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ABSTRACT
This paper presents a decentralized task allocation method
that can handle allocation of tasks with time and precedence
constraints in a multi-agent setting where not all informa-
tion needed for a centralized approach is shared.

In our MAGNET-based approach agents distribute tasks
via first-price reverse combinatorial auctions, where the auc-
tioneer is whatever agent has tasks to be allocated. The
choice of MAGNET is based on its uniqueness to handle
auctions for allocation of tasks which include time windows
and precedence constraints.

Empirical evaluations based on real data obtained from a
logistics company show that the system performs well. The
costs of the allocations obtained by our approach are on av-
erage within 5% from the optimal allocation. The computa-
tion time is linear in the number of tasks, while computing
the optimal allocation is an NP-hard problem.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial In-
telligence; K.4.4 [Computers and Society]: E-commerce

General Terms
Algorithms, Economics, Theory

Keywords
Automated auctions, multi-agent contracting, logistics

1. INTRODUCTION
There are many real-world problems in which agents need

to plan in advance and schedule multiple tasks. Think of
logistics, hospital schedules that have to be changed with
new patients coming in, manufacturing on demand, and de-
sign of complex systems. We are interested in situations
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where an agent recruits other agents to carry out tasks which
commonly have precedence and time constraints, such as in
logistics, hospitals, and manufacturing on demand. Such re-
cruitment is indeed a form of electronic commerce, in which
one agent seeks bids to have certain tasks executed and other
agents offer to perform these tasks for a price.

The field of planning has contributed several centralized
heuristic algorithms for optimal task allocation. For exam-
ple, algorithms have been created for the Vehicle Routing
Problem and its instances (see e.g. [10]), and the Dial-a-
Ride problem [17]. The main disadvantage of such algo-
rithms is their centralized nature, since a centralized alloca-
tion of tasks to multiple agents is not always possible. It may
be computationally infeasible to find an optimal allocation
or agents may be unwilling to share complete information
about their resources and commitments may invalidate the
algorithm.

Decentralized task allocation has been a topic of research
for quite some time, see e.g. [28], [29], and [24]. However,
so far, the decentralized task allocation literature has not
addressed the problem of task precedence relations and time
constraints between the tasks.

This paper presents a decentralized way of allocating tasks
that does deal with precedence and time constraints. The
method exploits the unique feature of the MAGNET [7]
system that allows autonomous agents to negotiate over
complex coordinated tasks, with precedence and time con-
straints, in an auction-based market environment [5].

In our method MAGNET agents participate in market
mediated first-price reverse combinatorial auctions, where
the agent which allocates the tasks to other agents is the
auctioneer. Any agent can be an auctioneer, so any agent
can, at any moment in time, attempt to allocate its tasks to
other agents via auctions.

The method has been thoroughly evaluated by means of
empirical analysis using data obtained from a logistical com-
pany. This choice of domain allowed us to test specifically
the effectiveness of the method to deal with precedence re-
lations and time constraints, while delivering solutions that
are nearly optimal.

In logistics, the tasks that require allocation have different
types of time constraints. The transportation devices (ships,
trucks, plains, trains) are not cost effective while they are
being used as storage room. Furthermore, devices are often
not allowed to stay at the same place for long. For example,
in the harbor of Rotterdam, ships are assigned specific slots



for off loading their goods. Due to the nature of ships and
harbors, last minute rescheduling of slots and ships is im-
possible. Ships and harbor have to know the schedule much
longer in advance, see e.g. [27]. The industry and/or com-
panies that need the goods are increasingly producing on
demand instead of keeping a large stock. This implies that
the logistics process starts no sooner than when an order
comes in, while the customer still expects a speedy delivery.

Furthermore, the goods themselves can impose additional
time constraints on the logistics. For example, perishable
goods like flowers have to cross the world in hours to be still
of value at the point of delivery.

Finally, the logistics process itself can cause precedence
constraints; a good cannot be transported from a particular
location before it has arrived at that particular location.
Similar precedence constraints can be caused by production
on demand processes requiring different raw materials or
half-fabricates.

As a result, transportation tasks typically have time win-
dows specified, stating when particular goods can be picked
up, and when they need to be delivered. Other aspects rel-
evant for logistics are the locations (from, to), and some
indication of the type of load to be transported (e.g., the
type of container), so that an appropriate transportation
device can be selected and scheduled.

This paper is organized as follows. Section 2 gives a brief
overview of the MAGNET system. The application of the
MAGNET system in the field of logistics is presented in Sec-
tion 3. Results of the empirical evaluation using a dataset
obtained from a logistics company are presented in Section 4.
Section 5 discusses related work. Finally, Section 6 presents
our conclusions and gives directions for future work.

2. THE MAGNET SYSTEM
The MAGNET architecture provides a framework for se-

cure and reliable commerce among self-interested agents.
MAGNET shifts the burden of market exploration, auc-
tion handling, and preliminary decision analysis from human
decision-makers to a network of heterogeneous agents.

The MAGNET system architecture, shown in Figure 1,
consists of: (1) a customer agent, which allocates tasks to
other agents. The tasks have time constraints and other
restrictions; (2) suppliers agents, which bid on the tasks and
execute them when awarded; and (3) the MAGNET market
server, which keeps track of the activities of the agents and
of the auctions.

The main interactions between agents in the MAGNET
system are as follows:

• A customer agent issues a Request for Quotes (RFQ)
which specifies the tasks, their precedence relations,
and a time line for the bidding process. For each task,
a time window is specified giving the earliest time the
task can start and the latest time the task can end.

• Supplier agents submit bids. A bid includes one or
more tasks, a price, the portion of the price to be paid
as a non-refundable deposit, and the estimated du-
ration and time window for task execution. Supplier
data reflect supplier resource availability and constrain
the customer’s scheduling process.

• The customer agent decides which bids to accept. Each
task needs to be mapped to one bid and the constraints

of all awarded bids must be satisfied in the final work
schedule. In MAGNET the customer can chose from
a collection of winner-determination algorithms (A*,
IDA*1 [6], simulated annealing, and integer program-
ming [5]).

• The customer agent awards bids and specifies the work
schedule.

3. MAGNET AND LOGISTICS
In this Section, the domain of logistics is introduced and

thereafter the application of the MAGNET system within
this domain is presented.

3.1 The Logistic Domain
The field of logistics is a domain in which task allocation is

part of the core operations [18]. Orders that arrive demand
a set of specific transportation tasks to take place. These
transportation tasks need to be assigned to a particular re-
source (e.g. a truck or a ship).

The logistic domain has been a topic of research in clas-
sical planning for quite some time (see e.g. [21]), mainly
focusing on calculating optimal solutions or approximating
them from a centralized perspective. For instance, in [12]
the problem addressed is to find optimal routes for trans-
portation orders of a large set of users. Orders have to be
picked up and delivered at specific locations, within a given
time window, and using a limited number of trucks. The
solution proposed is centralized, and it is used to support a
human dispatcher.

Distributed planning has been popular in distributed AI
applications (see, for instance, [13]), where agents are as-
sumed to be cooperative, but coordinating the plans of indi-
vidual agents is still a challenging task [9]. When the agents
are not cooperative, auction based approaches to allocation
of tasks are more commonly used (for instance, [29, 1]).

A trend has now emerged in the field of logistics which
requires a more distributed setting: Fourth party logistics
(4PL) [2]. Fourth party logistics companies sign contracts
with large companies to arrange their entire transportation
demand. These companies, however, do not have sufficient
resources on their own to arrange all these transports and
therefore distribute many of those tasks to other (partner)
companies. A rapid assignment of tasks to particular re-
sources is essential for these 4PL companies. Orders typ-
ically arrive at the company by phone, and being able to
immediately inform the customer on when the task will be
performed gives a competitive advantage.

Given this setting, centralized calculation of the optimal
solution might no longer be feasible due to the lack of com-
plete information (availability of resources which is too sen-
sitive for a company to communicate) as well as the com-
plexity of calculating this optimal solution within a short
period (time is crucial in the business). The latter especially
holds due to the fact that constraints, such as time windows
and precedence constraints, are also specified for these tasks,
making calculation of the optimum even harder.

1Iterative Deepening A* (IDA*) [19] is a variant of A* which
uses the same heuristic function in a depth-first search, and
which keeps in memory only the current path from the root
to a particular node. In each iteration of IDA*, search depth
is limited by a threshold on the value of the heuristic func-
tion.



Figure 1: MAGNET architecture.

3.2 Using MAGNET in Logistics
Given the problems observed in the previous Section (i.e.

centralized calculation of solutions is not feasible), the MAG-
NET system can help overcome these problems since it al-
lows the companies to do task allocation in a distributed
way while maintaining their own schedule. Furthermore,
the strength of the MAGNET system is that it is also able
to handle time windows as well as precedence constraints
which is essential in this domain.

Other task allocation methods based on auctions assign
only the tasks needed for the immediate time period and
run auctions every time a new task becomes available [11].
Because of this, they do not produce optimal allocations.
MAGNET avoids this problem by soliciting bids for tasks
spanning over time, and accepting the optimal combination
of bids that fits the overall schedule.

Following the description of the logistical domain and the
move towards 4PL presented above, task allocation can be
performed as follows: The 4PL company (i.e. the customer)
issues an RFQ, sends it to partner companies (i.e. the sup-
pliers) who can bid on one or more tasks included in the
RFQ. Since the price per kilometer of driving for each part-
ner firm is fixed, the price they bid equals the amount of
driving required to perform the task(s).

Based upon this viewpoint, implementations of both sup-
plier and customer agents have been created.

3.2.1 Supplier Agent
The supplier agent maintains a schedule for its resources

and generates bids based upon that schedule. The schedule
specifies when resources are available as well as the start
location when the resource becomes available and the end
location when the availability slot ends. During that avail-
ability time, the schedule consists of entries that specify
when tasks are scheduled to be performed (i.e. start and
end time), and furthermore what the start and end location
of that particular task is.

Once an RFQ arrives, the tasks in the RFQ are sorted
based upon the early start time, and the following algorithm
is performed by the supplier agent:

For all tasks in the RFQ do the following:

• if the schedule for the current day is empty

– Check whether the task can be performed in an
empty schedule.
This means determining whether it can be per-
formed between the start time (starting at the
specified location) and the end time of the total
schedule (ending at the specified end location).
Therefore, calculate the total time required from
the start location of the task to perform the task
and to return from the task to the end location.
Thereafter, calculate whether this task fits into
the schedule and whether the specified times for
the task (earliest/late start time and the dead-
line) can be achieved. If the task indeed fits, mark
the task as potential include.

• else

– Check whether the current task can be performed
within the current schedule (which is not empty).
This is done by going through the schedule from
the start time and determining whether the task
can fit in somewhere. A task fits in somewhere in
case it is possible to go from the previous task (or
the start location in case no previous task exists)
to the task location, perform the task, and return
to the next task in the schedule (or to the end
location if such a task does not exist) after the
deadline of the previous task (or the start time)
and before the scheduled start time of the next
task (or before the overall end time). If the task
indeed fits, mark the task as potential include.

• if the task is marked as potential include

– if the strategy is set to Random bidding (which
includes a task in a bid with a certain probability)

∗ Generate a random number. If the number is
above the threshold, mark the task as include.

– if the strategy is set to Closeby bidding (which
includes only those tasks that are close, given a
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Figure 2: UML Activity Diagram of Supplier Algorithm (Note that T.W. is an abbreviation for Time Win-
dow.)

certain distance measure, to the start or end lo-
cation of the tasks that are already part of the
schedule)

∗ if the schedule for the current day is empty,
mark the task as include. Otherwise, mark
the task as include if the task is close enough.

• if the task is marked as include

– Insert the time windows according to the new
schedule, taking into account the windows speci-
fied for the task within the RFQ. As cost for the
task, we use the sum of the distance of traveling
to the start location of the task, performing the
task, and returning from its end location.

Figure 2 shows the algorithm in the form of a UML ac-
tivity diagram. Note that preferences of suppliers can also
be taken into consideration. This, however, is not the focus
of this paper. In [15] for example, bidding strategies are
specified that do take such preference into account.

3.2.2 Customer Agent
The customer agent simply creates RFQ’s for tasks match-

ing the orders that have been received, and evaluates the
bids that have been received based upon the evaluation al-
gorithms part of the MAGNET system. Since it could hap-
pen that certain tasks are not bid upon, dummy bids for
each task are added to the bid set for this evaluation pro-
cess with an extremely high price. In case such a dummy
bid gets awarded the task needs to be sent again, possibly
attracting some suppliers that did not get their bid awarded.
Each RFQ which is sent the same day is later referred to as
a cycle.

4. EMPIRICAL EVALUATION
To see how the setup within the field of logistics described

in the previous Section would work in a real life setting, data
has been obtained from a 4PL company. The characteristics
of the data are described first. Thereafter, results of using
the data as input for the system are presented as well as
comparisons between the solutions found and the optimal
solution. In this case, the optimal solution could be calcu-
lated as all information is centrally available in one dataset.
This is not necessary for the MAGNET algorithm, but it
enables us to compare the distributed with the centralized
approach, giving us insight in the quality of the distributed
solution. Furthermore, the time required for the computa-
tions can be compared as well.

4.1 Dataset Description
The dataset has been obtained from a company within the

field of logistics. The company is a mid-size company that
focuses on transport of various types of goods, including per-
ishable goods, and containers. Transportation of containers
has been a growing global market over the last decades [25],
and 4PL companies need to transport many containers as
part of the contracts they have with their customers. The
company owns over 200 trucks for the various operations it
performs, and has contracts with numerous partners which
can be contacted in case more trucks are needed on a par-
ticular day.

The dataset we have obtained from the company concerns
container transports. Each morning the company receives a
set of tasks concerning transportation of containers on that
specific day from a specific pickup location (for instance a
container terminal), to a specific destination location where
the container is either unloaded or loaded. Thereafter, the



container needs to be transported to a third location where it
is left behind. Besides these locations, time points are also
specified, indicating after which time point the container
becomes available at the pickup location and when the con-
tainer needs to be returned to the third location. Note that
the dataset only concerns the transport of entire containers,
it does not concern the load inside the container. The chal-
lenge is to combine these container transport jobs in such a
way that the minimum amount of driving time is required.
The amount of orders received upon a day is on average
just above 20 of such transportation tasks. The size of the
dataset concerns 100 such days, totaling to approximately
2000 tasks that need allocation.

To characterize the nature of the tasks in the dataset, Ta-
ble 1 shows the distance that needs to be traveled by trucks
in order to visit all three specified locations (i.e. pickup,
destination, and return location). As can be seen, the tasks
have a large variety in performance time, both shorter trips
(10 - 60 kilometers) as well as longer hauls (120 kilometers
and up) are common in the dataset. In order to get more
insight in how easily these tasks can be combined, Table 2
characterizes the distances between the return and pickup
locations of tasks. The table shows that most return and
pickup locations are quite close to each other. This is due
to the fact that this company mainly picks up and returns
containers within the Rotterdam port area, where container
terminals are quite close to each other. Typically, a contain-
ers is picked up at one of these terminals, the content of the
container is delivered somewhere in The Netherlands, and
the container is returned to one of the container terminals
again. The traveling distance between the tasks is however
still a significant part of the traveling time, especially when
considering that the majority of the tasks require less than
60 kilometers of driving.

Traveling distance
per task (in km)

Percentage of tasks
within distance

0-10 6.4
10-30 26.3
30-60 36.1
60-120 4.1
120+ 27.1

Table 1: Traveling distance required to perform
tasks.

Traveling distance
between tasks (range
in km)

Percentage of tasks

0-5 48.3
5-10 41.8
10+ 9.9

Table 2: Distance between tasks.

Note that the complexity of the scheduling for this com-
pany is clearly not in the amount of tasks to be scheduled.
The main problem here is speed and incompleteness of in-
formation. As described above 4PL companies do not have
the trucks themselves, they have to negotiate with the com-
panies that do have trucks. In fact what happens is that

different 4PLs compete with each other for work. They can
only be effective if their interaction with truck owning com-
panies is time effective. Similarly, the truck owning compa-
nies have to compete with each other for work, and, again,
time is of the essence.

Besides tasks that need to be performed, the dataset also
includes resources that can be allocated to such tasks. In
this particular dataset, trucks are specified that can be used
as a resource on a particular day to perform tasks. Note that
these trucks are the trucks owned by the company itself as
well as trucks that can potentially be hired. For each of
these trucks, an availability slot is given, including a start
time when the resource is available, and an end time after
which the truck is no longer available. The capacity of such
a truck is that it can carry one container at the same time.
Each truck starts at the headquarters of the company at
the beginning of the availability slot, and needs to reach the
headquarters at the end of the slot.

Table 3 shows how close the tasks (pickup and return lo-
cations) within the dataset are to the headquarters of the
company. As can be seen, most tasks are between 15 and
30 kilometers from the headquarters. On average, approxi-
mately half the amount of trucks are available compared to
the number of tasks that need to be performed. This is more
than sufficient to perform all transports while still meeting
the requirements that have been set for these orders.

Traveling distance to
headquarters (range
in km)

Percentage of tasks

0-15 0.4
15-20 40.1
20-25 15.7
25-30 41.3
30+ 2.5

Table 3: Distance between tasks and company head-
quarters.

Given this dataset, both types of companies are repre-
sented, namely the truck owning companies (the trucks in
the dataset) and the 4PL company (the orders in the dataset).
Each truck is represented by exactly one supplier agent
within the MAGNET system. Each supplier calculates the
distance between different locations, using the same distance
function used by the other suppliers. Finally, each supplier
uses the same definition of locations considered to be close
to each other (in case of the Closeby algorithm), which is
based upon a definition given by planners within the com-
pany.

4.2 Results
The results reported in this Section concern usage of the

full dataset (i.e. 100 days of operations with on average 20
orders, meaning approximately 2000 orders). Since we are
interested in how well our algorithms scale up, we want to
vary the amount of tasks that require allocation upon a day.
This means that we perform runs over the full 100 days. For
each run we keep the number of tasks that require allocation
upon one day constant (e.g. 5 tasks per day). Therefore,
each day selections are made of the total number of tasks
that are available from the dataset, where the size of the



selection equals the number of tasks we want to investigate.
We’ve performed runs using 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 15,
and 20 tasks. Also, selections of resources have been made
to make the runs as realistic as possible. As already men-
tioned, on average half the amount of resources is available
compared to the number of tasks that require allocation.
This means that the number of resources available upon a
day during such a run is set to 1, 1, 2, 2, 3, 3, 4, 4, 5, 6, 7,
and 10 respectively.

The experiments have been conducted on a Sun UltraSPARC-
IIIi 1062 MHz CPU with 8 GB of memory. Calculation of
the optimal result is performed by means of a brute force
algorithm, which does not scale up well with the number of
tasks that require allocation upon a day. Theoretical results
show that the type of problem, called the capacitated dial-
a-ride problem is NP-hard to solve [3]. As a result of this,
such calculations could only be performed up to 10 tasks per
day.

Regarding the MAGNET system, the IDA* algorithm has
been used for evaluation of the bids that have been sub-
mitted by the trucks. IDA* is an admissible (i.e. it finds
an otimal solution given a heuristics which understimates
the remaining cost), memory-bounded, heuristic search al-
gorithm. Its time complexity is hard to characterize, since
it depends on how good the heuristic used is [19]. Its space
complexity is linear in the depth of the solution. This makes
IDA* a good choice when an optimal solution is needed in
a large state-space where A* would run out of memory.

4.2.1 Comparison to optimal solution
Figure 3 shows the average deviation from the optimal so-

lution of the solution produced by the distributed MAGNET
algorithm when using the Closeby bidding and running the
algorithm on the full 100 days.

A result of 1 means that the average solution found is
equal to the optimal (which is the lowest cost for performing
the tasks), whereas 1.05, for instance, means the average
result found is 5% above optimal.

The results are presented for varying number of tasks that
require allocation upon a day. As can be seen, the deviation
of the solution found compared to the optimal one initially
increases with the number of tasks. However, the steep-
ness of this increase in deviation from the optimal result
decreases as the number of tasks that need allocation in-
creases. This decrease is due to the fact that more tasks
increase the probability of the trucks finding a task which
nicely fits within their schedule, avoiding large driving dis-
tances from one task to another.

Besides the average deviation from the optimal solution,
the standard deviation has been calculated as well, and is
shown in Table 4. Furthermore, the Table shows the exact
deviation from the optimal solution for the Closeby strat-
egy.

Simulations using the Random bidding algorithm have
also been performed. The results are significantly worse
compared to the Closeby bidding algorithm. For 5 tasks
for example, the deviation from the optimal solution is 1.17
and increases with the number of tasks. Hence, solving the
task within such a small margin from the optimal solution is
not a trivial task that can be performed by simple Random
bidding, but advanced strategies such as Closeby bidding
are needed.

Besides comparing the quality of the solution found, the

Number of
tasks

Average de-
viation from
optimum

Standard
deviation

2 1.008 0.029
3 1.014 0.030
4 1.019 0.031
5 1.025 0.033
6 1.032 0.037
7 1.043 0.066
8 1.034 0.033
9 1.037 0.032
10 1.038 0.035

Table 4: Detailed results using Closeby bidding and
comparison of the solution found by the distributed
MAGNET algorithm to the optimal solution. Re-
sults are over 100 days.
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Figure 3: Distance of the solution computed by the
MAGNET algorithm to the optimal solution over
different numbers of tasks per day.

difference in search time is also a crucial element within
the field of logistics. As already mentioned before, being
able to immediately inform customers over the phone gives
a competitive advantage.

In Figure 4 the average total evaluation time (i.e. the
sum of the evaluation time for all cycles upon a day in the
case of the MAGNET algorithm) over 100 days for varying
number of tasks is shown. Again, only the Closeby bid-
ding algorithm is shown as the Random algorithm scales in
a similar fashion. As can be seen, the algorithm for optimal
performance does not scale well, whereas the MAGNET al-
gorithm scales very well, it can even be approximated by a
linear function. Note again that IDA* has been used here.

When considering a maximum waiting time of approxi-
mately 1 minute on the phone, no more than 8 orders can
be placed in case of the centralized algorithm. For the de-
centralized MAGNET algorithm however, 20 orders can cer-
tainly be handled which is currently the maximum number
of orders received by the company.
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Figure 4: Total evaluation time needed for the opti-
mal algorithm and for the MAGNET algorithm (i.e.
sum of evaluation time of all cycles needed). Note
the logarithmic scale.

4.2.2 MAGNET Bidding Strategy Characteristics
Besides comparing the quality and search time of the so-

lution found by the MAGNET based system with the cen-
tralized approach, the characteristics of the two different
bidding algorithms (i.e. Closeby and Random) have been
compared as well. As already mentioned, the Closeby al-
gorithm finds solutions of a much higher quality than the
Random algorithm. Furthermore, the search times scale
approximately the same for both bidding strategies. A third
measure for comparison is the number of cycles needed (i.e.
how many times an RFQ with tasks needs to be sent to have
a fully covered task allocation for a day).

The number of cycles needed, averaged over the 100 days
within a run, is shown in Figure 5 for a varying number of
tasks that require allocation upon a day. As can be seen, the
number of cycles needed for the Random algorithm remains
approximately constant. This can be explained by the fact
that the ratio between trucks and tasks is constant. For the
Closeby algorithm however, the number of cycles increases
with the number of tasks. This is the result from the initial
location being identical for all trucks, therefore the trucks
without tasks awarded bid for the same tasks and hence,
more cycles are needed before all tasks are covered.

4.2.3 MAGNET Evaluation Algorithm
Characteristics

Finally, results are shown on the average performance
of the MAGNET evaluation algorithm (IDA* in this case)
within one cycle. Figure 6 shows the performance for vary-
ing number of tasks in the RFQ. The algorithm scales very
well and can be approximated by a linear function.

The characteristics of the bids that are evaluated are shown
in Table 5, including detailed average evaluation times as
well as the standard deviation and maximum search times.
The table shows that as the number of tasks increases, so
does the average number of bids that have been received.
This is logical because more tasks are presented, and there-
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Figure 5: Cycles needed by the Closeby and Random
bidding strategies. The number of tasks is the num-
ber of tasks to be allocated in a single day. The num-
ber of cycles is averaged over the 100 days within a
run.

fore the probability of trucks being able to perform at least
one of the tasks increases. Note that the average number
of bids for a certain number of tasks can exceed half the
amount of tasks (i.e. the number of trucks available when
starting with that task size) as this concerns averages over
all cycles and all amount of tasks that need to be sched-
uled upon a day (i.e. 2 to 20 tasks). It might for instance
be the case that for a run with 20 tasks, multiple cycles are
needed in which the last cycle only concerns 2 tasks whereas
10 trucks can still bid. Furthermore, the average number of
tasks per bid increases with the number of tasks as well,
which is due to the fact that tasks can more easily be com-
bined. The standard deviation increases with the number of
tasks being evaluated. Furthermore, the maximum search
time is significantly higher than the average search time.
These values however still allow for real time computation
using the presented system.

5. RELATED WORK
Work done in centralized task allocation or planning in-

volves finding efficient algorithms for solving (or approxi-
mating a solution for) specific problems. One specific fam-
ily of problems is that of vehicle routing problems (VRP).
A variant of the VRP that is close to the task allocation
problem used as an empirical evaluation in this paper in-
clude the capacitated VRP with pick-up and deliveries and
time windows (CVRPPDTW). Furthermore, the dial-a-ride
problem (DARP) generalizes a number of such vehicle rout-
ing problems [8] and when including capacities maps to the
problem addressed in this paper. This problem is known to
be an NP-hard problem to solve. See for example [3], [17],
and [12] for algorithms that solve such problems from a
centralized perspective. Solving the vehicle routing problem
from a centralized perspective might however not always be
feasible, resulting in research focusing on decentralized task
allocation as well.

Distributed constraint optimization algorithms have been



Number of
Tasks

Avg. num-
ber of Bids

Avg. Tasks
per Bid

Avg.
Search
Time
(msec)

Standard
Deviation

Max Search
Time
(msec)

2 4.15 1.30 1.43 2.22 16.0
3 5.20 1.43 1.37 1.46 12.0
4 7.11 1.79 2.15 2.92 17.0
5 7.81 1.97 2.05 2.48 21.0
6 9.68 2.26 2.40 3.05 16.0
7 10.98 2.45 2.56 2.84 20.0
8 12.88 2.71 3.48 3.72 21.0
9 13.53 2.69 3.79 3.98 23.0
10 14.65 2.65 4.06 4.00 29.0
15 22.11 3.33 4.71 5.60 36.0
20 30.00 3.99 5.85 5.36 35.0

Table 5: MAGNET evaluation characteristics.
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Figure 6: Evaluation time needed by MAGNET for
different numbers of tasks.

proposed for task allocation (see, for instance, ADOPT [23]
and OptAPO [22]). These algorithms are appropriate in
domains where optimality is essential, but have high com-
munication costs. [26] proposes an approximate algorithm
for distributed task allocation which trades off optimality for
reduced communication costs and which is specially suited
for large teams in simulated search and rescue.

Auctions [20] have been suggested for allocation of com-
putational resources since the 60’s. The Contract Net [28]
is perhaps the most well known and widely used bidding
protocol for distributed problem solving. Many multi-agent
and distributed systems use some form of auction to al-
locate resources. Auction-based methods for allocation of
tasks are becoming popular as an alternative to other alloca-
tion methods, such as centralized scheduling [4], distributed
planning [13, 9], or application-specific methods, which do
not easily generalize. An advantage of auctions is they are a
distributed mechanism and draw on a large body of analyt-
ical results from economics. In addition, one-shot auctions
are efficient in the case of low bandwidth and unreliable
communications.

Scheduling plays an important role in task allocation, since
before accepting a task an agent has to find how to fit it into
its existing schedule. In [16] combinatorial auctions are used
for the initial commitment decision problem, which is the
problem an agent has to solve to decide whether to accept
or refuse a new task. In [14] scheduling decisions are made
not by the agents, but instead by a central authority, which
has insight into the states and schedules of the agents. In
MAGNET, there is no central authority; the market is used
only as a repository of statistical information.

Despite the abundance of work in auctions, limited atten-
tion has been devoted to auctions over tasks with complex
time constraints and interdependencies, as in MAGNET.
Auctions for decentralized scheduling have been studied ex-
tensively by Wellman’s group. The emphasis of their work
is in the supply-chain construction, more than dealing with
time, and in analyzing strategies using game-theoretic tech-
niques. A protocol for combinatorial auctions for supply
chain formation is proposed in [29]. Complex task networks
are allowed, but they do not include time constraints. A pro-
tocol for decentralized scheduling is proposed in [31]. The
study is limited to scheduling a single resource, while we
are interested in multiple resources. In [30] agents bid for
individual time slots on separate, simultaneous markets.

6. CONCLUSIONS AND FUTURE WORK
In this paper, we presented an approach to perform decen-

tralized task allocation using the MAGNET system. There
is already a vast amount of literature on performing such
task allocation using negotiation, see e.g. [28] and [29], how-
ever, the unique feature of the system presented here con-
cerns the negotiation about complex tasks including time
window and precedence constraints. In a variety of domains
such constraints are vital for task allocation, such as for the
field of logistics. Implementations are created for both the
supplier and customer agent where for the former two differ-
ent bidding strategies are implemented, namely one which
takes the distance to tasks into account (i.e. only bidding
on tasks that are close to a task you already perform) called
Closeby, and a Random bidding algorithm.

To evaluate the proposed approach, a comparison is made
to a central task allocation scheme which is able to calculate
the optimal solution. Such an evaluation could be performed



on a randomly generated dataset, in this paper however, the
choice is made to use empirical data. This choice results in
a dataset with characteristics that indeed occur in the real
world, giving more insight in the usability of the approach
in real life.

The evaluations show that the approach using Closeby
bidding comes very close to the optimal result. The maxi-
mum average deviation found is just over 4% of the optimal
result, whereas the trend is that this deviation from the op-
timum is not (or hardly) increasing for greater amount of
tasks. The Random bidding does not perform that well,
showing that taking distances into account when bidding is
very effective for the quality of the solution found. When
looking at the computation time needed to come to the so-
lution found, the MAGNET algorithm scales very well (lin-
ear), whereas calculation of the optimal solution does not
(NP-hard). For 20 tasks, the maximum observed in the
dataset, the MAGNET algorithm took a total of just under
12 msec.

For future work, we want to investigate how giving the
supplier agents a preference for tasks would affect the dis-
tance from the optimal solution. In the logistical domain
for example, drivers of trucks tend to have particular pref-
erences for tasks which is often taken into consideration by
human planners. Another interesting part of future work is
to see how the ordering of tasks before feeding them into
the supplier algorithm influences the overall results. More
advanced ordering methods might result in better overall
results. Furthermore, we want to investigate the scaling of
the algorithms for very large datasets, consisting of for in-
stance thousands of tasks that need to be allocated. Finally,
a comparison of the approach presented in the paper with
current (non-optimal) approaches being used in the logistics
domain (e.g. simulated annealing or genetic programming)
would be interesting to investigate as well.
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