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Abstract. Artificial Intelligence has contributed (formal) design models and 
software support tools to application areas such as architecture, engineering and 
software design This paper explores the effectiveness of applying design 
models to the area of organization (re)design. To that purpose a component-
based model for (re)design of organizations is presented as a specialization of 
an existing generic design model. Using recently developed formalizations 
within Organization Theory organization models are described as design object 
descriptions, and organization goals as design requirements. A design process 
specification is presented that models the redesign process for an organization 
that adapts to changes in the environment. The formally specified and 
implemented approach to organization redesign thus obtained has been tested 
for a well-known historical case study from the Organization Theory literature. 

1  Introduction 

Organizations are created to smoothen processes in all aspects of society, even in the 
artificial societies of software agents. From a design perspective organizations have 
goals to be achieved or maintained that serve as requirements for their functioning. 
The behavior of the elements or parts of the organization and their interaction together 
should result in overall organization behavior that fulfills the goals of the 
organization. Environmental circumstances impose constraints on the organization 
with respect to the way its goals can be fulfilled. As the environment changes over 
time, so do these constraints. To adapt to such changes in constraints, the organization 
might have to change itself. From a design perspective the changing constraints can 
be interpreted as changing requirements for a redesign problem.  

Within the area of AI and Design, in the last decade formally specified generic 
models for (re)design processes have been developed; e.g., [1, 4]. Application of a 
generic redesign model to the area of organizations requires specialized knowledge 
on: (1) organization goals; (2) how to derive refined requirements from such goals 
given a variable environment; (3) the current design object description, and (4) what 
components for a design object satisfy which requirements. A redesign process results 
in a new design object description as a modification of the existing one and a 
specification of changed (new) design requirements.  



A redesign process as formally modeled in [4] involves generation and 
modification steps both for the specification of the requirement set and for the design 
object description. A formal model of a redesign process thus requires formalizations 
of design objects, design requirements, and of the dynamics of redesign processes. 
This paper proposes such formalizations for the area of organizational (re)design, in 
the context of a component based model for (re)design of organizations. Formalized 
organization models [5,10,11,14,18] serve as design object descriptions. 
Formalizations of organizational behavior are used for design requirements 
specifications [10,11,14,18]. Finally, for design process dynamics a formalization is 
used as put forward in [1]. The resulting approach contributes to the organization 
redesign domain in that it facilitates formal modeling, simulation and verification of 
the redesign process, supported by modeling and analysis tools.  

Section 2 gives the component-based model for the design and redesign process 
and describes the types of domain specific knowledge needed in such a process. 
Section 3 addresses the formalization of design object descriptions by means of an 
organization model format in which different components and aggregation levels are 
distinguished. In Section 4 the relation between goals, changing environment and 
requirements is described, illustrated for cases described in Organization Theory. 
Section 5 presents the method of requirements refinement and shows a specific 
example. Thereafter, Section 6 presents examples of design object that are known to 
satisfy certain design requirements, and Section 7 presents generic properties which 
enable an evaluation of the successfulness of the whole (re)design process. Section 8 
presents simulation results of the model, and finally Section 9 is a discussion. 

2  A Component-Based Model for (re)design of Organizations 

This Section presents a component-based generic model for design of organizations 
based on requirements manipulation and design object description manipulation. The 
component-based model presented draws inspiration from [4] and was specified 
within the DESIRE [3] framework. It is composed of three components, see Figure 1: 
• RQSM, for Requirement Qualification Set Manipulation, acquires requirements, 

for example, by elicitation from managers within a company. Within RQSM the 
appropriate requirements are determined in relation to the goals set for the 
organization and the current environmental conditions. After having selected a set 
of requirements, these are refined to more specific ones. 

• DODM, for Design Object Description Manipulation, creates a design object 
description based on the (specific) requirements received from RQSM. In order to 
do this, a number of alternative solutions known to satisfy the requirements are 
generated and according to certain strategic knowledge one of those is selected. 

• Design Process Coordination (DPC) is the coordinating component for the design 
process. The component determines the global design strategy (e.g., [4]) and can 
evaluate whether the design process is proceeding according to plan. 

Information exchange possibilities are represented by the links between input and 
output of the components and the input and output of the model. Input and output are 
represented by the small boxes left and right of components.  



 

 
 

Fig. 1. Top level of the design model 
 

The next sections describe the three components in more detail. The model as 
described here, is a generic design model for organizational design without 
application- or domain-specific knowledge. In later sections such knowledge is 
specified for a case study. 

RQSM This component is composed of two sub-components, namely Requirements 
Sets Generation and Requirements Set Selection, see Figure 2. 

 

 
Fig. 2. Components within RQSM 

 

The component Requirements Sets Generation receives as an input the current 
environmental conditions and the organizational goals. The sub-component contains 
knowledge on what requirements entail fulfillment of organizational goals given the 
environmental conditions. Such knowledge can be depicted in the form of AND/OR 
trees as shown in Figure 3. 

If for example E1 is observed, requirement R1 is an example of a requirement that, 
when fulfilled, guarantees to satisfy goal G under environmental conditions E1. If the 
environment changes to situation E2, the requirement has to change as well; the 
example tree shows how R1 can be changed to requirement R2 that guarantees G 
under the new environmental conditions E2. Note that these environmental conditions 
can be defined as an abstraction of the potentially infinite actual environment. This 
resembles how a manager would define such requirements, for instance by just 
looking at a few specific aspect of the environment, and basing his/her requirement 
for the organization on 
those. After a requirement 
is determined, it can be 
refined in order to obtain 
requirements on a more 
specific level. Making such 
a requirement more specific 
can result in several options 
being generated. For 

Fig. 3. Example AND/OR tree relating environmental 
conditions and requirements to a goal 



example, it might be possible to establish a certain market share by having the best 
quality products but also by having the lowest priced products. After having refined 
each of the requirements, all possible sets of refined requirements are forwarded to 
the component Requirements Set Selection. 

After the component Requirements Set Selection has received the alternative sets 
of requirements its task is to select one of those alternatives, and to forward it to the 
component DODM which will in turn find a suitable organization design for such a 
requirement set. Different selection methods exist, e.g., explicit ranking, on the basis 
of strategic knowledge. Such strategic knowledge can for example be based on the 
source of requirements: requirements that originate from users can for example be 
preferred over those derived by default rules which are in turn preferred over 
requirements derived from previous requirements (see [12]). 

DODM  This component receives a set of refined requirements from RQSM, which is 
handled by two sub-components, Design Object Description Generation and Design 
Object Description Selection. The design object descriptions are descriptions of 
designs of the organization, including both structural aspects as behavioral aspects. 

Design Object Description Generation receives the requirements and delivers 
descriptions of possible alternative design objects (i.e., organization design 
descriptions), such that the (specific) requirements as received from RQSM are 
satisfied. To establish satisfaction, knowledge is needed that specifies what part of a 
design object contributes to fulfillment of a specific requirement. If, for example, the 
requirement is to produce products of the highest quality, then a satisfactory design is 
an organization having a department dedicated to checking quality and repairing of 
production errors. Again, there can be many possibilities available that satisfy the 
requirements. All alternatives found are forwarded to the component Design Object 
Description Selection. 

The component Design Object Description Selection can use several criteria to 
choose the optimal design, such as operational costs effectiveness, and production 
time effectiveness. In order to make such a selection, the component has (strategic) 
knowledge concerning these aspects. It might for example know the typical price for 
hiring an agent for a particular role. Eventually, the component outputs a new design 
for the organization. 

DPC  The component DPC is the component which determines the global design 
strategy and oversees whether the design process proceeds according to plan. Two 
different tasks are distinguished. DPC checks whether a design object description 
determined by DODM satisfies the refined requirements. It might for example be the 
case that the combination of two suitable design object parts causes a conflict. In case 
the refined requirements are not satisfied control information is passed to DODM 
stating that an alternative should be found (e.g., taking a different branch of an OR 
tree). In case these refined requirements are satisfied whereas the high-level 
requirements are not, the requirements refining process has failed, therefore control 
information is given to RQSM to refine the requirements in another way (again by for 
example taking another OR branch). 



3  Organization Models as Design Objects 

An organizational structure defines different elements in an organization and relations 
between them. The dynamics of these different elements can be characterized by sets 
of dynamic properties. An organizational structure has the aim to keep the overall 
dynamics of the organization manageable; therefore the structural relations between 
the different elements within the organizational structure have to impose relationships 
or dependencies between their dynamics; cf. [18]. In the introduction to their book 
Lomi and Larsen [20] emphasize the importance of such relationships: 
• ‘given a set of assumptions about (different forms of) individual behavior, how 

can the aggregate properties of a system be determined (or predicted) that are 
generated by the repeated interaction among those individual units?’   

• ‘given observable regularities in the behavior of a composite system, which rules 
and procedures - if adopted by the individual units- induce and sustain these 
regularities?’  

Both views and problems require means to express relationships between dynamics of 
different elements and different levels of aggregation within an organization. In [20] 
two levels are mentioned: the level of the organization as a whole versus the level of 
the units. Also in the development of MOISE [11,12,14] an emphasis is put on 
relating dynamics to structure. Within MOISE dynamics is described at the level of 
units by the goals, actions, plans and resources allocated to roles to obtain the 
organization’s task as a whole. Specification of the task as a whole may involve 
achieving a final (goal) state, or an ongoing process (maintenance goals) and an 
associated plan specification. 

The approach in this paper is illustrated for the AGR [9] organization modeling 
approach. Figure 4 shows an example organization modeled using AGR. Within AGR 
organization models three aggregation levels are distinguished: (1) the organization as 
a whole; the highest aggregation level, denoted by the big oval, (2)  the level of a 
group denoted by the middle size ovals, and (3) the level of a role within a group 
denoted by the smallest ovals. Solid arrows denote transfer between roles within a 
group; dashed lines denote inter-group interactions. This format is adopted to 
formalize organization models as design object descriptions. In addition, behavioral 
properties of elements of an organization are part of a design object description. TTL 
[17]  is used to express such behavioral properties. 

In TTL state ontology is a specification (in order-sorted logic) of a vocabulary. A 
state for ontology Ont is an assignment of truth-values {true, false} to the set At(Ont) of 
ground atoms expressed in terms of 
Ont. The set of all possible states 
for state ontology Ont is denoted by 
STATES(Ont). The set of state 
properties STATPROP(Ont) for state 
ontology Ont is the set of all 
propositions over ground atoms from 
At(Ont). A fixed time frame T is 
assumed which is linearly ordered. A  
trace or trajectory γ over a state Fig. 4. An AGR Organization Structure 



ontology  Ont  and time frame T  is a mapping γ : T → STATES(Ont), i.e., a sequence of 
states γt (t ∈ T) in  STATES(Ont). The set of all traces over state ontology Ont is denoted 
by TRACES(Ont).  Depending on the application, the time frame T may be dense (e.g., 
the real numbers), or discrete (e.g., the set of integers or natural numbers or a finite 
initial segment of the natural numbers), or any other form, as long as it has a linear 
ordering. The set of dynamic properties DYNPROP(�) is the set of temporal statements 
that can be formulated with respect to traces based on the state ontology Ont in the 
following manner.  

Given a trace γ over state ontology Ont, the state in  γ at time point t is denoted by 
state(γ, t). These states can be related to state properties via the formally defined 
satisfaction relation |=, comparable to the Holds-predicate in the Situation Calculus: 
state(γ, t) |= p denotes that state property p holds in trace γ at time t. Based on these 
statements, dynamic properties can be formulated in a formal manner in a sorted first-
order predicate logic, using quantifiers over time and traces and the usual first-order 
logical connectives such as ¬, ∧, ∨, �, ∀, ∃. A special software environment has 
been developed for TTL, featuring both a Property Editor for building and editing 
TTL properties and a Checking Tool that enables formal verification of such 
properties against a set of (simulated or empirical) traces. 

4  RQSM: Changing Requirements upon Environmental Change 

Organizational requirements change due to changing environmental circumstances.  
The circumstances are input to RQSM. The general pattern is follows. A certain 
organizational goal G (e.g. sufficient demand) is no longer reached, due to an 
environmental change, say from E1 to E2. In the old situation requirement R1 was 
sufficient to guarantee G under environmental condition E1: E1 & R1 � G. Here R1 
is a requirement expressing a relation which states that under the condition E1 the 
organization is able to achieve G. The change from E1 to E2 makes that requirement 
R1, which is still fulfilled but has become insufficient, is to be replaced by a new, 
stronger requirement R2 which expresses that under environment E2 goal G can be 
achieved; therefore: E2 & R2 �  G. Thus, the organization is triggered to change to 
fulfill R2 and as a consequence fulfill goal G again.  

Jaffee [16] distinguishes several classes of external triggers for organizational 
change: triggers in the organization’s input, (e.g., changes in the resources or 
suppliers), and triggers in enabling / constraining factors such as government/labor 
rules and (new) technology. Government regulations for workers might affect human 
resource practices and composition of the workforce. Concerning labor aspects, the 
union might demand a reduction from 40 to 36 hours a week, which naturally causes 
organizational change. Examples of input triggers are resources that run out, 
becoming a lot more expensive, customers whose demands decrease for the good 
being produced, and competitors changing their production methods causing more 
efficient production for products within the same product group. Another example of 
an input-base external trigger is the case that at time t suppliers increase their price of 
a product P, which is used by the organization for the production, from M1 to M2. A 



formal form of this environmental condition is specified in E1 using the Temporal 
Trace Language (TTL) as explained in Section 3. 

 

E1(P, M, t): Supplier Price 
∃R:REAL   state(γ, t) |= environmental_condition(price(P, R), pos) & R ≤ M 

 

Before the environmental change, E1(P1, M1, t) specifies the relevant property of the 
environment. After the change of supplier price however, this property no longer 
holds whereas E1(P1, M2, t) does hold. The overall goal to be maintained within the 
organization is to keep the demand of product P above a threshold D. A formal 
specification of the goal is presented in OP1. 
 

 

OP1(P, D, t): Sufficient demand 
∃I:INTEGER state(γ, t) |= environmental_condition(customer_demand(P, I), pos) & I ≥ D 

 

The requirement imposed for the organization is to maintain the goal of keeping 
demand for product P2 above D, in the new situation given the environmental 
condition of the price M for product P1 which is needed for the production of P2. This 
requirement is specified below in property R.  
 

R(P1, P2, M, D): Maintain demand 
∀t :TIME [state(γ, t) |= needed_for_production_of(P1, P2) & E1(P1, M, t)] �  OP1(P2, D, t) 

 

Before the change in the environment, requirement R1 which is R(P1, P2, M1, D) was 
sufficient to ensure the goal being reached. After the change however, this 
requirement is still satisfied but might be insufficient to ensure the goal. This is due to 
the fact that the environmental condition E1 in the antecedent of E1 & R1 �  G does 
not hold, and hence, cannot be used to entail G (although the requirement R1 is 
fulfilled all the time). The requirement is therefore withdrawn and replaced by the 
requirement R2 which is R(P1, P2, M2, D). This R2, however, is not necessarily 
satisfied and may require an organizational change to enable fulfillment. 

5  RQSM: Refining Requirements Based on Interlevel Relations 

To fulfill requirements at the level of the organization as a whole as discussed in 
Section 4, parts of the organization need to behave adequately (see also the central 
challenges put forward by Lomi and Larsen [20] as discussed in Section 2). Based on 
this idea, in this paper dynamics of an organization are characterized by sets of 
dynamic properties for the respective elements and aggregation levels of the 
organization. An important issue is how organizational structure (the design object 
description determined in DODM) relates to (mathematically defined) relationships 
between these sets of dynamic properties for the different elements and aggregation 
levels within an organization (cf. [18]). Preferably such relations between sets of 
dynamic properties would be of a logical nature; this would allow the use of logical 
methods to analyze, verify and validate organization behavior in relation to 
organization structure. Indeed, following [18], in the approach presented below, 
logical relationships between sets of dynamic properties of elements in an 
organization turn out an adequate manner to (mathematically) express such dynamic 
cross-element or cross-level relationships. 

Figure 5 shows an example of a hierarchy of dynamic properties for an 
organization producing certain products, the properties follow field observations at 



the Ford Motor 
Company in 1980 
described in [25]. The 
overall organizational 
goal is to maintain 
sufficient demand for 
the goods being 
produced, as was also 
the case in OP1 in 
Section 4. The 
organization has 
separate departments 
for design, production 
and quality control, 
which are modeled as 
groups in the 
organization. The highest levels represent organizational properties or goals at the 
aggregation level of the organization as a whole, whereas the lowest level shown here 
represents properties at the aggregation level of the groups. Note that the fact that 
these are group properties already restricts the design of the object in DODM, which 
makes the process less complex. 

A definition for each of the properties in Figure 5 is presented below. Notice that 
this hierarchy could easily be extended by other aspects (e.g., of quality of the 
products as a reason for the demand decreasing or not). Property OP1 is described in 
Section 4. One of the environmental conditions is that the cyclic market is not going 
down for a product P at time t in case the demand for the product group as a whole  
(i.e., all goods produced by different companies in this particular category) is not 
going down.  
 
 

E2(P, t): Cyclic market not going down 
∀G:PRODUCT_GROUP, I1,I2:INTEGER 
[state(γ, t) |= belongs_to_product_group(P, G) & 
 state(γ, (t-1)) |= environmental_condition(customer_demand(G, I1), pos) & 
 state(γ, t) |= environmental_condition(customer_demand(G, I2), pos) ]  
� I2 ≥ I1 

 

Furthermore, an environmental condition E3 poses a requirement on the price of 
competitors in the form of the average price of products within the product group to 
which product P belongs. These prices should not be higher than V: 
 

E3(P, V, t): Competitor Price 
∀G:PRODUCT_GROUP, V1:REAL [ [state(γ, t) |= belongs_to_product_group(P, G) & 
state(γ, t) |= environmental_condition(average_price(G,V1), pos) ] �   V1 ≥ V ] 

 

To achieve goal OP1 given environmental conditions E2 and E3, the price of the 
products being produced by the organization should be low enough, which in turn is 
the requirement posed on the organization. Prices are considered low enough for a 
product P at time t in case the price for the product is equal or below the average price 
level within the product group (i.e. prices are ≤ V as set above). 
 

OP2(P, V, t): Price low enough 
∀G:PRODUCT_GROUP, V1:REAL [state(γ, t) |= price(P, V1)] �   V1 ≤ V 

 

Fig. 5. Hierarchy of Organizational and Group properties 



Whether the price is low enough depends on the cost price for the particular product P 
at time t, which purely depends on the costs for the different groups within the 
organization, as expressed in the group properties (GP’s) 
 

OP3(P, V, t): Cost price low enough 
∀V1,V2,V3:REAL [state(γ, t) |= design_cost(P, V1) &  state(γ, t) |= production_cost(P, V2) & 
state(γ, t) |= quality_repair_cost(P, V3)] �  V1+V2+V3 ≤ V 

 

Finally, the individual group properties can be specified such that the costs of each 
group are below a certain value. The division of such costs over groups is a 
refinement choice. An example decision could be to allow only a small percentage of 
the costs for quality repair and to divide the brunt of the costs equally over production 
and design. Each group should meet their individual requirements. First of all, design 
costs should be low enough: 

GP1(P, V1, t): Design costs low enough 
∀Q:REAL [state(γ, t) |= design_cost(P, Q)]  �   Q ≤ V1 

 

Also, the production costs for product P should be low enough: 
 

GP2(P, V2, t): Production costs low enough 
∀Q:REAL [state(γ, t) |= production_cost(P, Q)]  �   Q ≤ V2 

 

Finally, quality repair costs should be low enough for product P: 
 

GP3(P, V3, t): Quality repair costs low enough 
∀Q:REAL [state(γ, t) |= quality_repair_cost(P, Q)]  �   Q ≤ V3 

 

After having generated all options in RQSM, selection knowledge is used to select 
one of the available options. In this paper, such selection knowledge is not further 
addressed. The output of RQSM is, however, of the form selected_basic_refinement_set(RS) 

where RS is a name for a requirements set. The elements within this set are defined as 
follows: in_selected_basic_refinement_set(R, RS) where R is a requirement, as the ones shown 
above, and RS is the selected basic refinement set. 

6  DODM: Constructing Design Objects 

As stated in Section 2, 
DODM contains a library 
of templates for (parts of) 
design objects which are 
known to satisfy certain 
requirements (of the form 
as specified in the last 
paragraph of the previous 
section). For the case 
study, the DODM library 
contains two templates. 
One of those is a template 
in which a mass 
production system is used 
to produce goods. Such a 
system produces goods at Fig. 6. Redesign options specified in the form of an 

AND/OR tree 



reasonable production costs but at high quality repair costs. The template for mass 
production includes a group of production workers (e.g. a production worker for 
attaching a wheel to a car). The mass production template also contains a quality 
repair department of considerable size with quality repair worker roles. 

The second template in the library is a lean production organization. Lean 
production has no quality repair costs, since there is no separate quality repair 
department. The production costs are at the same level as the production costs for 
mass production organizations. In the lean production method (see e.g. [25]), multi-
task production workers are present which perform several tasks, and also handle 
errors in case they are observed. As a result of such immediate error detection and 
correction, a quality repair department is not present within a lean production model. 

Figure 6 shows an example AND/OR tree for DODM (focusing at lean production 
as a solution) in which options for changes in a design object not satisfying the 
requirement that design costs are low enough. The specific changes in the design 
object are presented below. First of all, the highest level property states that design 
costs will at least at the required level within a duration d: 

CP1(P, D, t):Lower Quality Repair Costs 
∀V1,V2:REAL [state(γ, t) |= selected_basic_requirement_in(GP3(P, V1, t), RS) & 
state(γ, t) |= DOD_includes(D, quality_repair_cost(P, V2)) & V1 < V2] 
� ∃t2:TIME > t, V3:REAL [t2 < t+d & state(γ, t2) |=DOD_includes(D,quality_repair_cost(P, V3)) & V3 ≤ V1] 

 

On a lower level, property CP2(P, D, t) specifies the introduction of lean production 
into an organization. This reduces the quality repair costs to 0 as shown by CP3(P, D, 
t). Although more options are possible for reducing quality repair costs, shown by the 
dots in Figure 6, these are not addressed in this paper. 

CP2(P, D, t): Introduce Lean Production 
∀V1,V2:REAL [state(γ, t) |= selected_basic_requirement_in(GP3(P, V1, t), RS) & 
state(γ, t) |= DOD_includes(D, design_cost(P, R2)) & V1 < V2] 
�  ∃t2:TIME > t  [t2 < t + d & state(γ, t2) |= DOD_includes(D, lean_production_method(P)) ] 

 

CP3(P, D, t): Effect of Lean Production 
[state(γ, t) |= DOD_includes(D, lean_production_method(P)) � 
 state(γ, t) |= DOD_includes(D, quality_repair_cost(P, 0))] 

 

Introducing a lean production system entails that within the production process the 
specialized roles for mass-production and quality repair department are deleted. 
 

CP4(P, D, t): Delete Roles 
∀R1,R2:REAL [state(γ, t) |= DOD_includes(D, lean_production_method(P)) 
� ∃t2:TIME > t [ t2 < t + d & 

     state(γ,t2)|= ¬DOD_includes(D,exists_role(spec_production_worker)) & 
     state(γ, t2)|= ¬DOD_includes(D,exists_group(quality_repair_group))]] 

 

Moreover, roles are created that perform multiple tasks, and teams are created such 
that the roles combined in the team have all the abilities to make a car. 

CP5(P, D, t): Add New Roles 
∀R1,R2:REAL [ state(γ, t) |= DOD_includes(D, lean_production_method(P))  
� ∃t2:TIME > t, ∀A:AGENT 

  [t2 < t + d & state(γ, t2) |= DOD_includes(D, exists_role(multi_task_production_worker)) & 
    state(γ, t2) |= DOD_includes(D, previously_allocated_to(A, spec_production_worker, production_group)) & 
    state(γ, t2) |= DOD_includes(D, allocated_to(A, multi_task_production_worker, production_group))]] 

 

Agents that were allocated to the deleted roles in the production process are allocated 
to the newly formed roles. Agents formerly allocated to a role in quality repair are 
fired. Once the system is organized in this fashion, quality repair in a separate 



department becomes obsolete, and quality repair costs are down to 0 as the production 
workers are now performing the task. CP6 expresses that the measures as described in 
CP4 and CP5 results in a lean production method for the product P: 
 

CP6(P, D, t): Lean Production 
∀A:AGENT 
[state(γ, t) |= ¬ DOD_includes(D, exists_role(spec_production_worker)) & 
 state(γ, t) |= ¬ DOD_includes(D, exists_group(quality_repair_group)) & 
 state(γ, t) |= DOD_includes(D, exists_role(multi_task_production_worker)) &      
 state(γ, t) |= DOD_includes(D, previously_allocated_to(A, spec_production_worker, production_group))  
 state(γ, t) |= DOD_includes(D, allocated_to(A, multi_task_production_worker, production_group))] 
� ∃t2:TIME < t + d  state(γ, t2) |= DOD_includes(D,lean_production_method(P)) 

 

After such options for (re)design of the object have been generated based on the 
requirements, selection knowledge is used to select one of the options that have been 
generated. This knowledge is not addressed in this paper. Eventually, DODM outputs 
a design object description of the form selected_DOD_output(D) where D is the design 
object description. Furthermore to identify properties of the DOD or its parts, output 
of the form in_selected_DOD_output(P,D) is generated where P is a property of (a part of) 
the DOD and D is the selected DOD. This is based on the internal information 
represented in the form of DOD_includes(D, P). 

7  (Re)design Process Evaluation 

This section addresses the evaluation of the whole design process. The overall design 
process is successful when both RQSM and DODM show the proper behavior. 

RQSM shows the proper behavior in case it generates requirements, and these 
requirements indeed result in the goal set for the organization being met. Such 
properties are formulated in a formal form below. 

 
RQSM_generate 
If RQSM receives new environmental conditions on its input, then RQSM eventually generates 
a set of requirements  

∀t:TIME, γ:TRACE, E:ENV_COND  [ [ state(γ, t, input(RQSM)) |= environment_property(E) & 
  ¬∃t’:TIME < t [state(γ, t’, input(RQSM)) |= environment_property(E) ] ] 
� ∃t2:TIME > t, G:GOAL, RS:REQUIREMENT_SET  [state(γ, t2, output(RQSM)) |= main_requirement(G) & 
         state(γ, t2, output(RQSM)) |= selected_basic_refinement_set(RS)] ] 

 

RQSM_successful 
If RQSM generates requirements, then the combination of these requirements entail the goal 
set for the organization. 

∀t:TIME, γ:TRACE, RS :REQUIREMENT_SET, G :GOAL  
 [ [state(γ, t, output(RQSM)) |= main_requirement(G) & 
  state(γ, t, output(RQSM)) |= selected_basic_refinement_set(RS)] � entails_goal(RS, G) ] 

 

DODM shows the proper behavior in case it first of all generates a design object 
description in case a new requirement set is received. Besides simply generating such 
a design object description, the object also needs to satisfy the requirements received 
on its input. 

DODM_generate 
If DODM receives a new requirements set on its input, then DODM eventually generates a 
design object description as output. 



∀t:TIME, γ:TRACE, RS :REQUIREMENTS_SET 
[ state(γ, t, input(DODM)) |= selected_basic_refinement_set(RS) &  
  ¬∃t’:TIME < t  [ state(γ, t’, input(DODM)) |= selected_basic_refinement_set(RS) ] 
� ∃t2:TIME, D:DESIGN_OBJECT_DESCRIPTION 
  state(γ, t2, output(DODM)) |= selected_DOD_output(D) ] 

 
DODM_successful 
If DODM generates a design object description as output, then the design object description 
satisfies the requirements set on the input of DODM. 

∀t:TIME, γ:TRACE, R :REQUIREMENT_SET, 
   D:DESIGN_OBJECT_DESCRIPTION 
 [state(γ, t, input(DODM)) |= selected_basic_refinement_set(R) &  
   state(γ, t, output(DODM)) |= selected_DOD_output(D) ] 
� fulfills_requirements(D, R)  

8  Simulation Results 

In order to show the functioning of the model presented above, simulation runs 
have been performed based on the properties as identified in Sections 4-6 using the 
component-based design presented in Section 2. As a scenario for the case study, a 
sudden decrease of competitor price is inserted as an event into the simulation 
(following [25]). Figure 7 shows a partial trace of the simulation results. In the figure, 
the left side shows the atoms that occur during the simulation whereas the right side 
shows a timeline where a dark gray box indicates an atom being true at that particular 
time point and a light gray box indicates the atom is false. 
    The figure shows the following. Initially, the different cost factors for the ford 
design object are the following: design_cost(ford, 2000); production_cost(ford, 6000); 

quality_repair_cost(ford, 2000). This perfectly fulfills the requirement that price is considered 
to be low enough in case it is at most 10000 as expressed in OP2 at that time point: 
OP2_price_low_enough(ford, 10000) . This requirement is sufficient to guarantee the goal 
OP1 (as expressed in Figure 5) due to the environmental condition E3 that competitor 
price for products within the same product group as ford are at that exact same level: 
E3_competitor_price(ford, 10000). Furthermore, the cyclic market should not be going down 
(E2) which is left 
constant during this 
simulation. Suddenly 
however, the 
environment changes, 
the price of competing 
cars drops to 8000: 
E3_competitor_price(ford, 

8000). The current 
property OP2 is now 
insufficient to 
guarantee the overall 
goal OP1 being 
satisfied, therefore, a 
redesign process is 

design_cost(ford, 2000)
production_cost(ford, 6000)

E3_competitor_price(ford, 10000)
OP2_price_low_enough(ford, 10000)

quality_repair_cost(ford, 2000)
E3_competitor_price(ford, 8000)

OP2_price_low_enough(ford, 8000)
refined(OP3_cost_price_low_enough(ford, 8000))

selected_basic_refinement_set(s1)
in_selected_basic_refinement_set(GP1_design_cost_low_enough(ford, 2000), s1)

in_selected_basic_refinement_set(GP2_production_cost_low_enough(ford, 6000), s1)
in_selected_basic_refinement_set(GP3_quality_repair_cost_low_enough(ford, 0), s1)

CP1_lower_quality_repair_cost(ford, 0)
CP2_introduce_lean_production(ford)
CP3_effect_of_lean_production(ford)

CP4_delete_roles(ford)
CP5_add_new_roles(ford)

CP6_lean_production(ford)
quality_repair_cost(ford, 0)

time 0 5 10 15 20

Fig. 7. Case study simulation results 



activated. RQSM determines a new requirement for the design object, namely that 
prices should be below 8000, the competitor car price:OP2_price_low_enough(ford, 8000). 
Other options might be possible as well, but are not addressed in the simulation. The 
requirement is refined, first of all by expressing that the cost price should be low 
enough: refined(OP3_cost_price_low_enough(ford, 8000)). This results in a selected basic 
refinement that quality repair costs should become 0 whereas design and production 
costs can remain 2000 and 6000 respectively, as shown in the requirements part of the 
selected refinement s1: 

in_selected_basic_refinement_set(GP1_design_cost_low_enough(ford, 2000), s1); 
in_selected_basic_refinement_set(GP2_production_cost_low_enough(ford, 6000), s1); 
in_selected_basic_refinement_set(GP1_quality_repair_cost_low_enough(ford,0),s1).  

Since these are basic refinements, they are passed to DODM in order to find templates 
appropriate for these basic requirements. DODM observes that quality repair costs for 
the current design object are too high, and therefore starts to use the tree as expressed 
in Figure 6, refining the exact changes to be performed on the design object more and 
more. First the introduction of the lean production system is chosen, as expressed in 
CP2. Thereafter, the more concrete changes are determined, namely the deletion of 
the specialized production worker roles, the addition of new multi-task roles, and the 
insertion of the new behavior of those roles: CP4_delete_roles(ford); CP5_add_new_roles(ford); 

CP6_lean_production(ford). Note that in the simulation the actual contents of such 
properties are more concrete (in the form of current DOD descriptions), however, 
these are not presented here for the sake of brevity. Finally, after the actual changes 
have been performed for the design object, quality repair costs drop to 0, and the goal 
is therefore satisfied again: quality_repair_cost(ford, 0). To see whether the properties as 
expressed in Section 7 hold for the simulation trace, first of all, the RQSM_generate and 
DODM_generate properties have been checked against the trace shown in Figure 7 using 
a software tool called the TTL Checker [17]. Both properties were shown to hold for 
the trace. In order to see whether the refinement process within RQSM is properly 
performed, the tree used for the simulation as presented before in Section 5 has been 
formally proven by means of the SMV model checker [22]. The results indeed show 
that the lowest level properties entail the goal given the environmental conditions. 
Furthermore, to prove the successfulness of DODM, the property hierarchy shown in 
Figure 6 has also been proven by the SMV model checker which shows that 
introducing lean production in a design object indeed results in canceling the quality 
repair costs, which satisfied the property DODM_successful. As a result, the 
DODM_successful property is satisfied as well as the RQSM_successful property in case the 
components indeed generate the output based on these property hierarchies. 

9  Discussion 

Organizations aim to meet their organizational goals. Monitoring whether events 
occur that endanger fulfillment of these goals enables organizations to consciously 
adapt and survive. Adaptation is essential once an organizational goal becomes 
unreachable. This paper views such a change as a (re)design process. A component-
based formal generic model for design developed within the area of AI and Design is 
specialized into a model for organization (re)design.  



Formalizations developed within Organization Theory and AI (or computational 
organization theory), have proved suitable for the description of organization models 
as design object descriptions, and organization goals as design requirements. 
Furthermore, different types of specialized knowledge have been identified: (1) about 
main organization goals and their relation for given environmental conditions to 
organization requirements, (2) about refinement of organization requirements, (3) 
about design object descriptions, and (4) which components for a design object 
description satisfy which requirements. The generic design model was instantiated 
with such types of knowledge to constitute a specialized component-based model for 
(re)design of organizations. Example properties have been taken from a well known 
case in Organization Theory on the introduction of lean production [25]. 

This paper focuses on external triggers for organizational change. Triggers are 
related to specific goals that play the role of design requirements which the 
organizational change should comply to. These requirements tend to be high-level 
goals and lack the detail needed for specifying how an organization should change. 
Therefore, design requirement refinement is used based on requirements hierarchies. 
Such hierarchies relate objectives of the organization (e.g., high demand for cars) to 
organizational change properties at different organizational levels (e.g., change in 
some departments). Thus, they relate triggers at the level of the organization to 
properties at the level of parts (groups) within the organization. For example, that a 
certain type of car is not selling according to the goals set is related to the costs of 
quality repair. Requirements hierarchies help to localize where to change the 
organization. High-level goals for an organization as well as goals for organizational 
redesign have been related to low-level executable properties. Formal verification has 
been performed, showing satisfaction of the non-leaf properties in the property tree. 

When comparing the approach to previous work in redesign of organizations a 
main strength is the formal description of the whole redesign process in terms of a 
generic redesign model for organizations. In the field of management for example 
(e.g., [7]), only informal descriptions are given of redesign processes. Systems Theory 
(e.g., [23]), addresses goal oriented behavior. The gap observed between actual and 
desired state of a system causes redesign, which corresponds with the approach taken 
in this paper. Formalizations by means of property hierarchies are, however, not 
present, therefore formal verification as done in this paper cannot be performed. 

In [13] a general diagnosis engine is presented which drives adaptation processes 
within multi-agent organizations using the TAEMS modeling language as the primary 
representation of organizational information. In the design of the diagnostic engine 
three distinct layers are identified: symptoms, diagnosis, and reactions which in the 
approach presented in this paper roughly correspond to Section 4, 5, and 6 
respectively. The implementation of these elements differs in both approaches. The 
goals and requirements in this paper are explicitly connected to each other. Once an 
organizational goal is observed not to be fulfilled, such a dissatisfaction is related 
directly to a goal for change. In the approach presented in [13] lacks such an explicit 
relation between goals and error diagnosis. Furthermore, this paper also introduces an 
approach to diagnose whether the whole reorganization process was successful, which 
is not the case in [13]. [6] explores dynamic reorganization of agent societies and 
focuses on changes to the structure of an organization, this paper presents an approach 
that enables such a dynamic reorganization. 



 [15] presents an approach which aims to archive adaptive real-time performance 
through reorganizations of the society. As a domain of application, production 
systems are used throughout that paper. Whereas that paper focuses on adaptive 
agents, this paper concentrates on adaptation of an organizational model that abstracts 
from agents and specifies elements on the level of roles the agents can fulfill. 

The work presented in this paper can also be compared with the work on 
institutions as a way to describe multi-agent organizations. In [8] an institution is said 
to structure interactions and enforce individual and social behavior by obliging 
everybody to act according to norms, and a formalization language is introduced for 
such an institution. The approach to use dynamic expressions as a restriction of the 
behavior of agents allocated to that role used in this paper is also expressive enough to 
describe such norms. For example, in [21] an example of a norms is the following: 
“Students are prohibited from sitting the exam if they have not completed the 
assignment” . Such a norm can easily be formulated in terms of a dynamic property for 
the student role. The approach presented in this paper could therefore also be applied 
to institutions and normative organizations. In [2] an adaptation mechanism of norms 
is proposed using an evolutionary approach contrary to the pre-specified knowledge 
assumed in this paper. Such an evolutionary approach can be incorporated in RQSM 
and DODM, allowing them to derive requirements and design objects for certain 
environmental conditions and goals without using pre-specified knowledge. 

Finally, in the field of coalition formation (see e.g. [19, 24]), the main purpose of 
forming a coalition is to perform a task that cannot be performed by a single agent. 
That work can be combined with our approach by addressing the problem of the 
allocation of agents to roles, after the change of the organizational model by the 
approach presented in this paper. 
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