
Automated Evaluation of Coordination Approaches†

Tibor Bosse Mark Hoogendoorn Jan Treur

Vrije Universiteit Amsterdam, Department of Artificial Intelligence
De Boelelaan 1081a, 1081 HV Amsterdam, The Netherlands

{ tbosse, mhoogen, treur} @cs.vu.nl

1. Introduction

Coordinating processes in a complex software (or agent) system is a nontrivial
issue. By a component-based approach to software systems, a divide and
conquer strategy can be used to address the various aspects involved. This may
lead to a possibly large number of components, which each can be analysed and
designed independently. However, a designer may still be left with the problem
how all these fragments can be combined into a coherent system. To solve such
a problem, many different coordination approaches have been proposed, each
having its advantages and drawbacks. Important questions when choosing such
a coordination approach are the suitability, correct functioning, and efficiency of
the approach for the particular component-based system. This paper presents a
methodology to enable a comparison of such factors for the different
coordination approaches in a series of test examples.

2. Comparison Methodology

To explore possibilities to address the coordination problem, an evaluation
methodology, supported by a software environment, has been created which
follows the following steps: (a) a number of coordination approaches are
selected, (b) a number of test examples representing specific software
component configurations are chosen, (c) based on each of these coordination
approaches a simulation model is formally specified, (d) related to the test
examples, relevant requirements are formally specified in the form of relevant
dynamic properties, (e) simulations are performed where selected coordination
approaches are applied to the chosen test examples, resulting in a number of

† The full version of this paper appeared in: Proceedings of the Eighth International
Conference on Coordination Models and Languages, Coordination'06. Lecture Notes in
Computer Science, vol. 4038. Springer Verlag, 2006, pp. 44-62.

simulation traces, and (f) the simulation traces are evaluated (automatically) for
the specified requirements.

To enable a formal specification of the simulation model, and an evaluation
of the resulting traces, the Temporal Trace Language (TTL) [1] is used. TTL
first of all allows the specification of executable properties for each of the
coordination approaches. After such properties have been specified and test
examples are given as input, a simulation engine is used to execute the
properties. The execution results in a formal trace with sequences of events that
occurred during the simulation of the coordination approach for a particular test
example. With such a formal trace as input, and properties on a non-executable
level specified in TTL that ought to be fulfilled by the coordination approach
(e.g. successfulness, efficiency), a verification tool is used to automatically
verify whether these properties are indeed satisfied for the given trace.

3. Results

Based on the approach presented above, the following well-known coordination
approaches have been compared: (1) Behaviour networks introduced by Pattie
Maes [2]; (2) the pandemonium model [4], and (3) voting [3]. Since the
approach also requires test examples to be specified, a choice has been made to
use relatively simple workflow patterns. These patterns can be seen as building
blocks for more complex patterns occurring in real-life component-based
systems. In total, seven such test examples have been used. All approaches
turned out effective in finding the solution in all cases. However, none of the
approaches is always efficient for all test examples. The behaviour networks and
pandemonium approaches perform equally well; they succeed for the “simple”
cases and sometimes fail to be efficient for two complicated cases. Surprisingly,
the voting approach always finds an efficient solution for one of the complicated
cases but fails in a rather trivial case. Finally, the overall methodology turned
out to be very useful in comparing the different coordination approaches.

References
[1] Bosse, T., Jonker, C.M., Meij, L. van der, Sharpanskykh, A, and Treur, J. A

Temporal Trace Language for the Formal Analysis of Dynamic Properties.
Technical Report, Vrije Universiteit Amsterdam, Dept. of Art. Int., 2006.

[2] Maes, P. How to do the right thing. Connection Science 1(3): pp. 291-323.
[3] Ordeshook, P. Game theory and political theory: An Introduction.

Cambridge: Cambridge University Press, 1986.
[4] Selfridge, O. G. Pandemonium: a paradigm for learning in mechanization of

thought processes. In Proceedings of a Symposium Held at the National
Physical Laboratory, pages 513-526, London, November 1958.

