
An Ambient Intelligent Agent with Awareness
of Human Task Execution

Fiemke Both1, Mark Hoogendoorn1, Andy van der Mee2, and Michael de Vos2
1Vrije Universiteit Amsterdam, Department of Artificial Intelligence

De Boelelaan 1081a, 1081 HV Amsterdam, The Netherlands
{fboth, mhoogen}@few.vu.nl

2Force Vision Lab, Barbara Strozzilaan 362a, 1083 HN Amsterdam, The Netherlands
{andy, michael}@forcevisionlab.nl

Abstract

To support human functioning, ambient intelligent
agents require knowledge about the tasks executed by
the human. This knowledge includes design-time
information like: (i) the goal of a task and (ii) the
alternative ways for a human to achieve that goal, as
well as run-time information such as the choices made
by a human during task execution. In order to provide
effective support, the agent must know exactly what
steps the human is following. However, if not all steps
along the path can be observed, it is possible that the
agent cannot uniquely derive which path the human is
following. Furthermore, in order to provide timely
support, the agent must observe, reason, conclude and
support within a limited period of time. To deal with
these problems, this paper presents a focusing
mechanism to guide and accelerate the reasoning
process in concluding the path most likely selected by
the human. This mechanism is based upon knowledge
about the human and the workflow to perform the task.
In order to come to such an approach, a new workflow
representation is introduced. The approach is
evaluated by means of an extensive case study.

1. Introduction

Nowadays, a number of research fields focus on
technology that can support humans in their everyday
activities. These research fields include e.g. Ambient
Intelligence [2;3], Ubiquitous Computing [10], and
Human Aware Computing [7]. The support provided to
the human could for instance take the form of a
personal assistant agent that monitors the activities of
the human and supports the execution thereof when
necessary.

In order for the support during such activities to be
possible, the agent should have a clear view of what the
human is doing at particular time points, and
knowledge of what support could be given. This
information can be derived from knowledge about the
active workflow (or possibly workflows) the human is
currently involved in. Ideally, the agent would be able
to observe all activities of the human, and simply select
the correct path in the workflow. However, not all
activities the human undertakes might be observable, or
the observations could be highly uncertain. Therefore,
many of the available paths in the workflow could still
be possible, resulting in a very complex reasoning task
to monitor the human activities.

In [4] an approach has been proposed that allows an
agent to reason about workflows to monitor the human
activities, and use background knowledge to focus this
reasoning process This focused reasoning is proposed
to avoid an explosion of the complexity of the
reasoning process, there could for instance be loops
within the workflow. What knowledge could be used
for this focusing was however left unattended. [6]
addressed one option to focus the reasoning process,
namely to use the competences of the operator.

In this paper, a more advanced focusing mechanism
is proposed that takes a variety of factors into account,
namely: (1) the structure of the workflow; (2)
competences; (3) previous experiences of the human
with the workflow, and (4) background knowledge
about the tasks in the workflow (e.g. what resources are
needed to perform a task). In order to come to such an
approach, the workflow representation as used in [4;6]
has been extended. Furthermore, a series of rules to
perform the focusing of the reasoning process of the
agent have been identified. These rules have been

specified in such a way, that the approach can easily be
extended with additional information sources.

This paper is organized as follows. In Section 2 the
newly created workflow representation is addressed.
Furthermore, the example used as a case study is
introduced in that section as well. Thereafter, Section 3
briefly shows the reasoning process itself, as taken
from [4]. The focusing mechanism is introduced in
Section 4, and experiments using the focusing
mechanism are presented in Section 5. Section 6
presents related work, and Section 6 concludes the
paper and discusses future work.

2. Workflow Representation

In order to represent the workflow, first of all, a
graphical representation is used to represent the
dependencies between the various states in the
workflow. Thereafter, an ontology is introduced that
specifies additional information about the states within
the workflow.

2.1. Graphical Representation

In the graphical representation of the workflow, states
are represented by means of nodes (i.e. circles), and the
transitions between states by means of arrows. The
nodes within the workflow can be either grey,
representing activities, or white, representing the result
of an activity. The arrows are labeled with the time it
takes to finish the state of the source of the arrow, and
be ready move to the next state. In case a conjunction
of states is required, the arrows are combined using an

arch. Figure 1 shows an example graphical
representation of building a shed.

2.2. Specification of Additional Information

As already stated in the introduction, in order to guide
the reasoning process more effectively, more
information about the states in the workflow is
required. Therefore, an ontology is presented here that
specifies these additional elements. First of all, the
predicates for the representation of the workflow itself
are specified as shown in Table 1.

Table 1. Sorts and predicated for workflow
Sort / Predicate Explanation
STATE An identifier of a state
TIME A time point
DURATION A duration
leads_to_after:
STATE x STATE x
DURATION

The first state specified leads to the
second state in the workflow with a
delay of DURATION

at: STATE x TIME The state occurs at time point TIME
is_activity: STATE A state describing an activity (i.e. a grey

node)

Table 2. Extended workflow representation

Sort / Predicate Explanation
RESOURCE A resource identifier
COMPETENCE_TYPE The type of competence
COMPETENCE_TYPE_LEVEL The level of a certain

competence type, which
can a real number on the
interval [0,1]

COMPETENCE_LEVEL An overall competence
level for a state (i.e.
combining resources with
human competences),
represented by a real

Figure 1. Example workflow: Building a Shed

number on the interval
[0,1]

RESOURCE_CONDITION The condition of the
resource, indicates by a real
number on the interval
[0,1]

requires_competence_type:
RESOURCE x
COMPETENCE_TYPE

A resource requires a
certain competence type in
order to control it.

resulting_competence_level_for:
RESOURCE x
COMPETENCE_TYPE_LEVEL
x RESOURCE_CONDITION x
STATE x
COMPETENCE_LEVEL

Given that the resource can
be controlled, a certain
competence level for the
required competence type
in combination with the
condition of the resource
results in a certain
competence level for a
state.

requires_competence_level:
STATE x
COMPETENCE_LEVEL

A state requires a certain
competence level.

Besides this basic information, additional information
can be specified related to the workflow, as shown in
Table 2. The basic intuition behind the predicates
introduced in the table is the following. First of all, in
order for a human to use a certain resource, he needs to
be able to control it (i.e. have the right competence
type). For instance in the case of building a shed, in
order to hammer a nail into a plank, you need to have
the competence to use a hammer. In case this
competence is indeed present, the resulting
effectiveness of the combination of the resource and
the human for a certain state in the workflow depends
on two factors: (1) the level the human has of the
required competence (e.g. an experienced house
builders versus an incidental house builder), and the
condition of the resource (is the hammer any good).
The resulting competence level can then be matched
with the required competence level of the state. Of
course, a human can also have a competence for a
particular state without using a specific resource.

3. Model-Based Reasoning

Now that it is known how the workflow can be
represented, reasoning methods can be applied. First,
the method without explicit focusing is addressed. This
reasoning mechanism used is taken from [4]. The
mechanism works on the basis of a set of rules about
states within the workflow leading to other states.
Hereby, time is taken as an explicit parameter. A state
holding at a particular time point is represented by
specifying a belief around the workflow representation
shown in Section 2.2: belief(at(state, time)). The same
holds for the specification : belief(leads_to_after(state1,

state2, duration)). Of course, conjunctions and

disjunctions can be represented in the leads_to_after
relationship as well. Using these predicates, reasoning
constructs involving forward and backward reasoning
can be specified. First, the logical format to enable this
reasoning is explained, thereafter some example
reasoning rules are presented.

3.1. LEADSTO language

The rules within the reasoning mechanism are specified
in an executable logical format called LEADSTO [5].
The basic building blocks of this language are causal
relations of the format α →→e, f, g, h β, which means:
 if state property α holds for a certain time interval
 with duration g,
 then after some delay (between e and f) state property β
 will hold for a certain time interval of length h.

where α and β are state properties of the form
‘conjunction of literals’ (where a literal is an atom or
the negation of an atom), and e, f, g, h non-negative real
numbers. The LEADSTO language features a
simulation engine. For more details on the LEADSTO
language, see [5].

3.2. Reasoning Rules

For both forward and backward simulation well-known
reasoning techniques can be applied. Furthermore, the
approach takes a specific focus of the reasoning into
account (of which the mechanism to determine the
precise focus will be addressed in Section 4). An
example of a forward reasoning rule is shown below.
Note that the subscript below the LEADSTO arrow has
been left out, meaning that the standard parameters
0,0,1,1 are used.

P1: Positive forward simulation
If the belief that I holds at T was selected and it is believed that I
leads to J after duration D, and selection criterion s1 holds, then
the belief that J holds after D is selected.

∀I,J:STATE ∀D:DURATION ∀T:TIME
belief(at(I, T)) ∧ belief(leads_to_after(I, J, D)) ∧ in_focus(J)
→→ belief(at(J, T+D))

Of course, more forward reasoning rules exist, see [4]
for more details. For backward reasoning the abduction
principle can be applied:

P2: Positive backward simulation
∀I,J:STATE ∀D:DURATION ∀T:TIME
belief(at(J, T)) ∧ belief(leads_to_after(I, J, D)) ∧ in_focus(I)
→→ belief(at(I, T-D))

The results of applying this rule are not guaranteed to
be correct since there could be multiple leads_to_after
rules that cause J to occur. Again, see [4] for more
details and backward simulation rules.

4. Advanced Focusing Methods

Given that it is possible to reason through the workflow
in a focused manner using the methods specified above,
the focusing itself can be addressed, which is one of the
main contributions of this paper. First, the focusing
mechanism proposed is briefly outlined. Thereafter
more details are given how to calculate the specific
parameters within the focusing mechanism.

4.1. Focusing Algorithm Outline

Given a certain workflow, and certain states that have
been observed within this workflow:

Focusing algorithm
1. Based upon the structure of the workflow, determine the

paths the human could take. Hereby, time is not
considered.

2. Select the paths that are consistent with observed states.
3. From the set of paths that have now been selected

another selection is made based upon softer criteria:
a. The combination of resources used and the

competences of the operator
b. The past paths the operator has taken
Each of these specify the likelihood of the various
paths with a total of 1 for all paths. Combine them
by taking the weighed sum of the softer criteria for
each path, and take the one with the highest value

The result of the algorithm is a ranking of the various
paths that are possible (given the available knowledge).
Thereafter, the most likely path (i.e. the one with the
highest rank) is selected. Upon this path the full
reasoning is performed (following Section 3). Below,
each of the individual elements of the algorithm will be
discussed in more detail.

4.2. Path Generation

The first step is to determine all possible paths. Notice
that in the focusing part of the reasoning, the reasoning
about these paths is relatively lightweight because the
time points within the paths are not considered yet. The
paths are generated using the following set of rules.

P3: Generate initial path
If A is a state, and there does not exist a state B from which A can
be derived, then A is set as an initial path (starting point).

∀A:STATE ∀D:DURATION
state(A) ∧ ¬∃B:STATE leads_to_after(B, A, D)
→→ temporary_path(A)

P4: Build up paths
If P is a temporary path, and the last element is A, and A is known
to lead to B which is not part of P yet, then path P with B added is
a new temporary path.

∀P:PATH A, B:STATE, D:DURATION

temporary_path(P) ∧ last_element_of(P, A) ∧
leads_to_after(A, B, D) ∧ B ∉ P →→ temporary_path(P + B)

P5: Select complete paths
If P is a temporary path, and there does not exist any state B
that can be derived from A (the last element in path P), then
this is a complete path.

∀P:PATH A:STATE D:DURATION
temporary_path(P) ∧ last_element_of(P, A) ∧
¬∃ B:STATE leads_to(A, B) →→ path(P)

The construction described above assumes or type
structures specified in using the leads_to_after rules, and
structures could however easily be incorporated.

4.3. Remove Inconsistent Paths

The next step in the algorithm is to remove the paths
that are inconsistent with the observations from the set
of generated paths. Paths are marked as inconsistent in
case they do not contain a state which has been
observed.

P6: Mark path with lacking observation
In case a state has been observed to have occurred, and this state is
not part of a path, then this part is marked as being inconsistent.

∀A:STATE, ∀T:TIME
path(P) ∧ observation_result(at(A, T), pos) ∧ A ∉ P
→→ inconsistent_path(A)

4.4. Calculate Soft Criteria

Of the remaining (consistent) paths, the soft criteria are
calculated. In order to enable this calculation, certain
information about the human should be known within
the personal assistant. In Table 3, the predicates are
shown of the knowledge the personal assistant has
about the human. Hereby, two are distinguished,
namely the combination of resources and competences,
and the experience paths of the human (note that for the
latter, no separate predicate is introduced). This
information can be learned by the personal agent based
upon experiences, but also based upon background
knowledge about the human (e.g. prior education).

Table 3. Knowledge about the human
Predicate Explanation
human_has_competence_type_for:
COMPETENCE_TYPE x
COMPETENCE_TYPE_LEVEL

A human is known to
have a certain level of
competence for a
particular competence
type.

has_basic_competence_level_for:
TASK x COMPETENCE_LEVEL

A human has a basic
competence level for a
certain task, without
using resources.

Resources combined with competences
The combination of resources that have been observed
being used, and the competences of the human can
deliver a lot of information. Basically, using the
combination it can be calculated at what competence
level the combination is, and what the mismatch of this
level with the required level is.

P7: Calculate competences with resources
If it has been observed that a resource has been used, and the
human has the appropriate competence type for the resource, then
the resulting combination results in a particular competence level
for a state.

∀T:STATE ∀R:RESOURCE, C:COMPETENCE_TYPE,
CTL:COMPETENCE_TYPE_LEVEL,
RC:RESOURCE_CONDITION, CL:COMPETENCE_LEVEL
observation_result(resource_used(R), pos) ∧
requires_competence_type(R, C) ∧
human_has_competence_level_for_type(C, CTL) ∧
resource_condition(R, RC)
resulting_competence_level_for(R, CTL, RC, T, CL)
→→ competence_for(T, CL)

Furthermore, the human might also be able to perform
a certain state without a certain resource.

P8: Basic competence level without resources
If a human has a certain basic competence level for a state, then
this is also the competence of the human for the state.

∀T:STATE, CL: COMPETENCE_LEVEL
has_basic_competence_level_for(T, CL)

→→ competence_for(T, CL)

Thereafter, the value for the competence level for a
state can be determined by combining the levels for all
resources used for that state. Now the deviation from
the required level can be calculated as follows.

�

�

−=

−
=

∀

xpath
x

a
a

taskt
i

a

pathsumprob

pathsumprob
pprobcompetence

tlevelcompetencehighesttlevelcompetencerequires

pathsumprob

_
_

1__

|)(__)(__|

_

Experience paths
Determine for all paths how often the human has taken
at least one of the paths, then for each path determine
the number for that specific path and divide it by the
total number of experiences with the workflow:

eriencesexp_total#

path_eriencesexp#
p_prob_erienceexp a

a =

These two likelihoods can be combined by using a
weighed sum. This way, more criteria can be added
easily and the weights thereof can vary per domain.

likelihood_pa = w1 ⋅ competence_prob_pa +
 w2 ⋅ experience_prob_pa where w1 + w2 = 1

Thereafter, the path with the highest likelihood can
simply be selected.

5. Case Study

In order to show the functioning of the approach, a
number of scenarios have been simulated using the
model described above and the workflow model of
building a shed (see Figure 1). The simulation runs
have been performed using the dedicated LEADSTO
environment [5]. Below, only one simulation run is
shown for the sake of brevity. Figure 2 shows the trace
of this simulation run. The left side of the figure
indicates the atoms that occur over time, whereas the
right sides indicates a timeline where a dark box
indicates that the atom is true, and a grey box indicates
false. Note that the time on the x-axis is the simulation
time which is not related to the time points in the
atoms. In the first scenario, the ambient agent of the
person building a shed has observed that this person
was going to build a shed at time point 6
(observation_result(at(O1, 6))). Using this observation and
knowledge about the competences, resources, and
experiences of the human, the ambient agent can start
reasoning about the most likely path in the workflow.
During the focus generation phase, the agent selects all
four paths based on one belief about state O1. Then,
because no use of resources has been observed, the
basic competences of the activities are used to

Figure 2. Simulation trace

determine the distance from the required competence
levels. In Figure 1, the required, combined, and
differed competence levels are only shown for
activities A1 and A4. Using the formula from section
4.4, the ambient agent can calculate the competence
difference of all paths (p_competence(PATH, P)) Note
that the numbers shown are the values before they have
been subtracted from 1 as specified in the formula in
Section 4.4. This means that the lower the number, the
better this path matches with the required competence.
The same can be done for experience using the formula
for experience in Section 4.4 (p_experience(PATH, P)).
Here, a higher number represents more experience and
thus more likely to be chosen again by the human. The
combined likelihoods for all paths are calculated and
the path with the highest score is selected
(likelihood_path(PATH, L) and path_in_focus(PATH)). The
agent focuses on all states of this path and reasons with
the belief about O1 and the foci. The agent has
determined the most likely path, namely the third path
consisting of buying bricks and building a brick shed.

6. Related Work

For the representation of workflows, a variety of
approaches have been developed, see [1] for a
comparison between several of these approaches. The
approach presented in this paper has been tailored
towards providing information for the reasoning
process, and therefore has a different focus for which it
has been developed, leading to different design
choices. In [9] an approach to recognize plan execution
states is also presented. The current activities of the
human are derived by means of probabilistic methods.
In this paper however, a logical approach is taken. [8]
introduces an approach to focus reasoning processes
using case-based reasoning methods. The paper does
however not use domain knowledge (e.g. resources)
such as done in this paper.

7. Conclusions and Future Work

In this paper, a reasoning method has been presented
that enables an agent to derive what a human is doing.
Having such knowledge allows an agent to support
humans in the best possible way. In order to come to
such an approach, a simple workflow representation
has been introduced, for which reasoning methods have
been used as introduced in [4]. Since the workflows of
a human could potentially consist of a lot of paths, and
not every element in those paths could be observable, a
focusing of this reasoning is needed. Hereby, heuristic
knowledge about the order in which the paths should be

passed can aid to set an appropriate focus. How much
benefit the proposed mechanism brings depends
severely on the workflow at hand, as well as how good
the knowledge is that drives the focusing. Therefore, it
is hard to give theoretical results. The approach
presented in [6] is taken as a basis for the focusing. In
this paper however, the information expressed in the
workflow is into account, as well as the information
about the experiences. Simulation results have shown
that the focusing mechanism indeed functions to derive
what the human is using, and the revision mechanism
does so as well.

In future work, the aim is to evaluate how effective
the reasoning method with the focusing mechanism is
in a practical setting. Furthermore, the focus in this
paper has mainly been on deriving what the human is
doing, and not so much on what support could be
given. This is part of future work as well.

8. References

[1] Aalst, W.M.P. van der, Hofstede, A.H.M. ter,

Kiepuszewski, B., and Barros, A.P., Workflow Patterns.
Distr. and Parallel Databases, vol. 14, 2003, pp. 5-51.

[2] Aarts, E.; Collier, R.; van Loenen, E.; Ruyter, B. de
(eds.). Proceedings of EUSAI 2003. LNCS, vol. 2875.
Springer Verlag, 2003, pp. 432.

[3] Aarts, E., Harwig, R. , and Schuurmans, M., Ambient
Intelligence. In: P. Denning (ed.), The Invisible Future,
McGraw Hill, New York, 2001, pp. 235-250.

[4] Bosse, T., Both, F., Gerritsen, C., Hoogendoorn, M.,
and Treur, J., Model-Based Reasoning Methods within
an Ambient Intelligent Agent Model. In: Constructing
Ambient Intelligence: AmI-07 Workshops Proceedings.
CCIS, vol. 11, Springer Verlag, 2008, pp. 352-370.

[5] Bosse, T., Jonker, C.M., Meij, L. van der, and Treur, J..
A Language and Environment for Analysis of Dynamics
by Simulation. International Journal of Artificial
Intelligence Tools, vol. 16, 2007, pp. 435-464.

[6] Both, F., Hoogendoorn, M., and Treur, J., An Ambient
Agent Model Exploiting Workflow-Based Reasoning to
Recognize Task Progress. In: Proc. of AmI 2008. LNCS,
Springer Verlag, 2008, to appear.

[7] Jaimes, A.; Sebe, N., Gatica-Perez, D. Human-Centered
Computing: A Multimedia Perspective. In: Proc. of the
14th ACM Int. Conf. on Multimedia, ACM Press, 2006,
pp. 855-864

[8] Portinale, L., Torasso, P., Ortalda, C., and Giardino, A.,
Using case-based reasoning to focus model-based
diagnostic problem solving. In: Topics in Case-Based
Reasoning, LNAI 839, 1994, pp. 325 – 337.

[9] Qin, X., and Lee, W., Attack Plan Recognition and
Prediction Using Causal Networks. In: Proc. of the 20th
Conf. on Computer Security Appl., 2004, pp. 370- 379.

[10] Weiser, M., Some computer science issues in ubiquitous
computing. ACM SIGMOBILE Mobile Computing and
Communications Review, vol. 3, 1999, pp. 1559- 1662.

