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Abstract 
The naval domain is characterized by a dynamic environment. This 
requires constant adaptation of the organisation, choosing between 
a wide variety of options. The consequences of the different options 
are difficult to foresee and hence, it is hard to judge which option is 
best. This paper presents automated support for the simulation, 
visualization, and validation of such adaptive multi-agent 
organisations. Generic simulation properties are specified using a 
formal modelling approach. Furthermore, results of a realistic case 
study are presented, and validated by means of properties obtained 
from naval experts. Finally, a tool is introduced that enables an 
insightful visualization of the simulation results. 
 

INTRODUCTION 
Agent-based modeling techniques are often used to model and 

simulate (natural or artificial) agent systems that have to deal with 
dynamic and uncertain environments. Therefore, an important 
challenge for the area of agent-based modeling is the notion of 
adaptivity. Adaptation can take place within a single agent (e.g., an 
individual learning process), or at the level of the multi-agent 
organization (e.g., change of roles of agents within the 
organization). In order to create (multi-)agent-based simulations 
with adaptive abilities, adaptation mechanisms have to be 
incorporated in agent-based simulation models.  

Adaptation mechanisms can involve not only quantitative 
numerical aspects but also qualitative, logical aspects (for example, 
a role switch between agents within an organization). If 
formalization is used for an adaptation mechanism, this is often 
based on mathematical models using differential equations. In 
contrast, agent-based simulation models traditionally make use of 
qualitative, logical languages. Most of these languages are 
appropriate for expressing qualitative relations, but less suitable to 
work with more complex numerical structures as, for example, in 
differential equations. Therefore, integrating such mathematical 
models within the design of (multi-)agent-based simulation models 
is difficult. To achieve this integration, it is needed to bridge the 

gap between quantitative approaches and the type of languages 
typically used in agent-based simulation. 

In the area of simulation, a formalized model is used to compute 
the simulation steps [9]. Languages and software environments are 
available to support this modeling process. Validation of a model is 
usually not formally supported; it is considered a different issue. 
Often validation is done informally, by hand (or eye), based on 
comparison of a simulation trace with an empirical trace. In 
addition, sometimes specific (e.g., statistical) techniques are used to 
support certain aspects of validation. Usually in the domain that is 
modeled, global properties that should hold for the behavior of a 
simulation model can be identified. As the languages used to 
specify a simulation model are directed to local properties (the 
steps between successive states), such global properties cannot be 
formalized in these languages. To obtain more support, also for 
validation of a simulation model, it is needed to integrate the 
modeling of such global properties in a formal manner as well, so 
that their specification and automated checking on simulation traces 
also can be supported by the modeling environment. 

In accordance with the findings mentioned above, this paper 
introduces an approach for simulation and analysis of adaptive 
(multi-)agent systems and underlying mechanisms that is 
integrative in two ways: 

 

(1) It combines in one modeling framework both qualitative, 
logical and quantitative, numerical aspects   

(2) It allows to model dynamics at different aggregation levels, 
from a more local level (e.g., behaviors of roles within the 
organization) to a global level (behavior of the multi-agent 
organization as a whole); moreover, interlevel relations can 
be specified that express relationships between dynamic 
properties at different levels 

 

Modeling dynamics at a local level often concerns expressing 
temporal relationships between pairs of successive states, such as 
described, for example, by basic steps within an adaptation 
mechanism. Local level specifications are the basis for the 
computation steps for a simulation model. From the more global 
perspective, more complex relationships over time can be used to 
model dynamics for adaptive multi-agent organizations. For 
example, how during a history of events to which it adapts, the 
system’s behavior is changing.  



       

Interlevel relations often take the hierarchical form of an AND-
tree (or a number of them), with the most global property at the top 
(root) and the most local at the leaves. Such a hierarchical structure 
can be useful in the analysis of, in case, why a global property fails 
on a certain simulation trace. By going down in the tree and at each 
level checking the properties under the failing node, finally the leaf 
or leaves that fail(s) can be found, thus pinpointing the (local) cause 
of the failure. This can be useful in debugging a model, but also in 
the analysis of the circumstances under which a model will function 
well and under which not, and the reasons why. 
 The main objective of the research described in this paper is to 
investigate the suitability of a system involving planning, 
simulation, visualisation, and validation with respect to automated 
planning support in naval missions. The longer term aim of this 
research is to contribute to the development of a tool that allows for 
personnel to plan with a confidence and speed that would not be 
otherwise possible.  
 The remainder of this paper is structured as follows. Section 2 
gives some details about the naval domain addressed and how 
adaptive organisation forms play a role. In Section 3, the modelling 
methodology that has been used is presented. Section 4 presents a 
number of simulations that have been conducted and describes a 
case study that has been investigated. Section 5 presents the plan 
visualisation tool. Section 6 describes validation results for the case 
study. Finally, Section 7 concludes and describes future work. 
 

ADAPTIVE ORGANIZATION WITHIN THE 
NAVAL DOMAIN 

Within the dynamic naval environment actions of possibly 
opposing parties, but also possible interference of non-military 
bystanders might induce a need for change in the organisation to 
ensure the safety of the mission. Which response to choose in a 
given situation depends on a variety of factors. Elements such as 
enemy resources and innocent bystanders have to be taken into 
consideration and it is hard to predict the consequences of a plan 
that has been chosen. This paper presents an automated support 
system for the simulation, visualization, and validation of such 
processes. Two requirements must be met concerning such support: 
1) the support must agree with the current way of working, and 2) 
guarantees must be given over the resulted planning with respect to 
given conditions including intended outcome and required 
resources. The work presented here researches an approach for 
implementing automated support that meets these two 
requirements.  
 As the current way of working is concerned, the naval domain 
knows a large volume of well thought out plans that are scheduled 
for and during a mission (the so-called ‘doctrine’ ). Everyone 
involved in a mission is familiar with these plans. The performed 
planning during a mission consists mostly of switching between 
and carrying out those plans. On the one hand, such planning 
during a mission may be a matter of executing the plans that were 
decided upon for the mission; on the other hand, unexpected events 
may happen that ask for necessary replanning during a mission. 
Concerning the latter, these situations require appropriate and 
speedy response. It is essential that in these situations, current 
circumstances are taken into account, a suitable plan is selected 

from the doctrine, the situation is dealt with and the mission will 
continue as originally planned.  
 Replanning in the naval domain frequently involves 
organisational change: it actually affects the organisational 
structure in addition to adaptation of other plans. For example, in 
response to an unexpected event, a ship that was originally only an 
escort of a high-value unit, may have to change its role to an attack 
unit. Such replanning situations are not rare: organisational changes 
are frequent and substantial. 
 Another important aspect of naval planning involves spatial 
information. Feasibility of a plan is partly determined by the nature 
of the available resources (helicopters, frigates, transporters) and 
the relative location of those resources. Combining the specific 
capabilities of the resources with spatial information and timing 
aspects plays a key role in the planning. Therefore plan 
visualisation that includes spatial information is necessary for 
successful implementation of automated planning support in naval 
applications. 
 In naval missions, it is crucial to consider the planning within the 
broader context of mission goals, available resources, intended 
outcomes, etcetera. In this respect, performed planning before and 
during a mission must be checked against such kinds of conditions. 
For example, when an agent is reallocated to another role (e.g., 
because of prevailing circumstances), it must inform others at the 
time that it is able to fulfill its role. It is important to recognise that 
this reallocation does not happen instantaneously (e.g., because a 
ship may have to sail towards some location to fulfill its new role), 
and therefore the communication is essential for others to know 
when the agent can receive orders in its new role. 
 This paper presents a simulation model that includes: a planner 
(P) for organisational change; a simulator (S) for those plans that 
reflects the meta-knowledge (see for example [5]) of the roles 
involved regarding organisational change; a visualisation tool (VS) 
for the spatial effects of plan execution that is dedicated to the naval 
domain; and a validation tool (VL) for the validation of the 
resulting planning.  

The essential virtue of the model is that it recognises the 
importance of spatial information in naval planning (by means of 
the visualisation) and it offers an inventive way to check whether 
given conditions hold while planning (by means of the validation). 
The model may be used offline for analysis purposes and/or 
mission planning, as well as during execution of a mission as an 
automated planning support tool. 

 
MODELLING METHODOLOGY 

To facilitate formal modelling of a multi-agent organisation and 
its dynamics, this section introduces an organisational modelling 
approach and, in addition, a modelling language that enables 
specifying the dynamics within an organisation (see also [3]). The 
organisational  modelling approach is described in Section 3.1, and 
the formal language for expressing dynamics is addressed in 
Section 3.2. 

 
 
 



       

AGR Organisation Modelling Approach 
For the description of actual multi-agent organisations, the AGR 

(for agent/group/role) model has been adopted [2]. In that approach, 
an organization is viewed as a framework for activity and 
interaction through the definition of groups, roles and their 
relationships. But, by avoiding an agent-oriented viewpoint, an 
organization is regarded as a structural relationship between a 
collection of agents. Thus, an organization can be described solely 
on the basis of its structure, i.e. by the way groups and roles are 
arranged to form a whole, without being concerned with the way 
agents actually behave, and multi-agent systems will be analyzed 
from the outside, as a set of interaction modes. The specific 
architecture of agents is purposely not addressed in the 
organizational model. The three primitive definitions are: 

 
•  The agents. The model places no constraints on the internal 
architecture of agents. An agent is only specified as an active 
communicating entity which plays roles within groups. This agent 
definition is intentionally general to allow agent designers to adopt 
the most accurate definition of agent-hood relative to their 
application. In this paper, the agents are however assumed to be 
reflective agents, allowing them to reason about the role they are 
playing. 

 
•  Groups are defined as atomic sets of agent aggregation. Each 
agent is part of one or more groups. In its most basic form, the 
group is only a way to tag a set of agents. An agent can be a 
member of n groups at the same time. A major point of these 
groups is that they can freely overlap. 

 
•  A role is an abstract representation of an agent function, service 
or identification within a group. Each agent can handle multiple 
roles, and each role handled by an agent is local to a group. Roles 
can also have beliefs due to the assumed reflective capabilities of 
the agents; they can reason about whether they should have a 
particular belief given a certain role. These beliefs can be seen as an 
additional requirement on the agents playing that role. 

 
Modelling Language for Dynamics 

In this section a method to express dynamics within an 
organisational model is addressed. To formally specify dynamic 
properties that are essential in an organisation, an expressive 
language is needed. To this end the Temporal Trace Language is 
used as a tool; cf. [7]. For the properties occurring in the paper 
informal, semi-formal or formal representations are given. The 
formal representations are based on the Temporal Trace Language 
(TTL), which is briefly defined as follows. 
 A state ontology is a specification (in order-sorted logic) of a 
vocabulary. A state for ontology Ont is an assignment of truth-
values {true, false} to the set At(Ont) of ground atoms expressed in 
terms of Ont. The set of all possible states for state ontology Ont is 
denoted by STATES(Ont). The set of state properties STATPROP(Ont) 
for state ontology Ont is the set of all propositions over ground 
atoms from At(Ont). A fixed time frame T is assumed which is 
linearly ordered. A  trace or trajectory γ over a state ontology  Ont  
and time frame T  is a mapping γ : T → STATES(Ont), i.e., a sequence 
of states γt (t ∈ T) in  STATES(Ont). The set of all traces over state 

ontology Ont is denoted by TRACES(Ont).  Depending on the 
application, the time frame T may be dense (e.g., the real numbers), 
or discrete (e.g., the set of integers or natural numbers or a finite 
initial segment of the natural numbers), or any other form, as long 
as it has a linear ordering. The set of dynamic properties 
DYNPROP(Ont) is the set of temporal statements that can be 
formulated with respect to traces based on the state ontology Ont in 
the following manner.  
Given a trace γ over state ontology Ont, the input state of some role 
r within a group g at time point t is denoted by  

 state(γ, t, input(r|g)) 

analogously 

 state(γ, t, output(r|g))  
 state(γ, t, internal(r|g))  
denote the output state and internal state.  
 These states can be related to state properties via the formally 
defined satisfaction relation |=, comparable to the Holds-predicate 
in the Situation Calculus: state(γ, t, output(r|g)) |= p denotes that state 
property p holds in trace γ at time t in the output state of role r 
within group g. Based on these statements, dynamic properties can 
be formulated in a formal manner in a sorted first-order predicate 
logic with sorts TIME or T for time points, Traces for traces and F for 
state formulae, using quantifiers over time and the usual first-order 
logical connectives such as ¬, ∧, ∨, �, ∀, ∃. In trace descriptions, 
notations such as 
 state(γ, t, output(r|g))|= p 

are shortened to  
 output(r|g)|p 

To model direct temporal dependencies between two state 
properties, the simpler leads to format is used. This is an executable 
format defined as follows. Let α and β be state properties of the 
form ‘conjunction of literals’  (where a literal is an atom or the 
negation of an atom), and e, f, g, h non-negative real numbers. In the 
leads to language α →→e, f, g, h β, means: 
 

   If      state property α holds for a certain time interval with duration g, 

   then  after some delay (between e and f) state property β will hold for a certain time 

interval of  length h. 
 

For a precise definition of the leads to format in terms of the 
language TTL, see [8]. A specification of dynamic properties in 
leads to format has as advantages that it is executable and that it 
can often easily be depicted graphically. 

 
SIMULATIONS 

This Section presents the simulator component within the system. 
First of all, the executable (leads to) properties which specify the 
simulation model for the simulator are presented in Section 4.1. 
After that, Section 4.2 addresses the case study that has been 
investigated, followed by the results of the simulations of the case 
study. 

 
Simulation Model Specification 

This Section describes generic properties that constitute the basis 
for the simulation model. Each of these generic properties can be 
formed into more scenario specific rules whenever necessary. The 
generic properties in the framework work are based on goals, plans, 
beliefs and events. The used architecture is shown in Figure 1. 



       

 It has to be mentioned that beliefs in this respect are used for 
storing information about the environment as well as information 
about oneself. As shown in the scenario below, many plans involve 
organisational change. This means that the actual organisational 
structure changes as the result of some occurring event. Thus, in 
addition to knowing about the environment by observation, it is 
assumed that the agent (reflectively) knows about its role in the 
organisation and can change to another role if necessary. The 
architecture shown in Figure 1 has been formalised and this 
formalisation is explained in the remainder of this section. Firstly, it 
is assumed that a goal has been given. 

internal(r:ROLE|gr:GROUP)|belief(g:GOAL, pos) 

denotes that role r within group gr holds the belief that g is a goal. 
Based on this goal, a plan is selected to achieve it: 

internal(r:ROLE:gr:GROUP)|belief(current_plan(p:PLAN), pos) 

says that plan p is selected as to achieve goal g. This plan will 
generate actions as long as no disturbing events occur. If such an 
event occurs and r is informed, this is denoted by 

input(r:ROLE:gr:GROUP)|communication_from_to(r1:ROLE|gr1:   
GROUP, r:ROLE|gr:GROUP ,inform, e:EVENT) 

stating that r1 within group gr1 informs r within group gr about 
event e. This event causes another goal to become active. 

internal(r:ROLE|gr:GROUP)|belief(g1:GOAL, pos)  

says that g1 is now a goal and a subsequent plan is selected: 

internal(r:ROLE|gr:GROUP)|belief(current_plan(p1:PLAN), pos) 

This plan may involve organisational change. If this is the case (as 
it is in the scenarios below), a modelling approach is adopted as 
developed elsewhere [6]. This involves the existence of a 
ChangeManager who directs the organisational change. This 
approach is explained in more detail below. If the plan has been 
fully executed, this is denoted by 

internal(r:ROLE|gr:GROUP)|belief(plan_executed(p:PLAN),pos) 

where the parameter might be left out if it is assumed that only one 
plan can be executed at a time. This causes role r to reflect on other 
still existing goals and resuming the plans to achieve these goals. If 
there are no existing goals, a new goal may be generated or given. 

Execution of a certain plan that has been selected often consists 
of organisational change. Therefore, generic simulation rules for 

these organisation structure changes are needed to enable a generic 
simulation model. The properties shown below are based on the 
approach presented in [6] which is partially based on the AGR 
organisation modelling approach as presented in Section 3.1. In that 
approach, organisational change can be performed in a meta-group 
called ChangeGroup, in which Member roles are present that 
represent agents within the organisation. Each agent in the 
organisation is represented by exactly one Member role within the 
ChangeGroup. The Member roles have beliefs about the 
organisation and these beliefs are transferred to the roles the agent 
is currently playing. To initiate the change process as described 
above, triggers are needed. These are specified in the current plan, 
and are domain specific. Given this specific information for the 
particular plan, generic simulation rules fire to simulate the process 
of informing the members involved and changing their current 
beliefs on the organisation. Some example rules are presented 
below. 
 
RP(ChangeManager):Communicate Activity 
[output(ChangeManager|ChangeGroup)|communication_from_to( 

ChangeManager|ChangeGroup, all_involved, inform,  
active(C:CHANGE_GROUP)) & 

internal(ChangeManager|ChangeGroup)|belief(involved_in_group( 
R:ROLE, C:CHANGE_GROUP), pos)] 

→→0,0,1,1  
input(R:ROLE|ChangeGroup)|communication_from_to( 

ChangeManager|ChangeGroup, R:ROLE|ChangeGroup,  
inform, active(C:CHANGE_GROUP) 

 
 
RP(Member): Believe Change Activity 
input(R:ROLE|ChangeGroup)|communication_from_to( 

ChangeManager|ChangeGroup, R:ROLE|ChangeGroup,  
inform, active(C:CHANGE_GROUP) 

→→0,0,1,1  
[internal(R:ROLE|ChangeGroup)|belief(active(C:CHANGE_GROUP,  

pos) & 
 output(R:ROLE|ChangeGroup)|communication_from_to( 

R:ROLE|ChangeGroup, ChangeManager|ChangeGroup,  
inform, belief(active(C:CHANGE_GROUP), pos))] 

 

Rules such as the examples above cause the ChangeGroup to be 
activated, knowledge about a new structure to be communicated, 
and finally belief emerging at the roles that need to have this 
information. After all of this has been performed, the ChangeGroup 
is deactivated and the new structure is in place (part of the internals 
of the roles). 

Roles are attributed with reflective knowledge in the approach 
presented in this paper. This means that roles have beliefs on the 
expected behaviour concerning the role. For example, a role has the 
internal belief that when the role receives an input x he eventually 
has to output y, formally: 
 

internal(Role|Group)|belief(leadsto(input(Role|Group)|x, 
output(Role|Group)|y, efgh(0,0,1,1)),pos) 

 
Simulation Results 

This section contains results of simulations using the model 
presented in Section 3 and the generic properties presented in 
Section 4.1 which have been formalised in terms of the formal 
languages presented in Section 3. First of all, the case study is 
introduced, thereafter some example formal properties which 
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Figure 1. Architecture of the simulation model 

 



       

specify the behaviour in the situations that occur in the case study 
are shown. Finally, the simulation trace for the case study is shown.  

 
Case study 
This section presents a case study that has been obtained from 

experts of the Royal Netherlands Navy. The scenario contain events 
that are typical within the naval domain. The scenario that has been 
studied is called submarine threat. The initial configuration of the 
fleet is shown in Figure 2. In total there are six frigates, denoted by 
F1 - F6, each allocated to a certain area within which they reside. 
Besides the frigates there are also helicopters (H1- H6) flying in a 
particular zone of the fleet. Finally, there are certain High Value 
Units (HVU) within the area called ZZ (for Zulu Zulu) that need to 
be protected. These might for example be ships containing troops, 
or amphibian landing vehicles. In total there are five ships within 
ZZ, which is called MainBody throughout this paper. At a certain 
point in time the Officer in Tactical Command (OTC) receives an 
assignment to sail to Peterselie island and chooses a fleet 
configuration. On the way however, after a certain time-point 
however, frigate F1 detects sonar contact with a high probability 
that it is a submarine. The OTC now has to plan the actions to be 
performed to deal with such an event. 

 
Case Specific Formal Properties 
This section presents some example properties that have been 

formalized to enable the simulation of the submarine threat case 
study, if a role informs the OTC that sonar contact with a 
submarine has been made, he forms a search and attack unit: 
 
RP(OTC): Handle sonar contact 
input(OTC|Fleet)|communication_from_to(R:ROLE|Screen1,  

OTC|Fleet, inform, sonarcontact_sub) 
→→0,0,1,1 

internal(OTC|Fleet)|belief(current_plan(eliminate_submarine_threat),  
pos) 

 
The plan to eliminate such a submarine threat involves forming a 
search and attack unit. In case such a unit if formed, a new group is 
created called SAU. Furthermore, the role of commander within the 
SAU, the SAUC is performed by the agent previously allocated to 
LeftProtector1. Formal: 
 
RP(OTC): Perform plan to form SAU 
∀A:AGENT, R:ROLE, G:GROUP 
[internal(ChangeManager|ChangeGroup)|current_plan( 

eliminate_submarine_threat), pos) & 
 internal(ChangeManager|ChangeGroup)|belief(allocated_to( 

A:AGENT, LeftProtector1, G:GROUP), pos)] 
→→0,0,1,1 

internal(ChangeManager|ChangeGroup)|belief(delete(allocated_to( 
A:AGENT, FrontLeftProtector1, G:GROUP)), pos) & 

internal(ChangeManager|ChangeGroup)|belief(add(exists_group( 
SAU)), pos) & 

internal(ChangeManager|ChangeGroup)|belief(add(exists_role( 
SAUC)), pos) & 

internal(ChangeManager|ChangeGroup)|belief(add(allocated_to( 
A:AGENT, SAUC, SAU)), pos)] 

 
 

Formal Simulation Trace 
The results of the case study that has been performed are 

presented here. Figure 3 shows the trace regarding the simulation of 
the “submarine threat”  case study. Briefly, the trace shows the 
following elements: First of all, OTC is informed by the 
LeftProtector1 within Screen1 about a sonar contact with a sub. At 
that same time-point the OTC derives a new plan: 

internal(OTC|Fleet)|belief(current_plan(  
eliminate_submarine_threat, pos) 

As a result, a search and attack unit (SAU) is formed again, and 
the submarine is located. After the location is known, the OTC 
orders the rest of the fleet to turn away. The command is confirmed 
by the ships within the MainBody1 and they eventually 
communicate to have turned away: 

input(OTC|Fleet)|communication_from_to(                                                                                                                                     
BodyMember1|MainBody1, OTC|Fleet, inform, turned_away) 

Following the observation that the ships must be outside of range 
for the torpedo’s, the ships are told to turn back to their old 
direction again. All confirm and execute the order. The OTC 
commands the helicopters to replace the frigates that take part in 
the SAU because the helicopters are much faster and the distance 
between the SAU and the rest of the Fleet is increasing. 

output(OTC|Fleet)|communication_from_to(OTC|Fleet,         
LeftDetector|Screen1, inform, replace_sau) 

Due to the open position in Screen1 that is left, helicopter F3 is 
allocated to two roles within the Screen. After a certain time, the 
OTC believes the submarine in no threat anymore and orders the 
roles within the SAU group to return to their mother ship: 

output(OTC|Fleet)|communication_from_to(OTC|Fleet, 
SAUC|SAU, inform, return_to_mothership) 

This denotes that at a later point in time, the helicopter is allocated 
to the role of FrontLeftProtector1 within Screen1, which is already 
allocated to frigate F2: 

Figure 2. Initial Fleet configuration 
 



       

internal(OTC|Fleet)|belief(allocated_to(H1, FronLeftProtector, 
Screen1) 

The commands to refuel and change the crew of the helicopter are 
therefore sent to the role to which F1 and H2 are allocated. After 
the refuel is done, the old fleet configuration is restored. 
 

VISUALIZATION 
For the simulator a visualization tool has also been developed. 

Figure 4 shows a screenshot of the tool. On the left side of the 
figure the fleet is shown in a visual manner as previously shown in 
Figure 3 whereas on the right side the trace (of which parts were 
explained already in Section 4.2), that acts as a basis for the 
visualization, is shown. A bar in the trace shows the accompanying 
time-point for which this visualization holds. For Navy domain 
experts such a visualization tool is easily interpretable whereas a 
trace as shown on the right side of Figure 4 is hard to interpret 
especially due to the fact that one needs to be familiar with such 
kind of formalisms. 

 
VALIDATION 

When a formalized trace has been obtained either by a 
formalization of an empirical trace or by means of simulation it is 
useful to verify certain essential properties in the trace. Below the 
properties that have been checked against the trace presented in 
Section 4 are shown. The properties are independent from the 
specific scenario and should hold for every trace. The properties are 

formalized using Temporal Trace Language as described in Section 
3.  
 
 

P1: Reflective Behaviour 
This property states that in case a role has a belief about an 
executable property that should be fulfilled when the role is being 
performed, the role should actually show this behaviour. Formally: 
 

∀γ:TRACES, t1:TIME, A:ANTECEDENT, C:CONSEQUENT 
  [∃ R:ROLE, G:GROUP 
   state(γ, t1, internal(R|G)) |= belief(leadsto(A, C, efgh(_,_,_,_)), pos) 
   � [∀t2 � t1  state(γ, t2) |= A � ∃t3 � t2 state(γ, t3) |= C ]] 
 

This property is indeed satisfied for the presented traces. 
 
 
P2: Ship always allocated to a role 
The fact that a ship should always be allocated to a role (after the 
initial fleet setup) is specified using this property. In formal form 
the property is formulated as follows: 
 

∀γ:TRACES, t:TIME > 20, A:AGENT 
   [∃R:ROLE, G:GROUP 
    state(γ, t, internal(OTC|Fleet)) |= belief(allocated_to(A, R, G), pos)] 
 

This property is also satisfied for the given traces. 
 
P3: Communication that an agent is able to fulfil its role 
This property entails that when an agent is re-allocated to another 
role, it should always communicate when it is able to fulfil the role. 
There can be a time-delay between the re-allocation because the 

internal((OTC|Fleet))|belief(allocated_to(H1, LeftDetector1, Screen1), pos)
input((OTC|Fleet))|observation_result(speed(MainBody1, normal), pos)

internal((OTC|Fleet))|belief(current_plan(eliminate_submarine_threat), pos)
input((OTC|Fleet))|communication_from_to((LeftProtector1|Screen1), (OTC|Fleet), inform, sonarcontact_sub)

input((OTC|Fleet))|communication_from_to((SAUC|SAU), (OTC|Fleet), inform, sub_at_position_p)
output((OTC|Fleet))|communication_from_to((OTC|Fleet), (BodyMember1|MainBody1), inform, turn_away)

input((OTC|Fleet))|communication_from_to((BodyMember1|MainBody1), (OTC|Fleet), inform, turning_away)
input((OTC|Fleet))|communication_from_to((BodyMember1|MainBody1), (OTC|Fleet), inform, turned_away)

input((OTC|Fleet))|observation_result(outside_of_sub_range(MainBody1), pos)
output((OTC|Fleet))|communication_from_to((OTC|Fleet), (BodyMember1|MainBody1), inform, turn_back_to_old_direction)

input((OTC|Fleet))|communication_from_to((BodyMember1|MainBody1), (OTC|Fleet), inform, turning_back_to_old_direction)
input((OTC|Fleet))|communication_from_to((BodyMember1|MainBody1), (OTC|Fleet), inform, turned_back_to_old_direction)

output((OTC|Fleet))|communication_from_to((OTC|Fleet), (LeftDetector1|Screen1), inform, replace_sau)
input((OTC|Fleet))|communication_from_to((LeftDetector1|Screen1), (OTC|Fleet), inform, heading_to_sau)

input((OTC|Fleet))|communication_from_to((LeftDetector1|Screen1), (OTC|Fleet), inform, ready_to_replace_sau)
output((OTC|Fleet))|communication_from_to((OTC|Fleet), (RightProtector1|Screen1), inform, return_to_regular_position)

internal((OTC|Fleet))|belief(allocated_to(H1, SAUC, SAU), pos)
internal((OTC|Fleet))|belief(allocated_to(H3, LeftDetector1, Screen1), pos)

internal((OTC|Fleet))|belief(allocated_to(H3, FrontLeftDetector1, Screen1), pos)
output((OTC|Fleet))|communication_from_to((OTC|Fleet), (SAUC|SAU), inform, return_to_mothership)

internal((OTC|Fleet))|belief(plan_executed, pos)
output((OTC|Fleet))|communication_from_to((OTC|Fleet), (FrontLeftProtector1|Screen1), inform, change_crew)

output((OTC|Fleet))|communication_from_to((OTC|Fleet), (FrontLeftProtector1|Screen1), inform, refuel)
internal((OTC|Fleet))|belief(allocated_to(H1, FrontLeftProtector1, Screen1), pos)

internal((OTC|Fleet))|belief(current_plan(restore_fleet_configuration), pos)
internal((OTC|Fleet))|belief(allocated_to(H1, FrontLeftDetector1, Screen1), pos)

time 0 100 200 300

 Figure 3. Simulation result of Submarine Threat Scenario 

 



       

ship might have to sail to a particular place to execute the newly 
assigned role. Formally the property can be specified in the 
following way: 
 

∀γ:TRACES, t1:TIME > 20, A:AGENT, R:ROLE, G:GROUP 
 [∃R2:ROLE state(γ, t1, input(ChangeManager|ChangeGroup)) |= 

communication_from_to(R2|ChangeGroup, 
ChangeManager|ChangeGroup, inform, 
 belief(add(allocated_to(A, R, G)), pos)) 

   � [∃t2:TIME � t1 state(γ, t2, output(R|G)) |= 
  communication_from_to(R|G, OTC|Fleet, inform,  

able_to_fulfil_fole)]] 
 

This property is satisfied as well for the given traces. 
 
P4: Determine a plan to handle exceptions 
When an exception occurs the OTC within the fleet always has a 
belief about a current plan that handles the exception: 
 

∀γ:TRACES, t1:TIME 
   [∃E:EXCEPTION state(γ, t1, input(OTC|Fleet)) |= E � 
    ∃t2:TIME � t1, P:PLAN [state(γ, t2, internal(OTC|Fleet)) |= 
belief(current_plan(P), pos)]] 
 

This property is satisfied for the trace presented in Section 4. 
 

DISCUSSION 
This paper introduces an integrative modeling approach for 

simulation and analysis of adaptive behavior of multi-agent 
organizations. The approach is integrative in two ways. First, it 
combines both qualitative, logical and quantitative, numerical 

aspects in one modeling framework. Second, it allows to model 
dynamics at different aggregation levels from local to more global 
levels. 

The organizational processes during naval missions have been 
formalized by identifying executable local dynamic properties for 
the basic dynamics. On the basis of these local properties 
simulations have been made. Moreover, dynamic properties 
describing the behavior at a global level have been identified. These 
properties have been checked automatically on the simulation 
traces. To this end a system has been introduced that consists of 
four components: (1) A planning component; (2) a simulation 
engine; (3) a visualization tool, and (4) a component which enables 
formal validation. The planning component has been equiped with 
typical plans for the naval domain from the so called ‘doctrine’ . 
The simulation engine has as a basis an organizational model which 
is specified by means of dynamics in the form of formal executable 
properties. Organizational change and change of plans are 
visualized in an understandable manner for naval experts by means 
of the visualization tool. Finally, the validation component enables 
formal validation of traces. 

The approach taken in this paper has a number of advantages 
over other approaches. When comparing with planning achitictures 
such as [4] and [1], the approach presented in this paper provides 
validation functionalities for the simulation results, which is not the 
case in the other architectures. The models of these architectures 
can be formally proven to be correct, however for the complex 
naval domain it might be too diffult to prove such a thing. 

Figure 4. Screenshot of the visualization tool 

 



       

Furthemore the approach in this paper also has the ability to 
validate and visualize empirical traces who can for example be 
obtained from logbooks. These advantages could be used to 
monitor a current mission, and constantly check whether the 
properties that should hold for the mission are satisfied. In case a 
property is not satisfied, a warning could for example be given. 

Other simulation engines have been developed specifically for 
the naval domain, such as for example presented in [10]. For a 
matter of validation of the model however, navy experts were asked 
what they considered to be the optimal solution. In the approach 
used in this paper, this process is automated due to the formal 
specification of properties provided to us by naval domain experts. 
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