
Redesign of Organizations as a Basis
for Organizational Change

Mark Hoogendoorn1, Catholijn M. Jonker2, and Jan Treur1

1Vrije Universiteit Amsterdam, Department of Artificial Intelligence,
De Boelelaan 1081a, 1081 HV Amsterdam, The Netherlands,

{mhoogen, treur}@cs.vu.nl
2Radboud University Nijmegen, Nijmegen Institute for Cognition and Information

Montessorilaan 3, 6525 HR Nijmegen, The Netherlands
C.Jonker@nici.ru.nl

Abstract. Artificial Intelligence has contributed (formal) design models and
software support tools to application areas such as architecture, engineering and
software design This paper explores the effectiveness of applying design
models to the area of organization (re)design. To that purpose a component-
based model for (re)design of organizations is presented as a specialization of
an existing generic design model. Using recently developed formalizations
within Organization Theory organization models are described as design object
descriptions, and organization goals as design requirements. A design process
specification is presented that models the redesign process for an organization
that adapts to changes in the environment. The formally specified and
implemented approach to organization redesign thus obtained has been tested
for a well-known historical case study from the Organization Theory literature.

1 Introduction

Organizations are created to smoothen processes in all aspects of society, even in the
artificial societies of software agents. From a design perspective organizations have
goals to be achieved or maintained that serve as requirements for their functioning.
The behavior of the elements or parts of the organization and their interaction together
should result in overall organization behavior that fulfills the goals of the
organization. Environmental circumstances impose constraints on the organization
with respect to the way its goals can be fulfilled. As the environment changes over
time, so do these constraints. To adapt to such changes in constraints, the organization
might have to change itself. From a design perspective the changing constraints can
be interpreted as changing requirements for a redesign problem.

Within the area of AI and Design, in the last decade formally specified generic
models for (re)design processes have been developed; e.g., [1, 4]. Application of a
generic redesign model to the area of organizations requires specialized knowledge
on: (1) organization goals; (2) how to derive refined requirements from such goals
given a variable environment; (3) the current design object description, and (4) what
components for a design object satisfy which requirements. A redesign process results
in a new design object description as a modification of the existing one and a
specification of changed (new) design requirements.

A redesign process as formally modeled in [4] involves generation and
modification steps both for the specification of the requirement set and for the design
object description. A formal model of a redesign process thus requires formalizations
of design objects, design requirements, and of the dynamics of redesign processes.
This paper proposes such formalizations for the area of organizational (re)design, in
the context of a component based model for (re)design of organizations. Formalized
organization models [5,10,11,14,18] serve as design object descriptions.
Formalizations of organizational behavior are used for design requirements
specifications [10,11,14,18]. Finally, for design process dynamics a formalization is
used as put forward in [1]. The resulting approach contributes to the organization
redesign domain in that it facilitates formal modeling, simulation and verification of
the redesign process, supported by modeling and analysis tools.

Section 2 gives the component-based model for the design and redesign process
and describes the types of domain specific knowledge needed in such a process.
Section 3 addresses the formalization of design object descriptions by means of an
organization model format in which different components and aggregation levels are
distinguished. In Section 4 the relation between goals, changing environment and
requirements is described, illustrated for cases described in Organization Theory.
Section 5 presents the method of requirements refinement and shows a specific
example. Thereafter, Section 6 presents examples of design object that are known to
satisfy certain design requirements, and Section 7 presents generic properties which
enable an evaluation of the successfulness of the whole (re)design process. Section 8
presents simulation results of the model, and finally Section 9 is a discussion.

2 A Component-Based Model for (re)design of Organizations

This Section presents a component-based generic model for design of organizations
based on requirements manipulation and design object description manipulation. The
component-based model presented draws inspiration from [4] and was specified
within the DESIRE [3] framework. It is composed of three components, see Figure 1:
• RQSM, for Requirement Qualification Set Manipulation, acquires requirements,

for example, by elicitation from managers within a company. Within RQSM the
appropriate requirements are determined in relation to the goals set for the
organization and the current environmental conditions. After having selected a set
of requirements, these are refined to more specific ones.

• DODM, for Design Object Description Manipulation, creates a design object
description based on the (specific) requirements received from RQSM. In order to
do this, a number of alternative solutions known to satisfy the requirements are
generated and according to certain strategic knowledge one of those is selected.

• Design Process Coordination (DPC) is the coordinating component for the design
process. The component determines the global design strategy (e.g., [4]) and can
evaluate whether the design process is proceeding according to plan.

Information exchange possibilities are represented by the links between input and
output of the components and the input and output of the model. Input and output are
represented by the small boxes left and right of components.

Fig. 1. Top level of the design model

The next sections describe the three components in more detail. The model as
described here, is a generic design model for organizational design without
application- or domain-specific knowledge. In later sections such knowledge is
specified for a case study.

RQSM This component is composed of two sub-components, namely Requirements
Sets Generation and Requirements Set Selection, see Figure 2.

Fig. 2. Components within RQSM

The component Requirements Sets Generation receives as an input the current
environmental conditions and the organizational goals. The sub-component contains
knowledge on what requirements entail fulfillment of organizational goals given the
environmental conditions. Such knowledge can be depicted in the form of AND/OR
trees as shown in Figure 3.

If for example E1 is observed, requirement R1 is an example of a requirement that,
when fulfilled, guarantees to satisfy goal G under environmental conditions E1. If the
environment changes to situation E2, the requirement has to change as well; the
example tree shows how R1 can be changed to requirement R2 that guarantees G
under the new environmental conditions E2. Note that these environmental conditions
can be defined as an abstraction of the potentially infinite actual environment. This
resembles how a manager would define such requirements, for instance by just
looking at a few specific aspect of the environment, and basing his/her requirement
for the organization on
those. After a requirement
is determined, it can be
refined in order to obtain
requirements on a more
specific level. Making such
a requirement more specific
can result in several options
being generated. For

Fig. 3. Example AND/OR tree relating environmental
conditions and requirements to a goal

example, it might be possible to establish a certain market share by having the best
quality products but also by having the lowest priced products. After having refined
each of the requirements, all possible sets of refined requirements are forwarded to
the component Requirements Set Selection.

After the component Requirements Set Selection has received the alternative sets
of requirements its task is to select one of those alternatives, and to forward it to the
component DODM which will in turn find a suitable organization design for such a
requirement set. Different selection methods exist, e.g., explicit ranking, on the basis
of strategic knowledge. Such strategic knowledge can for example be based on the
source of requirements: requirements that originate from users can for example be
preferred over those derived by default rules which are in turn preferred over
requirements derived from previous requirements (see [12]).

DODM This component receives a set of refined requirements from RQSM, which is
handled by two sub-components, Design Object Description Generation and Design
Object Description Selection. The design object descriptions are descriptions of
designs of the organization, including both structural aspects as behavioral aspects.

Design Object Description Generation receives the requirements and delivers
descriptions of possible alternative design objects (i.e., organization design
descriptions), such that the (specific) requirements as received from RQSM are
satisfied. To establish satisfaction, knowledge is needed that specifies what part of a
design object contributes to fulfillment of a specific requirement. If, for example, the
requirement is to produce products of the highest quality, then a satisfactory design is
an organization having a department dedicated to checking quality and repairing of
production errors. Again, there can be many possibilities available that satisfy the
requirements. All alternatives found are forwarded to the component Design Object
Description Selection.

The component Design Object Description Selection can use several criteria to
choose the optimal design, such as operational costs effectiveness, and production
time effectiveness. In order to make such a selection, the component has (strategic)
knowledge concerning these aspects. It might for example know the typical price for
hiring an agent for a particular role. Eventually, the component outputs a new design
for the organization.

DPC The component DPC is the component which determines the global design
strategy and oversees whether the design process proceeds according to plan. Two
different tasks are distinguished. DPC checks whether a design object description
determined by DODM satisfies the refined requirements. It might for example be the
case that the combination of two suitable design object parts causes a conflict. In case
the refined requirements are not satisfied control information is passed to DODM
stating that an alternative should be found (e.g., taking a different branch of an OR
tree). In case these refined requirements are satisfied whereas the high-level
requirements are not, the requirements refining process has failed, therefore control
information is given to RQSM to refine the requirements in another way (again by for
example taking another OR branch).

3 Organization Models as Design Objects

An organizational structure defines different elements in an organization and relations
between them. The dynamics of these different elements can be characterized by sets
of dynamic properties. An organizational structure has the aim to keep the overall
dynamics of the organization manageable; therefore the structural relations between
the different elements within the organizational structure have to impose relationships
or dependencies between their dynamics; cf. [18]. In the introduction to their book
Lomi and Larsen [20] emphasize the importance of such relationships:
• ‘given a set of assumptions about (different forms of) individual behavior, how

can the aggregate properties of a system be determined (or predicted) that are
generated by the repeated interaction among those individual units?’

• ‘given observable regularities in the behavior of a composite system, which rules
and procedures - if adopted by the individual units- induce and sustain these
regularities?’

Both views and problems require means to express relationships between dynamics of
different elements and different levels of aggregation within an organization. In [20]
two levels are mentioned: the level of the organization as a whole versus the level of
the units. Also in the development of MOISE [11,12,14] an emphasis is put on
relating dynamics to structure. Within MOISE dynamics is described at the level of
units by the goals, actions, plans and resources allocated to roles to obtain the
organization’s task as a whole. Specification of the task as a whole may involve
achieving a final (goal) state, or an ongoing process (maintenance goals) and an
associated plan specification.

The approach in this paper is illustrated for the AGR [9] organization modeling
approach. Figure 4 shows an example organization modeled using AGR. Within AGR
organization models three aggregation levels are distinguished: (1) the organization as
a whole; the highest aggregation level, denoted by the big oval, (2) the level of a
group denoted by the middle size ovals, and (3) the level of a role within a group
denoted by the smallest ovals. Solid arrows denote transfer between roles within a
group; dashed lines denote inter-group interactions. This format is adopted to
formalize organization models as design object descriptions. In addition, behavioral
properties of elements of an organization are part of a design object description. TTL
[17] is used to express such behavioral properties.

In TTL state ontology is a specification (in order-sorted logic) of a vocabulary. A
state for ontology Ont is an assignment of truth-values {true, false} to the set At(Ont) of
ground atoms expressed in terms of
Ont. The set of all possible states
for state ontology Ont is denoted by
STATES(Ont). The set of state
properties STATPROP(Ont) for state
ontology Ont is the set of all
propositions over ground atoms from
At(Ont). A fixed time frame T is
assumed which is linearly ordered. A
trace or trajectory γ over a state Fig. 4. An AGR Organization Structure

ontology Ont and time frame T is a mapping γ : T → STATES(Ont), i.e., a sequence of
states γt (t ∈ T) in STATES(Ont). The set of all traces over state ontology Ont is denoted
by TRACES(Ont). Depending on the application, the time frame T may be dense (e.g.,
the real numbers), or discrete (e.g., the set of integers or natural numbers or a finite
initial segment of the natural numbers), or any other form, as long as it has a linear
ordering. The set of dynamic properties DYNPROP(�) is the set of temporal statements
that can be formulated with respect to traces based on the state ontology Ont in the
following manner.

Given a trace γ over state ontology Ont, the state in γ at time point t is denoted by
state(γ, t). These states can be related to state properties via the formally defined
satisfaction relation |=, comparable to the Holds-predicate in the Situation Calculus:
state(γ, t) |= p denotes that state property p holds in trace γ at time t. Based on these
statements, dynamic properties can be formulated in a formal manner in a sorted first-
order predicate logic, using quantifiers over time and traces and the usual first-order
logical connectives such as ¬, ∧, ∨, �, ∀, ∃. A special software environment has
been developed for TTL, featuring both a Property Editor for building and editing
TTL properties and a Checking Tool that enables formal verification of such
properties against a set of (simulated or empirical) traces.

4 RQSM: Changing Requirements upon Environmental Change

Organizational requirements change due to changing environmental circumstances.
The circumstances are input to RQSM. The general pattern is follows. A certain
organizational goal G (e.g. sufficient demand) is no longer reached, due to an
environmental change, say from E1 to E2. In the old situation requirement R1 was
sufficient to guarantee G under environmental condition E1: E1 & R1 � G. Here R1
is a requirement expressing a relation which states that under the condition E1 the
organization is able to achieve G. The change from E1 to E2 makes that requirement
R1, which is still fulfilled but has become insufficient, is to be replaced by a new,
stronger requirement R2 which expresses that under environment E2 goal G can be
achieved; therefore: E2 & R2 � G. Thus, the organization is triggered to change to
fulfill R2 and as a consequence fulfill goal G again.

Jaffee [16] distinguishes several classes of external triggers for organizational
change: triggers in the organization’s input, (e.g., changes in the resources or
suppliers), and triggers in enabling / constraining factors such as government/labor
rules and (new) technology. Government regulations for workers might affect human
resource practices and composition of the workforce. Concerning labor aspects, the
union might demand a reduction from 40 to 36 hours a week, which naturally causes
organizational change. Examples of input triggers are resources that run out,
becoming a lot more expensive, customers whose demands decrease for the good
being produced, and competitors changing their production methods causing more
efficient production for products within the same product group. Another example of
an input-base external trigger is the case that at time t suppliers increase their price of
a product P, which is used by the organization for the production, from M1 to M2. A

formal form of this environmental condition is specified in E1 using the Temporal
Trace Language (TTL) as explained in Section 3.

E1(P, M, t): Supplier Price
∃R:REAL state(γ, t) |= environmental_condition(price(P, R), pos) & R ≤ M

Before the environmental change, E1(P1, M1, t) specifies the relevant property of the
environment. After the change of supplier price however, this property no longer
holds whereas E1(P1, M2, t) does hold. The overall goal to be maintained within the
organization is to keep the demand of product P above a threshold D. A formal
specification of the goal is presented in OP1.

OP1(P, D, t): Sufficient demand
∃I:INTEGER state(γ, t) |= environmental_condition(customer_demand(P, I), pos) & I ≥ D

The requirement imposed for the organization is to maintain the goal of keeping
demand for product P2 above D, in the new situation given the environmental
condition of the price M for product P1 which is needed for the production of P2. This
requirement is specified below in property R.

R(P1, P2, M, D): Maintain demand
∀t :TIME [state(γ, t) |= needed_for_production_of(P1, P2) & E1(P1, M, t)] � OP1(P2, D, t)

Before the change in the environment, requirement R1 which is R(P1, P2, M1, D) was
sufficient to ensure the goal being reached. After the change however, this
requirement is still satisfied but might be insufficient to ensure the goal. This is due to
the fact that the environmental condition E1 in the antecedent of E1 & R1 � G does
not hold, and hence, cannot be used to entail G (although the requirement R1 is
fulfilled all the time). The requirement is therefore withdrawn and replaced by the
requirement R2 which is R(P1, P2, M2, D). This R2, however, is not necessarily
satisfied and may require an organizational change to enable fulfillment.

5 RQSM: Refining Requirements Based on Interlevel Relations

To fulfill requirements at the level of the organization as a whole as discussed in
Section 4, parts of the organization need to behave adequately (see also the central
challenges put forward by Lomi and Larsen [20] as discussed in Section 2). Based on
this idea, in this paper dynamics of an organization are characterized by sets of
dynamic properties for the respective elements and aggregation levels of the
organization. An important issue is how organizational structure (the design object
description determined in DODM) relates to (mathematically defined) relationships
between these sets of dynamic properties for the different elements and aggregation
levels within an organization (cf. [18]). Preferably such relations between sets of
dynamic properties would be of a logical nature; this would allow the use of logical
methods to analyze, verify and validate organization behavior in relation to
organization structure. Indeed, following [18], in the approach presented below,
logical relationships between sets of dynamic properties of elements in an
organization turn out an adequate manner to (mathematically) express such dynamic
cross-element or cross-level relationships.

Figure 5 shows an example of a hierarchy of dynamic properties for an
organization producing certain products, the properties follow field observations at

the Ford Motor
Company in 1980
described in [25]. The
overall organizational
goal is to maintain
sufficient demand for
the goods being
produced, as was also
the case in OP1 in
Section 4. The
organization has
separate departments
for design, production
and quality control,
which are modeled as
groups in the
organization. The highest levels represent organizational properties or goals at the
aggregation level of the organization as a whole, whereas the lowest level shown here
represents properties at the aggregation level of the groups. Note that the fact that
these are group properties already restricts the design of the object in DODM, which
makes the process less complex.

A definition for each of the properties in Figure 5 is presented below. Notice that
this hierarchy could easily be extended by other aspects (e.g., of quality of the
products as a reason for the demand decreasing or not). Property OP1 is described in
Section 4. One of the environmental conditions is that the cyclic market is not going
down for a product P at time t in case the demand for the product group as a whole
(i.e., all goods produced by different companies in this particular category) is not
going down.

E2(P, t): Cyclic market not going down
∀G:PRODUCT_GROUP, I1,I2:INTEGER
[state(γ, t) |= belongs_to_product_group(P, G) &
 state(γ, (t-1)) |= environmental_condition(customer_demand(G, I1), pos) &
 state(γ, t) |= environmental_condition(customer_demand(G, I2), pos)]
� I2 ≥ I1

Furthermore, an environmental condition E3 poses a requirement on the price of
competitors in the form of the average price of products within the product group to
which product P belongs. These prices should not be higher than V:

E3(P, V, t): Competitor Price
∀G:PRODUCT_GROUP, V1:REAL [[state(γ, t) |= belongs_to_product_group(P, G) &
state(γ, t) |= environmental_condition(average_price(G,V1), pos)] � V1 ≥ V]

To achieve goal OP1 given environmental conditions E2 and E3, the price of the
products being produced by the organization should be low enough, which in turn is
the requirement posed on the organization. Prices are considered low enough for a
product P at time t in case the price for the product is equal or below the average price
level within the product group (i.e. prices are ≤ V as set above).

OP2(P, V, t): Price low enough
∀G:PRODUCT_GROUP, V1:REAL [state(γ, t) |= price(P, V1)] � V1 ≤ V

Fig. 5. Hierarchy of Organizational and Group properties

Whether the price is low enough depends on the cost price for the particular product P
at time t, which purely depends on the costs for the different groups within the
organization, as expressed in the group properties (GP’s)

OP3(P, V, t): Cost price low enough
∀V1,V2,V3:REAL [state(γ, t) |= design_cost(P, V1) & state(γ, t) |= production_cost(P, V2) &
state(γ, t) |= quality_repair_cost(P, V3)] � V1+V2+V3 ≤ V

Finally, the individual group properties can be specified such that the costs of each
group are below a certain value. The division of such costs over groups is a
refinement choice. An example decision could be to allow only a small percentage of
the costs for quality repair and to divide the brunt of the costs equally over production
and design. Each group should meet their individual requirements. First of all, design
costs should be low enough:

GP1(P, V1, t): Design costs low enough
∀Q:REAL [state(γ, t) |= design_cost(P, Q)] � Q ≤ V1

Also, the production costs for product P should be low enough:

GP2(P, V2, t): Production costs low enough
∀Q:REAL [state(γ, t) |= production_cost(P, Q)] � Q ≤ V2

Finally, quality repair costs should be low enough for product P:

GP3(P, V3, t): Quality repair costs low enough
∀Q:REAL [state(γ, t) |= quality_repair_cost(P, Q)] � Q ≤ V3

After having generated all options in RQSM, selection knowledge is used to select
one of the available options. In this paper, such selection knowledge is not further
addressed. The output of RQSM is, however, of the form selected_basic_refinement_set(RS)

where RS is a name for a requirements set. The elements within this set are defined as
follows: in_selected_basic_refinement_set(R, RS) where R is a requirement, as the ones shown
above, and RS is the selected basic refinement set.

6 DODM: Constructing Design Objects

As stated in Section 2,
DODM contains a library
of templates for (parts of)
design objects which are
known to satisfy certain
requirements (of the form
as specified in the last
paragraph of the previous
section). For the case
study, the DODM library
contains two templates.
One of those is a template
in which a mass
production system is used
to produce goods. Such a
system produces goods at Fig. 6. Redesign options specified in the form of an

AND/OR tree

reasonable production costs but at high quality repair costs. The template for mass
production includes a group of production workers (e.g. a production worker for
attaching a wheel to a car). The mass production template also contains a quality
repair department of considerable size with quality repair worker roles.

The second template in the library is a lean production organization. Lean
production has no quality repair costs, since there is no separate quality repair
department. The production costs are at the same level as the production costs for
mass production organizations. In the lean production method (see e.g. [25]), multi-
task production workers are present which perform several tasks, and also handle
errors in case they are observed. As a result of such immediate error detection and
correction, a quality repair department is not present within a lean production model.

Figure 6 shows an example AND/OR tree for DODM (focusing at lean production
as a solution) in which options for changes in a design object not satisfying the
requirement that design costs are low enough. The specific changes in the design
object are presented below. First of all, the highest level property states that design
costs will at least at the required level within a duration d:

CP1(P, D, t):Lower Quality Repair Costs
∀V1,V2:REAL [state(γ, t) |= selected_basic_requirement_in(GP3(P, V1, t), RS) &
state(γ, t) |= DOD_includes(D, quality_repair_cost(P, V2)) & V1 < V2]
� ∃t2:TIME > t, V3:REAL [t2 < t+d & state(γ, t2) |=DOD_includes(D,quality_repair_cost(P, V3)) & V3 ≤ V1]

On a lower level, property CP2(P, D, t) specifies the introduction of lean production
into an organization. This reduces the quality repair costs to 0 as shown by CP3(P, D,
t). Although more options are possible for reducing quality repair costs, shown by the
dots in Figure 6, these are not addressed in this paper.

CP2(P, D, t): Introduce Lean Production
∀V1,V2:REAL [state(γ, t) |= selected_basic_requirement_in(GP3(P, V1, t), RS) &
state(γ, t) |= DOD_includes(D, design_cost(P, R2)) & V1 < V2]
� ∃t2:TIME > t [t2 < t + d & state(γ, t2) |= DOD_includes(D, lean_production_method(P))]

CP3(P, D, t): Effect of Lean Production
[state(γ, t) |= DOD_includes(D, lean_production_method(P)) �
 state(γ, t) |= DOD_includes(D, quality_repair_cost(P, 0))]

Introducing a lean production system entails that within the production process the
specialized roles for mass-production and quality repair department are deleted.

CP4(P, D, t): Delete Roles
∀R1,R2:REAL [state(γ, t) |= DOD_includes(D, lean_production_method(P))
� ∃t2:TIME > t [t2 < t + d &

 state(γ,t2)|= ¬DOD_includes(D,exists_role(spec_production_worker)) &
 state(γ, t2)|= ¬DOD_includes(D,exists_group(quality_repair_group))]]

Moreover, roles are created that perform multiple tasks, and teams are created such
that the roles combined in the team have all the abilities to make a car.

CP5(P, D, t): Add New Roles
∀R1,R2:REAL [state(γ, t) |= DOD_includes(D, lean_production_method(P))
� ∃t2:TIME > t, ∀A:AGENT

 [t2 < t + d & state(γ, t2) |= DOD_includes(D, exists_role(multi_task_production_worker)) &
 state(γ, t2) |= DOD_includes(D, previously_allocated_to(A, spec_production_worker, production_group)) &
 state(γ, t2) |= DOD_includes(D, allocated_to(A, multi_task_production_worker, production_group))]]

Agents that were allocated to the deleted roles in the production process are allocated
to the newly formed roles. Agents formerly allocated to a role in quality repair are
fired. Once the system is organized in this fashion, quality repair in a separate

department becomes obsolete, and quality repair costs are down to 0 as the production
workers are now performing the task. CP6 expresses that the measures as described in
CP4 and CP5 results in a lean production method for the product P:

CP6(P, D, t): Lean Production
∀A:AGENT
[state(γ, t) |= ¬ DOD_includes(D, exists_role(spec_production_worker)) &
 state(γ, t) |= ¬ DOD_includes(D, exists_group(quality_repair_group)) &
 state(γ, t) |= DOD_includes(D, exists_role(multi_task_production_worker)) &
 state(γ, t) |= DOD_includes(D, previously_allocated_to(A, spec_production_worker, production_group))
 state(γ, t) |= DOD_includes(D, allocated_to(A, multi_task_production_worker, production_group))]
� ∃t2:TIME < t + d state(γ, t2) |= DOD_includes(D,lean_production_method(P))

After such options for (re)design of the object have been generated based on the
requirements, selection knowledge is used to select one of the options that have been
generated. This knowledge is not addressed in this paper. Eventually, DODM outputs
a design object description of the form selected_DOD_output(D) where D is the design
object description. Furthermore to identify properties of the DOD or its parts, output
of the form in_selected_DOD_output(P,D) is generated where P is a property of (a part of)
the DOD and D is the selected DOD. This is based on the internal information
represented in the form of DOD_includes(D, P).

7 (Re)design Process Evaluation

This section addresses the evaluation of the whole design process. The overall design
process is successful when both RQSM and DODM show the proper behavior.

RQSM shows the proper behavior in case it generates requirements, and these
requirements indeed result in the goal set for the organization being met. Such
properties are formulated in a formal form below.

RQSM_generate
If RQSM receives new environmental conditions on its input, then RQSM eventually generates
a set of requirements

∀t:TIME, γ:TRACE, E:ENV_COND [[state(γ, t, input(RQSM)) |= environment_property(E) &
 ¬∃t’:TIME < t [state(γ, t’, input(RQSM)) |= environment_property(E)]]
� ∃t2:TIME > t, G:GOAL, RS:REQUIREMENT_SET [state(γ, t2, output(RQSM)) |= main_requirement(G) &
 state(γ, t2, output(RQSM)) |= selected_basic_refinement_set(RS)]]

RQSM_successful
If RQSM generates requirements, then the combination of these requirements entail the goal
set for the organization.

∀t:TIME, γ:TRACE, RS :REQUIREMENT_SET, G :GOAL
 [[state(γ, t, output(RQSM)) |= main_requirement(G) &
 state(γ, t, output(RQSM)) |= selected_basic_refinement_set(RS)] � entails_goal(RS, G)]

DODM shows the proper behavior in case it first of all generates a design object
description in case a new requirement set is received. Besides simply generating such
a design object description, the object also needs to satisfy the requirements received
on its input.

DODM_generate
If DODM receives a new requirements set on its input, then DODM eventually generates a
design object description as output.

∀t:TIME, γ:TRACE, RS :REQUIREMENTS_SET
[state(γ, t, input(DODM)) |= selected_basic_refinement_set(RS) &
 ¬∃t’:TIME < t [state(γ, t’, input(DODM)) |= selected_basic_refinement_set(RS)]
� ∃t2:TIME, D:DESIGN_OBJECT_DESCRIPTION
 state(γ, t2, output(DODM)) |= selected_DOD_output(D)]

DODM_successful
If DODM generates a design object description as output, then the design object description
satisfies the requirements set on the input of DODM.

∀t:TIME, γ:TRACE, R :REQUIREMENT_SET,
 D:DESIGN_OBJECT_DESCRIPTION
 [state(γ, t, input(DODM)) |= selected_basic_refinement_set(R) &
 state(γ, t, output(DODM)) |= selected_DOD_output(D)]
� fulfills_requirements(D, R)

8 Simulation Results

In order to show the functioning of the model presented above, simulation runs
have been performed based on the properties as identified in Sections 4-6 using the
component-based design presented in Section 2. As a scenario for the case study, a
sudden decrease of competitor price is inserted as an event into the simulation
(following [25]). Figure 7 shows a partial trace of the simulation results. In the figure,
the left side shows the atoms that occur during the simulation whereas the right side
shows a timeline where a dark gray box indicates an atom being true at that particular
time point and a light gray box indicates the atom is false.
 The figure shows the following. Initially, the different cost factors for the ford
design object are the following: design_cost(ford, 2000); production_cost(ford, 6000);

quality_repair_cost(ford, 2000). This perfectly fulfills the requirement that price is considered
to be low enough in case it is at most 10000 as expressed in OP2 at that time point:
OP2_price_low_enough(ford, 10000) . This requirement is sufficient to guarantee the goal
OP1 (as expressed in Figure 5) due to the environmental condition E3 that competitor
price for products within the same product group as ford are at that exact same level:
E3_competitor_price(ford, 10000). Furthermore, the cyclic market should not be going down
(E2) which is left
constant during this
simulation. Suddenly
however, the
environment changes,
the price of competing
cars drops to 8000:
E3_competitor_price(ford,

8000). The current
property OP2 is now
insufficient to
guarantee the overall
goal OP1 being
satisfied, therefore, a
redesign process is

design_cost(ford, 2000)
production_cost(ford, 6000)

E3_competitor_price(ford, 10000)
OP2_price_low_enough(ford, 10000)

quality_repair_cost(ford, 2000)
E3_competitor_price(ford, 8000)

OP2_price_low_enough(ford, 8000)
refined(OP3_cost_price_low_enough(ford, 8000))

selected_basic_refinement_set(s1)
in_selected_basic_refinement_set(GP1_design_cost_low_enough(ford, 2000), s1)

in_selected_basic_refinement_set(GP2_production_cost_low_enough(ford, 6000), s1)
in_selected_basic_refinement_set(GP3_quality_repair_cost_low_enough(ford, 0), s1)

CP1_lower_quality_repair_cost(ford, 0)
CP2_introduce_lean_production(ford)
CP3_effect_of_lean_production(ford)

CP4_delete_roles(ford)
CP5_add_new_roles(ford)

CP6_lean_production(ford)
quality_repair_cost(ford, 0)

time 0 5 10 15 20

Fig. 7. Case study simulation results

activated. RQSM determines a new requirement for the design object, namely that
prices should be below 8000, the competitor car price:OP2_price_low_enough(ford, 8000).
Other options might be possible as well, but are not addressed in the simulation. The
requirement is refined, first of all by expressing that the cost price should be low
enough: refined(OP3_cost_price_low_enough(ford, 8000)). This results in a selected basic
refinement that quality repair costs should become 0 whereas design and production
costs can remain 2000 and 6000 respectively, as shown in the requirements part of the
selected refinement s1:

in_selected_basic_refinement_set(GP1_design_cost_low_enough(ford, 2000), s1);
in_selected_basic_refinement_set(GP2_production_cost_low_enough(ford, 6000), s1);
in_selected_basic_refinement_set(GP1_quality_repair_cost_low_enough(ford,0),s1).

Since these are basic refinements, they are passed to DODM in order to find templates
appropriate for these basic requirements. DODM observes that quality repair costs for
the current design object are too high, and therefore starts to use the tree as expressed
in Figure 6, refining the exact changes to be performed on the design object more and
more. First the introduction of the lean production system is chosen, as expressed in
CP2. Thereafter, the more concrete changes are determined, namely the deletion of
the specialized production worker roles, the addition of new multi-task roles, and the
insertion of the new behavior of those roles: CP4_delete_roles(ford); CP5_add_new_roles(ford);

CP6_lean_production(ford). Note that in the simulation the actual contents of such
properties are more concrete (in the form of current DOD descriptions), however,
these are not presented here for the sake of brevity. Finally, after the actual changes
have been performed for the design object, quality repair costs drop to 0, and the goal
is therefore satisfied again: quality_repair_cost(ford, 0). To see whether the properties as
expressed in Section 7 hold for the simulation trace, first of all, the RQSM_generate and
DODM_generate properties have been checked against the trace shown in Figure 7 using
a software tool called the TTL Checker [17]. Both properties were shown to hold for
the trace. In order to see whether the refinement process within RQSM is properly
performed, the tree used for the simulation as presented before in Section 5 has been
formally proven by means of the SMV model checker [22]. The results indeed show
that the lowest level properties entail the goal given the environmental conditions.
Furthermore, to prove the successfulness of DODM, the property hierarchy shown in
Figure 6 has also been proven by the SMV model checker which shows that
introducing lean production in a design object indeed results in canceling the quality
repair costs, which satisfied the property DODM_successful. As a result, the
DODM_successful property is satisfied as well as the RQSM_successful property in case the
components indeed generate the output based on these property hierarchies.

9 Discussion

Organizations aim to meet their organizational goals. Monitoring whether events
occur that endanger fulfillment of these goals enables organizations to consciously
adapt and survive. Adaptation is essential once an organizational goal becomes
unreachable. This paper views such a change as a (re)design process. A component-
based formal generic model for design developed within the area of AI and Design is
specialized into a model for organization (re)design.

Formalizations developed within Organization Theory and AI (or computational
organization theory), have proved suitable for the description of organization models
as design object descriptions, and organization goals as design requirements.
Furthermore, different types of specialized knowledge have been identified: (1) about
main organization goals and their relation for given environmental conditions to
organization requirements, (2) about refinement of organization requirements, (3)
about design object descriptions, and (4) which components for a design object
description satisfy which requirements. The generic design model was instantiated
with such types of knowledge to constitute a specialized component-based model for
(re)design of organizations. Example properties have been taken from a well known
case in Organization Theory on the introduction of lean production [25].

This paper focuses on external triggers for organizational change. Triggers are
related to specific goals that play the role of design requirements which the
organizational change should comply to. These requirements tend to be high-level
goals and lack the detail needed for specifying how an organization should change.
Therefore, design requirement refinement is used based on requirements hierarchies.
Such hierarchies relate objectives of the organization (e.g., high demand for cars) to
organizational change properties at different organizational levels (e.g., change in
some departments). Thus, they relate triggers at the level of the organization to
properties at the level of parts (groups) within the organization. For example, that a
certain type of car is not selling according to the goals set is related to the costs of
quality repair. Requirements hierarchies help to localize where to change the
organization. High-level goals for an organization as well as goals for organizational
redesign have been related to low-level executable properties. Formal verification has
been performed, showing satisfaction of the non-leaf properties in the property tree.

When comparing the approach to previous work in redesign of organizations a
main strength is the formal description of the whole redesign process in terms of a
generic redesign model for organizations. In the field of management for example
(e.g., [7]), only informal descriptions are given of redesign processes. Systems Theory
(e.g., [23]), addresses goal oriented behavior. The gap observed between actual and
desired state of a system causes redesign, which corresponds with the approach taken
in this paper. Formalizations by means of property hierarchies are, however, not
present, therefore formal verification as done in this paper cannot be performed.

In [13] a general diagnosis engine is presented which drives adaptation processes
within multi-agent organizations using the TAEMS modeling language as the primary
representation of organizational information. In the design of the diagnostic engine
three distinct layers are identified: symptoms, diagnosis, and reactions which in the
approach presented in this paper roughly correspond to Section 4, 5, and 6
respectively. The implementation of these elements differs in both approaches. The
goals and requirements in this paper are explicitly connected to each other. Once an
organizational goal is observed not to be fulfilled, such a dissatisfaction is related
directly to a goal for change. In the approach presented in [13] lacks such an explicit
relation between goals and error diagnosis. Furthermore, this paper also introduces an
approach to diagnose whether the whole reorganization process was successful, which
is not the case in [13]. [6] explores dynamic reorganization of agent societies and
focuses on changes to the structure of an organization, this paper presents an approach
that enables such a dynamic reorganization.

 [15] presents an approach which aims to archive adaptive real-time performance
through reorganizations of the society. As a domain of application, production
systems are used throughout that paper. Whereas that paper focuses on adaptive
agents, this paper concentrates on adaptation of an organizational model that abstracts
from agents and specifies elements on the level of roles the agents can fulfill.

The work presented in this paper can also be compared with the work on
institutions as a way to describe multi-agent organizations. In [8] an institution is said
to structure interactions and enforce individual and social behavior by obliging
everybody to act according to norms, and a formalization language is introduced for
such an institution. The approach to use dynamic expressions as a restriction of the
behavior of agents allocated to that role used in this paper is also expressive enough to
describe such norms. For example, in [21] an example of a norms is the following:
“Students are prohibited from sitting the exam if they have not completed the
assignment” . Such a norm can easily be formulated in terms of a dynamic property for
the student role. The approach presented in this paper could therefore also be applied
to institutions and normative organizations. In [2] an adaptation mechanism of norms
is proposed using an evolutionary approach contrary to the pre-specified knowledge
assumed in this paper. Such an evolutionary approach can be incorporated in RQSM
and DODM, allowing them to derive requirements and design objects for certain
environmental conditions and goals without using pre-specified knowledge.

Finally, in the field of coalition formation (see e.g. [19, 24]), the main purpose of
forming a coalition is to perform a task that cannot be performed by a single agent.
That work can be combined with our approach by addressing the problem of the
allocation of agents to roles, after the change of the organizational model by the
approach presented in this paper.

References

[1] Bosse, T., Jonker, C.M., and Treur, J., Analysis of Design Process Dynamics. In: R. Lopez
de Mantaras, L. Saitta (eds.), Proceedings of the 16th European Conference on Artificial
Intelligence, ECAI'04 , 2004, pp. 293-297.

[2] Bou, E., Lopez-Sanchez, M., and Rodriguez-Aguilar, J.A., Self-Configuration in
Automatic Electronic Institutions, In: Coordination, Organization, Institutions and Norms
in Agent Systems (COIN@ECAI 2006), 2006, pp.1-7.

[3] Brazier, F.M.T., Jonker, C.M., and Treur, J., Principles of Component-Based Design of
Intelligent Agents. Data and Knowledge Engineering, vol. 41, 2002, pp. 1-28.

[4] Brazier, F.M.T., Langen, P.H.G. van, and Treur, J., Strategic knowledge in design: a
compositional approach, Knowledge-Based Systems 11:405-415, 1998.

[5] Ciancarini, P., Wooldridge, M. (eds.), Agent-Oriented Software Engineering, Lecture
Notes in Computer Science, vol. 1957, Springer-Verlag, Berlin, 2001.

[6] Dignum, V., Sonenberg, L., Dignum, F., 2004, Dynamic Reorganization of Agent Societies, In:
Proc. of CEAS: Workshop on Coordination in Emergent Agent Societies at ECAI 2004.

[7] Douglas, C., Organization redesign: the current state and projected trends, Management
Decision 37(8), 1999.

[8] Esteva, M., Padget, J., and Sierra, C., Formalizing a language for institutions and norms,
In: Intelligent Agents VIII, Lecture Notes in Artificial Intelligence volume 2333, 2002, pp.
348-366.

[9] Ferber, J. and Gutknecht, O., A meta-model for the analysis and design of organisations in
multi-agent systems. In: Proceedings of the Third International Conference on Multi-
Agent Systems (ICMAS’98), IEEE Computer Society Press, pp. 128-135.

[10] Hannoun, M., Sichman, J.S., Boissier, O., and Sayettat, C., Dependence Relations between
Roles in a Multi-Agent System: Towards the Detection of Inconsistencies in Organization.
In: J.S. Sichman, R. Conte, and N. Gilbert (eds.), Multi-Agent Systems and Agent-Based
Simulation (Proc. of the 1st. Int. Workshop on Multi-Agent Based Simulation, MABS'98),
Lecture Notes in Artificial Intelligence, vol. 1534, Springer-Verlag, 1998, pp. 169-182.

[11] Hannoun, M., Boissier, O., Sichman, J.S., and Sayettat, C., MOISE: An organizational
model for multi-agent systems. In: M. C. Monard and J. S. Sichman (eds.), Advances in
Artificial Intelligence, Lecture Notes in Artificial Intelligence, vol. 1952, Springer-
Verlag, Berlin, 2000, pp. 152-161.

[12] Haroud, D., Boulanger, S., Gelle, E., and Smith, I.F.C., Strategies for conflict management
in preliminary engineering design, In: Proceeding of the AID 1994 Workshop Conflict
Management in Design, 1994.

[13] Horling, B., Benyo, B, and Lesser, V., Using Self-Diagnosis to Adapt Organizational
Structures, In: Muller, J.P., Ander, E., Sen, S., and Frasson, C., Proceedings of the Fifth
International Conference on Autonomous Agents, ACM Press, 2001, pp. 529-536.

[14] Hubner, J.F., Sichman, J.S., and Boissier, O., A Model for the Structural, Functional and
Deontic Specification of Organizations in Multiagent Systems. In: Proc. 16th Brazilian
Symposium on Artificial Intelligence (SBIA'02), Porto de Galinhas, Brasil, 2002.
Extended abstract in: C. Castelfranchi and W.L. Johnson (eds.), Proc. of the First
International Joint Conference on Autonomous Agents and Multi-Agent Systems,
AAMAS'02. ACM Press, 2002, pp. 501-502.

[15] Ishida, T., Yokoo, M., and Gasser, L., An Organizational Approach to Adaptive
Production System, In: Proceedings of the 8th National Conference on Artificial
Intelligence, Boston, USA, 1990, pp. 52-58.

[16] Jaffee, D., Organization Theory: Tension and Change, McGraw-Hill Publishers, New
York, 2001.

[17] Jonker, C.M., Treur, J. Compositional verification of multi-agent systems: a formal
analysis of pro-activeness and reactiveness. Int. J. of Cooperative Information Systems,
vol. 11, 2002, pp. 51-92.

[18] Jonker, C.M., and Treur, J., Relating Structure and Dynamics in an Organisation Model.
In: J.S. Sichman, F. Bousquet, and P. Davidson (eds.), Multi-Agent-Based Simulation II,
Proc. of the Third Int. Workshop on Multi-Agent Based Simulation, MABS'02. Lecture
Notes in AI, vol. 2581, Springer Verlag, 2003, pp. 50-69.

[19] Klusch, M. Gerber, A., Dynamic Coalition Formation among Rational Agents, IEEE
Intelligent Systems 17(3), 2002, pp. 42-47.

[20] Lomi, A., and Larsen, E.R.. Dynamics of Organizations: Computational Modeling and
Organization Theories, AAAI Press, Menlo Park, 2001.

[21] McCallum, M., Vasconcelos, W.W., and Norman, T.J., Verification and Analysis of
Organisational Change. In: Boissier, O., Dignum, V., Matson, E., Sichman, J. (eds.), Proc.
1st OOOP Workshop, 2005, pp. 91-106.

[22] McMillan, K., Symbolic Model Checking: An approach to the state explosion problem, Kluwer
Academic Publishers, 1993.

[23] Rapoport, A., General System Theory, Abacus Press, 1986.
[24] Shehory, O., and Kraus, S., Task allocation via coalition formation among autonomous

agents, In: proceedings of IJCAI 1995, 1995, pp. 655-661.
[25] Womack, J.P., Jones, D.T., and Roos, D., The Machine That Changed The World: The

Story of Lean Production, HarperCollins Publishers, New York, 1991.

