
Simulation, Visualization, and Validation of
Adaptive Multi-Agent Organizations in Naval Applications

Mark Hoogendoorn1, Catholijn M. Jonker2, Martijn C. Schut1, and Jan Treur1

1Vrije Universiteit Amsterdam, Department of Artificial Intelligence,
De Boelelaan 1081a, 1081 HV Amsterdam, The Netherlands

{ mhoogen, schut, treur} @cs.vu.nl
2Radboud University Nijmegen, Nijmegen Institute for Cognition and Information,

Montessorilaan 3, 6525 HR Nijmegen, The Netherlands
C.Jonker@nici.ru.nl

Keywords: Multi-agent simulation, validation, adaptive multi-
agent systems, naval simulation.

Abstract
The naval domain is characterized by a dynamic environment. This
requires constant adaptation of the organisation, choosing between
a wide variety of options. The consequences of the different options
are difficult to foresee and hence, it is hard to judge which option is
best. This paper presents automated support for the simulation,
visualization, and validation of such adaptive multi-agent
organisations. Generic simulation properties are specified using a
formal modelling approach. Furthermore, results of a realistic case
study are presented, and validated by means of properties obtained
from naval experts. Finally, a tool is introduced that enables an
insightful visualization of the simulation results.

INTRODUCTION
Agent-based modeling techniques are often used to model and

simulate (natural or artificial) agent systems that have to deal with
dynamic and uncertain environments. Therefore, an important
challenge for the area of agent-based modeling is the notion of
adaptivity. Adaptation can take place within a single agent (e.g., an
individual learning process), or at the level of the multi-agent
organization (e.g., change of roles of agents within the
organization). In order to create (multi-)agent-based simulations
with adaptive abilities, adaptation mechanisms have to be
incorporated in agent-based simulation models.

Adaptation mechanisms can involve not only quantitative
numerical aspects but also qualitative, logical aspects (for example,
a role switch between agents within an organization). If
formalization is used for an adaptation mechanism, this is often
based on mathematical models using differential equations. In
contrast, agent-based simulation models traditionally make use of
qualitative, logical languages. Most of these languages are
appropriate for expressing qualitative relations, but less suitable to
work with more complex numerical structures as, for example, in
differential equations. Therefore, integrating such mathematical
models within the design of (multi-)agent-based simulation models
is difficult. To achieve this integration, it is needed to bridge the

gap between quantitative approaches and the type of languages
typically used in agent-based simulation.

In the area of simulation, a formalized model is used to compute
the simulation steps [9]. Languages and software environments are
available to support this modeling process. Validation of a model is
usually not formally supported; it is considered a different issue.
Often validation is done informally, by hand (or eye), based on
comparison of a simulation trace with an empirical trace. In
addition, sometimes specific (e.g., statistical) techniques are used to
support certain aspects of validation. Usually in the domain that is
modeled, global properties that should hold for the behavior of a
simulation model can be identified. As the languages used to
specify a simulation model are directed to local properties (the
steps between successive states), such global properties cannot be
formalized in these languages. To obtain more support, also for
validation of a simulation model, it is needed to integrate the
modeling of such global properties in a formal manner as well, so
that their specification and automated checking on simulation traces
also can be supported by the modeling environment.

In accordance with the findings mentioned above, this paper
introduces an approach for simulation and analysis of adaptive
(multi-)agent systems and underlying mechanisms that is
integrative in two ways:

(1) It combines in one modeling framework both qualitative,
logical and quantitative, numerical aspects

(2) It allows to model dynamics at different aggregation levels,
from a more local level (e.g., behaviors of roles within the
organization) to a global level (behavior of the multi-agent
organization as a whole); moreover, interlevel relations can
be specified that express relationships between dynamic
properties at different levels

Modeling dynamics at a local level often concerns expressing
temporal relationships between pairs of successive states, such as
described, for example, by basic steps within an adaptation
mechanism. Local level specifications are the basis for the
computation steps for a simulation model. From the more global
perspective, more complex relationships over time can be used to
model dynamics for adaptive multi-agent organizations. For
example, how during a history of events to which it adapts, the
system’s behavior is changing.

Interlevel relations often take the hierarchical form of an AND-
tree (or a number of them), with the most global property at the top
(root) and the most local at the leaves. Such a hierarchical structure
can be useful in the analysis of, in case, why a global property fails
on a certain simulation trace. By going down in the tree and at each
level checking the properties under the failing node, finally the leaf
or leaves that fail(s) can be found, thus pinpointing the (local) cause
of the failure. This can be useful in debugging a model, but also in
the analysis of the circumstances under which a model will function
well and under which not, and the reasons why.
 The main objective of the research described in this paper is to
investigate the suitability of a system involving planning,
simulation, visualisation, and validation with respect to automated
planning support in naval missions. The longer term aim of this
research is to contribute to the development of a tool that allows for
personnel to plan with a confidence and speed that would not be
otherwise possible.
 The remainder of this paper is structured as follows. Section 2
gives some details about the naval domain addressed and how
adaptive organisation forms play a role. In Section 3, the modelling
methodology that has been used is presented. Section 4 presents a
number of simulations that have been conducted and describes a
case study that has been investigated. Section 5 presents the plan
visualisation tool. Section 6 describes validation results for the case
study. Finally, Section 7 concludes and describes future work.

ADAPTIVE ORGANIZATION WITHIN THE
NAVAL DOMAIN

Within the dynamic naval environment actions of possibly
opposing parties, but also possible interference of non-military
bystanders might induce a need for change in the organisation to
ensure the safety of the mission. Which response to choose in a
given situation depends on a variety of factors. Elements such as
enemy resources and innocent bystanders have to be taken into
consideration and it is hard to predict the consequences of a plan
that has been chosen. This paper presents an automated support
system for the simulation, visualization, and validation of such
processes. Two requirements must be met concerning such support:
1) the support must agree with the current way of working, and 2)
guarantees must be given over the resulted planning with respect to
given conditions including intended outcome and required
resources. The work presented here researches an approach for
implementing automated support that meets these two
requirements.
 As the current way of working is concerned, the naval domain
knows a large volume of well thought out plans that are scheduled
for and during a mission (the so-called ‘doctrine’). Everyone
involved in a mission is familiar with these plans. The performed
planning during a mission consists mostly of switching between
and carrying out those plans. On the one hand, such planning
during a mission may be a matter of executing the plans that were
decided upon for the mission; on the other hand, unexpected events
may happen that ask for necessary replanning during a mission.
Concerning the latter, these situations require appropriate and
speedy response. It is essential that in these situations, current
circumstances are taken into account, a suitable plan is selected

from the doctrine, the situation is dealt with and the mission will
continue as originally planned.
 Replanning in the naval domain frequently involves
organisational change: it actually affects the organisational
structure in addition to adaptation of other plans. For example, in
response to an unexpected event, a ship that was originally only an
escort of a high-value unit, may have to change its role to an attack
unit. Such replanning situations are not rare: organisational changes
are frequent and substantial.
 Another important aspect of naval planning involves spatial
information. Feasibility of a plan is partly determined by the nature
of the available resources (helicopters, frigates, transporters) and
the relative location of those resources. Combining the specific
capabilities of the resources with spatial information and timing
aspects plays a key role in the planning. Therefore plan
visualisation that includes spatial information is necessary for
successful implementation of automated planning support in naval
applications.
 In naval missions, it is crucial to consider the planning within the
broader context of mission goals, available resources, intended
outcomes, etcetera. In this respect, performed planning before and
during a mission must be checked against such kinds of conditions.
For example, when an agent is reallocated to another role (e.g.,
because of prevailing circumstances), it must inform others at the
time that it is able to fulfill its role. It is important to recognise that
this reallocation does not happen instantaneously (e.g., because a
ship may have to sail towards some location to fulfill its new role),
and therefore the communication is essential for others to know
when the agent can receive orders in its new role.
 This paper presents a simulation model that includes: a planner
(P) for organisational change; a simulator (S) for those plans that
reflects the meta-knowledge (see for example [5]) of the roles
involved regarding organisational change; a visualisation tool (VS)
for the spatial effects of plan execution that is dedicated to the naval
domain; and a validation tool (VL) for the validation of the
resulting planning.

The essential virtue of the model is that it recognises the
importance of spatial information in naval planning (by means of
the visualisation) and it offers an inventive way to check whether
given conditions hold while planning (by means of the validation).
The model may be used offline for analysis purposes and/or
mission planning, as well as during execution of a mission as an
automated planning support tool.

MODELLING METHODOLOGY

To facilitate formal modelling of a multi-agent organisation and
its dynamics, this section introduces an organisational modelling
approach and, in addition, a modelling language that enables
specifying the dynamics within an organisation (see also [3]). The
organisational modelling approach is described in Section 3.1, and
the formal language for expressing dynamics is addressed in
Section 3.2.

AGR Organisation Modelling Approach
For the description of actual multi-agent organisations, the AGR

(for agent/group/role) model has been adopted [2]. In that approach,
an organization is viewed as a framework for activity and
interaction through the definition of groups, roles and their
relationships. But, by avoiding an agent-oriented viewpoint, an
organization is regarded as a structural relationship between a
collection of agents. Thus, an organization can be described solely
on the basis of its structure, i.e. by the way groups and roles are
arranged to form a whole, without being concerned with the way
agents actually behave, and multi-agent systems will be analyzed
from the outside, as a set of interaction modes. The specific
architecture of agents is purposely not addressed in the
organizational model. The three primitive definitions are:

• The agents. The model places no constraints on the internal
architecture of agents. An agent is only specified as an active
communicating entity which plays roles within groups. This agent
definition is intentionally general to allow agent designers to adopt
the most accurate definition of agent-hood relative to their
application. In this paper, the agents are however assumed to be
reflective agents, allowing them to reason about the role they are
playing.

• Groups are defined as atomic sets of agent aggregation. Each
agent is part of one or more groups. In its most basic form, the
group is only a way to tag a set of agents. An agent can be a
member of n groups at the same time. A major point of these
groups is that they can freely overlap.

• A role is an abstract representation of an agent function, service
or identification within a group. Each agent can handle multiple
roles, and each role handled by an agent is local to a group. Roles
can also have beliefs due to the assumed reflective capabilities of
the agents; they can reason about whether they should have a
particular belief given a certain role. These beliefs can be seen as an
additional requirement on the agents playing that role.

Modelling Language for Dynamics

In this section a method to express dynamics within an
organisational model is addressed. To formally specify dynamic
properties that are essential in an organisation, an expressive
language is needed. To this end the Temporal Trace Language is
used as a tool; cf. [7]. For the properties occurring in the paper
informal, semi-formal or formal representations are given. The
formal representations are based on the Temporal Trace Language
(TTL), which is briefly defined as follows.
 A state ontology is a specification (in order-sorted logic) of a
vocabulary. A state for ontology Ont is an assignment of truth-
values {true, false} to the set At(Ont) of ground atoms expressed in
terms of Ont. The set of all possible states for state ontology Ont is
denoted by STATES(Ont). The set of state properties STATPROP(Ont)
for state ontology Ont is the set of all propositions over ground
atoms from At(Ont). A fixed time frame T is assumed which is
linearly ordered. A trace or trajectory γ over a state ontology Ont
and time frame T is a mapping γ : T → STATES(Ont), i.e., a sequence
of states γt (t ∈ T) in STATES(Ont). The set of all traces over state

ontology Ont is denoted by TRACES(Ont). Depending on the
application, the time frame T may be dense (e.g., the real numbers),
or discrete (e.g., the set of integers or natural numbers or a finite
initial segment of the natural numbers), or any other form, as long
as it has a linear ordering. The set of dynamic properties
DYNPROP(Ont) is the set of temporal statements that can be
formulated with respect to traces based on the state ontology Ont in
the following manner.
Given a trace γ over state ontology Ont, the input state of some role
r within a group g at time point t is denoted by

 state(γ, t, input(r|g))

analogously

 state(γ, t, output(r|g))
 state(γ, t, internal(r|g))
denote the output state and internal state.
 These states can be related to state properties via the formally
defined satisfaction relation |=, comparable to the Holds-predicate
in the Situation Calculus: state(γ, t, output(r|g)) |= p denotes that state
property p holds in trace γ at time t in the output state of role r
within group g. Based on these statements, dynamic properties can
be formulated in a formal manner in a sorted first-order predicate
logic with sorts TIME or T for time points, Traces for traces and F for
state formulae, using quantifiers over time and the usual first-order
logical connectives such as ¬, ∧, ∨, �, ∀, ∃. In trace descriptions,
notations such as
 state(γ, t, output(r|g))|= p

are shortened to
 output(r|g)|p

To model direct temporal dependencies between two state
properties, the simpler leads to format is used. This is an executable
format defined as follows. Let α and β be state properties of the
form ‘conjunction of literals’ (where a literal is an atom or the
negation of an atom), and e, f, g, h non-negative real numbers. In the
leads to language α →→e, f, g, h β, means:

 If state property α holds for a certain time interval with duration g,

 then after some delay (between e and f) state property β will hold for a certain time

interval of length h.

For a precise definition of the leads to format in terms of the
language TTL, see [8]. A specification of dynamic properties in
leads to format has as advantages that it is executable and that it
can often easily be depicted graphically.

SIMULATIONS

This Section presents the simulator component within the system.
First of all, the executable (leads to) properties which specify the
simulation model for the simulator are presented in Section 4.1.
After that, Section 4.2 addresses the case study that has been
investigated, followed by the results of the simulations of the case
study.

Simulation Model Specification

This Section describes generic properties that constitute the basis
for the simulation model. Each of these generic properties can be
formed into more scenario specific rules whenever necessary. The
generic properties in the framework work are based on goals, plans,
beliefs and events. The used architecture is shown in Figure 1.

 It has to be mentioned that beliefs in this respect are used for
storing information about the environment as well as information
about oneself. As shown in the scenario below, many plans involve
organisational change. This means that the actual organisational
structure changes as the result of some occurring event. Thus, in
addition to knowing about the environment by observation, it is
assumed that the agent (reflectively) knows about its role in the
organisation and can change to another role if necessary. The
architecture shown in Figure 1 has been formalised and this
formalisation is explained in the remainder of this section. Firstly, it
is assumed that a goal has been given.

internal(r:ROLE|gr:GROUP)|belief(g:GOAL, pos)

denotes that role r within group gr holds the belief that g is a goal.
Based on this goal, a plan is selected to achieve it:

internal(r:ROLE:gr:GROUP)|belief(current_plan(p:PLAN), pos)

says that plan p is selected as to achieve goal g. This plan will
generate actions as long as no disturbing events occur. If such an
event occurs and r is informed, this is denoted by

input(r:ROLE:gr:GROUP)|communication_from_to(r1:ROLE|gr1:
GROUP, r:ROLE|gr:GROUP ,inform, e:EVENT)

stating that r1 within group gr1 informs r within group gr about
event e. This event causes another goal to become active.

internal(r:ROLE|gr:GROUP)|belief(g1:GOAL, pos)

says that g1 is now a goal and a subsequent plan is selected:

internal(r:ROLE|gr:GROUP)|belief(current_plan(p1:PLAN), pos)

This plan may involve organisational change. If this is the case (as
it is in the scenarios below), a modelling approach is adopted as
developed elsewhere [6]. This involves the existence of a
ChangeManager who directs the organisational change. This
approach is explained in more detail below. If the plan has been
fully executed, this is denoted by

internal(r:ROLE|gr:GROUP)|belief(plan_executed(p:PLAN),pos)

where the parameter might be left out if it is assumed that only one
plan can be executed at a time. This causes role r to reflect on other
still existing goals and resuming the plans to achieve these goals. If
there are no existing goals, a new goal may be generated or given.

Execution of a certain plan that has been selected often consists
of organisational change. Therefore, generic simulation rules for

these organisation structure changes are needed to enable a generic
simulation model. The properties shown below are based on the
approach presented in [6] which is partially based on the AGR
organisation modelling approach as presented in Section 3.1. In that
approach, organisational change can be performed in a meta-group
called ChangeGroup, in which Member roles are present that
represent agents within the organisation. Each agent in the
organisation is represented by exactly one Member role within the
ChangeGroup. The Member roles have beliefs about the
organisation and these beliefs are transferred to the roles the agent
is currently playing. To initiate the change process as described
above, triggers are needed. These are specified in the current plan,
and are domain specific. Given this specific information for the
particular plan, generic simulation rules fire to simulate the process
of informing the members involved and changing their current
beliefs on the organisation. Some example rules are presented
below.

RP(ChangeManager):Communicate Activity
[output(ChangeManager|ChangeGroup)|communication_from_to(

ChangeManager|ChangeGroup, all_involved, inform,
active(C:CHANGE_GROUP)) &

internal(ChangeManager|ChangeGroup)|belief(involved_in_group(
R:ROLE, C:CHANGE_GROUP), pos)]

→→0,0,1,1
input(R:ROLE|ChangeGroup)|communication_from_to(

ChangeManager|ChangeGroup, R:ROLE|ChangeGroup,
inform, active(C:CHANGE_GROUP)

RP(Member): Believe Change Activity
input(R:ROLE|ChangeGroup)|communication_from_to(

ChangeManager|ChangeGroup, R:ROLE|ChangeGroup,
inform, active(C:CHANGE_GROUP)

→→0,0,1,1
[internal(R:ROLE|ChangeGroup)|belief(active(C:CHANGE_GROUP,

pos) &
 output(R:ROLE|ChangeGroup)|communication_from_to(

R:ROLE|ChangeGroup, ChangeManager|ChangeGroup,
inform, belief(active(C:CHANGE_GROUP), pos))]

Rules such as the examples above cause the ChangeGroup to be
activated, knowledge about a new structure to be communicated,
and finally belief emerging at the roles that need to have this
information. After all of this has been performed, the ChangeGroup
is deactivated and the new structure is in place (part of the internals
of the roles).

Roles are attributed with reflective knowledge in the approach
presented in this paper. This means that roles have beliefs on the
expected behaviour concerning the role. For example, a role has the
internal belief that when the role receives an input x he eventually
has to output y, formally:

internal(Role|Group)|belief(leadsto(input(Role|Group)|x,
output(Role|Group)|y, efgh(0,0,1,1)),pos)

Simulation Results

This section contains results of simulations using the model
presented in Section 3 and the generic properties presented in
Section 4.1 which have been formalised in terms of the formal
languages presented in Section 3. First of all, the case study is
introduced, thereafter some example formal properties which

AA
AA

AA

plan library

deliberation monitor

beliefscurrentplan

(re)plan?

Planning engine

yes no

observation

action

goals

Figure 1. Architecture of the simulation model

specify the behaviour in the situations that occur in the case study
are shown. Finally, the simulation trace for the case study is shown.

Case study
This section presents a case study that has been obtained from

experts of the Royal Netherlands Navy. The scenario contain events
that are typical within the naval domain. The scenario that has been
studied is called submarine threat. The initial configuration of the
fleet is shown in Figure 2. In total there are six frigates, denoted by
F1 - F6, each allocated to a certain area within which they reside.
Besides the frigates there are also helicopters (H1- H6) flying in a
particular zone of the fleet. Finally, there are certain High Value
Units (HVU) within the area called ZZ (for Zulu Zulu) that need to
be protected. These might for example be ships containing troops,
or amphibian landing vehicles. In total there are five ships within
ZZ, which is called MainBody throughout this paper. At a certain
point in time the Officer in Tactical Command (OTC) receives an
assignment to sail to Peterselie island and chooses a fleet
configuration. On the way however, after a certain time-point
however, frigate F1 detects sonar contact with a high probability
that it is a submarine. The OTC now has to plan the actions to be
performed to deal with such an event.

Case Specific Formal Properties
This section presents some example properties that have been

formalized to enable the simulation of the submarine threat case
study, if a role informs the OTC that sonar contact with a
submarine has been made, he forms a search and attack unit:

RP(OTC): Handle sonar contact
input(OTC|Fleet)|communication_from_to(R:ROLE|Screen1,

OTC|Fleet, inform, sonarcontact_sub)
→→0,0,1,1

internal(OTC|Fleet)|belief(current_plan(eliminate_submarine_threat),
pos)

The plan to eliminate such a submarine threat involves forming a
search and attack unit. In case such a unit if formed, a new group is
created called SAU. Furthermore, the role of commander within the
SAU, the SAUC is performed by the agent previously allocated to
LeftProtector1. Formal:

RP(OTC): Perform plan to form SAU
∀A:AGENT, R:ROLE, G:GROUP
[internal(ChangeManager|ChangeGroup)|current_plan(

eliminate_submarine_threat), pos) &
 internal(ChangeManager|ChangeGroup)|belief(allocated_to(

A:AGENT, LeftProtector1, G:GROUP), pos)]
→→0,0,1,1

internal(ChangeManager|ChangeGroup)|belief(delete(allocated_to(
A:AGENT, FrontLeftProtector1, G:GROUP)), pos) &

internal(ChangeManager|ChangeGroup)|belief(add(exists_group(
SAU)), pos) &

internal(ChangeManager|ChangeGroup)|belief(add(exists_role(
SAUC)), pos) &

internal(ChangeManager|ChangeGroup)|belief(add(allocated_to(
A:AGENT, SAUC, SAU)), pos)]

Formal Simulation Trace
The results of the case study that has been performed are

presented here. Figure 3 shows the trace regarding the simulation of
the “submarine threat” case study. Briefly, the trace shows the
following elements: First of all, OTC is informed by the
LeftProtector1 within Screen1 about a sonar contact with a sub. At
that same time-point the OTC derives a new plan:

internal(OTC|Fleet)|belief(current_plan(
eliminate_submarine_threat, pos)

As a result, a search and attack unit (SAU) is formed again, and
the submarine is located. After the location is known, the OTC
orders the rest of the fleet to turn away. The command is confirmed
by the ships within the MainBody1 and they eventually
communicate to have turned away:

input(OTC|Fleet)|communication_from_to(
BodyMember1|MainBody1, OTC|Fleet, inform, turned_away)

Following the observation that the ships must be outside of range
for the torpedo’s, the ships are told to turn back to their old
direction again. All confirm and execute the order. The OTC
commands the helicopters to replace the frigates that take part in
the SAU because the helicopters are much faster and the distance
between the SAU and the rest of the Fleet is increasing.

output(OTC|Fleet)|communication_from_to(OTC|Fleet,
LeftDetector|Screen1, inform, replace_sau)

Due to the open position in Screen1 that is left, helicopter F3 is
allocated to two roles within the Screen. After a certain time, the
OTC believes the submarine in no threat anymore and orders the
roles within the SAU group to return to their mother ship:

output(OTC|Fleet)|communication_from_to(OTC|Fleet,
SAUC|SAU, inform, return_to_mothership)

This denotes that at a later point in time, the helicopter is allocated
to the role of FrontLeftProtector1 within Screen1, which is already
allocated to frigate F2:

Figure 2. Initial Fleet configuration

internal(OTC|Fleet)|belief(allocated_to(H1, FronLeftProtector,
Screen1)

The commands to refuel and change the crew of the helicopter are
therefore sent to the role to which F1 and H2 are allocated. After
the refuel is done, the old fleet configuration is restored.

VISUALIZATION
For the simulator a visualization tool has also been developed.

Figure 4 shows a screenshot of the tool. On the left side of the
figure the fleet is shown in a visual manner as previously shown in
Figure 3 whereas on the right side the trace (of which parts were
explained already in Section 4.2), that acts as a basis for the
visualization, is shown. A bar in the trace shows the accompanying
time-point for which this visualization holds. For Navy domain
experts such a visualization tool is easily interpretable whereas a
trace as shown on the right side of Figure 4 is hard to interpret
especially due to the fact that one needs to be familiar with such
kind of formalisms.

VALIDATION

When a formalized trace has been obtained either by a
formalization of an empirical trace or by means of simulation it is
useful to verify certain essential properties in the trace. Below the
properties that have been checked against the trace presented in
Section 4 are shown. The properties are independent from the
specific scenario and should hold for every trace. The properties are

formalized using Temporal Trace Language as described in Section
3.

P1: Reflective Behaviour
This property states that in case a role has a belief about an
executable property that should be fulfilled when the role is being
performed, the role should actually show this behaviour. Formally:

∀γ:TRACES, t1:TIME, A:ANTECEDENT, C:CONSEQUENT
 [∃ R:ROLE, G:GROUP
 state(γ, t1, internal(R|G)) |= belief(leadsto(A, C, efgh(_,_,_,_)), pos)
 � [∀t2 � t1 state(γ, t2) |= A � ∃t3 � t2 state(γ, t3) |= C]]

This property is indeed satisfied for the presented traces.

P2: Ship always allocated to a role
The fact that a ship should always be allocated to a role (after the
initial fleet setup) is specified using this property. In formal form
the property is formulated as follows:

∀γ:TRACES, t:TIME > 20, A:AGENT
 [∃R:ROLE, G:GROUP
 state(γ, t, internal(OTC|Fleet)) |= belief(allocated_to(A, R, G), pos)]

This property is also satisfied for the given traces.

P3: Communication that an agent is able to fulfil its role
This property entails that when an agent is re-allocated to another
role, it should always communicate when it is able to fulfil the role.
There can be a time-delay between the re-allocation because the

internal((OTC|Fleet))|belief(allocated_to(H1, LeftDetector1, Screen1), pos)
input((OTC|Fleet))|observation_result(speed(MainBody1, normal), pos)

internal((OTC|Fleet))|belief(current_plan(eliminate_submarine_threat), pos)
input((OTC|Fleet))|communication_from_to((LeftProtector1|Screen1), (OTC|Fleet), inform, sonarcontact_sub)

input((OTC|Fleet))|communication_from_to((SAUC|SAU), (OTC|Fleet), inform, sub_at_position_p)
output((OTC|Fleet))|communication_from_to((OTC|Fleet), (BodyMember1|MainBody1), inform, turn_away)

input((OTC|Fleet))|communication_from_to((BodyMember1|MainBody1), (OTC|Fleet), inform, turning_away)
input((OTC|Fleet))|communication_from_to((BodyMember1|MainBody1), (OTC|Fleet), inform, turned_away)

input((OTC|Fleet))|observation_result(outside_of_sub_range(MainBody1), pos)
output((OTC|Fleet))|communication_from_to((OTC|Fleet), (BodyMember1|MainBody1), inform, turn_back_to_old_direction)

input((OTC|Fleet))|communication_from_to((BodyMember1|MainBody1), (OTC|Fleet), inform, turning_back_to_old_direction)
input((OTC|Fleet))|communication_from_to((BodyMember1|MainBody1), (OTC|Fleet), inform, turned_back_to_old_direction)

output((OTC|Fleet))|communication_from_to((OTC|Fleet), (LeftDetector1|Screen1), inform, replace_sau)
input((OTC|Fleet))|communication_from_to((LeftDetector1|Screen1), (OTC|Fleet), inform, heading_to_sau)

input((OTC|Fleet))|communication_from_to((LeftDetector1|Screen1), (OTC|Fleet), inform, ready_to_replace_sau)
output((OTC|Fleet))|communication_from_to((OTC|Fleet), (RightProtector1|Screen1), inform, return_to_regular_position)

internal((OTC|Fleet))|belief(allocated_to(H1, SAUC, SAU), pos)
internal((OTC|Fleet))|belief(allocated_to(H3, LeftDetector1, Screen1), pos)

internal((OTC|Fleet))|belief(allocated_to(H3, FrontLeftDetector1, Screen1), pos)
output((OTC|Fleet))|communication_from_to((OTC|Fleet), (SAUC|SAU), inform, return_to_mothership)

internal((OTC|Fleet))|belief(plan_executed, pos)
output((OTC|Fleet))|communication_from_to((OTC|Fleet), (FrontLeftProtector1|Screen1), inform, change_crew)

output((OTC|Fleet))|communication_from_to((OTC|Fleet), (FrontLeftProtector1|Screen1), inform, refuel)
internal((OTC|Fleet))|belief(allocated_to(H1, FrontLeftProtector1, Screen1), pos)

internal((OTC|Fleet))|belief(current_plan(restore_fleet_configuration), pos)
internal((OTC|Fleet))|belief(allocated_to(H1, FrontLeftDetector1, Screen1), pos)

time 0 100 200 300

 Figure 3. Simulation result of Submarine Threat Scenario

ship might have to sail to a particular place to execute the newly
assigned role. Formally the property can be specified in the
following way:

∀γ:TRACES, t1:TIME > 20, A:AGENT, R:ROLE, G:GROUP
 [∃R2:ROLE state(γ, t1, input(ChangeManager|ChangeGroup)) |=

communication_from_to(R2|ChangeGroup,
ChangeManager|ChangeGroup, inform,
 belief(add(allocated_to(A, R, G)), pos))

 � [∃t2:TIME � t1 state(γ, t2, output(R|G)) |=
 communication_from_to(R|G, OTC|Fleet, inform,

able_to_fulfil_fole)]]

This property is satisfied as well for the given traces.

P4: Determine a plan to handle exceptions
When an exception occurs the OTC within the fleet always has a
belief about a current plan that handles the exception:

∀γ:TRACES, t1:TIME
 [∃E:EXCEPTION state(γ, t1, input(OTC|Fleet)) |= E �
 ∃t2:TIME � t1, P:PLAN [state(γ, t2, internal(OTC|Fleet)) |=
belief(current_plan(P), pos)]]

This property is satisfied for the trace presented in Section 4.

DISCUSSION
This paper introduces an integrative modeling approach for

simulation and analysis of adaptive behavior of multi-agent
organizations. The approach is integrative in two ways. First, it
combines both qualitative, logical and quantitative, numerical

aspects in one modeling framework. Second, it allows to model
dynamics at different aggregation levels from local to more global
levels.

The organizational processes during naval missions have been
formalized by identifying executable local dynamic properties for
the basic dynamics. On the basis of these local properties
simulations have been made. Moreover, dynamic properties
describing the behavior at a global level have been identified. These
properties have been checked automatically on the simulation
traces. To this end a system has been introduced that consists of
four components: (1) A planning component; (2) a simulation
engine; (3) a visualization tool, and (4) a component which enables
formal validation. The planning component has been equiped with
typical plans for the naval domain from the so called ‘doctrine’ .
The simulation engine has as a basis an organizational model which
is specified by means of dynamics in the form of formal executable
properties. Organizational change and change of plans are
visualized in an understandable manner for naval experts by means
of the visualization tool. Finally, the validation component enables
formal validation of traces.

The approach taken in this paper has a number of advantages
over other approaches. When comparing with planning achitictures
such as [4] and [1], the approach presented in this paper provides
validation functionalities for the simulation results, which is not the
case in the other architectures. The models of these architectures
can be formally proven to be correct, however for the complex
naval domain it might be too diffult to prove such a thing.

Figure 4. Screenshot of the visualization tool

Furthemore the approach in this paper also has the ability to
validate and visualize empirical traces who can for example be
obtained from logbooks. These advantages could be used to
monitor a current mission, and constantly check whether the
properties that should hold for the mission are satisfied. In case a
property is not satisfied, a warning could for example be given.

Other simulation engines have been developed specifically for
the naval domain, such as for example presented in [10]. For a
matter of validation of the model however, navy experts were asked
what they considered to be the optimal solution. In the approach
used in this paper, this process is automated due to the formal
specification of properties provided to us by naval domain experts.

ACKNOWLEDGEMENTS
CAMS-Force Vision, the software development company
associated with the Royal Netherlands Navy, has provided funding
and domain knowledge to enable the scenarios and simulations
presented in this paper. The authors especially want to thank Jaap
de Boer (CAMS-ForceVision) for his expert knowledge.

REFERENCES
1. d'Inverno, M., Luck, M. Georgeff, M., Kinny, D. and

Wooldridge, M., The dMARS Architechure: A Specification
of the Distributed Multi-Agent Reasoning System. Journal of
Autonomous Agents and Multi-Agent Systems, 9(1-2):5-53,
2004.

2. Ferber, J. and Gutknecht, O., A meta-model for the analysis
and design of organisations in multi-agent systems. In:
Proceedings of the Third International Conference on Multi-
Agent Systems (ICMAS’98), IEEE Computer Society Press,
pp. 128-135.

3. Ferber, J., Gutknecht, O., Jonker, C.M., Müller, J.P., and
Treur, J., Organization Models and Behavioural Requirements
Specification for Multi-Agent Systems. In: Y. Demazeau, F.
Garijo (eds.), Multi-Agent System Organisations. Proc. of the
10th European Workshop on Modelling Autonomous Agents
in a Multi-Agent World, MAAMAW'01.

4. Georgeff, M. P., and Ingrand, F. F., Decision-making in an
embedded reasoning system. In Proceedings of the Eleventh
International Joint Conference on Artificial Intelligence
(IJCAI-89), pages 972-978, Detroit, MI, 1989.

5. Goodwin, R., Meta-Level Control for Decision-Theoretic
Planners. PhD thesis, School of Computer Science, Carnegie
Mellon University, Pittsburgh, PA, 1996.

6. Hoogendoorn, M., Jonker, C.M., Schut, M., and Treur, J.,
Modelling the Organisation of Organisational Change. In:
Proc. of the Sixth International Workshop on Agent-Oriented
Information Systems, AOIS'04.

7. Jonker, C.M., Treur, J. Compositional verification of multi-
agent systems: a formal analysis of pro-activeness and
reactiveness. International. Journal of Cooperative Information
Systems, vol. 11, 2002, pp. 51-92.

8. Jonker, C.M., Treur, J., and Wijngaards, W.C.A., A Temporal
Modelling Environment for Internally Grounded Beliefs,
Desires and Intentions. Cognitive Systems Research Journal,
vol. 4, 2003, pp. 191-210.

9. Law A.M. and Kelton D.W., Simulation, Modeling and
Analysis. McGraw Hill, 2000. Third edition.

10. Sokolowski, J., Enhanced Military Decision Modeling Using a
MultiAgent System Approach, In Proceedings of the Twelfth
Conference on Behavior Representation in Modeling and
Simulation, Scottsdale, AZ., May 12-15, 2003, pp. 179-186.

Mark Hoogendoorn is a PhD student at the Vrije Universiteit
Amsterdam, Department of Artificial Intelligence. He obtained his
Masters degree in Computer Science in 2003 at the same university,
graduating on a project related to multi-agent negotiation as part of
the MAGNET research group at the University of Minnesota. In his
PhD research he focuses on organizational change within multi-
agent systems, applying his research in various domains, including
a project in collaboration with the Royal Netherlands Navy.

Catholijn M. Jonker is a full professor in Artificial Intelligence
and Cognitive Science at the Nijmegen Institute for Cognition and
Information of the Radboud Universiteit Nijmegen in the
Netherland. She studied computer science at Utrecht University.
She completed her PhD on the topic of Negations and Constraints
in Logic Programming at the same university. After completing a
post-doc position on the same topic at the Universität Bern, she
became an assistant professor at the Vrije Universiteit Amsterdam
and switched her research topic to agent technology. During the
time at the Vrije Universiteit her interest in cognitive science
increased, which she combined with her work on modelling multi-
agentsystems and organisations and her work on the analysis and
modelling of the dynamics of behaviour of complex systems. These
research topics now contribute to the research programme of the
Cognitive Artificial Intelligence division of the Nijmegen Institute
for Cognition and Information.

Martijn C. Schut is Assistant Professor at the Department of
Artificial Intelligence, Vrije Universiteit, Amsterdam, The
Netherlands. He received a MSc from the Vrije Universiteit (NL)
and a PhD from the University of Liverpool (UK). His research
interests concern the emergence of organisational dynamics in
distributed multi-agent systems.

Jan Treur received his Ph.D. in Mathematics and Logic in 1976
from Utrecht University. Since 1986 he works in Artificial
Intelligence, from 1990 as a full professor and head of the
Department of Artificial Intelligence at the Vrije Universiteit
Amsterdam. In the 1990s he headed a research programme on
component-based design of knowledge-based and agent systems. In
the last five years the research programme focussed on modelling
dynamics of agent systems in practical application areas, and
related to other disciplines such as Biology, Cognitive Science,
Organisation Theory, and Philosophy of Mind.

