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Abstract 
 

To support human functioning, ambient intelligent 
agents require knowledge about the tasks executed by 
the human. This knowledge includes design-time 
information like: (i) the goal of a task and (ii) the 
alternative ways for a human to achieve that goal, as 
well as run-time information such as the choices made 
by a human during task execution. In order to provide 
effective support, the agent must know exactly what 
steps the human is following. However, if not all steps 
along the path can be observed, it is possible that the 
agent cannot uniquely derive which path the human is 
following. Furthermore, in order to provide timely 
support, the agent must observe, reason, conclude and 
support within a limited period of time. To deal with 
these problems, this paper presents a focusing 
mechanism to guide and accelerate the reasoning 
process in concluding the path most likely selected by 
the human. This mechanism is based upon knowledge 
about the human and the workflow to perform the task. 
In order to come to such an approach, a new workflow 
representation is introduced. The approach is 
evaluated by means of an extensive case study. 
 

1. Introduction 
    
Nowadays, a number of research fields focus on 
technology that can support humans in their everyday 
activities. These research fields include e.g. Ambient 
Intelligence [2;3], Ubiquitous Computing [10], and 
Human Aware Computing [7]. The support provided to 
the human could for instance take the form of a 
personal assistant agent that monitors the activities of 
the human and supports the execution thereof when 
necessary. 

In order for the support during such activities to be 
possible, the agent should have a clear view of what the 
human is doing at particular time points, and 
knowledge of what support could be given. This 
information can be derived from knowledge about the 
active workflow (or possibly workflows) the human is 
currently involved in. Ideally, the agent would be able 
to observe all activities of the human, and simply select 
the correct path in the workflow. However, not all 
activities the human undertakes might be observable, or 
the observations could be highly uncertain. Therefore, 
many of the available paths in the workflow could still 
be possible, resulting in a very complex reasoning task 
to monitor the human activities. 

In [4] an approach has been proposed that allows an 
agent to reason about workflows to monitor the human 
activities, and use background knowledge to focus this 
reasoning process This focused reasoning is proposed 
to avoid an explosion of the complexity of the 
reasoning process, there could for instance be loops  
within the workflow. What knowledge could be used 
for this focusing was however left unattended. [6] 
addressed one option to focus the reasoning process, 
namely to use the competences of the operator. 

In this paper, a more advanced focusing mechanism 
is proposed that takes a variety of factors into account, 
namely: (1) the structure of the workflow; (2) 
competences; (3) previous experiences of the human 
with the workflow, and (4) background knowledge 
about the tasks in the workflow (e.g. what resources are 
needed to perform a task). In order to come to such an 
approach, the workflow representation  as used in [4;6] 
has been extended. Furthermore, a series of rules to 
perform the focusing of the reasoning process of the 
agent have been identified. These rules have been 



specified in such a way, that the approach can easily be 
extended with additional information sources. 

This paper is organized as follows. In Section 2 the 
newly created workflow representation is addressed. 
Furthermore, the example used as a case study is 
introduced in that section as well. Thereafter, Section 3 
briefly shows the reasoning process itself, as taken 
from [4]. The focusing mechanism is introduced in 
Section 4, and experiments using the focusing 
mechanism are presented in Section 5. Section 6 
presents related work, and Section 6 concludes the 
paper and discusses future work. 
 

2. Workflow Representation 
 
In order to represent the workflow, first of all, a 
graphical representation is used to represent the 
dependencies between the various states in the 
workflow. Thereafter, an ontology is introduced that 
specifies additional information about the states within 
the workflow. 

 
2.1. Graphical Representation 

 
In the graphical representation of the workflow, states 
are represented by means of nodes (i.e. circles), and the 
transitions between states by means of arrows. The 
nodes within the workflow can be either grey, 
representing activities, or white, representing the result 
of an activity. The arrows are labeled with the time it 
takes to finish the state of the source of the arrow, and 
be ready move to the next state. In case a conjunction 
of states is required, the arrows are combined using an 

arch. Figure 1 shows an example graphical 
representation of building a shed. 
 
2.2. Specification of Additional Information 

 
As already stated in the introduction, in order to guide 
the reasoning process more effectively, more 
information about the states in the workflow is 
required. Therefore, an ontology is presented here that 
specifies these additional elements. First of all, the 
predicates for the representation of the workflow itself 
are specified as shown in Table 1. 
  

Table 1. Sorts and predicated for workflow  
Sort / Predicate Explanation 
STATE An identifier of a state 
TIME A time point 
DURATION A duration 
leads_to_after: 
STATE x STATE x 
DURATION 

The first state specified leads to the 
second state in the workflow with a 
delay of DURATION 

at: STATE x TIME The state occurs at time point TIME 
is_activity: STATE A state describing an activity (i.e. a grey 

node) 

 
Table 2. Extended workflow representation 

Sort / Predicate Explanation 
RESOURCE A resource identifier  
COMPETENCE_TYPE The type of competence  
COMPETENCE_TYPE_LEVEL The level of a certain 

competence type, which 
can a real number on the 
interval [0,1] 

COMPETENCE_LEVEL An overall competence 
level for a state (i.e. 
combining resources with 
human competences), 
represented by a real 

Figure 1. Example workflow: Building a Shed 



number on the interval 
[0,1] 

RESOURCE_CONDITION The condition of the 
resource, indicates by a real 
number on the interval 
[0,1] 

requires_competence_type: 
RESOURCE x 
COMPETENCE_TYPE 

A resource requires a 
certain competence type in 
order to control it. 

resulting_competence_level_for: 
RESOURCE x 
COMPETENCE_TYPE_LEVEL 
x  RESOURCE_CONDITION x 
STATE x 
COMPETENCE_LEVEL 

Given that the resource can 
be controlled, a certain 
competence level for the 
required competence type 
in combination with the 
condition of the resource 
results in a certain 
competence level for a 
state. 

requires_competence_level:  
STATE x 
COMPETENCE_LEVEL 

A state requires a certain 
competence level. 

 
Besides this basic information, additional information 
can be specified related to the workflow, as shown in 
Table 2. The basic intuition behind the predicates 
introduced in the table is the following. First of all, in 
order for a human to use a certain resource, he needs to 
be able to control it (i.e. have the right competence 
type). For instance in the case of building a shed, in 
order to hammer a nail into a plank, you need to have 
the competence to use a hammer. In case this 
competence is indeed present, the resulting 
effectiveness of the combination of the resource and 
the human for a certain state in the workflow depends 
on two factors: (1) the level the human has of the 
required competence (e.g. an experienced house 
builders versus an incidental house builder), and the 
condition of the resource (is the hammer any good). 
The resulting competence level can then be matched 
with the required competence level of the state. Of 
course, a human can also have a competence for a 
particular state without using a specific resource. 

 
3. Model-Based Reasoning 
 
Now that it is known how the workflow can be 
represented, reasoning methods can be applied. First, 
the method without explicit focusing is addressed. This 
reasoning mechanism used is taken from [4]. The 
mechanism works on the basis of a set of rules about 
states within the workflow leading to other states. 
Hereby, time is taken as an explicit parameter. A state 
holding at a particular time point is represented by 
specifying a belief around the workflow representation 
shown in Section 2.2: belief(at(state, time)). The same 
holds for the specification : belief(leads_to_after(state1, 

state2, duration)). Of course, conjunctions and 

disjunctions can be represented in the leads_to_after 
relationship as well. Using these predicates, reasoning 
constructs involving forward and backward reasoning 
can be specified. First, the logical format to enable this 
reasoning is explained, thereafter some example 
reasoning rules are presented. 
 
3.1. LEADSTO language 

 
The rules within the reasoning mechanism are specified 
in an executable logical format called LEADSTO [5]. 
The basic building blocks of this language are causal 
relations of the format α →→e, f, g, h β, which means: 
  if state property α holds for a certain time interval 
     with duration g, 
  then   after some delay (between e and f) state property β  
     will hold for a certain time interval of length h. 

where α and β are state properties of the form 
‘conjunction of literals’  (where a literal is an atom or 
the negation of an atom), and e, f, g, h non-negative real 
numbers. The LEADSTO language features a 
simulation engine. For more details on the LEADSTO 
language, see [5]. 

 
3.2. Reasoning Rules 

 
For both forward and backward simulation well-known 
reasoning techniques can be applied. Furthermore, the 
approach takes a specific focus of the reasoning into 
account (of which the mechanism to determine the 
precise focus will be addressed in Section 4). An 
example of a forward reasoning rule is shown below. 
Note that the subscript below the LEADSTO arrow has 
been left out, meaning that the standard parameters 
0,0,1,1 are used. 
 

P1: Positive forward simulation 
If the belief that I holds at T was selected and it is believed that I 
leads to J after duration D, and selection criterion s1 holds, then 
the belief that J holds after D is selected. 

∀I,J:STATE ∀D:DURATION ∀T:TIME 
belief(at(I, T)) ∧ belief(leads_to_after(I, J, D)) ∧ in_focus(J)  
→→   belief(at(J, T+D)) 

 

Of course, more forward reasoning rules exist, see [4] 
for more details. For backward reasoning the abduction 
principle can be applied: 
 

P2: Positive backward simulation 
∀I,J:STATE ∀D:DURATION ∀T:TIME 
belief(at(J, T)) ∧ belief(leads_to_after(I, J, D))  ∧ in_focus(I) 
→→   belief(at(I, T-D)) 

 

The results of applying this rule are not guaranteed to 
be correct since there could be multiple leads_to_after 
rules that cause J to occur. Again, see [4] for more 
details and backward simulation rules. 



4. Advanced Focusing Methods 
 
Given that it is possible to reason through the workflow 
in a focused manner using the methods specified above, 
the focusing itself can be addressed, which is one of the 
main contributions of this paper. First, the focusing 
mechanism proposed is briefly outlined. Thereafter 
more details are given how to calculate the specific 
parameters within the focusing mechanism. 

 
4.1. Focusing Algorithm Outline 

 
Given a certain workflow, and certain states that have 
been observed within this workflow: 
 

Focusing algorithm 
1. Based upon the structure of the workflow, determine the 

paths the human could take. Hereby, time is not 
considered. 

2. Select the paths that are consistent with observed states. 
3. From the set of paths that have now been selected 

another selection is made based upon softer criteria: 
a. The combination of resources used and the 

competences of the operator 
b. The past paths the operator has taken 
Each of these specify the likelihood of the various 
paths with a total of 1 for all paths. Combine them 
by taking the weighed sum of the softer criteria for 
each path, and take the one with the highest value 

 

The result of the algorithm is a ranking of the various 
paths that are possible (given the available knowledge). 
Thereafter, the most likely path (i.e. the one with the 
highest rank) is selected. Upon this path the full 
reasoning is performed (following Section 3). Below, 
each of the individual elements of the algorithm will be 
discussed in more detail. 

 
4.2. Path Generation 

 
The first step is to determine all possible paths. Notice 
that in the focusing part of the reasoning, the reasoning 
about these paths is relatively lightweight because the 
time points within the paths are not considered yet. The 
paths are generated using the following set of rules. 
 

P3: Generate initial path 
If A is a state, and there does not exist a state B from which A can 
be derived, then A is set as an initial path (starting point). 

∀A:STATE ∀D:DURATION 
state(A) ∧ ¬∃B:STATE leads_to_after(B, A, D) 
→→ temporary_path(A) 

 

P4: Build up paths 
If P is a temporary path, and the last element is A, and A is known 
to lead to B which is not part of P yet, then path P with B added is 
a new temporary path. 

∀P:PATH A, B:STATE, D:DURATION 

temporary_path(P) ∧ last_element_of(P, A) ∧  
leads_to_after(A, B, D) ∧ B ∉ P →→ temporary_path(P + B) 

 

P5: Select complete paths 
If P is a temporary path, and there does not exist any state B 
that can be derived from A (the last element in path P), then 
this is a complete path. 

∀P:PATH A:STATE D:DURATION 
temporary_path(P) ∧ last_element_of(P, A) ∧ 
¬∃ B:STATE leads_to(A, B) →→ path(P) 

 

The construction described above assumes or type 
structures specified in using the leads_to_after rules, and 
structures could however easily be incorporated. 

 
4.3. Remove Inconsistent Paths 

 
The next step in the algorithm is to remove the paths 
that are inconsistent with the observations from the set 
of generated paths. Paths are marked as inconsistent in 
case they do not contain a state which has been 
observed. 
 

P6: Mark path with lacking observation 
In case a state has been observed to have occurred, and this state is 
not part of a path, then this part is marked as being inconsistent. 

∀A:STATE, ∀T:TIME 
path(P) ∧ observation_result(at(A, T), pos) ∧ A ∉ P 
→→ inconsistent_path(A) 

 
4.4. Calculate Soft Criteria 

 
Of the remaining (consistent) paths, the soft criteria are 
calculated. In order to enable this calculation, certain 
information about the human should be known within 
the personal assistant. In Table 3, the predicates are 
shown of the knowledge the personal assistant has 
about the human. Hereby, two are distinguished, 
namely the combination of resources and competences, 
and the experience paths of the human (note that for the 
latter, no separate predicate is introduced). This 
information can be learned by the personal agent based 
upon experiences, but also based upon background 
knowledge about the human (e.g. prior education).  
 

Table 3. Knowledge about the human 
Predicate Explanation 
human_has_competence_type_for: 
COMPETENCE_TYPE x 
COMPETENCE_TYPE_LEVEL 

A human is known to 
have a certain level of 
competence for a 
particular competence 
type. 

has_basic_competence_level_for: 
TASK x COMPETENCE_LEVEL 

A human has a basic 
competence level for a 
certain task, without 
using resources. 

 



Resources combined with competences 
The combination of resources that have been observed 
being used, and the competences of the human can 
deliver a lot of information. Basically, using the 
combination it can be calculated at what competence 
level the combination is, and what the mismatch of this 
level with the required level is. 
 

P7: Calculate competences with resources 
If it has been observed that a resource has been used, and the 
human has the appropriate competence type for the resource, then 
the resulting combination results in a particular competence level 
for a state. 

∀T:STATE ∀R:RESOURCE, C:COMPETENCE_TYPE,  
CTL:COMPETENCE_TYPE_LEVEL, 
RC:RESOURCE_CONDITION, CL:COMPETENCE_LEVEL 
observation_result(resource_used(R), pos) ∧  
requires_competence_type(R, C) ∧ 
human_has_competence_level_for_type(C, CTL) ∧ 
resource_condition(R, RC) 
resulting_competence_level_for(R, CTL, RC, T, CL) 
→→ competence_for(T, CL) 
 

Furthermore, the human might also be able to perform 
a certain state without a certain resource. 

 

P8: Basic competence level without resources  
If a human has a certain basic competence level for a state, then 
this is also the competence of the human for the state. 

∀T:STATE, CL: COMPETENCE_LEVEL 
has_basic_competence_level_for(T, CL) 

→→ competence_for(T, CL) 
 

Thereafter, the value for the competence level for a 
state can be determined by combining the levels for all 
resources used for that state. Now the deviation from 
the required level can be calculated as follows.  
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Experience paths 
Determine for all paths how often the human has taken 
at least one of the paths, then for each path determine 
the number for that specific path and divide it by the 
total number of experiences with the workflow: 

eriencesexp_total#

path_eriencesexp#
p_prob_erienceexp a

a =  

 

These two likelihoods can be combined by using a 
weighed sum. This way, more criteria can be added 
easily and the weights thereof can vary per domain. 
 

likelihood_pa = w1 ⋅ competence_prob_pa + 
                          w2 ⋅ experience_prob_pa where w1 + w2 = 1 
 

Thereafter, the path with the highest likelihood can 
simply be selected. 

5. Case Study 
 
In order to show the functioning of the approach, a 
number of scenarios have been simulated using the 
model described above and the workflow model of 
building a shed (see Figure 1). The simulation runs 
have been performed using the dedicated LEADSTO 
environment [5]. Below, only one simulation run is 
shown for the sake of brevity. Figure 2 shows the trace 
of this simulation run. The left side of the figure 
indicates the atoms that occur over time, whereas the 
right sides indicates a timeline where a dark box 
indicates that the atom is true, and a grey box indicates 
false. Note that the time on the x-axis is the simulation 
time which is not related to the time points in the 
atoms. In the first scenario, the ambient agent of the 
person building a shed has observed that this person 
was going to build a shed at time point 6 
(observation_result(at(O1, 6))). Using this observation and 
knowledge about the competences, resources, and 
experiences of the human, the ambient agent can start 
reasoning about the most likely path in the workflow. 
During the focus generation phase, the agent selects all 
four paths based on one belief about state O1. Then, 
because no use of resources has been observed, the 
basic competences of the activities are used to 

Figure 2. Simulation trace  
 



determine the distance from the required competence 
levels. In Figure 1, the required, combined, and 
differed competence levels are only shown for 
activities A1 and A4. Using the formula from section 
4.4, the ambient agent can calculate the competence 
difference of all paths (p_competence(PATH, P)) Note 
that the numbers shown are the values before they have 
been subtracted from 1 as specified in the formula in 
Section 4.4. This means that the lower the number, the 
better this path matches with the required competence. 
The same can be done for experience using the formula 
for experience in Section 4.4 (p_experience(PATH, P)). 
Here, a higher number represents more experience and 
thus more likely to be chosen again by the human. The 
combined likelihoods for all paths are calculated and 
the path with the highest score is selected 
(likelihood_path(PATH, L) and path_in_focus(PATH)). The 
agent focuses on all states of this path and reasons with 
the belief about O1 and the foci. The agent has 
determined the most likely path, namely the third path 
consisting of buying bricks and building a brick shed. 
 

6. Related Work 
 
For the representation of workflows, a variety of 
approaches have been developed, see [1] for a 
comparison between several of these approaches. The 
approach presented in this paper has been tailored 
towards providing information for the reasoning 
process, and therefore has a different focus for which it 
has been developed, leading to different design 
choices. In [9] an approach to recognize plan execution 
states is also presented. The current activities of the 
human are derived by means of probabilistic methods. 
In  this paper however, a logical approach is taken. [8] 
introduces an approach to focus reasoning processes 
using case-based reasoning methods. The paper does 
however not use domain knowledge (e.g. resources) 
such as done in this paper. 
 
7. Conclusions and Future Work 
 
In this paper, a reasoning method has been presented 
that enables an agent to derive what a human is doing. 
Having such knowledge allows an agent to support 
humans in the best possible way. In order to come to 
such an approach, a simple workflow representation 
has been introduced, for which reasoning methods have 
been used as introduced in [4]. Since the workflows of 
a human could potentially consist of a lot of paths, and 
not every element in those paths could be observable, a 
focusing of this reasoning is needed. Hereby, heuristic 
knowledge about the order in which the paths should be 

passed can aid to set an appropriate focus. How much 
benefit the proposed mechanism brings depends 
severely on the workflow at hand, as well as how good 
the knowledge is that drives the focusing. Therefore, it 
is hard to give theoretical results. The approach 
presented in [6] is taken as a basis for the focusing. In 
this paper however, the information expressed in the 
workflow is into account, as well as the information 
about the experiences. Simulation results have shown 
that the focusing mechanism indeed functions to derive 
what the human is using, and the revision mechanism 
does so as well. 

In future work, the aim is to evaluate how effective 
the reasoning method with the focusing mechanism is 
in a practical setting. Furthermore, the focus in this 
paper has mainly been on deriving what the human is 
doing, and not so much on what support could be 
given. This is part of future work as well. 
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