
A Formal Empirical Analysis Method for Human Reasoning and Interpretation 
 

Tibor Bosse1, Mark Hoogendoorn1, Catholijn M. Jonker2, and Jan Treur1 

 
1Vrije Universiteit Amsterdam, Department of Artificial Intelligence, De Boelelaan 1081a, 

1081 HV Amsterdam, The Netherlands, { tbosse, mhoogen, treur} @cs.vu.nl 
 

2Delft University of Technology, Department of Mediametics, Mekelweg 4,  
2628 CD Delft, The Netherlands, catholijn@mmi.tudelft.nl 

 
 
 

Abstract 

The study of human reasoning often concentrates on 
reasoning from an already assumed interpretation of the 
world, thereby neglecting reasoning towards an interpretation. 
In recent literature within Cognitive Science, means taken 
from the area of nonmonotonic logic are proposed to analyze 
the latter aspect of human reasoning. In this paper this claim 
is further worked out and tested against empirical material of 
human reasoning during critical situations (incident 
management). Empirical and simulated reasoning traces have 
been analyzed by comparing them and by automatically 
checking properties on them. 

Introduction 
In recent years, from the area of Cognitive Science, there is 
an increasing interest in tools originating from the area of 
nonmonotonic reasoning. In (Stenning and van Lambalgen, 
2006) it is shown how the empirical study of human 
reasoning processes has been too much dominated by an 
emphasis on classical, deductive logic. This applies equally 
well to the socalled rule-based or syntactic stream (e.g., 
Braine and O’Brien, 1998; Rips, 1994), as to the model-
based or semantic stream (e.g., Johnson-Laird, 1983; 
Johnson-Laird and Byrne, 1991). In their analysis of human 
reasoning they claim that much more important than the 
question whether reasoning should be considered from a 
syntactical or semantical perspective, is the distinction 
between: a) reasoning towards an interpretation, and b) 
reasoning from an interpretation. The latter type of 
reasoning is reasoning within an already unambiguously 
determined formalized frame, and can be analyzed by means 
of classical logic. The first type of reasoning, however, still 
has to find such a frame and has to deal with ambiguities 
and multiple interpretation possibilities, and does not have a 
unique outcome. It is at this point that they propose 
nonmonotonic logic as a more adequate analysis tool for 
human reasoning processes. Within nonmonotonic logic it is 
possible to formalize reasoning processes that deal with 
multiple possible outcomes, which can be used to model 
different possibilities of interpretation; see (Engelfriet and 
Treur, 2003) for a similar perspective. Thus, from an 
empirical angle, within the area of human reasoning within 
Cognitive Science, a new, more empirical perspective was 
introduced to study nonmonotonic reasoning processes. 

The current paper reports research to further work out and 
test this empirical perspective in the context of incident 

management. Detailed reports are available that describe 
what went wrong in the management of well-known 
disasters, see, e.g., (Ministry of the Interior, 1996). These 
reports provide empirical data showing how humans reason 
under the pressure of a critical situation. Cases taken from 
them form the basis of the research reported in this paper to 
further detail and illustrate the use of the Stenning-van 
Lambalgen perspective on reasoning and interpreting. The 
leading example is an airplane crash.  

In the next section, the aircrash example is presented. 
Thereafter, an abstract formalization of a reasoning process 
leading to multiple interpretations is specified, followed by 
a section showing how Default Logic can be used to specify 
such processes. To obtain simulation of such reasoning, 
variants of Default Logic are considered in which control 
decisions can be represented. To this end, a temporalized 
form of Default Logic is chosen to simulate the possible 
reasoning traces for the case study. Moreover, a number of 
properties of such reasoning traces are formalized and 
checked. Finally, the last section presents the conclusions. 

The Incident Management Domain 
Within incident management people are working under 
severe pressure; having incomplete information, decisions 
have to be made quickly, which can have a huge impact on 
the success of the whole operation. This paper focuses on 
one example: that of the Hercules airplane crash at the 
military airport of Eindhoven in the Netherlands (Ministry 
of the Interior, 1996). This example is taken because it is 
representative for the occurrences in incident management. 
The plane, carrying a military brass band in the cargo room 
and a crew of four people, flew into a flock of birds just 
before landing, causing one of the engines to fail, which 
made the plane tilt to one side. As a result, the plane crashed 
on the runway and caught fire. The Air Traffic Controller 
(ATC) had information that a military brass band was on 
board of the plane. Afterwards he claimed to have informed 
the alarm centre operator of this fact, who in turn stated 
never to have received the information. As a result, the 
operator did inform fire fighters, but declared the wrong 
scenario (i.e., for merely the crew on board). After the fire 
fighting forces had arrived at the scene, one of them 
contacted the air traffic controller, asking how many people 
were on board of the plane. Since the air traffic controller 
assumed that the message of a military brass band being on 



board had been passed through to the fire fighters, he 
answered that this was unknown, interpreting the question 
as a request for the exact amount of people on board. The 
fire fighter therefore assumed that only the crew was on 
board, thus the brass band was not rescued. 

Multiple Interpretations 
Reasoning towards an interpretation can be formalized at an 
abstract generic level as follows. A particular interpretation 
for a given set of formulae considered as input information 
for the reasoning, is formalized as another set of formulae, 
that in one way or the other is derivable from the input 
information (output of the reasoning towards an 
interpretation).  In general there are multiple possible 
outcomes. The collection of all possible interpretations 
derivable from a given set of formulae as input information 
(i.e., the output of the reasoning towards an interpretation) is 
formalized as a collection of different sets of formulae. A 
formalization describing the relation between such input and 
output information is described at an abstract level by a 
multi-interpretation operator. The input information is 
described by propositional formulae in a propositional 
language L1. An interpretation is a set of propositional 
formulae, based on a propositional language  L2.  

Definition 1  (Multi-Interpretation Operator) 
a)  A multi-interpretation operator MI with input language 
L1 and output language L2 is a function MI : P(L1) →→→→ 
P(P(L2))  that assigns to each set of input facts in L1 a set of 
sets of formulae in L2. 
b) A multi-interpretation operator MI is non-inclusive  if for 
all X ⊆ L1 and  S, T ∈ MI(X), if S ⊆ T  then  S = T.  
c)  If L1 ⊆    L2, then a multi-interpretation operator  MI  is 
conservative if for all X ⊆ L1, T ∈∈∈∈ MI(X) it holds X ⊆ T.  
 

The condition of non-inclusiveness guarantees a relative 
maximality of the possible interpretations. Note that when 
MI(X) has exactly one element, this means that the set X ⊆ 
L1 has a unique interpretation under MI. The notion of 
multi-interpretation operator is a generalization of the notion 
of a nonmonotonic belief set operator, as introduced in 
(Engelfriet, Herre, and Treur, 1998). The generalization was 
introduced and applied to approximate classification in 
(Engelfriet and Treur, 2003). A reasoner may explore a 
number of possible interpretations, but often, at some point 
in time a reasoner will focus on one (or possibly a small 
subset) of the interpretations. This selection process is 
formalized as follows (see Engelfriet and Treur, 2003). 

Definition 2  (Selection Operator) 
a)  A selection  operator  s  is a function s : P(P(L)) → 
P(P(L))  that assigns to each nonempty set of interpretations 
a nonempty subset: for all A with φ ≠ A ⊆⊆⊆⊆ P(L) it holds φ ≠ 
s(A) ⊆⊆⊆⊆ A. A selection operator s is single-valued if for all 
non-empty  A  the set  s(A) contains exactly one element. 
b) A selective interpretation operator for the multi-
interpretation operator  MI  is a function C : P(L1) → P(L2)  
that assigns one interpretation to each set of initial facts: for 
all X ⊆⊆⊆⊆ L1 it holds  C(X) ∈∈∈∈ MI(X). 
 

It is straightforward to check that if s : P(P(L1)) → P(P(L2)) 
is a single-valued selection operator, then a selective 
interpretation operator  C  for multi-interpretation operator  
MI  can be defined by the composition of MI and s, i.e., by 
setting C(X) = s(MI(X))  for all  X ⊆⊆⊆⊆ L1.  

In this section some interpretations that play a role in the 
analysis of the plane crash accident are taken as the leading 
example. The part chosen focuses on the ATC and its 
interaction to the operator. This information was derived 
based on training material, see (NIBRA, 2001). An issue is 
the difference in opinion as to whether or not the ATC 
communicated to the operator that there are more than 25 
people on board. Initial observations of the ATC are: 

observation(plane_crash, pos), observation(cargo_plane, pos), 
observation(passengers_on_board, pos). 

Note that the sign ‘pos’  indicates that the element has been 
observed as being true, whereas a ‘neg’  indicates it is 
observed to be false. Focusing on the ATC, the analysis 
results in two interpretations that differ only in the 
communication to the operator, formalized as follows: 
 

Common part of the interpretations 
observation(passengers_on_board,pos) 
observation(cargo_plane,pos) 
observation(plane_crash,pos) 
belief(plane_crash_occurred,pos)  
belief(passenger_count(more_than_25),pos) 
not belief(passenger_count(maximum_4),pos) 
not belief(passenger_count(unknown),pos) 
action(communicate_to(plane_crash,operator),pos) 
action(communicate_to(call_backup_via_06_11,operator),pos) 

 

Interpretation 1: common part + 
action(communicate_to(passenger_count(more_than_25),operator),pos) 
not action(communicate_to(passenger_count(maximum_4),operator),pos)  
not action(communicate_to(passenger_count(unknown),operator),pos)  

 

Interpretation 2: common part + 
not action(communicate_to(passenger_count(more_than_25),operator),pos) 
not action(communicate_to(passenger_count(maximum_4),operator),pos) 
not action(communicate_to(passenger_count(unknown),operator),pos) 
 

Fig. 1 provides an overview of ATC’s first decision making. 
It shows the world state at time 0, W0, and as a consequence 
of the communication to the operator, W1 and W2, which 
correspond with the two interpretations above. A difference 
is made between the observation (O0), the internal repre-
sentation made from that (I0), and the interpretation of the 
situation in terms of actions to take (pi0 and pi1). There are 
two moments of interpretation: from observations to internal 
representation, and from internal representation to actions. 

 
Figure 1.  Reasoning Traces based on Interpretations  



Representing Interpretation in Default Logic 
The representation problem for a nonmonotonic logic is the 
question whether a given set of possible outcomes of a 
reasoning process can be represented by a theory in this 
logic. More specifically, representation theory indicates 
what are criteria for a set of possible outcomes, for example, 
given by a collection of deductively closed sets of formulae, 
so that this collection can occur as the set of outcomes for a 
theory in this nonmonotonic logic. In (Marek, Treur and 
Truszczynski, 1997) the representation problem is solved 
for default logic, for the finite case. Given this context, in 
the current paper Default Logic is chosen to represent 
interpretation processes. For the empirical material 
analyzed, default theories have been specified such that their 
extensions are the possible interpretations. 

A default theory is a pair ����D, W����. Here W is a finite set of 
logical formulae (called the background theory) that 
formalize the facts that are known for sure, and D is a set of 
default rules. A default rule has the form: αααα: ββββ1, .., ββββn / γγγγ. 
Here αααα is the precondition, it has to be satisfied before 
considering to believe the conclusion γγγγ, where the ββββs, called 
the justifications, have to be consistent with the derived 
information and W. As a result γγγγ might be believed and 
more default rules can be applied. However, the end result 
(when no more default rules can be applied) still has to be 
consistent with the justifications of all applied default rules. 
For convenience we only consider n = 1. Moreover, in the 
examples, normal default theories will be used: based on 
defaults of the form αααα: ββββ / ββββ. For more details on Default 
Logic, such as the notion of extension, see, e.g., (Reiter, 
1980; Marek and Truszczynski, 1993). For the possible 
interpretations presented in the previous section, the 
following Default Theory has been specified.  
 

Set of defaults D 
{observation(plane_crash, pos) : belief(plane_crash_occurred, pos) / 
 belief(plane_crash, pos) } 
{observation(plane_crash, pos) ∧ observation(cargo_plane, pos) ∧ 
  observation(passengers_on_board, pos) : 
 belief(passenger_count(more_than_25), pos) / 
 belief(passenger_count(more_than_25), pos) } 
{observation(plane_crash, pos) ∧ observation(cargo_plane, pos) ∧ 
  ¬observation(passengers_on_board, pos) : 
 belief(passenger_count (maximum_4), pos) / 
 belief(passenger_count (maximum_4), pos) } 
{observation(plane_crash, pos) ∧ observation(cargo_plane, pos) ∧ \ 
  ¬observation(passengers_on_board, pos) : 
 belief(passenger_count (unknown), pos) / 
 belief(passenger_count (unknown), pos) } 
{belief(plane_crash_occurred, pos) : 
 action(communicate_to(plane_crash, operator), pos) / 
 action(communicate_to(plane_crash, operator), pos) } 
{belief(plane_crash_occurred, pos) ∧ 
 belief(passenger_count(PN:PASSENGER_NUMBER), pos) : 
 action(communicate_to(passenger_count(PN:PASSENGER_NUMBER), operator), pos) / 
 action(communicate_to(passenger_count(PN:PASSENGER_NUMBER), operator), pos) } 
{belief(plane_crash_occurred, pos) : 
 ¬action(communicate_to(passenger_count(PN:PASSENGER_NUMBER), operator), pos) / 
 ¬action(communicate_to(passenger_count(PN:PASSENGER_NUMBER), operator), pos)} 
{belief(plane_crash_occurred, pos) ∧ belief(passenger_count(more_than_25), pos) : 
 action(communicate_to(call_backup_via_06-11, operator), pos) /   
 action(communicate_to(call_backup_via_06-11, operator), pos) } 
 

Background theory W 
observation(plane_crash, pos). 
observation(cargo_plane, pos). 
observation(passengers_on_board, pos). 
belief(passenger_count (unknown), pos) → 
  ¬belief(passenger_count (maximum_4), pos) ∧ 
  ¬belief(passenger_count(more_than_25), pos) 
belief(passenger_count (maximum_4), pos) → 
 ¬belief(passenger_count (unknown), pos) ∧ 
 ¬belief(passenger_count(more_than_25), pos) 
belief(passenger_count (more_than_25), pos) → 

 ¬belief(passenger_count (unknown), pos) ∧ 
 ¬belief(passenger_count(maximum_4), pos) 
action(communicate_to(passenger_count (unknown), operator), pos) → 
 ¬action(communicate_to(passenger_count (maximum_4), operator), pos) ∧  
 ¬action(communicate_to(passenger_count(more_than_25), operator), pos) 
action(communicate_to(passenger_count (maximum_4), operator), pos) →  
 ¬action(communicate_to(passenger_count (unknown) , operator), pos) ∧  
 ¬action(communicate_to(passenger_count(more_than_25), operator), pos) 
action(communicate_to(passenger_count (more_than_25), operator), pos) →  
 ¬action(communicate_to(passenger_count (unknown), operator), pos) ∧  
 ¬action(communicate_to(passenger_count(maximum_4), operator), pos) 

Simulation by Temporalized Default Rules 
In this section, a generic simulation model for default 
reasoning is specified (based on the executable temporal 
LEADSTO language; cf. Bosse et al., 2005), and applied to 
the case study. As discussed in the section regarding 
multiple interpretations, to formalise one reasoning trace in 
a multiple interpretation situation, a certain selection has to 
be made, based on control knowledge which serves as a 
parameter for the interpretation to be achieved. Variants of 
Default Logic in which this can be expressed are 
Constructive Default Logic (Tan and Treur, 1992) and 
Prioritized Default Logic (Brewka, 1994; Brewka and Eiter, 
1999). A Prioritized Default Theory is a triple ����D,W, <����, 
where ����D,W���� is a Default Theory and < is a strict partial 
order on D. Constructive Default Logic, see (Tan and Treur, 
1992), is a Default Logic in which selection functions are 
used to control the reasoning process. Selection functions 
take the set of consequents of possibly applicable defaults 
and select one or a subset of them. A selection function can 
represent one of the different ways to reason from the same 
set of defaults, and thus serves as a parameter for different 
reasoning traces (achieving different interpretations). This 
knowledge determines a selection operator (see the section 
on multiple interpretations). 

The generic simulation model for default reasoning 
described below is an executable temporal logical 
formalization of Constructive Default Logic, based on the 
temporal perspective on default and nonmonotonic 
reasoning as developed in (Engelfriet and Treur, 1998).  The 
input of the model is (1) a set of normal default rules, (2) 
initial information, and (3) knowledge about the selection of 
conclusions of possibly applicable rules. The output is a 
trace which describes the dynamics of the reasoning process 
over time. Globally, the model can be described by a 
generate-select mechanism: first all possible (default) 
assumptions (i.e., candidate conclusions) are generated, then 
one conclusion is selected, based on selection knowledge. 
Such selection knowledge could, e.g., also reflect the 
probability of particular occurrences. After selection, the 
reasoning process is repeated. In the LEADSTO language, 
the generic default reasoning model can be described by the 
following local dynamic properties (LPs): 

 

LP1  Candidate Generation 
If I have derived (x,s1), and I have a default rule that allows me to assume (y,s2), and 
I do not have any information about the truth of y yet, then (y,s2) will be considered a 
possible assumption. 
∀x,y:info_element ∀s1,s2:sign 
   derived(x, s1) ∧ default_rule(x, s1, y, s2, y, s2)  ∧  not derived(y, pos)  ∧  
   not derived(y, neg) →→  possible_assumption(y, s2)  
 

Note that the sort sign consists of the elements pos and neg.  
 

LP2  Candidate Comparison 
Each possible assumption is a better (or equally good) candidate than itself. 



∀x:info_element ∀s:sign 
   possible_assumption(x, s) →→ better_candidate_than(x, s, x, s)  
 

If (x,s1) is a possible assumption, and (y,s2) is no possible assumption, then (x,s1) is a 
better candidate than (y,s2). 
∀x,y:info_element ∀s1,s2:sign 
   possible_assumption(x, s1) ∧ not possible_assumption(y, s2) →→  
   better_candidate_than(x, s1, y, s2)  
 

If (x,s1) is a possible assumption, and (y,s2) is a possible assumption, and it is known 
that deriving (x,s1) has priority over deriving (y,s2), then (x,s1) is a better candidate 
than (y,s2). 
∀x,y:info_element ∀s1,s2:sign 
   possible_assumption(x, s1)  ∧  possible_assumption(y, s2)  ∧ 
   priority_over(x, s1, y, s2) →→ better_candidate_than(x, s1, y, s2) 
 

LP3 Candidate Selection 
If (x,s1) is a possible assumption, and it is the best candidate among all possible 
assumptions, then it will be derived. 
∀x:info_element ∀s1:sign 
   possible_assumption(x, s1) ∧ [∀y:info_element ���� ∀s2:sign 
   better_candidate_than(x, s1, y, s2) ] →→ derived(x, s1)  
 

LP4  Persistence 
If (x,s) is derived, then this will remain derived. 
∀x:info_element ∀s:sign 
   derived(x, s) →→ derived(x, s) 

 

The generic default reasoning model described has been 
used to simulate the reasoning process as performed by the 
Air Traffic Controller in the Hercules disaster (see the 
section explaining the domain). An example simulation 
trace is shown in Figure 2. In this figure, time is on the 
horizontal axis, and different states are on the vertical axis. 
A dark box on top of a line indicates that a state property is 
true; a light bow below a line indicates that it is false. As 
shown in Figure 2, there are initially three important aspects 
of the world: the fact that there is a plane crash, that it 
involves a cargo plane, and that there are passengers on 
board. At time point 1, the ATC correctly observes these 
three information elements. Next, he starts the interpretation 
process: according to his default rules, he generates two 
possible assumptions: there is a plane crash, and the 
passenger count is over 25. Based on his selection 
knowledge, first the former assumption is derived (time 
point 4: derived(belief(plane_crash, pos), pos)). As the latter possible 
assumption does not conflict with the former, the possible 
assumption that the passenger count is over 25 is derived as 
well (see time point 11). Next, the ATC generates four 

possible assumptions on actions: (1) communicating that 
there is a plane crash, (2) communicating that the 
emergency number 06-11 should be called, (3) 
communicating that the passenger count is over 25, and (4) 
not communicating that the passenger count is over 25. The 
first two possible actions are translated to actions; after that, 
the ATC selects the conclusion not communicating the 
passenger count over the conclusion for communicating the 
passenger count; thus, this information does not reach the 
operator.  

It is important to note that the trace shown in Figure 2 
corresponds to one possible course of affairs. This means 
that it corresponds to one path through Figure 1, which is in 
this case the path W0 - O0 - I0 - pi1 - W2. In default reasoning 
terms, the trace eventually results in one extension for the 
set of default rules shown in the section regarding multiple 
interpretations. By changing the selection knowledge, 
different extensions are generated. Although in this paper 
only one partial example is shown (due to space 
limitations), the complete reasoning processes of four 
different parties involved in the Hercules disaster have been 
modeled. Moreover, for all of these reasoning processes, all 
different settings of selection knowledge have 
systematically been selected. This way, a large number of 
traces have been generated, which together cover all 
possible reasoning traces based on multiple interpretations 
for this domain, including the (non-optimal) ones reported 
in the empirical material. 

Verification of Properties for Traces 
This section addresses the automated verification of 
properties against two types of traces. First of all, traces that 
include full information are addressed. In these traces, the 
interpretation of the particular agent under analysis is 
available as well as the observations and actions performed 
by the agent. The second type of trace addressed is a trace 
merely consisting of the external information (i.e. 
observations and actions). Note that all of these properties 
are specified independent of the specific case study, and can 
therefore easily be reused. 

Analysis of Complete Traces 
Verification of a simulated or empirical default reasoning 
trace including complete information can address a number 
of aspects. First it can address whether all conclusions in the 
trace are grounded by justified application of default rules. 
Next it can be verified whether the process has been 
exhaustive, i.e., whether for all applicable default rules the 
conclusion occurs. These properties have been given a 
temporal form (in the spirit of Engelfriet and Treur, 1998), 
and specified in the temporal predicate logical language 
TTL cf. (Bosse et al., 2006). All of these properties have 
been checked automatically and shown to be satisfied for 
traces as the one presented in Figure 2, using the TTL 
Checker environment. 
 

groundedness(γγγγ:TRACE): 
∀t:TIME, i:info_element, s:sign 
[state(γ, t) |= derived(i, s) �   grounded (γ,i,s,t) ] 

 Figure 2. Simulation trace of the reasoning of the ATC 



grounded(γγγγ:TRACE, i:info_element, s:sign, t:TIME): 
[follows_from_default(γ,i,s,t) ∨  follows_from_strict_constraint(γ,i,s,t) ∨ 
 world_fact(γ,i,s,t)] 

 

world_fact(γγγγ:TRACE, i:info_element, s:sign, t:TIME): 
∃t2:TIME < t  state(γ, t2) |= world_state(i, s) 

 

follows_from_strict_constraint(γγγγ:TRACE, i:info_element, s:sign, t:TIME): 
∃C:CONJUNCTION, t2:TIME < t   [ state(γ, t2) |= strict_constraint(C, i, s) & 
∀i2:info_element,s2:sign [ element_of(i2, s2, C) � 
                                            state(γ, t2) |= derived(i2, s2) ] ] 

 

Note that elements of the sort CONJUNCTION refer to 
conjunctions of <info_element, sign> pairs.  
 

follows_from_default(γγγγ:TRACE, i:info_element, s:sign, t:TIME): 
∃t2:TIME < t, C:CONJUNCTION 
[state(γ, t2) |= default_rule(C, i, s, i, s) & ∀i1:info_element,s1:sign  
   [ element_of(i1, s1, C) �  state(γ, t2) |= derived(i1, s1) ] 
  & ∀t3≥t ∀s’≠ s  not state(γ, t3) |= derived(i, s’) 

 

consistency(γγγγ:TRACE): 
∀i:info_element, s:sign, t:TIME 
[ state(γ,t) |= derived(i, s) � 
 ¬∃t2:TIME, s2:sign [s ≠ s2 & state(γ,t2) |= derived(i, s2)] ] 

 

exhaustiveness(γγγγ:TRACE): 
∀t:TIME, i:info_element, s:sign, C:CONJUNCTION 
[state(γ, t) |= default_rule(C, i, s, i, s) & 
 ∀i2:info_element,s2:sign [ element_of(i2, s2, C) � 
                                            state(γ, t) |= derived(i2, s2) ] & 
 ¬∃t2:TIME, s3:sign [s ≠ s3 & state(γ, t2) |= derived(i, s3)] 
 � ∃t3:TIME [state(γ, t3) |= derived(i, s)]  

 

derived_persistency(γγγγ:TRACE): 
∀t1, t2 [ state(γ, t1) |= derived(i, s) & t1<t2 � state(γ, t2) |= derived(i, s) ] 

 

These verification properties assume that all information is 
fully available, including the interpretation that has been 
derived. In empirical traces however, such information 
might not be present. Such information could be obtained by 
interviews and added to the traces, but this does not always 
give an adequate representation of reality, since people tend 
to avoid admitting mistakes in incident management. The 
following section shows how properties can be verified for 
empirical traces, without having knowledge on the 
interpretation. In addition, it specifies properties on 
correctness of interpretation based upon selection of the 
most specific default rule. 

Analysis of Externally Observable Traces 
In this section verification properties are specified assuming 
traces that merely consist of the observations received by 
the agent, and the actions that have been performed by the 
agent. Note that conflicting observations at the same time 
point are not allowed. Several different properties are 
identified. First of all, a derivable interpretation is defined, 
which is simply an interpretation that can be derived based 
upon the observations received, and a default rule: 
 

derivable_int(γγγγ:TRACE, t:TIME, C:CONJUNCTION, i:info_element, s:sign): 
   state(γ, t) |= default_rule(C, i, s, i, s) & ∀i2:info_element, s2:sign 
     [ element_of(i2, s2, C) �  ∃t’:TIME ≤ t 
         [ state(γ, t’) |= observation(i2, s2) & ¬[∃s3:SIGN, t’’:TIME ≤ t & t’’ ≥ t’ 
            [ state(γ, t’’) |= observation(i2, s3) & s2 ≠ s3 ] ] ] ] 
 

An interpretation is considered to be correct if it follows 
from the most specific default rule that can be applied: 
 

most_specific_int(γγγγ:TRACE, t:TIME, i:info_element, s:sign): 
∃C:CONJUNCTION  [ derivable_int(γ, t, C, i, s) & 
   ∀C2:CONJUNCTION ≠ C, s2:SIGN 
        [ derivable_int(γ, t, C2, i, s2) & s ≠ s2 �  size(C2) < size(C) ] ] 
 

Based upon such most specific interpretations, actions to be 

performed can be derived: 
 

derivable_ac(γγγγ:TRACE, t:TIME, C:CONJUNCTION, i:info_element, s:sign): 
   state(γ, t) |= default_rule(C, i, s, i, s) & ∀i2:info_element, s2:sign 
     [ element_of(i2, s2, C) � most_specific_int(γ, t, i2, s2) ] 
 

An action is considered to be correct in case it follows from 
the most specific default rule that is applicable: 
 

most_spec_ac(γγγγ:TRACE, t:TIME, i:info_element, s:sign): 
∃C:CONJUNCTION 
   [ derivable_ac(γ, t, C, i, s) & ∀C2:CONJUNCTION ≠ C, s2:SIGN 
        [ derivable_ac(γ, t, C2, i, s2) & s ≠ s2 � size(C2) < size(C) ] ] 
 

Given the fact that it can now be derived what the correct 
actions are, properties can be verified against empirical 
traces to investigate the performance shown in that 
empirical trace. A first property which can be verified is 
whether the correct actions have been performed in the 
empirical trace without taking too much time to start the 
performance of this action (i.e. within duration d): 
 

correct_action(γγγγ:TRACE, t:TIME, i:info_element, s:sign, d): 
 [ most_spec_ac(γ, t, i, s) & 
  [ ¬∃t’:TIME < t  most_spec_ac(γ, t’, i, s) ] & 
  [ ¬∃t’’:TIME > t & t’’ < t + d  ¬most_spec_ac(γ, t’’, i, s) ] ] 
  � ∃t’’’:TIME ≥ t & t’’’≤ t + d [ state(γ, t’’’) |= world_state(i, s) ] 
 

Of course, things do not necessarily run so smoothly, 
therefore, detection of errors is of crucial importance. An 
error first of all occurs when an action is not performed that 
should have been performed according to the correct 
interpretation: 
 

missing_action(γγγγ:TRACE, t:TIME, i:info_element, s:sign, d): 
 most_spec_act(γ, t, i, s) & 
 [ ¬∃t’:TIME < t  most_spec_ac(γ, t’, i, s) ] & 
 [ ¬∃t’’:TIME > t & t’’ < t + d  ¬most_spec_ac(γ, t’’, i, s) ] & 
 [ ¬∃t’’’:TIME ≥ t  & t’’’≤ t + d [ state(γ, t’’’) |= world_state(i, s) ] 
 

Furthermore, an error occurs when an action can be 
performed that is not derivable from the correct 
interpretation: 
 

incorrect_action(γγγγ:TRACE, t:TIME, i:info_element, s:sign, d): 
state(γ, t) |= world_state(i, s) & 
¬∃t’:TIME ≤ t  & t’ ≥ t – d [ most_spec_ac(γ, t’, i, s) ] 
 

The properties specified above have been automatically 
verified against the empirical trace of the Hercules disaster. 
The analysis shows that the correct_action property is not 
satisfied for the Hercules disaster trace, due to the fact that 
the trace does not show that the ATC has passed the 
information on the number of people on board of the plane. 
As a result, the missing_action property holds. Finally, the 
incorrect_action property is not satisfied, as only missing 
actions occur in the trace. These results comply to the 
human analysis of the Hercules disaster. 

Conclusion 
This paper shows how a number of known techniques and 
tools developed within the area of nonmonotonic logic and 
AI can be applied to analyze empirical material on human 
reasoning and interpretation within Cognitive Science; cf. 
(Stenning and van Lambalgen, 2006). The formal 
techniques exploited in the  empirical analysis approach put 
forward are:  
(1) multi-interpretation operators as an abstract 

formalization of reasoning towards an interpretation,  



(2) default logic to specify a multi-interpretation operator,  
(3) a temporalized default logic to specify possible 

reasoning traces involved in a multi-interpretation 
process,  

(4) an executable temporal logical language to specify a 
generic executable default reasoning model to simulate 
such reasoning traces, and  

(5) an expressive temporal logical language to specify and 
verify properties for reasoning traces 

As such, this work synergizes the tradition of (Ericsson and 
Simon, 1993) with the model checking tradition introduced 
by e.g. (Huth and Ryan, 2004). It has been shown how 
indeed these techniques and tools obtain an adequate 
formalization and analysis of empirical material on human 
reasoning in critical situations in incident management. 
Simulated traces have been generated, compared to the 
given empirical traces and found adequate. Relevant 
properties of both simulation as well as empirical traces 
have been verified and results were shown of this 
verification process. The properties and default rules 
presented in this paper have all been specified in a generic 
fashion, such that they can easily be reused for studying 
other cases. 

The presented approach can be used to enable automated 
detection of interpretation errors in incident management. 
Such detection could potentially avoid unwanted chains of 
events which might result in catastrophic consequences. As 
a first case study to investigate the suitability of the 
presented approach for this purpose, the Hercules disaster 
has been used, showing promising results. The disaster is 
representative for many of the disasters that occur. It is 
however future work to perform a more thorough 
evaluation, using a variety of cases. 

Note that the executable temporal logical language 
LEADSTO, which was used for simulation in the simulation 
section, is not the only language that can be used for this 
purpose. Also other languages and tools are suitable, such as 
SModels, a system for answer set programming in which a 
specification can be written in (an extended form of) logic 
programming notation, see (Niemelä et al., 2000). 

An approach to interpretation processes different from the 
one based on nomonotonic logic as adopted here, is by 
abductive inference, see e.g. (Josephson and Josephson 
1996). For future research it will be interesting to explore 
the possibilities of abductive inference to model 
interpretation processes in comparison to nonmonotonic 
logic approaches. 
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