validation set was used to tune hyperparameters. On
this set, the user can measure model performance and compare different models.
Furthermore, a test set was held out during the entire training process, which con-
tained images the model had never seen before. The best-performing model that
arose during training was evaluated on the test set. This set was used to measure
the final model performance. The partitioning of the train, validation, and test set
was, respectively, 60 : 20 : 20, which resulted in 7920 : 2640 : 2640 examples for the
seedling dataset.
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Table 3.1: Fraction of (un)successful seedlings.

Day
Training Validation Test

Good Bad Good Bad Good Bad

4 0.856 0.144 0.857 0.143 0.849 0.151
5 0.856 0.144 0.850 0.150 0.855 0.145
6 0.855 0.145 0.853 0.147 0.855 0.145
7 0.851 0.149 0.854 0.146 0.867 0.133

3.3.5 Dealing with imbalanced data

When data has imbalanced classes, models may place more emphasis on the ma-
jority class, which results in degraded performance for the minority class. In deep
learning, there are several methods that deal with this problem. One of these meth-
ods is undersampling, where the majority class is undersampled. Another method is
oversampling, where the minority class is oversampled [84]. [20] show that CNNs,
specifically deployed for datasets such as MNIST and CIFAR-10 [73], have better
performance when the imbalance of classes makes use of oversampling instead of
undersampling. Shorten and Khoshgoftaar [116] provide a survey on the examin-
ation of data augmentation for deep learning and conclude that the combination
of oversampling and data augmentation can be a very useful technique for the con-
struction of a more informative dataset. Therefore, we used data augmentation to
create diversity in the training set and to improve model performance.

Table 3.1 indicates that there was an imbalance between the two classes in our
data. There were approximately seven times fewer unsuccessful seedling images
compared to the successful seedlings. Since the dataset was small with 13,200
seedlings, we oversampled [84] the minority class of the training data for each day
by copying random images from the minority class. We made random copies with
the replacement of the minority class to obtain the same size as the majority class.

3.3.6 Objective

Each of our models was trained by maximizing the log-likelihood, log p(yn |x(t )
n ),

where the distribution is modeled by a Bernoulli distribution. This distribution
is computed by our models, which output a value for each class, followed by a
softmax function called ŷnk . Here n denotes the n-th example and k ∈ {0,1, . . . ,K −1}
denotes a specific class for K classification classes. Maximizing the log-likelihood is
equivalent to minimizing the categorical cross-entropy loss [15]:

Ln =− log p(yn |x(t )
n )

=−
K−1∑
k=0
1{yn=k} log(ŷnk ),

(3.3)

where 1{yn=k} denotes an indicator function for the label, in our problem, we have
K = 2 indicating a binary classification task to have the label successful or unsuccess-
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ful. The loss for our entire dataset is denoted with: L=∑N
n=1Ln , for N datapoints.

An adjustment for the categorical cross-entropy loss of Equation (3.3) is to assign
a cost to each of the classes. Especially for unbalanced data, this emphasizes the
minority class. As a result, the model attempts to minimize misclassification of this
class:

Ln =− log p(yn |x(t )
n )

=−
K−1∑
k=0

γk1{yn=k} log(ŷnk ),
(3.4)

where γk is the weight assigned to class k. In our case, unsuccessful seedlings are
assigned a weight of γ0 = 1, and for successful seedlings γ1 is the ratio of the number
of examples of the minority class over the number of examples of the majority class.

Since we trained our models by minimizing the cross-entropy loss Equation (3.3),
we compared and selected our models based on the overall performance on loss.
Furthermore, we also experimented with a weighted loss, Equation (3.4), to examine
the effects of the best-performing model and make a clear comparison between
several methods that deal with imbalanced classes.

Weight decay

Weight decay is a regularization method, also known as the L2 norm, and is used to
penalize the complexity of the model by adding a small regularization coefficient
λ> 0, multiplied with the sum of squares of the weight (parameters) of our model to
the loss function:

LE =L+ λ

2
∥w∥2, (3.5)

where LE is the regularized categorical cross entropy loss and where L is derived
from Equation (3.3). For λ= 0, we have the original loss function, while for λ> 0, we
add a penalty to the complexity of the model. Due to the penalty, the weights of the
model are prevented from becoming large, which can prevent overfitting. Further,
∥w∥2 =∑d

i=1 ∥wi∥2 [15], where d indicates the number of parameters of weight w .

Optimizer and learning rate

In this study, we started with the Adam optimizer [68] to optimize our models. Due
to unstable convergence, we switched to Stochastic Gradient Descent (SGD) [18]. As
a result, our models were able to obtain a stable and better generalization.

The learning rate, η, of SGD is a hyperparameter controlling how much the weight
parameter wi of a model is updated during the training process per iteration i :

wi+1 ← wi −ηδL
E

δwi
, (3.6)
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where η> 0. After each iteration i , a new weight wi+1 is computed, which determines
the new direction towards the optimum of the loss function. Setting the learning rate
too high will result in fast convergence with a risk of "overshooting" the optimum.
Setting the learning rate too low can result in slow convergence [15].

3.4 E X P E R I M E N T S A N D A N A LY S I S

3.4.1 Performance metrics

A performance metric is used to express model performance and can be computed
using the confusion matrix in Table 3.2 in the case of binary classification. The confu-
sion matrix expresses a model’s classification power. A frequently used performance
metric when the data has an equal class balance is accuracy. The accuracy expresses
the frequency of correctly classified classes and is given by:

accuracy = T P +T N

T P +F N +F P +T N
. (3.7)

Due to the imbalance of seedling classes (see Table 3.1), the default accuracy that
can be obtained when a model predicts all examples as successful seedlings is
approximately 85%. Therefore, improvements in accuracy on the validation set need
to be compared to this baseline.

Table 3.2: The confusion matrix.

Predicted
Positive Negative

Actual
Positive T P F N
Negative F P T N

When a binary predictive model classifies a (new) data point, the model outputs
a probability between 0 and 1 that the data point belongs to a certain class. A
performance measure that expresses the performance of a binary classifier for all
classification thresholds is the Receiver Operating Characteristic (ROC) curve. For
each threshold, the confusion matrix (see Table 3.2) is computed following the True
Positive Rate (TPR), which is also known as recall or sensitivity = T P

T P+F N and False

Positive Rate (FPR): 1− specificity = T N
F P+T N . Next, the TPR is plotted against the

FPR for all the thresholds, which form the ROC curve that visualizes the trade-off
between the sensitivity and specificity. The ROC curve aids the user in selecting a
threshold that gives the lowest cost for classifying data points incorrectly. The AUC
expresses the entire area under the ROC curve and is in the range: [0,1]. The higher
the AUC score, the better the model predicts classes [19, 52].

In this study, the best-performing model was selected based on the lowest loss and
highest accuracy curves with respect to validation. After selection, the test set was
used to evaluate this model’s generalization performance. In addition to accuracy
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and loss, the overall model performance was also assessed using the ROC curve and
corresponding AUC.

3.4.2 Hyperparameters

Every predictive model is described by parameters, where the parameters aid in the
prediction task. In general, parameters are estimated from the data during training.
Hyperparameters are characteristics of a model that cannot be estimated using
gradient descent. Instead, their value is set before training. Deep learning modules
usually provide default settings for hyperparameters, but the user can also search
through the hyperparameter space to find optimal settings; this is known as a grid
search.

Table 3.3 presents different hyperparameter settings. An epoch represents the num-
ber of times the model trains on the entire dataset. The models were trained for 500
epochs. Training a model requires each model to see every training example. In ma-
chine learning, small batch sizes, B , are typically chosen as B ∈ {32,64,128,256} [45].
These batch size settings showed to be successful in fields, such as reinforcement
learning [97] and image recognition [118]. Therefore, we trained our CNN with a
batch size of 128. Additionally, to stay consistent with treating each model with the
same techniques, we trained our LR and MLP with a batch size of 128 and used the
same batch size on the validation set. A grid search was applied by increasing the
step size with the same value to find optimal settings for hyperparameter weight
decay and the learning rate. In the upcoming sections, these hyperparameters will
be explained.

Table 3.3: Hyperparameter settings.

(Hyper)parameter Setting

Epochs 500
Batch size 128
Weight decay 1e−3,1e−5,1e−7

Learning rate 1e−2,1e−3,1e−4

3.4.3 Experiments

Due to the imbalance of the dataset and based on the literature, we used over-
sampling in combination with augmentation to create diversity and an equal class
balance. For each of the model types (LR, MLPs, and CNNs), a grid search was
applied, as specified in Table 3.3. The hyperparameter search was performed on
the validation set. Based on loss and accuracy curves, the models were compared.
To optimize the models, we first searched for an optimal learning rate setting, and
secondly, with an optimal learning rate setting, we searched for an optimal weight
decay value. After the application of a grid search, optimal settings were found and
presented in Table 3.4. Note that two model types, namely, LR and CNN, performed
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Figure 3.3: Loss on validation set of the best three model types with standard deviation in
gray.

best with a learning rate of 1e−4. In most packages, this is usually the default setting.
The MLP performed optimally with a higher learning rate setting of 1e−3. Further-
more, the best-performing model per species was selected based on the overall
lowest loss and highest accuracy.

We ran the best-performing model per species with optimal learning rate settings
three times. Figure 3.3 shows the mean of the loss curves of these three experiments.
The light gray area around the mean expresses the standard deviation. Since AlexNet
obtains stable loss curves, the standard deviation is hardly visible and can be best
viewed electronically. As we can see, AlexNet scores significantly better than the
other two models on all days. The model scores around 0.05 lower in loss on day
4 compared to the 500-MLP and 0.1 lower in loss on days 5 and 6. On day 7, the
model quickly obtains a stable convergence, while in general, the 500-MLP seems
to fluctuate a lot. Even though the LR scores the highest loss curves, the model
does seem to obtain stable curves and convergence compared to the 500-MLP. A
reason that the 500-MLP fluctuates the most on day 4 might have to do with the
non-developed seedlings. These seedlings are in their earliest growth stadium and
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Table 3.4: Best hyperparameter values.

Model type Learning rate Weight decay

AlexNet 1e−4 1e−5

500-MLP 1e−3 1e−5

LR 1e−4 1e−7

are sometimes still covered in the soil, see Figure 3.1, or it may be difficult to extract
sufficient information for the model. The upcoming section will further investigate
the overall performance by assessing the ROC curves on the test set. In general, we
observe that AlexNet obtains a quick and stable convergence of the loss and accuracy
curves, with little fluctuations compared to the other two models. Taking all these
factors into account, AlexNet is most suitable for the prediction of seedlings, based
on validation loss and accuracy only.

In addition, AlexNet was compared to other CNNs as well. As we can see in Figures 3.4
and 3.5, the other three CNNs had close performance compared to AlexNet based
on loss and accuracy curves. On day 4, all four CNNs have comparable loss curves.
DenseNet and ResNet fluctuate more in performance on this day. AlexNet has a
slightly lower loss performance than VGG, while both models seem to obtain the
most stable and least fluctuating curves. On days 5, 6, and 7, AlexNet outperformed
the other models. Therefore, AlexNet was chosen as the best overall performing
model. In general, all four CNNs performed better than the 500-MLP and LR, as
in Figure 3.3. Further research should focus on VGG since this model seems to
obtain the most stable and lower convergence after AlexNet or focus on testing other
pre-trained architectures for DenseNet, ResNet, and VGG. If AlexNet performs well
due to its small architecture, other smaller architectures might be better to capture
the data structure than some of the bigger versions we used in this research.

3.4.4 Results

All three models were evaluated three times on a separate test set for the final average
performance of the corresponding loss and accuracy. The results can be found in
Table 3.5. AlexNet is the best-performing model in terms of loss and accuracy on all
days. Note that on day 4, the accuracy of AlexNet is just above the baseline of 0.849,
which might indicate that the model is weakly capable of predicting some of the
unsuccessful seedlings correctly. The 500-MLP performs worse than the baseline
on day 4 and around the baseline on days 5 and 6. On day 7, the 500-MLP scored
the highest on that day, with an accuracy of 0.906. The LR scores are lower than the
baseline for all days and even lower on day 7, compared to the previous day.

Based on loss and accuracy, AlexNet seems best capable of capturing the prediction
of the seedlings. In general, all models have a low standard deviation, which is at
least smaller than 0.007, indicating that the models obtain similar and stable scores
per experiment. Even though the models sometimes seem to perform worse than
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Figure 3.4: Loss curves on the validation set of all four CNN types.

the baseline, the trade-off between sensitivity (TPR) and specificity (1-FPR) is not
visible in accuracy and loss only. Therefore, the models were further examined. We
assessed the ROC curves to evaluate the generalization of the three models further.
As we can see in Figure 3.6, AlexNet outperforms the other two models on each day.
In Table 3.5, we can find the corresponding mean and standard deviation of the
AUC scores of all experiments. We see that AlexNet outperforms the 500-MLP and
LR on all days, based on these scores. On day 4 and 5 AlexNet scores 0.03 and 0.02
higher with AUC 0.91 and 0.94, respectively. On days 6 and 7, AlexNet obtains the
best scores of, respectively, 0.94 and 0.95, with the lowest fluctuations in standard
deviation. Yet, the model is closely followed by the 500-MLP with an AUC score of
0.01 lower on these days.

When we look at the ROC curves, we observe that AlexNet has a better trade-off
between the sensitivity and specificity on day 4 since the line is slightly closer to
the left border and closer to the top border compared to the other two models.
For example, if we want to classify the successful seedling rate with a sensitivity
of T PR = 0.93, this will for AlexNet approximately result in a specificity of around
1−F PR ≈ 1−0.35 ≈ 0.65, indicating that more than half of the unsuccessful seedlings



333

3.4 E X P E R I M E N T S A N D A N A LY S I S 27

0 100 200 300 400 500
epoch

0.75

0.80

0.85

0.90

0.95

1.00
ac

cu
ra

cy

Day 4 

Baseline
AlexNet
VGG
DenseNet
ResNet

0 100 200 300 400 500
epoch

0.75

0.80

0.85

0.90

0.95

1.00

ac
cu

ra
cy

Day 5 

Baseline
AlexNet
VGG
DenseNet
ResNet

0 100 200 300 400 500
epoch

0.75

0.80

0.85

0.90

0.95

1.00

ac
cu

ra
cy

Day 6 

Baseline
AlexNet
VGG
DenseNet
ResNet

0 100 200 300 400 500
epoch

0.75

0.80

0.85

0.90

0.95

1.00

ac
cu

ra
cy

Day 7 

Baseline
AlexNet
VGG
DenseNet
ResNet

Figure 3.5: Accuracy curves on the validation set of all four CNN types.

will be classified correctly. While this threshold for the 500-MLP and LR will result in
a specificity of around 1−F PR ≈ 1−0.55 ≈ 0.45, less than half of the unsuccessful
seedlings will be classified correctly. For these thresholds, the model seems to be
more accurate in the prediction of classifying unsuccessful seedlings. On day 5 and
6, the ROC curves of AlexNet are the best. Yet, the curves of the 500-MLP and LR
follow approximately the same shape as AlexNet, which indicates that all models
obtain more or less the same trade-off. On day 7, we observe that AlexNet and the
500-MLP are close to each other while the LR has a more gentle bend line, indicating
that the trade-off between the sensitivity and specificity is less accurate to capture.
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Table 3.5: Loss, accuracy, and AUC results obtained by taking the average performance over

three runs. The gray highlights indicate the best-performing model per day.

Day Loss (mean±stdev) Accuracy (mean±stdev) AUC (mean±stdev)

LR 500-MLP AlexNet LR 500-MLP AlexNet LR 500-MLP AlexNet

4 0.503±0.003 0.384±0.006 0.354±0.004 0.701±0.004 0.809 ±0.005 0.865±0.001 0.87±0.001 0.88±0.000 0.91±0.000

5 0.378±0.001 0.34 ±0.001 0.262±0.001 0.825±0.000 0.872 ±0.003 0.911±0.001 0.92±0.000 0.92±0.000 0.94±0.000

6 0.376±0.001 0.294±0.002 0.207±0.001 0.847±0.001 0.892±0.001 0.93±0.000 0.92±0.001 0.93±0.001 0.94±0.000

7 0.381±0.001 0.256±0.005 0.175±0.001 0.835±0.001 0.906±0.003 0.94±0.001 0.92±0.001 0.94±0.000 0.95±0.000

In conclusion, since accuracy and loss only do not give sufficient insights into
the trade-off between the (un)successful seedling prediction, the ROC curves with
corresponding AUC show that AlexNet is best capable of capturing the seedling
classification compared to the 500-MLP and LR. Note that instead of randomly
guessing, all three models are capable of finding patterns in the images, even on day
4. Depending on the trade-off between the sensitivity and specificity, the user can
decide where to place the threshold.

3.4.5 Additional experiments

Besides our design choices based on literature to deal with the imbalanced classes,
we experimented with several other methods with our optimized AlexNet. We tested
the model on (1) original data without any data transformations, (2) only augmented
data without oversampling, (3) a weighted loss, which is another method to balance
the unequal classes, see Equation (3.4), (4) weighted loss with augmentation, and (5)
only oversampling without augmentation. We compared the results with our design
choices (6). In Table 3.6, the results of these methods on the validation set are shown.
To exemplify the table:

1. Compared to our design, training AlexNet with original data obtained slightly
better performance on the validation set in terms of loss and accuracy. To fur-
ther investigate the model performance when no transformations are applied,
we also trained and evaluated the generalization performance of this model
by assessing the ROC curve with the corresponding AUC. Remarkably, this
experiment resulted in scores comparable to our method on days 6 and 7 in
terms of AUC-score, respectively, 94 and 95. Yet, on days 4 and 5, training on
original data seems to lose a lot of information. On day 5, the model scores an
AUC = 0.89, which is 0.05 lower than our design choice for AlexNet and even
0.03 than the 500-MLP and LR for that day. As we can see in Figure 3.7, on day
4 the model performs even worse than baseline between FPR 0 till 0.4. The
corresponding AUC score is 0.29 lower with a score of 0.62, compared to our
method with AUC = 0.91. In conclusion, training on original data (without
augmentation and oversampling) tends to cause information to be lost in
earlier days. Yet, further research should investigate if the model improves
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when optimizing on original data only and then analyze if the other days might
contain sufficient information to make this model compatible with ours.

2. Augmentation obtained similar performance compared to training on the
experiment in 1, the original data only.

3. The weighted loss worsened the results for the loss on days 4 and 5. Yet, results
obtained on days 6 and 7 were similar to those of our design choices. Based
on the accuracy, this method obtained a performance similar to ours. Further
research should investigate if this method might be compatible with ours.

4. Weighted loss in combination with augmentation obtained the same per-
formance as without augmentation. Therefore, it performed worse than our
design.

5. Only oversampling worsened the results. Additionally, the model was overfit-
ting on validation when comparing training and validation. Looking at the
literature, this might have to do with the fact that augmentation gives more
diversity to the data than using only replicates of the data.

Table 3.6: Data experiments improving/worsening AlexNet performance.

Nr. Experiment Model improvements Overall result

1 Original ✓/✗ No improvement or worsening

2 Augmentation ✓/✗ No improvement or worsening

3 Weighted loss ✗ Worsening

4 Weighted loss + augmentation ✗ Worsening

5 Oversampling ✗ Worsening

6 Oversampling + augmentation ✓ Best performance
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Figure 3.6: ROC-curves on the test set of the best performing models.
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Figure 3.7: ROC-curve on the test set of AlexNet on day 4. The model was trained on the data
without augmentation and oversampling.
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3.4.6 Generalization of AlexNet

In this research, each best-performing model was trained and tested on the same
day. To further investigate the generalization of AlexNet to other days, we fixed the
day the model was trained and tested this model every other day. The heatmap
of the results can be found in Figure 3.8. The y-axis expresses the day the model
was trained on, while the x-axis shows the days the fixed model was tested on. The
heatmap in Figure 3.8a expresses the accuracy, where the accuracy for the models
trained on days 4, 5, 6, and 7 and tested on the same day is respectively 0.87,0.91,0.93
and 0.94 (see also the accuracy in Table 3.5). Figure 3.8b expresses the difference
in accuracy with respect to the diagonal. To clarify the heatmap, a model trained
and tested on day 5 obtains an accuracy of (a) 0.91, resulting in a difference of (b)
0. A model trained on day 6 and tested on day 5 obtained a difference of (b) −0.2,
resulting in an accuracy of (a) 0.91−0.2 ≈ 0.71 from the model trained and tested on
the same day.
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Figure 3.8: A heatmap that expresses (a) the accuracy and (b) the difference in accuracy with
respect to the diagonal. The y-axis indicates the day the model was trained and fixed on and
on the x-axis the day the fixed model was tested on.

We observe that AlexNet trained on day 7 and tested on day 4, 5, 6 obtains a much
lower accuracy than when the model is trained and tested on the same day. In
general, we see that the trained models obtain worse results when tested on earlier
days. Remarkably, we notice that models trained on earlier days perform quite
comparable when tested on later days with only a small difference. Additionally,
these models even (slightly) exceed the accuracy of models that are trained and
tested on data of the same day. For example, AlexNet trained on day 4 and tested
on day 5, obtains a positive difference of 0.021, resulting in an accuracy of 0.932,
which is higher than the AlexNet trained and tested on day 5 (accuracy 0.911). In
conclusion, models trained on earlier days seem to generalize for later days and
seem to capture sufficient information from early-developing seedlings. Further-
more, models trained on later days perform worse when tested on seedlings from
earlier days. Further research should focus on the growth of seedlings over time
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and investigate the generalization of models only trained on (an) earlier day(s) or
examine the generalization when models are trained on a mixture of seedlings where
there is no distinction between early and later days.

3.5 C O N C L U S I O N

During this research we examined three different model types, namely, LR, MLP,
and CNN, to classify the (un)successful growth of white cabbage seedlings based
on only an image of the seedling. The dataset was retrieved from Bejo, a company
operating in agriculture, and consisted of 13,200 gray-scaled seedling images. The
seedlings lived under controlled circumstances in a phytotron and were labeled
after 14 days by professionals. According to research concerning image classification
with little data, four pre-trained CNNs were developed. To compare the CNNs with
other methods, two recommended MLP architectures and a traditional statistical
method LR were deployed. Oversampling was applied to create an equal class
balance. In combination with data augmentation, diversity in the dataset was
created which improved model performance. Further, the model was trained with
an SGD optimizer, and weight-decay was applied. AlexNet outperformed the LR
and MLP and outperformed the other four CNN types based on the lowest loss and
the highest accuracy on validation data. On the test set, AlexNet outperformed the
500-MLP and LR based on (1) the lowest loss, (2) the highest accuracy, and (3) the
best ROC curve with corresponding AUC-score for each day. According to these
three points, the model showed to be robust for the prediction of (un)successful
white cabbage seedlings. To answer the main questions of this research in detail:

1. Can the model predict if a white cabbage seedling is going to grow (un)
successfully?
Based on the information of only a seedling image, the prediction of AlexNet
classifying (un)successful seedlings obtained a loss of 0.175, an accuracy of
0.94 and an AUC-score of 0.95 all on day 7. Based on this information, we can
conclude that the model can accurately determine if a seedling is going to
grow (un)successfully.

2. How does time influence the growth predictability of seedlings?
We observe that the most predictable day is day 7, as presented in Table 3.5. On
this day, the loss, accuracy, and AUC are higher than on the other days. On day
6, a small decrease in predictability is observed compared to day 7. The biggest
difference in performance metrics is between day 4 and 5. Here we observe a
big increase in loss of 0.044, lower accuracy of 0.046 and lower AUC-score 0.03
compared to day 5. The results show that there is a trade-off between time and
accuracy. Given that the accuracy increases most from day 4 to day 5, it may
be worth waiting until day 5. In contrast, the difference between day 6 and
7 is relatively small, and predictions from day 6 may be sufficiently accurate.
Interestingly, the model trained on day 4 performed reasonably on all other
days (see Figure 3.8). This indicates that training on earlier days generalizes
to predictions of later days. However, the models trained on later days do not
generalize well to earlier days.
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3. How is the comparison between the traditional model and deep learning mod-
els?
This research points out that CNN, AlexNet, overall outperformed the LR and
MLP. This might be due to the fact that a CNN is able to capture information
from an image instead of information per pixel value. In general, we observed
that all four CNNs performed best on validation compared to the best MLP and
LR. Therefore, the CNNs outperformed the other methods. We suggest further
investigating the other CNN architectures, especially the VGG network, since
this network obtains the most stable and lowest convergence after AlexNet.

To further clarify the best-performing model of this research, we suggest a more in-
depth AlexNet investigation with attention maps that should offer insights into local
seedling recognition. This should aid in making adjusting decisions of the network
by offering a deeper network visualization and likely understanding. Additionally, we
recommend further investigating the optimization of AlexNet on the original dataset.
Furthermore, future research should focus on the growth of seedlings over time. This
might improve the classification due to information that is hidden between the days.
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A A P P E N D I X F O R W H I T E C A B B A G E S E E D L I N G S

A.1 Pre-processing details

For the pre-processing, each photograph containing 150 seedlings are cropped from
their original photo. As can be seen in Figure A.1, the seedlings are equally sowed
into 10 rows and 15 columns. On the borders of each photo, there is a stroke of
black space representing earth. Since we are only interested in the seedlings, they
are cropped with Algorithm 1, to have as little black space in between each seed
as possible. As input, each photo of format 1280×1024 is binarized with Python
package openCV, to make a clear distinction between seeds (1) and earth (0). Next,
with the binarized photo, the algorithm computes the starting coordinates on how
to divide the area where the seedlings are centered. As input, the function takes in
the binary image x, and threshold ϕ which serves as a threshold to determine when
the most outer seedling (leave) is hit. To find exact row starting coordinates I = 1024
and J = 1280, and vice versa for the column starting coordinates. In Figure A.1 the
starting coordinates of this image are marked with red dots. The function searches
for the most outer located seedling, where the threshold ϕ determines how many
pixels need to be hit to assume a seedling is found.

After determining the starting coordinates for rows and columns with Algorithm 1,
the area between the coordinates is equally divided into 10 rows and 15 columns
for seedlings on day 6 and 7. Since seedlings on these days (sometimes) start to
overlap and are growing larger, this method aids in centering the crops accurately.
For seedlings on day 4 and 5, a black space of 17 pixels between the row and 20 pixels
between columns of the starting coordinates and outer border are added. In this
manner, an individual seedling image is more or less centered. When no black space
was added, this resulted in irregular cropping such as two seedlings in one image or
no seedling at all.

Algorithm 1 Determining starting coordinates

function STARTING_COORDINATES(x,ϕ, I , J )
st ar t ,end ← 0,0
for i = 1, . . . , I do

count ← 0
for j = 1, . . . , J do

if x[i , j ] = 1 then
count ← count +1

else if count >ϕ & rst ar t = 0 then
st ar t ← i

else if count >ϕ then
end = j

end if
end for

end for
return st ar t ,end

end function
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Figure A.1: Starting coordinates, marked with red dots, for cropping of the image (seedlings
on day 6 with no black space between the starting coordinates and outer border).
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INVERTIBLE DENSENETS

Abstract
Normalizing Flows have restricted architectures because they need to
be invertible. In this chapter we introduce i-DenseNet, a more flexible
invertible neural network that is better in estimating the distribution
density of the data, based on Residual Flows. Our method relies on an
analysis of the Lipschitz continuity of the concatenation in DenseN-
ets, where we enforce the invertibility of the network by satisfying the
Lipschitz constant. We propose a learnable weighted concatenation,
which not only improves the model performance but also indicates
the importance of the concatenated weighted representation. Fur-
thermore, we introduce the Concatenated LipSwish as an activation
function, for which we show how to enforce the Lipschitz condition
and which boosts performance. The new architecture, i-DenseNet,
outperforms Residual Flow and other flow-based models on density
estimation evaluated in bits per dimension, where we utilize an equal
parameter budget. Moreover, we show that the proposed model outper-
forms Residual Flows when trained as a hybrid model where the model
is both a generative and a discriminative model.

Based on [4]:
Yura Perugachi-Diaz, Jakub M. Tomczak, Sandjai Bhulai
Invertible DenseNets
3rd Symposium on Advances in Approximate Bayesian Inference, AABI, January - February,

virtual, 2021.

Based on [5]:
Yura Perugachi-Diaz, Jakub M. Tomczak, Sandjai Bhulai
Invertible Dense Networks with Concatenated LipSwish
Advances in Neural Information Processing Systems 34: Annual Conference on Neural

Information Processing Systems, NeurIPS, December 6-14, virtual. 2021.
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4.1 I N T R O D U C T I O N

Neural networks are widely used in supervised learning tasks such as classification,
where models are trained to predict labels. Besides classification, neural networks
are also utilized to build flexible density estimators of the true distribution of the
observed data [93, 110]. The resulting deep density estimators are called deep gen-
erative models. Since this is an open problem in deep learning, deep generative
models try to approximate the true data distribution for high-dimensional data.
These models are used to generate realistic-looking images which are hard to separ-
ate from real ones, detect adversarial attacks [42, 63], and are even used for hybrid
modeling [98], which has the property to both predict a label (classify) and generate.

Many deep generative models are trained by maximizing the (log-)likelihood func-
tion and their architectures come in different designs. For instance, causal convo-
lutional neural networks are used to parameterize autoregressive models [99, 100]
or various neural networks can be utilized in Variational Auto-Encoders [67, 109].
The other group of likelihood-based deep density estimators, flow-based models
(or flows), consist of invertible neural networks since they are used to compute
the likelihood through the change of variable formula [108, 122, 123]. The main
difference that determines an exact computation or approximation of the likelihood
function for a flow-based model lies in the design of the transformation layer and
tractability of the Jacobian-determinant. Many flow-based models formulate the
transformation that is invertible and its Jacobian is tractable [14, 34–36, 70, 102, 108,
129].

Recently, Behrmann et al. [11] proposed a different approach, namely, deep-residual
blocks as a transformation layer. The deep-residual networks (ResNets) of [56] are
known for their successes in supervised learning approaches. In a ResNet block,
each input of the block is added to the output, which forms the input for the next
block. Since ResNets are not necessarily invertible, Behrmann et al. [11] enforce
the Lipschitz constant of the transformation to be smaller than 1 (i.e., it becomes
a contraction) that allows applying an iterative procedure to invert the network.
Furthermore, Chen et al. [24] proposed Residual Flows, an improvement of i-ResNets,
that uses an unbiased estimator for the logarithm of the Jacobian-determinant.

In supervised learning, an architecture that uses fewer parameters and is even more
powerful than the deep-residual network is the Densely Connected Convolution
Network (DenseNet), which was first presented in [60]. Contrary to a ResNet block, a
DenseNet layer consists of a concatenation of the input with the output. The network
showed to improve significantly in recognition tasks on benchmark datasets such
as CIFAR10, SVHN, and ImageNet, by using fewer computations and having fewer
parameters than ResNets while performing at a similar level.

In this chapter, we extend Residual Flows [11, 24], and use densely connected blocks
(DenseBlocks) as a residual layer. First, we introduce invertible Dense Networks
(i-DenseNets), and we show that we can derive a bound on the Lipschitz constant to
create an invertible flow-based model. Furthermore, we propose the Concatenated
LipSwish (CLipSwish) as an activation function, and derive a stronger Lipschitz
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bound. The CLipSwish function preserves more signal than LipSwish activation
functions. Finally, we demonstrate how i-DenseNets can be efficiently trained as
a generative model, outperforming Residual Flows and other flow-based models
under an equal parameter budget.

4.2 B A C KG R O U N D

F L O W- B A S E D M O D E L S Let us consider a vector of observable variables x ∈Rd

and a vector of latent variables z ∈Rd . We define a bijective function f : Rd →Rd

that maps a latent variable to a datapoint x = f (z). Since f is invertible, we define its
inverse as F = f −1. We use the change of variables formula to compute the likelihood
of a datapoint x after taking the logarithm, that is:

ln pX (x) = ln pZ (z)+ ln |det JF (x)|, (4.2.1)

where pZ (z) is a base distribution (e.g., the standard Gaussian) and JF (x) is the
Jacobian of F at x. The bijective transformation is typically constructed as a sequence
of K invertible transformations, x = fK ◦ · · · ◦ f1(z), and a single transformation fk is
referred to as a flow [108]. The change of variables formula allows for evaluating the
data in a tractable manner. Moreover, the flows are trained using the log-likelihood
objective where the Jacobian-determinant compensates for the change of volume of
the invertible transformations.

R E S I D U A L F L O W S Behrmann et al. [11] construct an invertible ResNet layer
which is only constrained in Lipschitz continuity. A ResNet is defined as: F (x) =
x + g (x), where g is modeled by a (convolutional) neural network and F represents
a ResNet layer (see Figure 4.1.1a) which is in general not invertible. However, g is
constructed in such a way that it satisfies the Lipschitz constant being strictly lower
than 1, Lip(g) < 1, by using spectral normalization of [47, 96]:

Lip(g ) < 1, if ||Wi ||2 < 1, (4.2.2)

where || · ||2 is the ℓ2 matrix norm. Then Lip(g ) = K < 1 and Lip(F ) < 1+K. Only in
this specific case, the Banach fixed-point theorem holds, and the ResNet layer F
has a unique inverse. As a result, the inverse can be approximated by fixed-point
iterations.

To estimate the log-determinant is, especially for high-dimensional spaces, com-
putationally intractable due to expensive computations. Since ResNet blocks have
a constrained Lipschitz constant, the log-likelihood estimation of Equation (4.2.1)
can be transformed to a version where the logarithm of the Jacobian-determinant
is cheaper to compute, tractable, and approximated with guaranteed convergence
[11]:

ln p(x) = ln p( f (x))+ tr

( ∞∑
k=1

(−1)k+1

k
[Jg (x)]k

)
, (4.2.3)

where Jg (x) is the Jacobian of g at x that satisfies ||Jg ||2 < 1. The Skilling-Hutchinson
trace estimator [61, 119] is used to compute the trace at a lower cost than to fully



4444

42 I N V E R T I B L E D E N S E N E T S

(a)
R

esid
u

alb
lo

ck
(b

)
D

en
se

b
lo

ck

Figu
re

4.1.1:A
sch

em
atic

rep
resen

tatio
n

fo
r:(a)

a
resid

u
alb

lo
ck,(b

)
a

d
en

se
b

lo
ck.T

h
e

p
in

k
p

art
in

(b
)

exp
resses

a
1×

1
co

n
vo

lu
tio

n
to

red
u

ce
th

e
d

im
en

sio
n

o
fth

e
lastd

en
se

layer.W
i

d
en

o
tes

th
e

(co
n

vo
lu

tio
n

al)
layer

atstep
i

th
atsatisfy||W

i ||2 <
1.



4444

4.3 I N V E R T I B L E D E N S E N E T W O R K S 43

compute the trace of the Jacobian. Residual Flows [24] use an improved method to
estimate the power series at an even lower cost with an unbiased estimator based
on "Russian roulette" of [65]. Intuitively, the method estimates the infinite sum of
the power series by evaluating a finite amount of terms. In return, this leads to less
computation of terms compared to invertible residual networks. To avoid derivative
saturation, which occurs when the second derivative is zero in large regions, the
LipSwish activation is proposed.

4.3 I N V E R T I B L E D E N S E N E T W O R K S

In this section, we propose Invertible Dense Networks by using a DenseBlock as
a residual layer. We show how the network can be parameterized as a flow-based
model and refer to the resulting model as i-DenseNets. The code can be retrieved
from: https://github.com/yperugachidiaz/invertible_densenets.

4.3.1 Dense blocks

The main component of the proposed flow-based model is a DenseBlock that is
defined as a function F :Rd →Rd with F (x) = x + g (x), where g consists of n dense
layers {hi }n

i=1. Note that an important modification to make the model invertible
is to output x + g (x), whereas a standard DenseBlock would only output g (x). The
function g is expressed as follows:

g (x) =Wn+1 ◦hn ◦ · · · ◦h1(x), (4.3.1)

where Wn+1 represents a 1×1 convolution to match the output size of Rd . A layer hi

consists of two parts concatenated to each other. The upper part is a copy of the input
signal. The lower part consists of the transformed input, where the transformation
is a multiplication of (convolutional) weights Wi with the input signal, followed by
a non-linearity φ having Lip(φ) ≤ 1, such as ReLU, ELU, LipSwish, or tanh. As an
example, a dense layer h2 can be composed as follows:

h1(x) =
[

x
φ(W1x)

]
and h2(h1(x)) =

[
h1(x)

φ(W2h1(x))

]
. (4.3.2)

In Figure 4.1.1, we outline a residual block (Figure 4.1.1a) and a dense block (Fig-
ure 4.1.1b). We refer to concatenation depth as the number of dense layers in a
DenseBlock and growth as the channel growth size of the transformation in the
lower part.

4.3.2 Constraining the Lipschitz constant

If we enforce function g to satisfy Lip(g ) < 1, then DenseBlock F is invertible since
the Banach fixed point theorem holds. As a result, the inverse can be approximated
in the same manner as in [11]. To satisfy Lip(g ) < 1, we need to enforce Lip(hi ) < 1
for all n layers, since Lip(g ) ≤ Lip(hn+1) · . . . ·Lip(h1). Therefore, we first need to
determine the Lipschitz constant for a dense layer hi . For the full derivation, see

https://github.com/yperugachidiaz/invertible_densenets
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Appendix B.1. We know that a function f is K-Lipschitz if for all points v and w the
following holds:

dY ( f (v), f (w)) ≤ KdX (v, w), (4.3.3)

where we assume that the distance metrics dX = dY = d are chosen to be the ℓ2-
norm. Further, let two functions f1 and f2 be concatenated in h:

hv =
[

f1(v)
f2(v)

]
, hw =

[
f1(w)
f2(w)

]
, (4.3.4)

where function f1 is the upper part and f2 is the lower part. We can now find an ana-
lytical form to express a limit on K for the dense layer in the form of Equation (4.3.3):

d(hv ,hw )2 = d( f1(v), f1(w))2 +d( f2(v), f2(w))2,

d(hv ,hw )2 ≤ (K2
1 +K2

2)d(v, w)2,
(4.3.5)

where we know that the Lipschitz constant of h consist of two parts, namely, Lip( f1) =
K1 and Lip( f2) = K2. Therefore, the Lipschitz constant of layer h can be expressed as:

Lip(h) =
√

K2
1 +K2

2. (4.3.6)

With spectral normalization of Equation (4.2.2), we know that we can enforce (convo-
lutional) weights Wi to be at most 1-Lipschitz. Hence, for all n dense layers, we apply
the spectral normalization on the lower part, which locally enforces Lip( f2) = K2 < 1.
Further, since we enforce each layer hi to be at most 1-Lipschitz and we start with
h1, where f1(x) = x, we know that Lip( f1) = 1. Therefore, the Lipschitz constant of an
entire layer can be at most Lip(h) <

p
12 +12 =p2, thus dividing by this limit enforces

each layer to be at most 1-Lipschitz.

4.3.3 Learnable weighted concatenation

Figure 4.3.1: Range of the possible
normalized parameters η̂1 and η̂2.

We have shown that we can enforce an entire
dense layer to have Lip(hi ) < 1 by applying a
spectral norm on the (convolutional) weights
Wi and then divide the layer hi by

p
2. Although

learning a weighing between the upper and
lower part would barely affect a standard dense
layer, it matters in this case because the layers
are regularized to be 1-Lipschitz. To optimize
and learn the importance of the concatenated
representations, we introduce learnable para-
meters η1 and η2 for the upper and lower part
of each layer hi , respectively.

Since the upper and lower part of the layer can
be at most 1-Lipschitz, multiplication by these factors results in functions that are
at most η1-Lipschitz and η2-Lipschitz. As indicated by Equation (4.3.6), the layer is
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then at most
√
η2

1 +η2
2−Lipschitz. Dividing by this factor results in a bound that is at

most 1-Lipschitz.

In practice, we initialize η1 and η2 at value 1 and, during training, use a softplus
function to avoid them being negative. The range of the normalized parameters is
between η̂1, η̂2 ∈ [0,1] and can be expressed on the unit circle as shown in Figure 4.3.1.
In the special case where η1 = η2, the normalized parameters are η̂1 = η̂2 = 1

2

p
2.

This case corresponds to the situation in Section 4.3.2 where the concatenation is
not learned. An additional advantage is that the normalized η̂1 and η̂2 express the
importance of the upper and lower signal. For example, when η̂1 > η̂2, the input
signal is of more importance than the transformed signal.

4.3.4 CLipSwish

When a deep neural network is bounded to be 1-Lipschitz, in practice, each consec-
utive layer reduces the Jacobian norm. As a result, the Jacobian norm of the entire
network is becoming much smaller than 1, and the expressive power is getting lost.
This is known as gradient norm attenuation [5, 86]. This problem arises in activation
functions in regions where the derivative is small, such as the left tail of the ReLU
and the LipSwish. Non-linearities φ modeled in i-DenseNets are required to be at
most 1-Lipschitz and thus face gradient-norm attenuation issues. For this reason,
we are introducing a new activation function, which mitigates these issues.

Recall that Residual Flows use the LipSwish activation function [24]:

LipSwish(x) = xσ(βx)/1.1, (4.3.7)

where σ(βx) = 1/(1+exp(−xβ)) is the sigmoid, β is a learnable constant, initialized
at 0.5 and is passed through a softplus to be strictly positive. This activation function
is not only Lip(LipSwish) = 1, but also resolves the derivative saturation problem
[24]. However, the LipSwish function has large ranges on the negative axis where its
derivative is close to zero.

Therefore, we propose the Concatenated LipSwish (CLipSwish) which concatenates
two LipSwish functions with inputs x and −x. This is a concatenated activation
function as in [115] but using a LipSwish instead of a ReLU. Intuitively, even if an
input lies in the tail of the upper part, it will have a larger derivative in the bottom
part and thus suffer less from gradient norm attenuation. Since using CLipSwish
increases the channel growth and stays in line with the channel growth that non-
concatenated activation functions use, we use a lower channel growth when using
CLipSwish. To utilize the CLipSwish, we need to derive Lipschitz continuity of the
activation functionΦ defined below and enforce it to be 1-Lipschitz. We could use
the result obtained in Equation (4.3.6) to obtain a

p
2-bound. However, by using

knowledge about the activation functionΦ, we can derive a tighter 1.004 <p
2 bound.

A tighter bound is generally preferred since more expressive power will be preserved
in the network. To start with, we define functionΦ :R→R2 for a point x as:

Φ(x) =
[
φ1(x)
φ2(x)

]
=

[
LipSwish(x)

LipSwish(−x)

]
, CLipSwish(x) =Φ(x)/Lip(Φ), (4.3.8)
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where the LipSwish is given by Equation (4.3.7) and the derivative ofΦ(x) exists. To
find Lip(Φ), we use that for a differentiable ℓ2-Lipschitz bounded function Φ, the
following identity holds:

Lip(Φ) = sup
x

||JΦ(x)||2, (4.3.9)

where JΦ(x) is the Jacobian ofΦ at x and || · ||2 represents the induced matrix norm
which is equal to the spectral norm of the matrix. Rewriting the spectral norm
results in solving: det(JΦ(x)T JΦ(x)−λIn) = 0, which gives us the final result (see
Appendix B.1 for the full derivation):

sup
x

||JΦ(x)||2 = sup
x
σmax(JΦ(x)) = sup

x

√(
∂φ1(x)

∂x

)2

+
(
∂φ2(x)

∂x

)2

, (4.3.10)

where σmax(·) is the largest singular value. Now Lip(Φ) is the upper bound of the
CLipSwish and is equal to the supremum of: Lip(Φ) = supx ||JΦ(x)||2 ≈ 1.004, for all
values of β. This can be numerically computed by any solver, by determining the
extreme values of Equation (4.3.10). Therefore, dividing Φ(x) by its upper bound
1.004 results in Lip(CLipSwish) = 1. The generalization to higher dimensions can be
found in Appendix B.1. The analysis of the preservation of signals for (CLip)Swish
activation by simulations can be found in Section 4.5.1.

4.4 E X P E R I M E N T S

To make a clear comparison between the performance of Residual Flows and i-
DenseNets, we train both models on 2-dimensional toy data and high-dimensional
image data: CIFAR10 [72], and ImageNet32 [28]. Since we have a constrained com-
putational budget, we use smaller architectures for the exploration of the network
architectures.

Table 4.4.1: The number of parameters of Resid-
ual Flows and i-DenseNets for the full models as
trained in Chen et al. [24]. In brackets, the number
of parameters of the smaller models.

Model/Data CIFAR10 ImageNet32

Residual Flows 25.2M (8.7M) 47.1M

i-DenseNets 24.9M (8.7M) 47.0M

An in-depth analysis of different
settings and experiments can be
found in Section 4.5. For dens-
ity estimation, we run the full
model with the best settings for
1,000 epochs on CIFAR10 and 20
epochs on ImageNet32 where we
use single-seed results following
[11, 24, 69], due to little fluctuations
in performance. In all cases, we use
the density estimation results of the
Residual Flow and other flow-based models using uniform dequantization to create
a fair comparison and benchmark these with i-DenseNets. We train i-DenseNets
with learnable weighted concatenation (LC) and CLipSwish as the activation func-
tion, and utilize a similar number of parameters for i-DenseNets as Residual Flows;
this can be found in Table 4.4.1. i-DenseNets uses slightly fewer parameters than
the Residual Flow. A detailed description of the smaller and full architectures can be
found in Appendix B.2. To speed up training, we use 4 GPUs.
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Table 4.4.2: Negative log-likelihood results on test data in nats (toy data). i-DenseNets w/ and
w/o LC are compared with the Residual Flow.

Model 2 circles checkerboard 2 moons

Residual Flows 3.44 3.81 2.60
i-DenseNets 3.32 3.68 2.39
i-DenseNets+LC 3.30 3.66 2.39

Figure 4.4.1: Density estimation for smaller architectures of Residual Flows and i-DenseNets,
trained on 2-dimensional toy data.

4.4.1 Toy data

We start with testing i-DenseNets and Residual Flows on toy data, where we use
smaller architectures. Instead of 100 flow blocks, we use 10 flow blocks. We train
both models for 50,000 iterations and, at the end of the training, we visualize the
learned distributions.

The results of the learned density distributions are presented in Figure 4.4.1. We
observe that Residual Flows are capable of capturing high-probability areas. How-
ever, they have trouble with learning low-probability regions for two circles and
moons. i-DenseNets are capable of capturing all regions of the datasets. The good
performance of i-DenseNets is also reflected in better performance in terms of the
negative-log-likelihood (see Table 4.4.2).

4.4.2 Smaller models for MNIST & CIFAR10

Due to the long run time and a constrained computational budget, we first ex-
perimented with smaller architectures of the i-DenseNet before utilizing the full
models. This is presented in our first work [4], where we train smaller architectures
of Residual Flow [24] and i-DenseNet on high-dimensional image data, MNIST and
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CIFAR10. For i-DenseNet, we set the number of scales for the image data to 4 flow
blocks per 3 scales instead of 16 blocks per 3 scales. For the other arguments, de-
fault settings are used. Note that the smaller i-DenseNet utilizes the LipSwish as
an activation function instead of the CLipSwish, which we later found. To com-
pare Residual Flows with i-DenseNets, we utilize an architecture that uses a similar
number of parameters for each dataset trained on. A detailed description of this
architecture can be found in Appendix B.2. Furthermore, we train with and without
the option to learn the parameters of the concatenation. The models are trained
for 200 epochs per dataset. During training on MNIST, the original Residual Flow
suffered from unstable results. This might be due to the coefficient for the spectral
normalization, which controls the Lipschitz constraint. In return, this leads to an
unstable Jacobian determinant estimation. We adjusted the Lipschitz coefficient
for the spectral normalization by setting it to 0.93 for all models. Additionally, the
concatenation in DenseNets is multiplied by 0.98. Due to slight fluctuations, the
results are averaged over the last 5 epochs. The results of the models trained on
MNIST and CIFAR10 data are presented in Table 4.4.3, we observe that i-DenseNets
outperform Residual Flows in bits per dimension (bpd) on CIFAR10 with 3.41 bpd
without LC and 3.39 bpd with LC, against 3.42 bpd for the Residual Flow. We observe
that i-DeseNets without and with LC outperform the Residual Flow with respectively
1.05 bpd and 1.04 bpd against 1.08 bpd of the Residual Flow. In general, we observe
that i-DenseNets with LC outperform Residual Flows and i-DenseNets without LC.
Furthermore, Table 4.4.4 presents results of the smaller i-DenseNet with LC and
CLipSwish instead of LipSwish activation function. Comparing the results, we see
how the activation function CLipSwish boosts performance with 3.37 bpd compared
to 3.39 bpd with LipSwish.

Table 4.4.3: Density estimation results in bits per dimension on MNIST and CIFAR10, for
smaller architectures of i-DenseNets w/ and w/o LC and Residual Flows.

Model MNIST CIFAR10

Residual Flow 1.08 3.42

Invertible DenseNet 1.05 3.41
Invertible DenseNet+LC 1.04 3.39

4.4.3 Density estimation

We test the full i-DenseNet models with LC and CLipSwish activation. To utilize
a similar number of parameters as the Residual Flow with 3 scale levels and flow
blocks set to 16 per scale trained on CIFAR10, we set for the same number of blocks,
DenseNets growth to 172 with a depth of 3. Residual Flow trained on ImageNet32
uses 3 scale levels with 32 flow blocks per scale. Therefore, we set for the same
number of blocks DenseNets growth to 172 and depth of 3 to utilize a similar number
of parameters. DenseNets depth set to 3 proved to be the best setting for smaller
architectures; see the analysis in Section 4.5.

The density estimation on CIFAR10 and ImageNet32 are benchmarked against the
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results of Residual Flows and other comparable flow-based models, where the results
are retrieved from Chen et al. [24]. We measure performances in bits per dimension
(bpd). The results can be found in Table 4.4.4. We find that i-DenseNets outperform
Residual Flows and other comparable flow-based models on all considered datasets
in terms of bpd. On CIFAR10, i-DenseNet achieves 3.25bpd, against 3.28bpd of the
Residual Flow. On ImageNet32 i-DenseNet achieves 3.98bpd against 4.01bpd of
the Residual Flow. Samples of the i-DenseNet models can be found in Figure 4.4.2.
Samples of the model trained on CIFAR10 are presented in Figure 4.4.2b and samples
of the model trained on ImageNet32 in Figure 4.4.2d. For more unconditional
samples, see Appendix B.3. Note that this work does not compare against flow-based
models using variational dequantization. Instead, we focus on extending and making
a fair comparison with Residual Flows, which, similar to other flow-based models,
use uniform dequantization. For reference, note that Flow++ [57] with variational
dequantization obtains 3.08bpd on CIFAR10 and 3.86bpd on ImageNet32, which
is better than the model with uniform dequantization, which achieves 3.29bpd on
CIFAR10.

Table 4.4.4: Density estimation results in bits per dimension for models using uniform
dequantization. In brackets results for the smaller Residual Flow and i-DenseNet run for 200
epochs.

Model CIFAR10 ImageNet32

Real NVP [36] 3.49 4.28
Glow [69] 3.35 4.09
FFJORD [48] 3.40 -
Flow++ [57] 3.29 -
ConvSNF [58] 3.29 -

i-ResNet [11] 3.45 -
Residual Flow [24] 3.28 (3.42) 4.01

i-DenseNet 3.25 (3.37) 3.98

4.4.4 Hybrid modeling

Besides density estimation, we also experiment with hybrid modeling [98]. We train
the joint distribution p(x, y) = p(x) p(y |x), where p(x) is modeled with a generat-
ive model and p(y |x) is modeled with a classifier, which uses the features of the
transformed image onto the latent space. Due to the different dimensionalities of
y and x, the emphasis of the likelihood objective is more likely to be focused on
p(x) and a scaling factor for a weighted maximum likelihood objective is suggested,
Ex,y∼D

[
log p(y |x)+λ log p(x)

]
, where λ is the scaling factor expressing the trade-off

between the generative and discriminative parts. Unlike [98] where a linear layer is
integrated on top of the latent representation, we use the architecture of [24] where
the set of features are obtained after every scale level. Then, they are concatenated
and are followed by a linear softmax classifier. We compare our experiments with
the results of [24] where Residual Flow, coupling blocks [35] and 1×1 convolutions
[69] are evaluated.
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Table 4.4.5: Results of hybrid modeling on CIFAR10. Arrows indicate if low or high values are
of importance. Results are averaged over the last five epochs.

λ= 0 λ= 1
D λ= 1

Model \Evaluation Acc ↑ Acc ↑ bpd ↓ Acc ↑ bpd ↓
Coupling 89.77% 87.58% 4.30 67.62% 3.54
+ 1×1 conv 90.82% 87.96% 4.09 67.38% 3.47
Residual Blocks (full) 91.78% 90.47% 3.62 70.32% 3.39
Dense Blocks (full) 92.40% 90.79% 3.49 75.67% 3.31

Table 4.4.5 presents the hybrid modeling results on CIFAR10, where we used λ =
{0, 1

D ,1}. We ran the three models for 400 epochs and noted that the model with λ= 1
was not fully converged in both accuracy and bits per dimension after training. The
classifier model obtains a converged accuracy after around 250 epochs. This is in
line with the accuracy for the model with λ= 1

D , yet based on bits per dimension, the
model was not fully converged after 400 epochs. This indicates that even though the
accuracy is not further improved, the model keeps optimizing the bits per dimension,
which gives room for future research. Results in Table 4.4.5 show the average result
over the last 5 epochs. We find that Dense Blocks outperform Residual Blocks for
all possible λ settings. Interestingly, Dense Blocks have the biggest impact using no
penalty (λ= 1) compared to the other models. We obtain an accuracy of 75.67% with
3.31bpd, compared to 70.32% accuracy and 3.39bpd of Residual Blocks, indicating
that Dense Blocks significantly improve classification performance with more than
5%. In general, the Dense Block hybrid model is outperforming Real NVP, Glow,
FFJORD, and i-ResNet in bits per dimension (see Appendix B.3 for samples of the
hybrid models).

4.5 A N A LY S I S A N D F U T U R E W O R K

To get a better understanding of i-DenseNets, we perform additional experiments,
explore different settings, analyze the results of the model and discuss future work.
We use smaller architectures for these experiments due to a limited computational
budget. For Residual Flows and i-DenseNets we use 3 scale levels set to 4 Flow blocks
instead of 16 per scale level and train models on CIFAR10 for 200 epochs. We will
start with a short explanation of the limitations of 1-Lipschitz deep neural networks.

Table 4.5.1: The mean and maximum ratio for different dimensions with sample size set to
100,000.

Activation\
Measure

D = 1 D = 128 D = 1024
Mean Max Mean Max Mean Max

Sigmoid 0.22 0.25 0.21 0.22 0.21 0.21
LipSwish 0.46 1.0 0.51 0.64 0.51 0.55
CLipSwish 0.72 1.0 0.71 0.77 0.71 0.73

Identity 1.0 1.0 1.0 1.0 1.0 1.0
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4.5.1 Analysis of activations and preservation of signals

Since gradient-norm attenuation can arise in 1-Lipschitz bounded deep neural nets,
we analyze how much signal of activation functions is preserved by examining the
maximum and average distance ratios of sigmoid, LipSwish, and CLipSwish. Note
that the maximum distance ratio approaches the Lipschitz constant and it is desired
that the average distance ratio remains high.

We sample 100,000 datapoints v, w ∼N (0,1) with dimension set to D = {1,128,1024}.
We compute the mean and maximum of the sampled ratios with:

ℓ2(φ(v),φ(w))

ℓ2(v, w)
, (4.5.1)

and analyze the expressive power of each function. Table 4.5.1 shows the results.
We find that CLipSwish for all dimensions preserves most of the signal on average
compared to the other non-linearities. This may explain why i-DenseNets with
CLipSwish activation achieves better results than using, e.g., LipSwish. This experi-
ment indicates that on randomly sampled points, CLipswish functions suffer from
considerably less gradient norm attenuation. Note that sampling from a distribution
with larger parameter values is even more pronounced in preference of CLipSwish,
see Appendix B.4.

4.5.2 Activation functions

We start with exploring different activation functions for both networks and test
these with the smaller architectures. We compare our CLipSwish to the LipSwish
and the LeakyLSwish as an additional baseline, which allows freedom of movement
in the left tail as opposed to a standard LipSwish:

LeakyLSwish(x) =αx + (1−α)LipSwish(x), (4.5.2)

with α ∈ (0,1) by passing it through a sigmoid function σ. Here α is a learnable
parameter which is initialized at α=σ(−3) to mimic the LipSwish at initialization.
Note that the dimension for Residual Flows with CLipSwish activation function is
set to 652 instead of 512 to maintain a similar number of parameters (8.7M) as with
LipSwish activation.

Table 4.5.2 shows the results of each model using different activation functions. With
3.37bpd we conclude that i-DenseNet with our CLipSwish as the activation function
obtains the best performance compared to the other activation functions, LipSwish
and LeakyLSwish. Furthermore, all i-DenseNets outperform Residual Flows with
the same activation function. We want to point out that CLipSwish as the activation
function not only boosts the performance of i-DenseNets but it also significantly
improves the performance of Residual Flows with 3.38bpd. The running time for
the forward pass, train time, and sampling time, expressed in percentage faster
or slower than Residual Flow with the same activation functions, can be found in
Appendix B.4.
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Next, we examine the effect of different concatenation depth settings for i-DenseNets.
We run experiments with concatenation depth set to 2, 3, 4, and 5 with CLipSwish.
Furthermore, to utilize 8.7M parameters of the Residual Flow, we choose a fixed
depth and appropriate DenseNet growth size to have a similar number of parameters.
This results in a DenseNet depth 2 with a growth size of 318 (8.8M), depth 3 with
a growth of 178 (8.7M), depth 4 with a growth of 122 (8.7M), and depth 5 with a
growth of 92 (8.8M). The effect of each architecture can be found in Figure 4.5.1.
We observe that the model with a depth of 3 obtains the best scores, and after 200
epochs, it achieves the lowest bits per dimension with 3.37bpd. A concatenation
depth of 5 results in 3.42bpd after 200 epochs, which is the least preferred. This
could indicate that the corresponding DenseNet growth of 92 is too little to capture
the density structure sufficiently, and due to the deeper depth, the network might
lose important signals.

4.5.3 DenseNets concatenation depth

Further, the figure clearly shows how learnable weighted concatenation after 25
epochs boosts training for all i-DenseNets. See Appendix B.4 for an in-depth analysis
of the results of the learnable weighted concatenation. Furthermore, we performed
an additional experiment (see Appendix B.4) where we extended the width and
depth of the ResNet connections in g (x) of Residual Flows in such a way that it
matches the size of the i-DenseNet. As a result, on CIFAR10, this puts the extended
Residual Flow at a considerable advantage as it utilizes 19.1M parameters instead of
8.7M. However, when looking at performance the model performs worse (7.02bpd)
than i-Densenets (3.39bpd) and even worse than its original version (3.42bpd) in
terms of bpd. A possible explanation of this phenomenon is that by forcing more
convolutional layers to be 1-Lipschitz, the gradient norm attenuation problems
increase, and in practice, they become considerably less expressive. This indicates
that modeling a DenseNet in g (x) is indeed an important difference that gives better
performance.

4.5.4 Future work

We introduced a new framework, i-DenseNet, that is inspired by Residual Flows
and i-ResNets. We demonstrated how i-DenseNets out-performs Residual Flows
and alternative flow-based models for density estimation and hybrid modeling,
constraint by using uniform dequantization. For future work, we want to address
several interesting aspects we came across and where i-DenseNets may be further
deployed and explored.

Table 4.5.2: Results in bits per dimensions for small architectures, testing different activation
functions.

Model LipSwish LeakyLSwish CLipSwish

Residual Flow 3.42 3.42 3.38
i-DenseNet 3.39 3.39 3.37
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Figure 4.5.1: Effect of different concatenation depths with CLipSwish activation function for
i-DenseNets in bits per dimension.

First, we find that smaller architectures have more impact on performance than full
models compared to Residual Flows. Especially for the exploration of the network,
we recommend experimenting with smaller architectures or when a limited com-
putational budget is available. This brings us to the second point. Due to a limited
budget, we trained and tested i-DenseNets on 32×32 CIFAR10 and ImageNet32 data.
It will be interesting to test higher resolution and other types of datasets.

Further exploration of DenseNets depth and growth for other or higher-resolution
datasets may be worthwhile. In our studies, deeper DenseNets did not result in
better performance. However, it would also be beneficial to further examine the
optimization of DenseNets architectures. Similarly, we showed how to constrain
DenseBlocks for the ℓ2-norm. For future work, it may be interesting to generalize
the method to different norm types, as well as the norm for CLipSwish activation
function. Note that CLipSwish as an activation function not only boosts the per-
formance of i-DenseNets but also for Residual Flows. We recommend this activation
function for future work.

We want to stress that we focused on extending Residual Flows, which uses uniform
dequantization. However, we believe that the performance of our network may be
improved using variational dequantization or augmentation. Finally, we found that
especially hybrid model withλ= 1, achieve better performance than its predecessors.
This may be worthwhile to further investigate in the future.

4.6 S O C I E TA L I M PA C T

We discussed methods to improve normalizing flow, a method that learns high-
dimensional distributions. We generated realistic-looking images and also used
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hybrid models that both predict the label of an image and generate new ones. Be-
sides generating images, these models can be deployed to, e.g., detect adversarial
attacks. Additionally, this method is applicable to all different kinds of fields, such as
chemistry or physics. An increasing concern is that generative models in general,
have an impact on society. They can not only be used to aid society but can also be
used to generate misleading information by those who use these models. Examples
of these cases could be generating real-looking documents, Deepfakes or even de-
tection of fraud with the wrong intentions. Even though current flow-based models
are not there yet to generate flawless reproductions, this concern should be kept in
mind. It even raises the question of whether these models should be used in practice
when the detection of misleading information becomes difficult or even impossible
to track.

4.7 C O N C L U S I O N

In this chapter, we proposed i-DenseNets, a parameter-efficient alternative to Resid-
ual Flows. Our method enforces invertibility by satisfying the Lipschitz continuity
in dense layers. In addition, we introduced a version where the concatenation of
features is learned during training that indicates which representations are of im-
portance for the model. Furthermore, we showed how to deploy the CLipSwish
activation function. For both i-DenseNets and Residual Flows, this significantly
improves performance. Smaller architectures under an equal parameter budget
were used for the exploration of different settings.

The full model for density estimation was trained on 32×32 CIFAR10 and ImageNet32
data. We demonstrated the performance of i-DenseNets and compared the models
to Residual Flows and other comparable Flow-based models on density estimation
in bits per dimension. Yet, it also demonstrated how the model could be deployed
for hybrid modeling that includes classification in terms of accuracy and density
estimation in bits per dimension. Furthermore, we showed that modeling ResNet
connections matching the size of an i-DenseNet obtained worse performance than
the i-DenseNet and the original Residual Flow. In conclusion, i-DenseNets outper-
form Residual Flows and other competitive flow-based models for density estimation
on all considered datasets in bits per dimension and hybrid modeling that includes
classification. The obtained results clearly indicate the high potential of i-DenseNets
as powerful flow-based models.
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B A P P E N D I X F O R I - D E N S E N E T

B.1 Derivations

This section of the appendix provides the reader with full derivations of the Lipschitz
constant for the concatenation in DenseNets and a bound of the Lipschitz for the
activation functions.

Derivation of Lipschitz constant K for the concatenation

We know that a function f is K-Lipschitz if for all points v and w the following holds:

dY ( f (v), f (w)) ≤ KdX (v, w), (B.1)

where dY and dX are distance metrics and K is the Lipschitz constant.

Consider the case where we assume to have the same distance metric dY = dX = d ,
and where the distance metric is assumed to be chosen as any p-norm, where

p ≥ 1, for vectors: ||δ||p = p
√∑len(δ)

i=1 |δi |p . Further, we assume a DenseBlock to be a
function h where the output for each data point v and w is expressed as follows:

hv =
[

f1(v)
f2(v)

]
, hw =

[
f1(w)
f2(w)

]
, (B.2)

where in this chapter, for a Dense Layer and for a data point x, the function f1(x) = x
and f2 expresses a linear combination of (convolutional) weights with x followed by
a non-linearity, for example,φ(W1x). We can rewrite Equation (B.1) for the DenseNet
function as:

d(hv ,hw ) ≤ Kd(v, w), (B.3)

where K is the unknown Lipschitz constant for the entire DenseBlock. However, we
can find an analytical form to express a limit on K. To solve this, we know that the
distance between hv and hw can be expressed by the p-norm as:

d(hv ,hw ) = p

√√√√len(hv )∑
i=1

|hv,i −hw,i |p , (B.4)

where we can simplify the equation by taking the p-th power:

d(hv ,hw )p =
l en( f1(v))∑

i=1
| f1(v)i − f1(w)i |p +

len( f2(v))∑
i=1

| f2(v)i − f2(w)i |p . (B.5)

Since we know that the distance of f1 can be expressed as:

d( f1(v), f1(w)) = p

√√√√len( f1(v))∑
i=1

| f1(v)i − f1(w)i |p , (B.6)

which is similar for the distance of f2, re-writing the second term of Equation (B.5)
in the form of Equation (B.3) is assumed to be of form:

d( f1(v), f1(w))p ≤ Kp
1 d(v, w)p , (B.7)
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which is similar for f2, d( f2(v), f2(w))p ≤ Kp
2 d(v, w)p . Assuming this, we can find a

form of Equation (B.3) by substituting Equation (B.5) and Equation (B.7):

d(hv ,hw )p =
l en(hv )∑

i
|hv,i −hw,i |p ≤ d( f1(v), f1(w))p +d( f2(v), f2(w))p

= (Kp
1 +Kp

2 )d(v, w)p .

(B.8)

Now, taking the p-th root we have:

d(hv ,hw ) ≤ p
√

(Kp
1 +Kp

2 )d(v, w), (B.9)

where we have derived the form of Equation (B.3) and where Lip(h) = K is expressed
as:

Lip(h) = p
√

(Kp
1 +Kp

2 ), (B.10)

where Lip( f1) = K1 and Lip( f2) = K2, which are assumed to be known Lipschitz
constants.

Derivation bounded Lipschitz Concatenated ReLU

We define function φ :R→R2 as the Concatenated ReLU for a point x:

φ(x) =
[

ReLU(x)
ReLU(−x)

]
. (B.11)

Let points v, w ∈R. From Section B.1, Equation (B.4), we know that the distance
between points transformed with φ and using the ℓ2-norm can be written as:

d(φ(v),φ(w))2 =
l en(φ(v))∑

i=1
|φ(v)i −φ(w)i |2

= (φ(v)1 −φ(w)1)2 + (φ(v)2 −φ(w)2)2

= (ReLU(v)−ReLU(w))2 + (ReLU(−v)−ReLU(−w))2.

(B.12)

Furthermore, we know that the distance between the two points is:

d(v, w)2 =
len(v)∑

i=1
(vi −wi )2

= (v −w)2

= v2 +w2 −2v w.

(B.13)

We have four different situations that can happen. If v > 0, w > 0, then the distance
between the points will be:

d(φ(v),φ(w))2 = (v −w)2 +0

= d(v, w)2.
(B.14)
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In this specific case we have that d(v, w)2 = v2 +w2 −2v w , where 2v w > 0. The
same holds for v ≤ 0, w ≤ 0, when the first term becomes zero and instead of zero,
the second term becomes d(v, w)2 with 2v w ≥ 0.

If v > 0, w ≤ 0, the distance between the points is equal to:

d(φ(v),φ(w))2 = (v −0)2 + (0−w)2

= v2 +w2

= (v −w)2 +2v w︸︷︷︸
≤0

≤ (v −w)2 = d(v, w)2.
(B.15)

The same derivation holds in the case v ≤ 0, w > 0. Combining all cases, we find that
d(φ(v),φ(w)) ≤ d(v, w), therefore:

Lip(CReLU) = 1. (B.16)

Derivation Lipschitz bound of CLipSwish

We propose the Concatenated LipSwish (CLipSwish) and show how we can enforce
the CLipSwish to be 1-Lipschitz for a 1-dimensional input signal x and generalization
to a higher dimension in the upcoming subsections.

C L I P S W I S H 1 - D I M E N S I O N A L I N P U T S I G N A L We derive the upper bound of
Concatenated LipSwish and show that CLipSwish(x) = Φ(x)/1.004 is enforced to
satisfy Lip(CLipSwish) = 1. To start with, we define functionΦ :R→R2 for a point x
as:

Φ(x) =
[
φ1(x)
φ2(x)

]
=

[
LipSwish(x)

LipSwish(−x)

]
, (B.17)

where:
LipSwish(x) = xσ(βx)/1.1,

and the partial derivative ofΦ(x) exists. Then the Jacobian matrix ofΦ is well-defined
as:

JΦ(x) =
[
∂φ1(x)
∂x

∂φ2(x)
∂x

]
. (B.18)

Furthermore, we know that for a ℓ2-Lipschitz bounded function Φ, the following
holds:

Lip(Φ) = sup
x

||JΦ(x)||2, (B.19)

where JΦ(x) is the Jacobian ofΦ and norm and || · ||2 represents the induced matrix
norm which is equal to the spectral norm of the matrix. Furthermore, we know
that for a matrix A the following holds: ||A||2 =σmax (A), where σmax is the largest
singular value and the largest singular value is given by σmax (A) =

√
λ1, since σi =
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√
λi for i = 1, . . . ,n [77]. Now determining the singular values of JΦ(x) is done by

solving det(JΦ(x)T JΦ(x)−λIn) = 0. Combining and solving gives:

det(JΦ(x)T JΦ(x)−λIn) = 0[(
∂φ1(x)

∂x

)2

+
(
∂φ2(x)

∂x

)2]
−λ= 0

λ=
(
∂φ1(x)

∂x

)2

+
(
∂φ2(x)

∂x

)2

(B.20)

where λ=λ1 the largest eigenvalue, thus: λ1 =
(
∂φ1(x)
∂x

)2 +
(
∂φ2(x)
∂x

)2
. Therefore, the

spectral norm of Equation (B.19), can be re-written as:

||JΦ(x)||2 =σmax (JΦ(x)) =
√(

∂φ1(x)

∂x

)2

+
(
∂φ2(x)

∂x

)2

. (B.21)

Now Lip(Φ) is the upper bound of the CLipSwish and is equal to the supremum
of: Lip(Φ) = supx ||JΦ(x)||2 ≈ 1.004, for all values of β. This can be numerically
computed by any solver by determining the extreme values of Equation (B.21).

G E N E R A L I Z A T I O N T O H I G H E R D I M E N S I O N S To generalize the Concaten-
ated LipSwish activation function activation function to higher dimensions, we
take Φ : Rd →R2d , which represents the CLipSwish activation function for a vec-
tor x = {x1, x2, . . . , xd }. Then the CLipSwish is given by the concatenation Φ(x) =[
LipSwish(x),LipSwish(−x)

]
, where φ1(x) = LipSwish(x) and φ2(x) = LipSwish(−x)

elementwise. The Jacobian matrix JΦ(x) with shape 2d ×d , looks as follows:

JΦ(x) =



∂φ1(x)1
∂x1

∂φ1(x)1
∂x2

. . . ∂φ1(x)1
∂xd

...
...

...
∂φ1(x)d
∂x1

∂φ1(x)d
∂x2

. . . ∂φ1(x)d
∂xd

∂φ2(x)1
∂x1

∂φ2(x)1
∂x2

. . . ∂φ2(x)1
∂xd

...
...

...
∂φ2(x)d
∂x1

∂φ2(x)d
∂x2

. . . ∂φ2(x)d
∂xd


, (B.22)

where
∂φi , j

∂xk
=

{
0, if j ̸= k
∂φi , j

∂xk
, otherwise.

The determinant is computed as det(JΦ(x)T JΦ(x)−λIn) = 0, where JΦ(x)T JΦ(x) is of
shape d ×d with off-diagonals equal to zero. Therefore, the determinant is given by
multiplication of the diagonal entries and each eigenvalue is given by each diagonal
entry. The general form of determinant and eigenvalues is written as:

det(JΦ(x)T JΦ(x)−λIn) =
d∏

j=1
λ j , (B.23)
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where each eigenvalue is given by:

λ j =
(
∂φ1, j

∂x j

)2

+
(
∂φ2, j

∂x j

)2

. (B.24)

Then:

Lip(Φ) = sup
x

||JΦ(x)||2

= sup
x

max
j

√
λ j

= sup
x

max
j

√√√√(
∂φ1, j

∂x j

)2

+
(
∂φ2, j

∂x j

)2

≈ 1.004,

(B.25)

where the last step is numerically approximated for the CLipSwish function, whereφ
is the LipSwish. Therefore, we plot Equation (B.25) in Python and compute the abso-
lute extrema, which can be found in Figure B.1. For this figure we plotted CLipSwish
with β= 0.5 and passed it through a softplus function, as it is initialized in the code
on GitHub. Next, we can numerically obtain the absolute extrema by computing
the maximum value and argmax of the maximum value of Equation (B.25), which
respectively represent the y-coordinate and x-coordinate of the absolute maximum.
This accounts for all β’s being strictly positive since changing β does not change the
y-coordinate of the extreme value but only shifts the x-coordinate more to or further
away from the origin.

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
1.0

0.5

0.0
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CLipSwish
Extrema

Figure B.1: ClipSwish activation function with indicated absolute maximums.

B.2 Implementation

This appendix provides implementation details for both the smaller and full models.

Architecture full models

For the full models, we followed the architecture of [24] and, during training, used a
batch size of 64. We used the same datasets as in [24]: CIFAR10 and ImageNet32, to
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Table B.1: The general DenseNet architecture for the smaller and full models, modeled in

function g for image data.

Model
Nr.

of scales

Nr. of blocks

per scale

DenseNet

Depth

DenseNet

Growth
Dense Layer Output

small 3
4 (CIFAR10)

4 (MNIST)
3

108 (CIFAR10)

124 (MNIST)

3×3 conv

LipSwish

concat

 [
1×1 conv

]

full 3
16 (CIFAR10)

32 (ImageNet32)
3

172 (CIFAR10)

172 (ImageNet32)

3×3 conv

CLipSwish

concat

 [
1×1 conv

]

make a fair comparison. CIFAR10 and ImageNet32 are of size 32×32. CIFAR10 con-
tains 50,000 training images and 10,000 test images. ImageNet32 contains 1,281,167
training images and 50,000 validation images. CIFAR10 has an MIT License and the
ImageNet terms of access can be found here: https://image-net.org/download.
php. Before training, uniform dequantization is applied to the images after which a
logit transformation is applied. For hybrid models, instead of the logit transform,
the images use normalization x = x−µ

σ . As in [24], for evaluation, at least 20 terms of
the power series for the Jacobian-determinant are computed while the remaining
terms to compute are determined by the unbiased estimator. Furthermore, we set a
bound on the Lipschitz constant of each dense layer with a Lipschitz coefficient of
0.98. We use Adam optimizer with a learning rate set to 0.001 to train the models.

For all our models we ensured an equal parameter budget as the architecture of
Residual Flows [24]. For CIFAR10, the full i-DenseNets utilize 24.9M to utilize the
25.2M of Residual Flows. For ImageNet32, i-DenseNet utilizes 47.0M parameters
to utilize the 47.1M of the Residual Flow. A numerical architecture of the full i-
DenseNets for image data is presented in Table B.1. g consists of several dense
layers. The last dense layer hn is followed by a 1×1 convolution to match the output
of size Rd , after which a squeezing layer is applied. The final part of the network
consists of a Fully Connected (FC) layer with the number of blocks set to 4 for both
datasets. Before the concatenation in the FC layer, a Linear layer of input Rd to
output dimension 64 is applied, followed by the dense layer with for both datasets
the FC DenseNet growth of 32, activation CLipSwish and a DenseNet depth of 3. The
final part consists of a Linear layer to match the output of size Rd . The large-scale
models require approximately 410 seconds for an epoch on 4 NVIDIA TITAN RTX
GPUs.

Architecture smaller models

We used a smaller architecture of Residual Flows [24], with an adjustment of number
of blocks per scale set to 4 instead of 16. Additionally, for i-DenseNet we also utilized
the LipSwish as activation function from [24]. For training, we ensured an equal
parameter budget for i-DenseNets. The architecture of i-DenseNets for image data

https://image-net.org/download.php
https://image-net.org/download.php
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are presented in Table B.1. For the MNIST dataset all models used 3 scales where the
number of blocks per scale is set to 4. Due to the instability of Residual Flows, we set
our coefficient that controls the Lipschitz constraint from 0.98 to 0.93. Furthermore,
default settings of Residual Flows are used. For i-DenseNets, we used a coefficient
controlling the Lipschitz of the concatenated blocks set to 0.98. i-DenseNets use a
DenseNet depth and growth of, respectively, 3 and 108 with 5.0M parameters and
Residual Flows utilize 5.0M parameters. For the CIFAR10 dataset, all models used
3 scales, with a set number of blocks per scale of 4. Furthermore, Residual Flows
are used with default settings. i-DenseNets use a DenseNet depth and growth of 3
and 124, respectively, with 8.7M parameters, and Residual Flows utilize the 8.7M
parameters.

B.3 Samples

This section of the appendix contains samples of the models trained on CIFAR10
and ImageNet32, along with samples of the hybrid models.

Model samples

Figure B.2 shows real images and samples of the models trained on CIFAR10 and
ImageNet32. Figure B.2a shows the real images and Figure B.2b shows samples of
i-DenseNet trained on CIFAR10. Figure B.2c shows the real images and Figure B.2d
shows samples of i-DenseNet trained on ImageNet32.

Hybrid modeling samples

Figure B.3 shows samples of the hybrid models trained on CIFAR10. The model
trained with a scaling factor of λ= 1

D can be found in Figure B.3a. We notice that
the samples tend to show a lot of red and brown colors and that the images tend
to look noisy. This is probably due to the scaling factor where the generative part
and classifier part have an equal focus for the likelihood objective, while there are
D = 32×32 features per image.

The model trained with λ = 1 can be found in Figure B.3b. The samples tend to
look like the samples in Figure B.2b, only with less definition. This is probably due
to the extra part, namely, the classifier part. Comparing the bits per dimension of
the hybrid model with i-DenseNet trained for density estimation only, we find a
difference of 0.06bpd.
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(a) Real images CIFAR10. (b) Samples CIFAR10 i-DenseNet.

(c) Real images ImageNet32. (d) Samples ImageNet32 i-DenseNet.

Figure B.2: Real images and samples from i-DenseNet trained on CIFAR10 and ImageNet32.
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(a) Hybrid model trained with λ= 1
D (b) Hybrid model trained with λ= 1

Figure B.3: Hybrid modeling results with Dense Blocks trained on CIFAR10.
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B.4 Additional experiments

In this appendix, we perform additional experiments. First, we analyze the preserva-
tion of signal for the activations functions with data points that are sampled from a
distribution with larger parameter values. Furthermore, we analyze the running time
of the models. Next, we examine the importance of the concatenated representation
for i-DenseNets that are learned with learnable weighted concatenation. Finally,
we analyze a Residual Flow where we extend the width and depth of the ResNet
connections modeled in g (x) such that it matches the size of i-DenseNet.

Preservation of signal

To further analyze the expressive power for the activation functions with a larger
range, we sample 100,000 datapoints from distribution: v, w ∼N (0,5) with dimen-
sion set to D = {1,128,1024}. We compute the mean and maximum of the sampled
ratios with: ℓ2(φ(v),φ(w))/ℓ2(v, w) and analyze the expressive power of each func-
tion. Table B.2 shows the results. We find that CLipSwish for all dimensions preserves
even more expressive power than data points sampled from N (0,1), while sigmoid
loses a considerable amount of signal with mean values close to zero instead of 0.25.

Table B.2: The mean and maximum ratio for different dimensions with sample size set to
100,000.

Activation\
Measure

D = 1 D = 128 D = 1024

Mean Max Mean Max Mean Max

Sigmoid 0.09 0.25 0.08 0.10 0.08 0.09
LipSwish 0.47 1.0 0.54 0.69 0.54 0.59
CLipSwish 0.83 1.0 0.76 0.83 0.76 0.78
Identity 1.0 1.0 1.0 1.0 1.0 1.0

Running time

Table B.3 shows the forward pass, train time and sampling time, expressed in per-
centage faster or slower than Residual Flow, for each activation function. We find
that the forward pass of i-DenseNet, for all activation functions, is faster than Resid-
ual Flow. The train time is slower and during sampling i-DenseNet is faster. Note
that in comparison to the preliminary results in the rebuttal the times has changed
somewhat, since these results have been obtained on a clean system with multiple
runs. An interesting observation is that the LeakyLSwish with Residual Flows is much
slower than the DenseNet variant, which indicates that fewer fixed-point iterations
are needed for i-DenseNets to converge.
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Table B.3: i-DenseNet approximate running times in percentage (%) compared to Residual

Flow. Faster than Residual Flow is indicated with ↑ and slower ↓.

Activation Function Forward pass (GPU) Train time (GPU) Sampling time (CPU)

LipSwish ↑ 1.3% ↓ 43% ↑ 8.8%

LeakyLSwish ↑ 1.3% ↓ 28% ↑ 231.9%

CLipSwish ↑ 0.6% ↓ 145% ↑ 11%

Importance of concatenated representation

Trained on CIFAR10, the smaller architecture with CLipSwish activation and a
DenseNet depth of 3 and growth of 178, run for 200 epochs with CLipSwish obtains
the best performance score with 3.37bpd. To analyze the importance of the concat-
enated representation after training, Figure B.4 shows the heatmap for parameter η̂1

(Figure B.4a) and parameter η̂2 (Figure B.4b). Every scale level 1, 2, and 3 contains
4 DenseBlocks, which each contains 3 dense layers with convolutional layers. The
final level FC indicates that fully connected layers are used. The letters ‘a’, ‘b’, and ‘c’
index the dense layers per block.

Remarkably, all scale levels for the last layers hi c give little importance to the input
signal. The input signals for these layers are in most cases multiplied with η̂1 (close
to) zero, while the transformed signal uses almost all the information when multi-
plied with η̂2, which is close to one. This indicates that the transformed signal is of
more importance for the network than the input signal. For the fully connected part,
this difference is not that pronounced. Instead of 4 DenseBlocks, the full i-DenseNet
model utilizes 16 DenseBlocks (CIFAR10) and 32 (ImageNet32) for every scale; these
are not included due to the size.

Matching architectures

The Residual Flow architecture with LipSwish activation and 3 scale levels set to
4 Flow blocks has 8.7M parameters. To utilize a similar number of parameters for
i-DenseNet with LipSwish activation, we set DenseNets depth to 3 and growth to 124.
To go a step further, we also examine modeling ResNet connections matching the
size of i-DenseNet. Therefore, we use the same 3×3 kernels as each dense layer uses
and, as a final layer, a 1×1 kernel to match the input size. Instead of concatenation,
we use the growth size of 124 plus the input size to imitate the dense layers of
i-DenseNet but then with convolutional connections. We repeat this process for
the Fully Connected layer. Note that this puts the Residual Flow at a considerable
advantage as it uses 19.1M parameters instead of the 8.7M of the original flow. We
do the same experiment for toy data that uses only linear connections instead of
convolutions.

In Table B.4 the results are shown. On toy data, the extended Residual Flow performs
slightly better in terms of nats compared to the original Residual Flow without
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extended width and depth. Yet, i-DenseNet obtains the lowest (better) scores. On
high-dimensional CIFAR10 data, the extended Residual Flow obtains 7.02bpd which
is worse than i-DenseNet with 3.39bpd. Yet, the model also scores more than double
as high (worse) in terms of bpd than the original Residual Flow with 3.42bpd.

Table B.4: The negative log-likelihood results on test data in nats (toy data) and bpd (CIFAR10),

where ↓ lower is better. i-DenseNets with LC are compared with the original Residual Flow

and Residual Flow with equal width and depth as i-DenseNet.

Model (LipSwish)
CIFAR10

bpd ↓
2 circles

nats ↓
checkerboard

nats ↓
2 moons

nats ↓

Residual Flows 3.42 3.44 3.81 2.60

+ extended width, equal depth 7.02 3.36 3.78 2.52

i-DenseNets+LC 3.39 3.30 3.66 2.39

The main difference in architecture of the toy and CIFAR10 is the linear layer for
toy data whereas mainly convolutional layers are used for CIFAR10. A possible
explanation of this phenomenon is that by forcing more convolutional layers to
be 1-Lipschitz that gradient norm attenuation problems increase and in practice
become less expressive. In conclusion, even though the model utilizes more than
double the number of parameters, it performs worse than i-DenseNet with similar
architecture and even worse than the original Residual Flow architecture, indicating
that modeling a DenseNet in g (x) indeed is an important difference that gives better
performance.
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ROBUSTLY OVERFITTING LATENTS FOR FLEXIBLE

NEURAL IMAGE COMPRESSION

Abstract
Although neural image compression models have proven to be suc-
cessful in practice by out-performing traditional methods, they still
lead to sub-optimal compression results due to imperfect optimiza-
tion and limitations capacities. Recent work introduces a procedure
that improves the compression performance for pre-trained neural
image compression models while keeping the network weights fixed.
This procedure uses the Stochastic Gumbel Annealing (SGA) method
to refine the latents of pre-trained neural image compression models.
We extend this idea by introducing SGA+, which contains three differ-
ent methods that build upon SGA. Further, we give a detailed analysis
of our proposed methods, show how they improve performance, and
show that they are less sensitive to hyperparameter choices. Besides,
we show how each method can be extended to three- instead of two-
class rounding. Finally, we show how refinement of the latents with our
best-performing method improves the compression performance on
the Tecnick dataset and how it can be deployed to partly move along
the rate-distortion curve.

Based on [1]:
Yura Perugachi-Diaz, Arwin Gansekoele, Sandjai Bhulai
Robustly overfitting latents for flexible neural image compression
Arxiv: 2401.17789 (2024)



55555

72 R O B U S T LY O V E R F I T T I N G L AT E N T S F O R F L E X I B L E N E U R A L I M A G E C O M P R E S S I O N

5.1 I N T R O D U C T I O N

Neural image compression is an active and successful field [9, 82, 95]. In practice,
these models outperform traditional methods [12, 120, 134]. Even though these
models are promising, they are less practical for real-time applications due to the
requirement of significant computational resources. Furthermore, these models
have limited capacity for optimization. Due to the high-dimensional parameter
space of a model that needs to be optimized and various hyperparameter settings
that need to be set, they lead to challenges in optimization, which in return may
lead to sub-optimal results.

Image compression allows efficient sending of an image between systems by redu-
cing their size. There are two types of compression: lossless and lossy. Lossless image
compression sends images perfectly without losing any quality and can thus be re-
stored in their original format, such as the PNG format. Lossy compression, such as
BPG [12], JPEG [134] or JPEG2000 [120], loses some quality of the compressed image.
Lossy compression aims to preserve as much of the quality of the reconstructed
image as possible, compared to its original format, while allowing a significantly
larger reduction in required storage.

Traditional methods [120, 134], especially lossless methods, can lead to limited com-
pression ratios or degradation in quality. With the rise of deep learning, neural image
compression is becoming a popular method [126, 128]. In contrast with traditional
methods, neural image compression methods have been shown to achieve higher
compression ratios and less degradation in image quality [9, 82, 95]. Additionally,
neural compression techniques have shown improvements compared to traditional
codecs for other data domains, such as video. [2, 51, 91].

In practice, neural lossy compression methods have proven to be successful and
achieve state-of-the-art performance [9, 82, 95]. These models are frequently based
on variational autoencoders (VAEs) with an encoder-decoder structure [67]. The
models are trained to minimize the expected rate-distortion (R-D) cost: R +λD.
Intuitively, one learns a mapping that encodes an image into a compressible latent
representation. The latent representation is sent to a decoder and is decoded into a
reconstructed image. The aim is to train the compression model in such way that it
finds a latent representation that represents the best trade-off between the length of
the bitstream for an image and the quality of the reconstructed image. Even though
these models have proven to be successful in practice, they do have limited capacity
when it comes to optimization and generalization. For example, the encoder’s
capacity is limited, which makes the latent representation sub-optimal [32]. Recent
work [22, 49, 144] proposes procedures to refine the encoder or latents, which leads
to better compression performance. Furthermore, in neural video compression,
other work focuses on adapting the encoder [7, 90] or finetuning a full compression
model after training to improve the video compression performance [132].

The advantage of refining latents [22, 144] is that improved compression results per
image are achieved while the model does not need to be modified. Instead, the
latent representations for each individual image undergo a refining procedure. This
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results in a latent representation that obtains an improved bitstream and image
quality over its original state from the pre-trained model. As mentioned in [144],
the refining procedure for stochastic rounding with Stochastic Gradient Gumbel
Annealing (SGA) considerably improves performance. In this chapter, we introduce
SGA+, an extension of SGA that further improves compression performance and is
less sensitive to hyperparameter choices. The main contributions are:

• We show how changing the probability space with more natural methods
instead of SGA boosts the compression performance.

• We propose the sigmoid scaled logit (SSL), which can smoothly interpolate
between the approximate atanh, linear, cosine, and round. We also show how
this function finds even better compression performance.

• We demonstrate a generalization to rounding to three classes that contains
the two classes as a special case.

Further, we show how SSL outperforms baselines on the Kodak dataset in terms
of true loss curves. We show how our method generalizes to the Tecnick dataset
in terms of peak signal-to-noise ratio (PSNR) versus the bits per pixel (BPP) in
an R-D plot. In addition, we analyze the stability of all functions and show the
effect of interpolation between different methods with SSL. Lastly, we propose a
refining procedure at compression time that allows moving along the R-D curve
when refining the latents with another λ than a pre-trained model is trained on.
The code of our proposed methods is publicly available at: https://github.com/
yperugachidiaz/flexible_neural_image_compression.

5.2 R E L AT E D W O R K

In lossy compression, the aim is to find a mapping of image x where the distortion
of the reconstructed image x̂ is as little as possible compared to the original one
while using as little storage as possible. Therefore, training a lossy neural image
compression model presents a trade-off between minimizing the length of the
bitstream for an image and minimizing the distortion of the reconstructed image [8,
82, 95, 126].

Neural image compression models from [8, 95, 126], also known as hyperpriors,
accomplish this kind of mapping with latent variables. An image x is encoded
onto a latent representation y = ga(x), where ga(·) is the encoder. Next, y is quant-
ized Q(y) = ŷ into a discrete variable that is sent losslessly to the decoder. The
reconstructed image is given by: x̂ = gs (ŷ), where gs (·) represents the decoder. The
rate-distortion objective that needs to be minimized for this specific problem is
given by:

L= R +λD

=Ex∼px

[− log2 p ŷ (ŷ)
]︸ ︷︷ ︸

rate

+λEx∼px [d(x, x̂)]︸ ︷︷ ︸
distortion

, (5.2.1)

https://github.com/yperugachidiaz/flexible_neural_image_compression
https://github.com/yperugachidiaz/flexible_neural_image_compression
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where λ is a Lagrange multiplier determining the rate-distortion trade-off, R is the
expected bitstream length to encode ŷ and D is the metric to measure the distortion
of the reconstructed image x̂ compared to the original one x. Specifically for the
rate, px is the (unknown) image distribution, and p ŷ represents the entropy model
that is learned over the data distribution px . A frequently used distortion measure
for d(x, x̂), is the mean squared error (MSE) or PSNR.

In practice, the latent variable y often consists of multiple levels in neural compres-
sion. Namely, a smaller one named z, which is modeled with a relatively simple
distribution p(z), and a larger variable, which is modeled by a distribution for which
the parameters are predicted with a neural network using z, the distribution p(y |z).
We typically combine these two variables into a single symbol y for brevity. Further-
more, a frequent method of quantizing Q(·) used to train hyperpriors consists of
adding uniform noise to the latent variable.

5.2.1 Latent optimization

Neural image compression models have been trained over a huge set of images to
find an optimal encoding. Yet, due to difficulties in optimization or due to constraints
on the model capacity, model performance is sub-optimal. To overcome these issues,
another type of optimizing compression performance is proposed in [22, 144], where
they show how to find better compression results by utilizing pre-trained networks
and keeping the encoder and decoder fixed but only adapting the latents. In these
methods, a latent variable y is iteratively adapted using differentiable operations
at test time. The aim is to find a more optimal discrete latent representation ŷ .
Therefore, the following minimization problem needs to be solved for an image x:

arg minŷ

[− log2 p ŷ (ŷ)+λd(x, x̂)
]

. (5.2.2)

This is a powerful method that can fit to a test image x directly without the need to
train an entire compression model further.

5.2.2 Stochastic Gumbel Annealing

[22] proposes to optimize the latents by iteratively adding uniform noise and up-
dating its latents. While this method proves to be effective, there is still a difference
between the true rate-distortion loss (L̂) for the method and its discrete represent-
ation ŷ . This difference is also known as the discretization gap. Therefore, [144]
propose the SGA method to optimize latents and show how it obtains a smaller
discretization gap. SGA is a soft-to-hard quantization method that quantizes a
continuous variable v into the discrete representation for which gradients can be
computed. A variable v is quantized as follows. First, a vector vr = (⌊v⌋,⌈v⌉) is created
that stacks the floor and ceil of the variable, also indicating the rounding direction.
Next, the variable v is centered between (0,1) where for the flooring: vL = v −⌊v⌋
and ceiling: vR = ⌈v⌉− v . With a temperature rate τ ∈ (0,1), that is decreasing over
time, this variable determines the soft-to-hardness where 1 indicates training with
a fully continuous variable v and 0 indicates training while fully rounding variable
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v . To obtain unnormalized log probabilities, the inverse hyperbolic tangent (atanh)
function is used as follows:

log(π) = (−atanh(vL)/τ,−atanh(vR )/τ). (5.2.3)

Next, samples are drawn y ∼ Gumbel-Softmax(π,τ) [64] and are multiplied and
summed with the vector vr to obtain the quantized representation: v̂ =∑

i (vr,i ∗ yi ).
As SGA aids the discretization gap, this method may not have optimal performance
and may not be as robust to changes in its temperature rate τ.

Besides SGA, [144] propose deterministic annealing [1], which follows almost the
same procedure as SGA, but instead of sampling stochastically from the Gumbel
Softmax, this method uses a deterministic approach by computing probabilities
with the Softmax from log(π). In practice, this method has been shown to suffer
from unstable optimization behavior.

5.2.3 Other methods

While methods such as SGA aim to optimize the latent variables for neural image
compression at inference time, other approaches have been explored in recent
research. [50] proposed a soft-then-hard strategy alongside a learned scaling factor
for the uniform noise to achieve better compression and a smoother latent. These
methods are used to fine-tune network parameters but not the latents directly. [151]
proposed using Swin-transformer-based coding instead of ConvNet-based coding.
They showed that these transforms can achieve better compression with fewer
parameters and shorter decoding times. [132] proposed to also fine-tune the decoder
alongside the latent for video compression. While accommodating the additional
cost of saving the model update, they demonstrated a gain of ∼ 1dB . [147] and [39]
proposed using implicit neural representations for video and image compression,
respectively. [55] proposed an improved context model (SCCTX) and a change to
the main transform (ELIC) that achieve strong compression results together. [40]
revisited vector quantization for neural image compression and demonstrated it
performs on par with hyperprior-based methods. While these approaches change
the training process, our work differs in that we only consider the inference process.

5.3 M E T H O D S

As literature has shown, refining the latents of pre-trained compression models with
SGA leads to improved compression performance [144]. In this section, we extend
SGA by introducing SGA+ containing three other methods for the computation of
the unnormalized log probabilities log(π) to overcome issues from its predecessor.
We show how these methods behave in probability space. Furthermore, we show
how the methods can be extended to three-class rounding.

5.3.1 Two-class rounding

Recall from SGA that a variable v is quantized to indicate the rounding direction
to two classes and is centered between (0,1). Computation of the unnormalized
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Figure 5.3.1: The probability space for two-class rounding for different functions of SGA+:

linear, cosine and SSL (a = 4
3 ), along with atanh. Solid lines denote the probability of flooring

⌊v⌋ and dotted lines the probability of ceiling ⌈v⌉.

log probabilities is obtained with atanh from Equation (5.2.3). When looking at the
probability space from this function, see Figure 5.3.1, the atanh function can lead
to sub-optimal performance when used to determine rounding probabilities. The
problem is that gradients tend to infinity when the function approaches the limits of
0 and 1. This is not ideal, as these limits are usually achieved when the discretization
gap is minimal. In addition, the gradients may become larger towards the end of
optimization. Further analyzing the probability space, we find that there are a lot of
possibilities in choosing probabilities for rounding to two classes. However, there
are some constraints: the probabilities need to be monotonic functions, and the
probabilities for rounding down (flooring) and up (ceiling) need to sum up to one.
Therefore, we introduce SGA+ and propose three methods that satisfy the above
constraints and can be used to overcome the sub-optimality that the atanh function
suffers from.

We will denote the probability that v is rounded down by:

p(y = ⌊v⌋), (5.3.1)

where y represents the random variable whose outcome can be either rounded down
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or up. The probability that v is rounded up is conversely: p(y = ⌈v⌉) = 1−p(y = ⌊v⌋).

L I N E A R P R O B A B I L I T I E S To prevent gradient saturation or vanishing gradients
completely, the most natural case would be to model a probability that linearly
increases or decreases and has a gradient of one everywhere. Therefore, we define
the linear:

p(y = ⌊v⌋) = 1− (v −⌊v⌋). (5.3.2)

It is easy to see that p(y = ⌈v⌉) = v −⌊v⌋. In Figure 5.3.1, the linear probability is
shown.

C O S I N E P R O B A B I L I T I E S As can be seen in Figure 5.3.1, the atanh tends to have
gradients that go to infinity for v close to the corners. Subsequently, a method that
has low gradients in that area is by modeling the cosine probability as follows:

p(y = ⌊v⌋) = cos2
(

(v −⌊v⌋)π

2

)
. (5.3.3)

This method aids the compression performance compared to the atanh since there
is less probability of overshooting the rounding value.

S I G M O I D S C A L E D L O G I T There are a lot of possibilities in choosing probabil-
ities for two-class rounding. We introduced two probabilities that overcome sub-
optimality issues from atanh: the linear probability from Equation (5.3.2), which has
equal gradients everywhere, and the cosine from Equation (5.3.3) that has little gradi-
ents at the corners. Besides these two functions, the optimal probability might follow
a different function from the ones already mentioned. Therefore, we introduce the
sigmoid scaled logit (SSL), which can interpolate between different probabilities
with its hyperparameter a and is defined as follows:

p(y = ⌊v⌋) =σ(−aσ−1(v −⌊v⌋)), (5.3.4)

where a is the factor determining the shape of the function. SSL resembles exactly
the linear for a = 1. For a = 1.6 and a = 0.65 SSL roughly resembles the cosine and
atanh. For a →∞ the function tends to shape to (reversed) rounding.

5.3.2 Three-class rounding

As described in the previous section, the values for v can either be floored or ceiled.
However, there are cases where it may help to round to an integer further away.
Therefore, we introduce three-class rounding and show three extensions that build
on top of the linear probability Equation (5.3.2), cosine probability Equation (5.3.3),
and SSL from Equation (5.3.4).

The probability that v is rounded is denoted by: p(y = ⌊v⌉) ∝ f3c (w |r,n), where
w = v −⌊v⌉ is centered around zero. Further, we define the probability that v is
rounded +1 and rounded −1 is respectively given by: p(y = ⌊v⌉−1) ∝ f3c (w −1|r,n)
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Figure 5.3.2: Three-class rounding is used for the extended version of the linear. Solid lines

denote the two-class rounding with r = 1 and n = 1. Dashed lines denote three-class rounding

with r = 0.9 and n = 1, and the dotted lines indicate the smoothness for r = 1 and n = 3.

and p(y = ⌊v⌉+1) ∝ f3c (w+1|r,n). The general notation for the three-class functions
is given by:

f3c (w |r,n) = f (clip(w · r ))n , (5.3.5)

where clip(·) clips the value at 0 and 1, r is the factor determining the height and
steepness of the function, and power n controls the peakedness of the function.

E X T E N D E D L I N E A R Recall that the linear probability can now be extended to
three-class rounding as follows:

fl i near (w) = |w |. (5.3.6)

A special case is f3c,l i near (w |r = 1,n = 1), where the function is equivalent to the
linear of the two-class rounding from Equation (5.3.2). For r < 1, this function
rounds to three classes, and for n ̸= 1, this function is not linear anymore.

In Figure 5.3.2, the three-class rounding for the extension of Equation (5.3.2) can be
found. As can be seen, the solid lines denote the special case of two-class rounding
with r = 1 and n = 1, the dashed lines denote three-class rounding with r = 0.9 and
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n = 1 and the dotted lines denote the two-class rounding with r = 1 and n = 3, which
shows a less peaked function. We can now compare an example of two- versus three-
class rounding. Consider the case where we have variable v =−0.95. For two-class
rounding there is only the chance of rounding to −1 with p(y = ⌊v⌉) (red solid line), a
chance to round to 0 with p(y = ⌊v⌉+1) (green solid line) and zero chance to round
to −2 with p(y = ⌊v⌉− 1) (yellow solid line). Now for three-class rounding, with
r = 0.9 and n = 1, when v =−0.95, we find that there is a high chance to round to −1
with p(y = ⌊v⌉) (red dashed line) and a small chance to round to 0 with p(y = ⌊v⌉+1)
(green dashed line) and a tiny chance to round to −2 with p(y = ⌊v⌉−1) (yellow
dashed line).

E X T E N D E D C O S I N E Similarly, we can transform the cosine probability from
Equation (5.3.3) to three-class rounding:

fcosi ne (w) = cos

( |w |π
2

)
. (5.3.7)

When f3c,cosi ne (w |r = 1,n = 2), this function exactly resembles the cosine for two-
class rounding, and for r < 1 this function rounds to three classes.

E X T E N D E D S S L Additionally, SSL from Equation (5.3.4) can be transformed to
three-class rounding as follows:

fSSL(w) =σ(−aσ−1 (|w |)) , (5.3.8)

where a is the factor determining the shape of the function. When f3c,SSL(w |r =
1,n = 1), this function exactly resembles the two-class rounding case, and for r < 1,
the function rounds to three classes. Recall that this function is capable of exactly
resembling the linear function and approximates the cosine from two-class rounding
for a = 1 and a = 1.6, respectively.

5.4 E X P E R I M E N T S

In this section, we evaluate our best-performing method and compare it to the
baselines with the true R-D loss performance (L̂), the difference between the method
loss and true loss (L− L̂), and corresponding PSNR and BPP plots that respectively
express the image quality and cost over t training steps. Next, an in-depth analysis
of the stability of each proposed method is shown, followed by an experiment
that expresses changes in the true R-D loss performance when one interpolates
between functions. Additionally, we evaluate the three-class rounding for each of
the proposed methods. Finally, we show how our best-performing method performs
on the Tecnick dataset and how the method can be deployed to partly move along
the rate-distortion curve.

Following [144], we run all experiments with temperature schedule:

τ(t ) = min(exp{−ct },τmax ), (5.4.1)
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where c is the temperature rate determining how fast temperature τ is decreasing
over time, t is the number of train steps for the refinement of the latents and τmax ∈
(0,1) determines how soft the latents start the refining procedure. Additionally, we
refine the latents for t = 2000 train iterations, unless specified otherwise. For more
hyperparameter settings, see Section 5.4.6. Further, the experimental results are
obtained from a pre-trained model trained with λ= 0.01.

5.4.1 Implementation details

The pre-trained mean-scale hyperpriors are trained from scratch on the full-size
CLIC 2020 Mobile dataset [127], mixed with the ImageNet 2012 dataset [114] with
randomly cropped image patches taken of size 256×256. For ImageNet, only images
with a size larger than 256 for height and width are used to prevent bilinear up-
sampling that negatively affects the model performance. We use the architecture
of [95], except for the autoregressive part as a context model. Instead, we use the
regular convolutional architecture of [9]. The model package for the mean-scale
hyperprior is from CompressAI [10]. During training, each model is evaluated on the
Kodak dataset [71]. We ran all models and methods on a single NVIDIA A100 GPU.

The models are trained with λ = {0.001,0.0025,0.005, 0.01,0.02,0.04,0.08}, with a
batch size of 32 and Adam optimizer with a learning rate set to 1e−4. The models are
trained for 2M steps, except for model λ= 0.001, which is trained for 1M steps, and
model λ= 0.08, which is trained for 3M steps. Further, the models for λ= {0.04,0.08}
are trained with 256 hidden channels, and the model for λ= 0.001 is trained with
128 hidden channels. The remaining models are trained with hidden channels set to
192.

5.4.2 Baseline methods

We compare our methods against the methods that already exist in the literature.
The Straight-Through Estimator (STE) is a method to round up or down to the
nearest integer with a rounding bound set to a half. This rounding is noted as ⌊·⌉.
The derivative of STE for the backward pass is equal to 1 [13, 131, 146]. The Uniform
Noise quantization method adds uniform noise from u ∼U (− 1

2 , 1
2 ) to latent variable

y . Thus: ŷ = y +u. In this manner ŷ becomes differentiable [8]. As discussed in
Section 5.2.2, we compare against SGA, which is a soft-to-hard quantization method
that quantizes a continuous variable v into a discrete representation for which
gradients can be computed.

5.4.3 Experimental results

O V E R A L L P E R F O R M A N C E Figure 5.4.1 shows the overall performance for the
refinement of the latents on the Kodak dataset with method: STE, uniform noise,
atanh and SSL. The true R-D loss in Figure 5.4.1a shows that STE has trouble conver-
ging and uniform noise quickly converges compared to atanh and SSL. We find that
SSL outperforms all other methods, including atanh, in terms of the lowest true R-D
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(a) True R-D loss (b) Difference loss

(c) PSNR (d) BPP

Figure 5.4.1: Performance plots of (a) True R-D Loss (b) Difference in loss (c) PSNR (d) BPP.
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loss. Looking at the difference between the method loss and true loss Figure 5.4.1b,
we find that SSL quickly and smoothly finds a balance between the method and
true loss, while atanh has a big difference in the beginning and more peaks before
eventually converging. Additionally, uniform noise shows a big difference between
the method loss and true loss, indicating that adding uniform noise overestimates
its method loss compared to the true loss. For R-D curves, we refer to Appendix C.2.

Table 5.4.1: True R-D loss for different τmax settings of: atanh(v), linear, cosine and SSL with

a = 4
3 . The lowest R-D loss per column is marked with: ↓. Note that the function containing

atanh is unnormalized.

Function \τmax 0.2 0.4 0.6 0.8 1.0

expatanh(v) 0.7445 ↓ 0.7408 0.7412 0.7416 0.7418

1− v (linear) 0.7458 0.7406 ↓ 0.7390 ↓ 0.7386 0.7386

cos2( vπ
2 ) 0.7496 0.7414 0.7393 0.7387 0.7384

σ(−aσ−1(v)) 0.7578 0.7409 0.7391 0.7383 ↓ 0.7380 ↓
expatanh(v) 0 0.0002 0.0022 0.0033 0.0038

1− v (linear) 0.0013 0 0 0.0003 0.0006

T E M P E R AT U R E S E N S I T I V I T Y Now that we have assessed the overall perform-
ance, we analyze the stability of each method. Table 5.4.1 represents the stability of
atanh and the SGA+ methods, expressed in true R-D loss, for different τmax settings
for the temperature schedule. As can be seen, the optimal setting is with τmax = 1
for each of the SGA+ methods. atanh obtains equal loss for τmax ∈ [0.4,0.5]. In
general, we find that the linear method of SGA+ is least sensitive to changes in τmax

and has equal loss between τmax ∈ [0.7,1]. To further examine the stability of the
linear function compared to atanh, we subtract the best τmax , column-wise, from
the linear and atanh of that column. We now see that the linear function is not only
least sensitive to changes in τmax , but overall varies little compared to the best τmax

settings of the other methods. While the SSL has the largest drop in performance
when reducing τmax , it achieves the highest performance overall for higher values
of τmax .

I N T E R P O L AT I O N Table 5.4.2 represents the interpolation between different func-
tions, expressed in true R-D loss. Values for a < 1 indicate methods that tend to
have (extremely) large gradients for v close to the corners, while high values of a
represent a method that tends to a (reversed) step function. We find that SLL with
small a = {0.01,0.3} diverges and results in large loss values compared to the rest.
Additionally, the loss curves show unstable behavior for these functions, which can
be found in Appendix C.1. For a ∈ {0.8, . . . ,2.25}, the loss shows stable behavior in
terms of its curves and final loss at t = 2000. Furthermore, for a = 1.65 (approxim-
ately atanh), the method shows non-optimal behavior due to a slightly unstable
loss curve, see Appendix C.1, this may be due to setting τmax = 1 instead of optimal
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Table 5.4.2: True R-D loss results for the interpolation between different functions by changing

a of the SSL.

a R-D Loss

0.01 1.1500

0.3 0.7528

0.65 (approx atanh) 0.7410

0.8 0.7396

1 (linear) 0.7386

1.33 0.7380 ↓
1.6 (approx cosine) 0.7382

2.25 0.7388

5 0.7415

setting τmax = [0.4,0.5]. Note that the difference in loss 0.7410 for SSL a = 0.65 and
0.7418 for atanh with τmax = 1 (see Table 5.4.1). This difference may be because SSL
is an approximation to the atanh function and not exactly equal.

T H R E E - C L A S S R O U N D I N G In Table 5.4.3, the true R-D loss for two versus three-
class rounding can be found at iteration t = 500 and in brackets t = 2000 iterations.
For each method, we performed a grid search over the hyperparameters r and n.
Additionally, for the extended SSL, we also performed a grid search over a and found
the best setting to be a = 1.4. As can be seen in the table, the extended version of the
linear of SGA+ has the most impact in terms of the difference between the two versus
three-class rounding at iteration t = 500 with loss difference 0.0035 and t = 2000
with 0.0006 difference. There is a small difference at t = 500 for the extended cosine
version. In general, we find that running models longer results in convergence to
similar values. SSL converges to equal values for two- and three-class rounding.
This makes three-class rounding attractive under a constraint optimization budget,
possibly because it is easier to jump between classes.

Table 5.4.3: True R-D loss of two versus three-class rounding for SGA+ with the extended

version of the linear, cosine, and SSL method at iteration 500 and in brackets after 2000

iterations.

Function \Rounding Two Three

f3c,linear(w |r = 0.98,n = 1.5) 0.7552 (0.7386) 0.7517(0.7380)

f3c,cosine(w |r = 0.98,n = 2) 0.7512 (0.7384) 0.7513 (0.7379)

f3c,sigmoidlogit(w |r = 0.93,n = 1.5) 0.7524 (0.7380) 0.7504 (0.7380)
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Figure 5.4.2: Rate-distortion performance on the Tecnick dataset at iteration 500 for the base

model, atanh and SSL.

5.4.4 Tecnick

To test how our method performs on another dataset, we use the Tecnick dataset
[6]. We run baselines atanh and the base model and compare against SSL with a = 4

3 .
Figure 5.4.2 shows the corresponding R-D curves, using image quality metric PSNR
versus BPP, after t = 500 iterations. We find that both refining methods greatly im-
prove the compression performance in terms of the R-D trade-off. Additionally, our
proposed method outperforms the baselines and shows how it boosts performance,
especially for the smallest and highest λ ∈ {0.001,0.08}. The R-D plot after t = 2000
iterations can be found in Appendix C.2.

5.4.5 Semi-multi-rate behavior

An interesting observation is that one does not need to use the same λ during refine-
ment of the latents, as used during training. As a consequence of this approach, we
can optimize to a neighborhood of the R-D curve without the need to train a new
model from scratch. For instance, we only need three out of seven models to have
better performance over the entire curve compared to the base model. We experi-
mented with different values for λ. For every pre-trained model, we ran our best SSL
approach using λ ∈ {0.0001,0.0005,0.001,0.0025,0.005,0.01,0.02,0.04,0.08,0.16,
0.32} to obtain a semi-multi-rate curve. In Figure 5.4.3, we have plotted the R-D
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Figure 5.4.3: RD-plot with semi-multi-rate behavior.

curve of the base model (i.e. the lime green line) and its corresponding R-D curves,
obtained when refining the latents with the proposed λ’s. We pruned away points
that fell too far below the base curve and refer to Appendix C.3 for the unpruned
version.

Q U A L I T AT I V E R E S U LT S In Figure 5.4.4, we demonstrate the effects of using the
semi-multi-rate strategy. We compare the original image, the compressed image
using the base model for λ = 0.001, and the compressed image using SSL with a
base λ= 0.0025 and a target λ= 0.0005. We have chosen the latter two to compare
as their BPP values are similar, while the base models are different. For the image
compressed by SSL, we observe that there are less artifacts visible. For instance,
looking at the fence, we see more texture compared to the base model. Additionally,
looking at the sky we find less artifacts compared to the base model.

5.4.6 Hyperparameter settings

Similar to [144], we find an optimal learning rate of 0.005 for atanh and find the best
performance for STE with a lower learning rate of 0.0001, yet STE still has trouble
converging. Additionally, we find the best performance for atanh with τmax ∈ [0.4,
0.5]. For SGA+, we use optimal convergence settings, which are a fixed learning rate
of 0.005, a temperature rate of c = 0.001, and τmax = 1. Furthermore, experimentally,
we find approximately equal and best performance for SLL with a ∈ [1.3,1.4]. For
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SSL we choose a = 4
3 , see corresponding probability in Figure 5.3.1.

5.5 S O C I E TA L I M PA C T

The development and improvement of neural compression techniques play an im-
portant role in our increasingly data-driven society. Being able to learn compression
codecs as opposed to developing them saves time and effort. There is a rich array of
signal-based data types available that benefit from compression. A smaller data foot-
print reduces the requirements for storage, networking, and computing resources.
It thus also means smaller investments in terms of raw resources, manufacturing,
energy, and labor.

Neural image compression methods still require a large amount of computation
to be trained. This process has tremendous adverse effects on the environment,
as established earlier. Our work aims to make these models more flexible through
the proposal of methods that improve on these already trained models. Improved
flexibility can result in improved reusability, which may reduce the environmental
impact of neural image codecs.

5.6 C O N C L U S I O N

Training neural image compression models is a time-consuming and difficult task.
In practice, finding optimal encoding comes with difficulties and can lead to sub-
optimal performance of these networks. Refining latents of a pre-trained network
has been shown to improve the compression performance by adding uniform noise
or using a stochastic method called SGA [22, 144].

We extend this idea and propose SGA+. We show how SGA+ has nicer properties,
which aids the compression performance. We introduced SSL that can approxim-
ately interpolate between all of the proposed methods. Further, we show how our
best-performing method, SSL, outperforms the baselines and that it is more stable
under varying conditions. We give a general notation and demonstrate how the
extension to three-class rounding improves the convergence of the SGA+ methods
but comes with the cost of fine-tuning extra hyperparameters. Finally, we show how
our proposed method performs when refining latents on the Tecnick dataset and
how we can use refining of the latents to obtain semi-multi-rate behavior.

In general, it applies for each method that as the temperature rate has reached a
stable setting, the longer one trains, the closer together the performance will be.
However, when under a constrained optimization budget, running SGA+ shorter
already gives good results. The best results are obtained while tuning the hyperpara-
meter of SSL. Further, our experiments show that the linear version for SGA+ is least
sensitive to hyperparameter changes.
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(a) True R-D loss (b) Difference loss

(c) PSNR (d) BPP

Figure C.1: Interpolation performance plots of different a settings for SLL (a) True R-D Loss,

(b) Difference in loss (c) PSNR, and (d) BPP.

C A P P E N D I X F O R I M A G E C O M P R E S S I O N

In this appendix, additional experimental results can be found.

C.1 Interpolation

Table 5.4.2 presents the true R-D loss results for the interpolation with different a
settings for SSL. In Figure C.1, the corresponding overall performance of the methods
can be found. As can be seen in Figure C.1a, for a = {0.01,0.30}, the functions
diverge, resulting in large loss values. For a = 0.65, we find that the loss curve is
slightly unstable at the beginning of training, which can be seen in the bending of
the curve, indicating non-optimal settings. This may be due to the fact that we run
all methods with the same τmax = 1 for a fair comparison. Additionally, note that
SSL with a = 0.65 obtains a true R-D loss of 0.7410 compared to 0.7418 for atanh
with the same settings. This is due to the fact that SSL, especially in the tails of the
probability, is slightly more straight-curved compared to the atanh when looking at
its probability space.

Remarkably, for a ≥ 1, the difference in losses starts close to zero (see Figure C.1b).
SSL with a = 5 results in the fastest convergence and quickly finds a stable point but
ends at a higher loss than most methods.
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C.2 Rate-distortion performance

We evaluate our best performing method SSL with a = 4
3 on the Kodak and Tecnick

datasets, by computing the R-D performance, average over each of the datasets. The
R-D curves use image quality metric PSNR versus BPP on the Kodak and Tecnick
dataset. Recall that as a base model, we use the pre-trained mean-scale hyperprior,
trained with λ= {0.001,0.0025,0.005, 0.01,0.02,0.04,0.08}.

K O D A K Figure C.2 shows the R-D curve for refining the latents, evaluated on
Kodak. We compare SLL against baselines: STE, uniform noise, atanh and the base
model at iteration t = 500 (see Figure C.2a) and after full convergence at t = 2000
(see Figure C.2b). As can be seen in Figure C.2a, STE performs slightly better than
the base model, while after t = 2000 iterations the method performs worse, this
also reflected in the corresponding true loss curve for λ= 0.01 (see Figure 5.4.1a),
which diverges. Remarkably, for the smallest λ= 0.001, STE performs better than
at t = 500. Adding uniform noise results in better performance when running the
method longer. Further, SSL outperforms atanh slightly, while the difference is more
pronounced when running for t = 500 iterations.

T E C N I C K Figure C.3 shows the R-D curve when refining latents on the Tecnick
dataset, after t = 2000 iterations. As can be seen in the plot, we find that the longer
the methods run, the closer the performances lie to each other. When there is a
limited budget available, one can run the refinement process for t = 500 iterations.

C.3 Semi multi-rate behavior

Figure C.4 shows the different R-D curves when refining the latents using different
values for λ. For each model trained using λ ∈ {0.001,0.0025,0.005,0.01,0.02,0.04,
0.08}, we run SSL with a = 4

3 for t = 2000 iterations for all λ ∈ {0.0001,0.0005,0.001,
0.0025,0.005,0.01,0.02,0.04,0.08,0.16,0.32}. We depicted the base curve alongside
the curves for each base model. We observe that using SGA+ in this manner gives
samples diverse enough such that there is always a point on the resulting curve that
is better than the base curve. As a result, latent fine-tuning allows for semi-multi-rate
behavior. We also observed that when the values for λ used between training and
SGA+ differ too much, the resulting BPP versus PSNR point becomes worse than the
base model.
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Figure C.3: R-D performance on Tecnick after t = 2000 iterations, which compares SSL with

the baselines: base model and atanh. Best viewed electronically.
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Figure C.4: R-D performance with semi-multi-rate behavior. For each base model, we ran

SGA+ with λ ∈ {0.0001,0.0005, . . . ,0.16,0.32} and depicted the resulting BPP/PSNR point.
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6

REGION-OF-INTEREST BASED NEURAL VIDEO

COMPRESSION

Abstract
Recently, several neural codecs have been introduced for video com-
pression, yet they operate uniformly over all spatial locations, lacking
the capability of ROI-based processing. We introduce two models for
ROI-based neural video coding. First, we propose an implicit model
that is fed with a binary ROI mask and it is trained by de-emphasizing
the distortion of the background. Secondly, we design an explicit latent
scaling method, that allows control over the quantization binwidth for
different spatial regions of latent variables, conditioned on the ROI
mask. By extensive experiments, we show that our methods outper-
form all baselines in terms of Rate-Distortion performance in the ROI.
Moreover, they can generalize to different datasets and ROI specifica-
tions at inference time. Finally, they do not require expensive pixel-level
annotations during training, as synthetic ROI masks can be used with
little to no degradation in performance. To the best of our knowledge,
our proposals are the first solutions that integrate ROI-based capabilit-
ies into neural video compression models.

Based on [2]:
Yura Perugachi-Diaz, Guillaume Sautière, Davide Abati, Yang Yang, Amirhossein
Habibian, Taco Cohen
Region-of-interest based neural video compression
33rd British Machine Vision Conference BMVC, London, UK, November 21-24. 2022, pages 1–21.
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6.1 I N T R O D U C T I O N

Deep learning for neural image compression has proven to be successful in practice
and outperforms traditional methods [9, 82, 95]. Besides being successful for image
compression, deep learning for neural video compression is rapidly gaining ground
[2, 51, 111]. Furthermore, in neural image compression, there are several models
that not only learn how to encode an entire image but also learn how to encode
Regions-Of-Interest (ROIs) [21, 85, 141] with better compression ratios than non-
ROIs. ROI-based coding is useful for the user to compress only user-interesting
parts with high quality and non-ROIs with lower quality. Although neural video
compression models have been successfully applied to compress entire video frames,
there are no solutions that integrate ROI-based compression.

The most common approach in neural lossy video compression is to rely on vari-
ational autoencoders to minimize the expected rate-distortion (R-D) objective,
D +βR [2, 51, 89, 95, 111]. Although this approach has proven to be successful,
a model trained to minimize the expected rate-distortion tradeoff uniformly over all
pixels may allocate too few bits to salient regions of a specific video. This clashes with
the model of the human visual system, which is space-variant and has the highest
spatial resolution at the foveation point [62, 135]. Exploiting this phenomenon, e.g.
by encoding ROIs with higher fidelity, can significantly contribute to the subjective
quality under a low bitrate regime. The key idea of traditional ROI-based codecs [21,
27, 54, 85, 87, 117, 141] is to allocate different bitrate budgets for objects or regions
of interest, and therefore to allow for non-uniform reconstruction qualities. For
instance, traditional codecs like JPEG2000 [120] and MPEG-4 [133] were used as
basis to build object-based coding methods [27, 54]. However, these ideas lacked
widespread adoption due to their complexity and block-based nature, which limited
their capability to deal with arbitrary ROI shapes.

More recently, some works have developed ROI-based neural image codecs, either
by implicitly identifying the ROI as part of the encoding process [21, 85], or by
relying on external algorithms for its extraction [141]. Under both approaches,
the R-D objective can be spatially weighted, and additionally, the latent variables
can be masked before the quantization step to reduce their entropy [21, 51, 141].
Nevertheless, existing neural ROI-based codecs have the following limitations: (i)
they only work for images, (ii) they use intricate masking schemes to spatially control
the rate, without exploiting the Gaussian structure of the latent prior distribution
and (iii) the encoding operations are tightly coupled with ROI prediction, which
makes it hard for the codecs to be adapted to different ROI requirements.

In this chapter, we present the first two neural codecs capable of ROI-based com-
pression. The first implicit model is fed with the ROI mask and is trained with an
ROI-aware loss, where the distortion of the background is de-emphasized. Secondly,
the latent-scaling model extends the implicit model by exploiting a recent technique
originally developed for variable rate coding [25, 26, 33, 92]. We extend its design by
introducing an auxiliary autoencoder (AE) being fed with the ROI map, and regress-
ing a gain tensor explicitly controlling the quantization binwidth for different spatial
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Figure 6.1.1: R-D improvements on the DAVIS dataset [105]. The solid line denotes ROI-PSNR,

while dashed non-ROI PSNR. The improvement in ROI-PSNR is equivalent of 69.3% saving in

bitrate measured by BD-rate gain [16].

regions. This can be seen as the continuous equivalent of the masking scheme used
in conjunction with scalar quantization [21, 85, 94]. We describe our solution in the
context of a Scale Space Flow (SSF) [2] architecture; however, we argue that they are
in principle compatible with most state-of-the-art models based on hyperpriors [89,
106, 111]

We show that our methods outperform all our baselines on the DAVIS dataset [105]
in terms of R-D performance, as measured in PSNR in the ROI (Figure 6.1.1).
Moreover, further analyses show that they generalize to any arbitrary ROI that can be
specified by the user at inference time and that expensive pixel-dense annotations
are not required during training, as synthetic ROI can be used with little to no
degradation in performance.

6.2 R E L AT E D W O R K

6.2.1 Non-uniform coding

The literature on spatially variant image encoding mainly focuses on two separate
problems: (i) how to estimate the ROI and (ii) how to exploit it to improve coding.
Most traditional block-based methods [27, 53, 54] fall under the former category
and simply exploit non-uniform coding capabilities of standard codecs such as
JPEG2000 [120] and MPEG-4 [133]. These solutions are limited in their capabilities
due to their block-based approach to compression, which hinders the encoding of
arbitrarily shaped objects and does not allow for pixel-level bit allocation optimiza-
tion [87, 117].
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In contrast, recent work in neural image coding tackles both the above mention
problems and target pixel-level ROI [3, 4, 21, 37, 38, 85, 141]. Among these, Li et al.
[85] and Cai et al. [21] learn the ROI implicitly by spatially masking out the latents
before scalar quantization, whereas Xia et al. [141] use the down-scaled output of
the DeepLab [23] segmentation network to mask out foreground from background,
before sending each stream to a separate hyper-codec for quantization. Similar to
these works, our work focuses on how to use a given ROI to enable non-uniform
coding, whilst delegating its extraction to some external automatic model such
as [23, 76, 78, 136–138, 149]. However, our approach extends neural ROI-coding to
the case of video inputs.

6.2.2 Neural video compression

Compressing videos with neural networks has been an active field of research re-
cently [2, 44, 51, 59, 89, 91, 106, 111, 112, 140]. While varying in their choice of
architecture and quantization strategy, neural video codecs generally follow the
DVC [91] framework where an I-frame codec compresses the first frame and a P-
frame codec uses motion estimation and a residual network to model the subsequent
ones. Recently, Agustsson et al. [2] proposed to use a Scale-Space Flow which ad-
dresses uncertainties in motion estimation via interpolation through a Gaussian
pyramid. This allows blurring of the warped frames in regions where optical flow
prediction is uncertain or ill-posed, like chaotic motions and obstructed objects. Our
work is established in the same SSF framework, and enables ROI-based coding by
means of latent scaling [25, 26, 33, 92], a technique originally introduced for variable
bitrate coding. Differently from these works, that scale the latents globally with a
single scalar value, we adjust the quantization step size for every spatial location,
thus controlling the levels of distortion and entropy in foreground and background
regions.

In summary, we are the first work to learn ROI coding end-to-end for video in-
puts (as opposed to images) and extend latent scaling spatially to be used in an
ROI-based context. Additionally, other works either learn implicitly the ROI using a
subnetwork [21, 38, 85] or tie themselves to a restricted set of semantic classes [3,
4, 37], which would require re-training if testing on unseen classes. In contrast, we
explicitly take the ROI as input, which provides the user evaluation time flexibility
similar to H.264 and H.265 ROI mode.

6.3 R O I - B A S E D N E U R A L V I D E O C O M P R E S S I O N

In this section, we first present the neural video codec we use as the backbone for
our work, Scale Space Flow (SSF) [2]. Next, we extend SSF to be an ROI-based codec
by proposing two models: the Implicit and Latent-scaling ROI SSF. Lastly, we will
describe the optimization for SSF and the ROI-aware methods.

We define a video frame xi ∈RH×W ×3 at time step i , where H and W represent its
height and width respectively. Then, a video sequence is denoted as x = {x0, x1, . . . ,
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xT }, with T +1 frames. The sequence of binary ROI masks corresponding to the
video sequence is defined as s = {s0, s1, . . . , sT }, where si ∈ {0,1}H×W . The neural video
codec SSF consists of an I-frame codec and a P-frame codec. The I-frame codec is
a mean-scale hyperprior AE [95] which encodes a first frame x0 independently to
produce a reconstruction x̂0. The P-frame codec is comprised of two hyperprior
AEs. The first, the P-frame flow hyperprior AE, estimates a scale-space flow gi from
the previous reconstruction x̂i−1 and current frame xi , which is used to warp the
previous reconstruction into x̄i . The second hyperprior AE, the P-frame residual
hyperprior AE, encodes the residual ri = x̄i − xi . The final reconstruction x̂i is
obtained by adding the warped prediction x̄i and the estimated residual r̂i . The
latent codes of each hyperprior AE are denoted by z0, wi and vi and are rounded
to integer values then entropy coded using the prior parameters estimated by their
respective hyper-decoder. We omit hyper latent codes for ease of exposition, and we
refer to [2] for further details.

6.3.1 Implicit ROI Scale-Space Flow

An immediate extension to SSF to make it ROI-aware is to provide the ROI mask si

as input to each of the three hyperpriors, see Figure 6.3.1a. Note that the ROI mask
is not fed to the decoder, meaning we expect the encoders to implicitly store the
relevant ROI information inside the existing latent codes. Since the decoder does not
require the ROI mask, we do not need to transmit a representation of the mask itself.
Feeding information about the mask along with the video frame, in combination
with the use of an ROI-aware loss, encourages the model to focus on important
aspects for the user. Albeit simple, we show the effectiveness of this approach when
paired with an ROI-aware loss in Section 6.4.

6.3.2 Latent-scaling ROI Scale-Space Flow

Inspired by methods like [21, 85] which introduce a mechanism to explicitly control
the spatial bit allocation, we adapted a recent technique called latent-scaling [26,
33]. Albeit similar in its motivation, it differs from the masking approach of [33] by
exploiting the Gaussian prior structure of mean-scale hyperprior AE. The key idea
is to apply a scaling factor to the latent which changes the quantization step size,
leading to different trade-offs between rate and distortion in ROI and non-ROI areas.
By using ROI-based information to control the scale of latents, the quantization grid
can be explicitly adjusted. Our model can, therefore, learn that foreground regions
require finer quantization than background regions. For ease of exposition, we will
describe in the next paragraphs latent-scaling for the I-frame hyperprior AE, but the
same method is applied to the P-frame residual hyperprior AE. We do not apply it
to the P-frame flow hyperprior AE as initial studies showed the flow code wi only
accounts for a small fraction of the total rate. For similar reasons, we only apply
latent-scaling latents, leaving hyper-latents, which are cheap to encode, unaffected.

We introduce a new hyperprior-like network called gain hyperprior AE (see leftmost
autoencoder in Figure 6.3.1b). This network encodes the ROI mask s0 into a latent
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code zs
0, which is decoded to a gain variable h0, which shares the same dimensions

as the latent variable z0, both spatially and channel-wise (previous latent-scaling [26,
33, 92] work only use channel-wise gain). We scale the latent z0 with the inverse of
the estimated spatial gain variable h0, where we restrict h0 ≥ 1. Such a procedure
is akin to making the quantization range larger, depending on the value of h0. We
further denote the mean µ and scale σ as the prior parameters estimated by the
I-frame hyper-decoder. In the quantization step, we choose to center the scaled
latent z0 ⊘h0 by its prior mean µ⊘h0, where ⊘ is an elementwise division. Next,
we apply the rounding operator ⌊·⌉ on (z0 −µ)⊘h0 such that the estimated mean µ
learned by the hyper-encoder is on the grid, and then add the offset µ⊘h0 back. The
dequantized latent ẑ0(h0) is obtained by multiplying by h0 after the quantization
block. More precisely:

ẑ0(h0) = ⌊(z0 −µ)⊘h0⌉⊙h0 +µ, (6.3.1)

where ⊙ denotes elementwise multiplication. After the dequantized latent ẑ0(h0)
is obtained, it is passed to the decoder to obtain the reconstructed frame x̂0. The
whole procedure is illustrated in Figure 6.3.2a. For rate computation and entropy
coding, we use the modified probability P of ẑ0(h0) as follows:

P (ẑ0(h0)) =
∫ ẑ0(h0)+h0/2

ẑ0(h0)−h0/2
N (x −µ|0,σ)d x (6.3.2)

=
∫ ẑ0(h0)/h0+1/2

ẑ0(h0)/h0−1/2
N

(
x − µ

h0

∣∣∣0,
σ

h0

)
d x. (6.3.3)

As shown in Figure 6.3.2b and in Equation (6.3.2), latent-scaling can be interpreted as
effectively changing the quantization grid / binwidth. In practice, for entropy coding
we do not change the quantization grid and round to the integer grid and scale the
prior appropriately, as in Figure 6.3.2a and b (middle plot) and Equation (6.3.3). As
stated above, the same procedure is applied to the P-frame residual latent code vt ,
as shown in Figure 6.3.1b.

6.3.3 ROI-aware Rate-Distortion Loss

We modify the regular R-D loss from SSF to take into account the ROI mask. We sum
the rate and distortion for all T frames in the video sequence x with corresponding
ROI masks s:

L=βLR +
T∑

i=0
LD,i , (6.3.4)

where β is the rate-distortion trade-off variable. LD represents the distortion loss
which is a modified mean squared error (MSE) involving the binary ROI mask:

LD,i = 1

HW C

H∑
j=1

W∑
k=1

C∑
l=1

(
si ⊙ϵi + 1

γ
· (1− si )⊙ϵi

)
j kl

, (6.3.5)

where H ,W and C denote the image dimensions, γ is a penalty hyperparameter
for the non-ROI, ϵi = (xi − x̂i )2 is the squared error and si is broadcasted over the
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channel dimension. Note that the distortion loss of the original SSF corresponds
to the special case where si equals one everywhere. Further, the rate loss LR is
computed with the estimated cross-entropy H(·) by the hyperprior of each latent
variable present in the model. For the implicit ROI SSF the rate loss LI ,R is equal to:

LI ,R =H(z0)+
T∑

i=1
[H(vi )+H(wi )] . (6.3.6)

The rate loss LLS,R of the latent-scaling ROI SSF also includes latent variables zs
0 for

the latent scaling of the I-frame hyperprior AE and v s
i for the latent scaling of the

P-frame residual hyperprior AE. As such, it is given by:

LLS,R =H(zs
0)+H(z0)

+
T∑

i=1

[
H(v s

i )+H(vi )+H(wi )
]

.
(6.3.7)

In practice, we found that the two extra rate contributions from the ROI masks H(zs
0)

and H(v s
i ) are only a small fraction compared to the standard rate components

H(z0) and H(vi ) of the model. Please note that in both Equations 6.3.6 and 6.3.7 we
omit the rate of the hyper latent codes to avoid notational clutter.

6.4 E X P E R I M E N T S

6.4.1 Datasets

As standard video compression benchmarks [17, 130, 142] do not come with ROI
annotations, we hereby introduce a benchmark for ROI-based codecs, by utilizing
publicly available video segmentation datasets and deriving ROI maps from their
pixel-level ground truth labels. More specifically, we rely on DAVIS [105] and City-
scapes [31] for training and evaluation of our models. DAVIS is composed of 90
diverse and short video sequences, for which ground truth segmentation of salient
objects is provided. To create binary ROI masks, we consider all labeled objects
as foreground, whereas the rest of the frame is labeled as background. We use 60
sequences for training and 30 for validation, comprising 4,209 and 1,999 frames
respectively. Cityscapes is composed of 2,120 video sequences from dashcam of
vehicles driving around German cities. 1,885 sequences are used for training and
235 for validation, or 89,248 and 15,000 frames respectively. As ground truth seg-
mentation labels are provided only at 1 fps, we extract semantic labels automatically
for every frame by running the state-of-the-art segmentation model in [124]. The
dataset provides a categorization of every pixel into one of 19 classes. We select
pixels of "vehicle", "road", "pedestrian", "bicycle", "motorcycle" as belonging to the
ROI, and mark other classes as non-ROI. To reduce compression artifacts, we resize
the frames from both datasets to 720p using Pillow [29].

As an alternative to ground-truth ROI masks, in some experiments (see Section 6.4.6)
we rely on synthetic ROI masks generated using Perlin noise [104] (only during
training). The masks contain blobs that evolve continuously over time to cover each
of the video frames.
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Figure 6.4.1: All ROI-based neural video compression approaches vs SSF. The solid line

denotes ROI PSNR, while dashed non-ROI PSNR.

6.4.2 Implementation details

We optimize all methods but SSF with the ROI-aware MSE as distortion metric
(Equation (6.3.5)), and use γ= 30 as penalty for the non-ROI areas. Following the
training scheme from [2, 106], all models are warm-started from an SSF pre-trained
on the Vimeo-90k dataset [143] for 1M steps, then fine-tuned on the dataset of
interest for 300K steps. We trained all models at various rate-distortion tradeoffs
with β = 2α × 10−4 : α ∈ 0,1, ...,7. We use Adam optimizer with a learning rate of
10−4 with batch size 8. Each example in the batch is comprised of 3 frames (I-P-P),
randomly cropped to 256×384. The models take about three days to train on a single
NVIDIA V100 GPU. We report video quality in terms of PSNR in ROI and non-ROI,
where both are first calculated per frame in the RGB color space, then averaged over
all the frames of each video and finally averaged over all the videos of a dataset. The
results we report are based on a Group-of-Picture of size of 12 for consistency with
other neural compression works [2, 89, 91, 106]. See Appendix D.4 for architecture
details, along with information about the computational complexity of the models.

6.4.3 Compared methods

We compare our method to the plain SSF and two further ROI-based baselines. The
first, dubbed ROI-aware loss, consists of SSF trained with our ROI-aware loss as
described in Equation (6.3.4). While the codec is blind to the ROI, it is expected to
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Figure 6.4.2: Bitrate and PSNR allocation maps for SSF and our proposed ROI-based codec,

latent-scaling ROI SSF. We hereby report frame 5 of DAVIS “goat” sequence.
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implicitly learn it through the training objective, in a similar fashion as the semantic
models in Habibian et al. [51]. The second method, dubbed OBIC SSF, is based
on a recent ROI-based neural image codec [141]. To enable a fair comparison, we
train this architecture using our ROI-aware loss, which is slightly different from the
formulation in [141].

6.4.4 ROI-based coding

In Figure 6.4.1, we report the RD-plots of Implicit ROI SSF and Latent-scaling ROI
SSF. We compare our proposed models to the described ROI-aware loss and OBIC
SSF baselines, as well as to a plain SSF model that does not involve any ROI-based
compression. For all compared models, solid lines and dashed lines correspond
to RD curves in ROI and non-ROI regions respectively. The figure shows several
insights. First, the plain SSF shows better compression results on non-ROI regions,
that are seemingly easier to compress than ROI areas on DAVIS. This result - that
we hypothesize is due to the high degree of motion affecting foreground objects on
the dataset - underlines that such a codec might be suboptimal. The ROI-based
baselines we consider, namely ROI-aware loss and OBIC SSF, succeed in delivering a
better tradeoff for foreground regions. Overall, their performances seem comparable
across the rate spectrum. Interestingly, the separate hyperprior models envisioned
by OBIC SSF for foreground and background barely outperform a simple ROI-aware
loss in our experiments. Finally, the figure clearly shows the superiority of the
proposed implicit and latent-scaling ROI SSF. Indeed, their RD-curves perform on
par with the mentioned baselines on background regions while achieving a superior
tradeoff for ROI regions. In this respect, our latent-scaling based model seems to
slightly outperform the implicit model in ROI areas, especially at higher bpps (> 0.1).

Furthermore, we investigate the behavior of the proposed Latent Scaling ROI SSF
codec in terms of spatial bit allocation and reconstruction quality. Figure 6.4.2
shows, on a reference validation frame from DAVIS, the pixel-wise bpp and PSNR
as compared to the ones achieved by SSF. For SSF, bit allocation and reconstruction
quality are roughly uniformly distributed over the image. Differently, Latent Scaling
ROI SSF model focuses both bpp and PSNR on the region of interest. Moreover, it is
worth noting how, despite the fact latent scaling operates at the reduced resolution
of the latents (resulting in block-wise bpp allocation), the PSNR of the reconstructed
frame properly aligns with the ROI at pixel level. Finally, in Figure 6.4.3, we show a
few qualitative compression results of our model, compared to SSF. More qualitative
results can be found in Appendix D.3.

6.4.5 Generalization

We investigate the generalization capability of our proposed latent-scaling ROI SSF
model to different data and regions of interest. To do so, train a model on DAVIS and
measure its performance on Cityscapes. We expect (at least) two main sources of the
generalization gap. First, the videos in the two datasets depict very different content
(data gap), and differences in the acquisition settings may generate discrepancies in
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low-level image statistics and global motion. For instance, in Cityscapes the motion
is dominated by the ego-motion of the camera, which is car-mounted. Moreover,
the ROI specification described above might impact training (ROI gap). To monitor
both effects, we plot in Figure 6.4.4 the RD curves of our latent scaling model and
plain SSF, trained either on DAVIS or on Cityscapes, and evaluated on Cityscapes.
By considering the gap between the SSF model (blue lines) trained on DAVIS and
the one trained on Cityscapes, we notice how the former performs slightly worse
than the latter, both for ROI and non-ROI areas. This gives a sense of the severity of
the data gap alone, as no ROI was employed during training whatsoever. In order to
assess the effect of the ROI gap, we examine the margin between the two trainings
of Latent Scaling ROI SSF (pink lines). Interestingly, we observe a similar edge as
the one observed for plain SSF. The fact that the performance gap does not increase
significantly suggests that most of the discrepancy is still due to the data gap, and that
our codec is barely susceptible to the nature of ROIs used during training. Finally,
we observe that, when evaluated on Cityscapes ROI areas, the ROI-based model
trained on DAVIS outperforms the SSF model. This observation suggests that, when
interested in ROI-based compression on a target dataset, our codec trained on a
different dataset might still be a better choice than its non ROI-based counterpart,
even when the latter is trained on the target dataset itself.

0.00 0.05 0.10 0.15 0.20
Rate (bits per pixel)

25

30

35

40

PS
NR

 (d
B)

Cityscapes val 720p

SSF (trained on DAVIS)
SSF (trained on cityscapes)
Latent-Scaling ROI SSF (trained on DAVIS)
Latent-Scaling ROI SSF (trained on cityscapes)

Figure 6.4.4: Latent-scaling ROI SSF tested on Cityscapes. The solid line denotes ROI PSNR,

while the dashed non-ROI PSNR.

6.4.6 Synthetic ROI masks

In order to further investigate the sensitivity of our latent scaling based codec to the
nature of ROIs used during training, we carry out an experiment where we train it
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using synthetically generated masks. Specifically, we rely on the DAVIS dataset, and
we generate the ROI for every training clip randomly by taking advantage of Perlin
noise [104]. The resulting masks are temporally smooth, but do not correlate with the
content of the video itself. In Figure 6.4.5, we plot the performance of such a model
(in purple) against a model trained on regular semantic masks obtained by manual
annotation (in pink). We emphasize that both models are tested on the validation
set on regular semantic masks of ROI objects. Thus, we expect the model trained
on realistic ROI masks to trace an upper bound RD-curve for the model trained on
synthetic. Interestingly, results show that a gap exists between the two models, but it
is almost negligible, confirming the intuition that our model is minimally affected
by the nature of training ROIs. The close performance represented in RD-curves
suggests that, although in the case ROI masks are available at training time their use
is worthwhile, their lack does not represent a serious impediment for optimizing
the model, as the use of synthetic masks yields similar performance on realistic use
cases. In Appendix D.2 we repeat the experiment for the Implicit ROI SSF and for a
different value of γ, reaching similar conclusions.

0.05 0.10 0.15 0.20 0.25
Rate (bits per pixel)

25

30

35

40

PS
NR

 (d
B)

DAVIS val 720p

Latent-Scaling ROI SSF (trained with synthetic ROI)
Latent-Scaling ROI SSF (trained with annotations)

Figure 6.4.5: Effect of training with synthetic ROI instead of ground-truth annotation for the

binary ROI mask. The solid line denotes ROI PSNR, while dashed non-ROI PSNR.

6.5 S O C I E TA L I M PA C T

Our main motivation for the Latent Scaling ROI Scale-Space Flow was to allow for
inference-time single model multirate behavior for the largest rate model, without
the need to re-train or to adapt the training scheme like in [33, 111] (similar to what
was demonstrated in [92] for image compression). This would make our ROI codec
more practical to deploy by drastically reducing the number of parameters and
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allowing fine-grain control of the rate. However, it does not allow for a fully multi-
rate model (i.e. a single model covering the whole rate spectrum), and it comes with
an increase in implementation complexity with minor performance benefits over
the simpler implicit ROI approach.

In addition, visual assessments highlighted how, in their current implementation,
both ROI-based models can sometimes produce sharp quality transitions between
ROI and non-ROI regions. The problem would probably be exacerbated if the ROI
masks suffered both in terms of quality and in temporal consistency. Both of these
issues may be overcome by using smooth masks during training and/or inference.

Finally, a user study would benefit the evaluation of the quality of the compressed
videos as quantitative quality metrics were shown to correlate poorly with human
judgment [88]. Such an analysis, based on subjective metrics such as Mean Opinion
Scores (MOS), would further confirm that higher fidelity in the ROI at the cost of
fidelity in the non-ROI can lead to a net boost in perceptual quality.

Concerning societal impact, we do not see immediate harmful applications of our
method that might negatively affect any public. Note that because the ROI codecs
depend on an ROI retrieval algorithm, the methods may suffer from (and potentially
amplify) its biases and shortcomings.

6.6 C O N C L U S I O N

We introduced two methods for ROI-based neural video compression, capable of
allocating more bits to pre-specified regions of interest in order to increase their
fidelity. More specifically, we introduced an implicit model being fed with the ROI,
as well as a latent scaling model explicitly controlling the quantization bitwidth of
the latent variables in a spatial variant fashion. Both models are optimized by an
ROI-aware rate-distortion objective. We showed that our methods outperform all
baselines in terms of Rate-Distortion performance in the regions of interest, and
that they can generalize to different datasets at inference time. Finally, they do not
require expensive pixel-level annotations during training, as synthetic ROI masks
can be used with little to no degradation in performance.
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D A P P E N D I X F O R V I D E O C O M P R E S S I O N

D.1 ROI creation

In Section 6.4 we explained how we created binary ROI mask from ground-truth
annotations. In Figure D.1 we show visual examples of this process for the DAVIS
(top) and Cityscapes (bottom) datasets.

DAVIS annotation DAVIS ROI

Cityscapes annotation Cityscapes ROI

Figure D.1: Example of ROI creation for the DAVIS and Cityscapes datasets.

D.2 Additional results

Quantitative results

During our research we tested two different penalty term γ for non-ROI distortion, as
defined in Equation (6.3.5), namely γ= {10,30}. In Section 6.4, all results are shared
with γ= 30 for ease of exposition. In this section, we provide additional results with
γ= 10. We allow side-by-side comparison for all experiments of Section 6.4 for each
penalty γ. Finally, we provide an additional multirate analysis.

R O I - B A S E D C O D I N G In Figure D.2 we show all ROI-based models trained with
γ= {10,30} on DAVIS and evaluated on DAVIS val, with SSF as reference. As expected
from our loss formulation, a smaller penalty γ results in a smaller performance gap
between ROI and non-ROI across all ROI-based methods. Interestingly, both the
ROI-aware loss and OBIC SSF baselines, which are blind to the ROI mask, seem to
only allow higher PSNR in the ROI than in the non-ROI at low bitrate, namely ≤ 0.15
bpp. For γ= 30, the ROI PSNR is consistently better than non-ROI PSNR across the
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entire rate spectrum. The two methods may perform similarly as they are both blind
to the ROI mask, i.e. the encoding operation does not get the ROI mask as input,
although OBIC SSF foreground and background hypercodecs do get ROI information
as their input is the ROI masked latent. We hypothesize that it may be insufficient
for the hyper-codec network to implicitly learn to scale the prior parameters, and
does not allow the encoder to scale the latent.

G E N E R A L I Z A T I O N In Figure D.3 we show the SSF and latent-scaling ROI SSF
models trained on either DAVIS or Cityscapes and evaluated on Cityscapes val for
both values of γ= {10,30}. As expected from our loss formulation, for γ= 10 latent-
scaling ROI SSF exhibits a smaller gap between ROI PSNR and non-ROI PSNR than
with γ= 30. Yet, irrespective of γ, the same observation can be made: the ROI PSNR
of latent-scaling ROI SSF trained on DAVIS is higher than SSF trained on Cityscapes.
This indicates that when interested in ROI-based compression on a target dataset,
our codec trained on a different dataset might still be a better choice than its non
ROI-based counterpart, even when the latter is trained on the target dataset itself.

S Y N T H E T I C R O I M A S K S In Figure D.4 we show the effect of using synthetic
ROI mask during training instead of ground-truth annotations, for γ= {10,30}. In
addition to the experiment in the main text, we not only show latent-scaling ROI
SSF but also implicit ROI SSF. We find that for each of our proposed models, training
with synthetically generated masks results only in a minor performance drop, albeit
slightly larger for the implicit model. Since the performance of our proposed ROI-
based models seems to be minimally affected by the type of ROI masks used during
training, one could train them without requiring expensive pixel-wise annotations.
This allows training on a target dataset of interest, which may be different from
a dataset with available annotations like DAVIS. Consider, for instance, cartoons
instead of natural videos.

I N F E R E N C E T I M E R O I S E L E C T I O N We then evaluate the capability of our
model to adapt to different ROI specifications when compressed videos are presen-
ted. We remark that this trait is appealing as it would elect our model as general
purpose, as the same trained model could be deployed for ROI-based compression
in disparate use cases. We also notice how this feature is lacking in current works for
neural codecs [3, 51], as they typically commit to specific semantic classes during
optimization and are trained such that their encoder would implicitly recognize and
favor important regions. On the contrary, our model is explicitly fed with a mask
specifying the desired (non-)ROI areas, allowing us to compress the same video
differently, depending on the desired ROI specifications.

We select several sequences from the DAVIS validation set (dogs-jump, pigs and
gold-fish), being labeled with more than one instance. Instead of merging all
instances into a single ROI mask (as we do in all other experiments), we compress
the video multiple times by considering different instances as ROI in different runs.
We consistently monitor PSNR on all instances and observe that it is consistently
higher in the region considered as ROI. We represent these results color-coded in
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Semantic instances Reference

SSF - 0.02 bpp LS-SSF (red) - 0.01 bpp

LS-SSF (green) - 0.02 bpp LS-SSF (yellow) - 0.02 bpp

Figure D.5: ROI-coding of different foreground instances (red, green and yellow) in the 37-th

frame of the “dogs-jump” sequence in the DAVIS validation set. The same pretrained latent-

scaling ROI SSF model can be conditioned to achieve a higher ROI PSNR on different ROIs at

eval time.

the barplots in Figure D.6. In all videos being considered, the instance considered as
ROI benefits a boost of 5dB or more in PSNR. This result clearly shows that our codec
can be used at approximately the same bitrate to improve reconstruction quality in
any ROI of choice. A qualitative representation of such a feature is represented, for
the dogs-jump sequence, in Figure D.5.

M U LT I R A T E C A PA B I L I T I E S We experimented with the "naive" latent-scaling
technique described in Lu et al. [92]. With the use of a gain amplifier ga, it allows
navigating different R-D tradeoffs with a single trained model during evaluation.
The gain variable h output by the gain hyperprior AE is transformed using

h̃ = (h −1) ·ga+1 (D.1)
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before being used to scale the prior parameters and latent code, see Section 6.3 for
details. Note that the higher the ga value, the coarser the quantization grid becomes,
which in return is cheaper to encode.

In Figure D.7 we show the latent-scaling ROI SSF for different rate regularization
coefficients β with gain amplifier ga = 1 in pink. In addition we select three trained
models (β ∈ {0.0001,0.0008,0.0064}) and sweep the gain amplifier ga ∈ {1,2,4,8,16,
32,64}; such curves are represented in red, purple and brown, and marked as “MR”
(multirate) in the plot. The figure shows how, in general, the multi-rate curves can
follow the baseline curve for several values of the gain amplifier before falling below
it. This allows us to cover the target bpp range with 3 trained models instead of the
8 originally achieved by separate trainings. More specifically, for high bpps (β =
0.0001), we observe favorable performance for low values of the gain amplifier, with
a severe drop as g a increases. We, however, appreciate that for higher compression
rates (β ∈ {0.0008,0.0064}), the MR curves closely resemble the one achieved by
separate training. This shows promise for training a single model to support multiple
bitrates by following training schemes as proposed in Cui et al. [33].

D.3 Qualitative results

In this Appendix, we provide additional visual results for several variants of the
proposed ROI-based methods.

D I F F E R E N T B A C K G R O U N D P E N A LT Y In Figure D.8, we report for frames from
the DAVIS validation set the ROI-based encodings achieved by Implicit ROI-SSF
and Latent Scaling ROI-SSF at different values of the background penalty γ (Equa-
tion (6.3.5)). Such a hyperparameter controls to which extent background distortion
can be de-emphasized to achieve (under rate constraints) a better quality in ROI
regions.

T R A I N I N G O N S Y N T H E T I C R O I M A S K S As validated in Figure 6.4.5 and Fig-
ure D.4, our models can be trained even in the absence of pixel-level ROI masks, as
synthetically generated ones can be used instead, with similar validation perform-
ances. In Figure D.9, we report some examples of encodings for comparable models
when trained either on synthetic or ground truth masks. The visual quality of the res-
ulting encoded frames appears comparable, confirming quantitative measurements.

Runtime performance

In table D.1, we benchmarked the runtime of SSF and Latent-Scaling ROI SSF on
HD 720p inputs on an NVIDIA Tesla V100 and Intel CPU E5-1620 v4 @ 3.50GHz.
We show timings in frames-per-second (FPS) for encode and decode operations:
neural-network execution only, and together with entropy coding on CPU including
data transfer, for I-frame and P-frame codec separately.
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Note that the computational complexity of the Implicit ROI SSF is negligibly higher
than that of the original SSF, as it only adds an input channel to each autoencoder.

Table D.1: Comparison of runtime (FPS) for 720p inputs of SSF and LS ROI SSF I/P-frame

codecs on NVIDIA V100.

Encode Decode Encode (no EC) Decode (no EC)

I-frame P-frame I-frame P-frame I-frame P-frame I-frame P-frame

SSF FPS 3.5 1.7 3.8 1.8 378 192 682 340

LS ROI SSF
FPS 2.9 1.5 3.2 1.7 247 156 410 259

FPS drop -17% -12% -16% -6% -35% -19% -40% -24%

D.4 Architecture details

We use the same SSF architecture as described in Pourreza and Cohen [106], Ap-
pendix A.1, except we share the hyperdecoder for mean and scale, and the last
layer outputs twice as many channels. Our gain hyperprior autoencoder follows a
similar architecture, except for the codec decoder which does not upsample and
replaces transpose convolutions with regular convolutions with stride 1, see details
in Figure D.10 for the codec and Figure D.11 for the hyper-codec.

We adopt the quantization strategy in Guo et al. [50]. Calling y the latent, we apply
additive uniform noise (ỹ = y +u with u ∼U (−0.5,0.5)) and rounding with straight-
through gradient estimation (ȳ = ⌊y⌉). During training, we use the noisy ỹ for the
entropy computation in the prior, whereas we feed the decoder with the rounded
latent ȳ . The same strategy holds for the hyper-latents.
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ROI-based Video Coding
Appendix C: architecture of gain hyperprior autoencoder, inspired by B-EPIC appendix A.
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Figure D.10: Gain hyperprior codec details. k, s, and c denote kernel size, stride, and the

number of output channels, respectively.
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S

SUMMARY

Deep learning has become a major field with many applications: from face recogni-
tion to generating images to compressing data. As a result, deep learning is becoming
more and more integrated into our daily lives. In this thesis, we demonstrate how
deep learning can be deployed for several applications in three different domains
namely, improving business processes for the agriculture, high-dimensional density
estimation with generative models, and neural compression of data.

The first domain aims to optimize the business process of a seed breeding company
operating in agriculture. Seed breeding ensures the development of seeds for the
changing climate conditions, which is essential for the growing world population
to guarantee food security and to preserve the biodiversity of the seeds. The main
challenge for seed breeding companies is the utilization of deep learning to stay
competitive with similar businesses, that aim to deliver high-quality seeds to their
customers. In Part I of this thesis we examine a dataset of white cabbage seedling
images. The aim is to predict the (un)successfulness of the seedlings based on only
an image. Since accurate and early predictions can terminate the seedlings stay
in a growth chamber, which provides more space for other seeds to grow. Further,
automating the process aids professionals. We show how a particular convolutional
neural network, AlexNet, outperforms the other machine learning methods and that
the model can accurately determine if a seedling is going to grow (un)successfully.
Moreover, we observe that training AlexNet on earlier days generalizes to predictions
on later days.

The second domain concerns the utilization of generative modeling for high dimen-
sional density estimation. Generative models may aid the development of drug
discovery, anomaly detection, or simulation of complex environmental processes
for climate patterns. The challenges lie in the difficulty and instability of training
these models, the significant requirement of computational resources, and adaption
to different datasets. Another important challenge is how to deal with malicious
generation of fake content with deepfake videos which cause a serious concern for
society. In Part II, we aid to close the gap in estimating the true data distribution
that is modeled with generative models. More concretely, we improve model per-
formance of a generative model, known as the normalizing flow. We based this work
on the belief that DenseNets, most of the time, outperform ResNets on classifica-
tion tasks. Since we are dealing with a special type of normalizing flow, we need to
construct concatenations in such a way that they satisfy specific Lipschitz condi-
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tions. Therefore, we construct a method that relies on an analysis of the Lipschitz
continuity in DenseNets and enforces the invertibility of the network by satisfying
the Lipschitz constant. Further, we propose a learnable weighted concatenation
for the model and an activation function, which we call Concatenated LipSwish,
that enforces the Lipschitz condition. The new architecture is known as i-DenseNet
and outperforms its predecessor Residual Flow and other comparable flow-based
models on generative and hybrid modeling performance.

Finally, the third domain covers the neural compression process for images and
videos. With the growing amount of data worldwide, compression, in general, has
become a fundamental part of data storage and transmission. Neural compression
aims to contribute to optimizing digital content such as multimedia streaming,
internet services, and storing data. Although neural compression contributes signi-
ficantly, it also faces challenges. These large-scale models rely on large amounts of
high-quality datasets and are difficult to efficiently deploy on (mobile) devices since
they require a significant amount of computational resources. Part III consists of
two chapters that cover the neural compression domain.

In the first chapter of Part III, we examine a neural image compression model,
based on the mean-scale hyperprior. The mean-scale hyperprior has proven to be
a successful model that outperforms classical methods in the image compression
field. Even though these models are effective in practice, they do have limited
capacity when it comes to optimization and generalization. Therefore, we introduce
a new method that aids the compression performance and results in improved
compression results per image. We aim to optimize the latents of an already pre-
trained mean-scale hyperprior model, by keeping the networks weights fixed, and
only further optimizing its latents with a refinement procedure. We introduce three
different methods that built upon the stochastic Gumbel annealing method and
show how it can be extended to three-class rounding. Further, we show how our
proposed method, known as SGA+, outperforms the baselines on two different
datasets. Additionally, we show how SGA+ can be used to move partly along the
rate-distortion curve and how it is robust to hyperparameter changes.

Recent work has integrated neural image compression models that are capable of
allocating more bits to pre-specified regions of interest. However, until now there
was no neural video compression model capable of doing this. In the final chapter
of Part III, we introduce a neural video compression model, based on scale-space
flow, that allocates more bits to pre-specified regions-of-interest. We introduce two
versions that are able to achieve this, namely, an implicit and a latent scaling model.
In general, both models out-perform all baselines in terms of the rate-distortion per-
formance in regions of interest and can generalize to different datasets at inference
time. The latent scaling model has the best performance and can explicitly control
the quantization binwidth of latent variables by only using a single model during
evaluation. Further, we find that the models show a negligible performance gap
when trained with synthetic region-of-interest masks, which do not correlate with
the content of the video, compared to training with pixel-wise annotated masks.
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Deep learning is een breed veld met veel toepassingen: van gezichtsherkenning tot
het genereren van plaatjes, tot aan het comprimeren van data. Deep learning is
onderhand steeds meer geïntegreerd in ons dagelijks leven. Dit proefschrift laat zien
hoe deep learning verschillende toepassingsmogelijkheden heeft in drie verschil-
lende domeinen: het verbeteren van bedrijfsprocessen voor de landbouwsector, met
generatieve modellen de hoog dimensionaliteit schatten, en met neurale netwerken
data compressie toepassen.

In het eerste deel van dit proefschrift streven wij ernaar om bedrijfsprocessen van
een zaadveredelingsbedrijf in de landbouwsector te optimaliseren. Zaadveredeling
is een belangrijk proces dat probeert de ontwikkeling van zaden voor de klimaatsver-
andering te waarborgen, verder is het essentieel om de groeiende wereldbevolking te
voorzien van voedsel, en beschermt het de biodiversiteit. Zaadveredelingsbedrijven
hebben als doel om hoge kwaliteit zaden te leveren aan hun klanten. Om competi-
tief te blijven met concurrerende bedrijven, is het van belang om deep learning te
gebruiken voor de verbetering van de bedrijfsprocessen. In het eerste deel van dit
proefschrift onderzoeken wij een dataset bestaande uit foto’s van witte kool zaden.
Het doel van het onderzoek is om de foto’s van de groeiende kool zaden te classi-
ficeren. Er wordt gekeken of de kool goed of slecht groeit, op basis van alleen het
plaatje. Daarbij leiden nauwkeurige en vroege voorspellingen tot extra ruimte in de
groeikamer waar de zaadjes verblijven. Het automatiseren van zo’n proces helpt een
vakman tijd te besparen. Wij laten zien hoe een specifiek convolutioneel netwerk,
genaamd, AlexNet, beter presteert dan andere machine learning methodes. Verder
laten wij zien dat het model accuraat kan bepalen of een kool plantje goed of slecht
groeit. Daarnaast zien wij dat AlexNet, getraind op eerdere dagen, generaliseert naar
voorspellingen op latere dagen.

Het tweede deel bestaat uit het generatief modelleren van de hoog-dimensionale
dichtheid van de data. Generatieve modellen zouden kunnen bijdragen aan de ont-
wikkeling van nieuwe medicijnen, detectie van afwijkingen in data of het simuleren
van complexe klimaatveranderingen. De uitdagingen van deze modellen zijn terug
te vinden in moeilijkheden en instabiliteit tijdens het trainen van de netwerken.
Verder vereisen de modellen een aanzienlijke hoeveelheid computer rekenkracht
en passen zij zich moeilijk aan, aan ander soort dataset dan zij op getraind zijn.
Een zorgwekkende ontwikkeling voor de maatschappij, die deze modellen met zich
meebrengen, is de vraag hoe er omgegaan moet worden met het genereren van on-
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juiste en kwaadwillende content, zoals deepfake video’s. In het tweede deel van dit
proefschrift dragen wij bij aan het nog nauwkeuriger schatten van de data distributie,
met generatieve modellen. Daarbij verbeteren wij de prestatie van een generatief
model dat bekendstaat onder de naam Normalizing Flow. Dit werk is gebaseerd
op het feit dat DenseNets, meestal, ResNets overtreffen in classificatie opdrachten.
Omdat wij te maken hebben met een speciaal type normalizing flow, zijn wij ver-
plicht om de aaneenschakelingen van DenseNet blokken zó samen te stellen dat er
wordt voldaan aan de Lipschitz constante. Daarnaast stellen wij een activatiefunctie
voor, genaamd: Concatenated LipSwish, welke net zoals de aaneenschakelingen,
voldoet aan de Lipschitz conditie. Ook laten wij zien hoe een leerbaar en gewogen
aaneenschakeling voor de DensNet blokken de model prestaties verbeteren. De
nieuwe architectuur noemen wij i-DenseNet. i-DenseNet presteert beter op het
generatief en hybride modelleren, dan zijn voorganger: Residual Flow en andere
soortgelijke flow-gebaseerde modellen.

Tot slot wordt er in het derde deel gekeken naar het volledige proces van het com-
primeren van foto’s en video’s met deep learning. Met de wereldwijd toenemende
hoeveelheid data, maakt het comprimeren van data een fundamenteel deel uit voor
data transmissie en opslag. Neuraal comprimeren heeft als doel digitale content zo-
als, multimedia streaming, internet voorzieningen, en data opslag te optimaliseren.
Hoewel neuraal comprimeren aanzienlijk bijdraagt aan de maatschappij, zijn er ook
problemen die zich voordoen. Zo hebben de grootschalige modellen hoge kwaliteit
data nodig en zijn zij moeilijk om efficiënt te ontwikkelen op (mobiele) apparaten.
Daarnaast vereisen zij een aanzienlijke hoeveelheid computerkracht. Het laatste
deel van dit proefschrift onderzoekt het neuraal comprimeren domein en bestaat
uit twee hoofdstukken.

In het eerste hoofdstuk van het derde deel onderzoeken wij een neuraal foto com-
primerend model, gebaseerd op de zogenaamde mean-scale hyperprior. Dit is een
succesvol model, dat beter presteert dan klassieke modellen in het foto compri-
merend veld. Ondanks dat deze modellen effectief zijn in de praktijk, hebben de
modellen een beperkt vermogen als het aankomt op optimaliseren en generalisatie.
Om deze reden introduceren wij een nieuwe methode. Deze methode draagt bij aan
het verbeteren van de compressie prestatie, wat resulteert in een verbeterd compri-
merend vermogen per foto. In foto comprimeren focussen wij op het optimaliseren
van de latente variabele die uit een voor getraind mean-scale hyperprior model
komen. Het voor getrainde model heeft gewichten die vast staan en al geleerd zijn.
Daardoor hoeft alleen de latente variabele verder te worden geoptimaliseerd, met
een verfijnings methode. Wij introduceren drie verschillende methodes, die voort-
bouwen op de bestaande methode: stochastische Gumbel annealing. Wij laten zien
hoe deze uitgebreid kan worden naar het afronden van niet twee, maar drie klassen.
Verder laten wij zien hoe de methodes, vanaf nu bekend als SGA+, de basismodellen
verbeteren op twee verschillende datasets. Wij laten ook zien hoe SGA+ gebruikt kan
worden om over de bitrate-distortie lijn kan bewegen en hoe een van de methodes
robuust is tegen verschillende settings van hyperparameter waardes.
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Recent onderzoek heeft neuraal foto comprimerende modellen ontwikkeld die in
staat zijn om meer bits toewijzen aan vooraf gespecificeerde interesse regio’s. Hoe-
wel deze modellen voor foto’s goed werken, was er tot nu toe geen neuraal video
comprimerend model op de markt die hiertoe in staat was. In het laatste hoofdstuk
van dit proefschrift laten wij zien hoe een video compressie model, gebaseerd op de
scale-space flow, in staat is om meer bits toe te kennen aan vooraf gespecificeerde
interessegebieden. Wij introduceren twee versies die hiertoe in staat zijn, een im-
pliciet model en een latent-schalings model. Over het algemeen presteren beide
modellen beter dan de baselines, in termen van de bitrate-distortie in de vooraf
gespecificeerde regio’s, en generaliseren zij naar een andere dataset gedurende infe-
rence tijd. Het latente schaalbaarheid model behaald de aller beste performance
en heeft het de optie om met een model, expliciet de kwantisatie klassenbreedte
te controleren gedurende evaluatie. Als laatst vinden wij dat er nauwelijks verschil
in resultaten zichtbaar zijn wanneer de modellen getrained worden met synthe-
tische gegenereerde frames, welke niet gecorreleerd zijn aan de video frames, in
vergelijking met het trainen van pixel genoteerde video frames.
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