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Abstract 
 

Traditionally, product models often have a rigid 
nature, both with respect to the manner in which they 
are initially tailored to clients, and to the way they are 
maintained over time. Especially when such products 
are offered at a highly interactive medium such as 
Internet in the form of web services, addressing such 
aspects might be a necessity to obtain a competitive 
advantage. To cope with these rigidity problems, this 
paper proposes a dynamic approach to product models, 
which supports an ongoing interaction process that 
continuously adapts a product to the background and 
desires of the client. The generic approach has been 
formalised and tested in a case study in the domain of 
car insurances.  
 

1. Introduction 
 

Nowadays, more and more products are being offered 
on the web in the form of web services. Financial 
institutions for example, also intend to offer their 
products in such a form in the near future. Within the 
area of web services, a lot of research has been 
conducted to compose such web services [12, 13, 14]. In 
order to maximise the probability that the product 
offered as a web service is indeed selected as part of 
such a composition, the company should offer the best 
product configuration it can. Such an offer can only be 
made if the product is fully tailored towards the desires 
and characteristics of the customer. Hence, a flexible and 
adaptive approach to obtain and maintain a product 
configuration is needed to maximise the success of 
offering a product as a web service. 

Usually a product model specifies a product by a 
number of attributes and values for them. Financial 
products for example, are often described by 
specifications of values for certain attributes, for 
example for an insurance the coverage, premium, and 
way of paying. However, as financial products usually 
extend over time, this temporal dimension has to be 
covered as well in a product model. For example, for an 

insurance, the attribute ‘no claim reduction percentage’  
is not a static product aspect, but changes over time, 
depending on dynamic interactions of the client and its 
environment. Therefore the specification of such an 
aspect can not be based (only) on specification of a value 
for a certain attribute. Instead of such a simple 
specification, a more complex temporal relationship has 
to be specified taking into account events and attributes 
at different points in time. For example, the no claim 
reduction percentage at a certain point in time depends 
on the claims made at earlier time points in the past, 
which depends on the personal situation of the client 
over time. Also for other products such temporal patterns 
play an important role.  

The dynamic aspects of product models have not 
always been given the central position as would be 
realistic and useful. Instead, product models often have 
been forced in a static format entailing rigidity of two 
types: (1) rigidity in the manner most products are 
initially fit to clients and (2) rigidity in the way they are 
maintained over time after a client has accepted them. 
More specifically, examples of rigidity of type (1) are 
found in the way how product alternatives are offered as 
specific predefined packages or combinations of basic 
product attributes, for example, specific types of saving 
accounts. The client has to make a choice between a 
course-grained couple of predefined alternatives, and is 
not allowed to propose a different alternative that may be 
more tailored to (the development of) his or her own 
situation. Examples of rigidity of type (2) are found in 
situations that the development of the client’s situation 
makes the choice for a certain product as made in the 
past no longer rational. These developments may relate 
to various aspects of personal life varying from earning 
money by a well-developing career to marriages, 
divorces, birth, etc. A simple example is a situation in 
which the amount of savings increases to such an extent 
that a different type of saving would be more economical 
for the client. Often such a client is made aware of this 
by a competitive financial organisation, instead of by the 
own financial organisation. 

As a solution to the situation sketched above, this 
paper makes a first attempt to make product models more 



 

dynamic and tailored to specific clients. This dynamic 
perspective is explained in detail in Section 2. Based on 
this perspective, Section 3 introduces a global outline of 
our approach to (re)design product models in a dynamic 
manner. Next, Section 4 introduces the formal modelling 
concepts underlying the approach. Using these concepts, 
the approach itself is formalised in Section 5. Section 6 
addresses a case study, in which the approach is applied 
in the domain of car insurances. Section 7 concludes the 
paper with a discussion. 
 

2. Putting Dynamics into Product Models 
 
To fully cope with the dynamic aspects products have 

and to avoid the types of rigidity as discussed above, a 
different perspective on product models is needed. From 
this dynamical perspective, a product model is basically 
a specification of an adaptive dynamical system, which 
continuously tailors itself to the client’s situation and the 
wider environment, and developments therein. Then 
product aspects as offered to the clients are not primarily 
static basic attributes such as interest rates or insurance 
premiums, but temporal rules that specify how such basic 
attributes will behave over time, in interaction with 
developments in the client’s life and the wider 
environment.  

To obtain such a dynamical perspective in an 
operational form, the following desiderata can be 
formulated: 

(a) Fine-grained client-sensitive design of products 
(b) Continuous adaptation of products to developments 

in the client’s situation and the environment 

Concerning (a), it should be possible, at any point in 
time, to tailor a product in a fine-grained manner to the 
client’s situation and developments therein. A course-
grained approach of choosing between a small number of 
predefined alternatives will not be sufficient. In contrast, 
it is required that a product can be designed in a more 
precise manner based on the specific requirements 
imposed by developments in the specific client’s 
situation, for example by tuning certain numerical 
parameters of the product with a certain precision. 

Concerning (b), the fine-grained and client-sensitive 
design process should be repeated regularly over time to 
be able to continuously adapt the product to 
developments in the client’s situation and the wider 
environment. Thus instead of a design process at one 
point in time, a repeated redesign process has to be 
specified within the product model indicating the 
ongoing adaptation of the product to the client’s life.  

Desiderata (a) and (b) can be realised when a dynamic 
product model is specified as an adaptive dynamical 
system that takes the form of a continuous product 
(re)design process model.  

The area of adaptive dynamical systems is often 
addressed by mathematical techniques based on 
differential equations. Such a purely numerical 
perspective has serious shortcomings with respect to 
expressivity, in particular for qualitative aspects and 
complex temporal relationships between them. In the 
next sections it is shown how an integrated modelling 
approach can be used to specify a product model as an 
adaptive dynamical system. 
 

3.  Specifying Continuous Product Design 
 
To specify a product (re)design process model from 

the perspective indicated above, a number of elements 
are relevant, concerning the processes, ontologies and 
types of knowledge. A dynamic product model format 
will be defined that incorporates these elements. 

First, three main subprocesses can be distinguished: 

• design requirements determination (DRD) 
• design object determination (DOD) 
• design process coordination (DPC) 

These subprocesses are inspired by the Global Design 
Model (GDM), introduced in [5], and worked out in a 
simulation model in [4]. Here, the design requirements 
determination process first identifies requirements based 
on characteristics and preferences of the client and his or 
her situation. Next, these requirements are refined into 
more specific requirements relating more directly to 
certain basic attributes of a design object (a product). 
The process to generate a design object description 
determines values for basic attributes of a suitable 
product based on the specific requirements as identified. 
Moreover, from these basic attributes, values for 
dependent attributes are derived. The design process 
coordination process provides strategic input for the 
design process to be performed. 

Second, to represent the relevant information and 
knowledge, different types of ontologies are needed: 

• ontology to describe the environment  
• ontology for client characteristics and preferences  
• ontology for temporal relationships 
• design requirement ontology 
• design object ontology 
• design process coordination ontology 

The ontology to describe the environment and its 
development includes elements referring, for example, to 
different aspects of the economical development and the 
financial market. The ontology for client characteristics 
and preferences is the basis for client models. The 
ontology for temporal relationships is used on top of the 
other ontologies, to express dynamics. The other three 
ontologies are used in the three main processes within 
the redesign process. 



 

Third, to model the processes, specification of 
different types of dynamical relations is needed: 

(1) to identify requirements and to refine them into 
more specific requirements 

(2) to relate specific requirements to basic design 
object attributes 

(3) to determine derivable design object attributes from 
basic design object attributes 

(4) to evaluate a design object with respect to 
requirements 

Dynamical relations of type (1) to identify and refine 
requirements may involve heuristic parameters to relate 
one requirement to a number of more specific 
requirements relating to different aspects of a product. 
For example, if the payment per month for a mortgage is 
based on a part that covers the interest and a part that 
covers the pay-off, to get a modest payment per month, 
both of these parts should be kept modest, according to a 
certain proportion (ratio of distribution). In this 
refinement knowledge, also sources in the area of multi-
attribute brokering and negotiation can be exploited.  

Dynamical relations relating specific requirements to 
basic attributes of the design object (2) may have the 
form, for example, that based on a requirement 
expressing the limit values of an attribute, one of these 
limit values is chosen as the value of the attribute.  

Dynamical relations to determine derivable design 
object attributes from basic design object attributes (3) 
may involve specific calculations of values for dependent 
attributes from the values of the basic attributes, for 
example, an insurance premium from other attributes. 

Dynamical relations to evaluate a design object 
description with respect to requirements (4) involves, for 
example, how based on product attributes it can be 
determined whether or not a given requirement is 
satisfied by the design object. Moreover, it may also 
involve relationships to determine in how far the design 
object fulfils the client’s characteristics and preferences 
as specified in the client model. 

Note that the dynamical relations of type (1) are used 
within the DRD subprocess introduced above. Moreover, 
relations (2), (3) and (4) are used within the DOD 
subprocess.  

 

4.  Dynamic Modelling Approach 
 
To model and analyse product dynamics, a 

formalisation is needed of such dynamics. Such a 
formalisation is introduced in this section. This 
formalisation uses the notions of state and trace. 
 

States and State Ontologies State ontologies used are 
ClientOnt (for clients), EnvOnt (for environment), ReqOnt 
(for requirements) , and DODOnt  (for design object 
descriptions). The definitions of these ontologies are 

shown in Appendix A1. The set of ground state atoms 
over an ontology Ont is denoted by  GSTATOMS(Ont). A  
state � over a state ontology  Ont is a mapping assigning 
truth values to the ground atoms �� : GSTATOMS(Ont) → { 

true, false, undefined }. The set of all possible states over 

Ont is denoted by STATES(Ont).  
For example, STATES(ClientOnt) denotes the set of 

possible states of a client, STATES(EnvOnt) the set of 
possible states of the environment, STATES(ReqOnt) the 
set of possible states of the requirements, and 
STATES(DODOnt) denotes the set of possible states of the 
product attributes (design object). A client state 
represents a client model at a specific point in time. An 
example of an aspect in a client state is the client’s risk 
avoidance profile expressed by a risk versus expected 
gain proportion. An environment state represents the 
state of the environment at a certain time point; aspects 
are, for example, current values of indicators of the 
economy or the financial market. A requirements state 
represents the state of the requirements imposed by the 
client and environment states at a certain time point. An 
object state represents the state of a product at a certain 
time point. An example of an aspect in an object state is 
a certain product parameter such as the monthly amount 
to pay (e.g., in case of a mortgage). 
 

Traces Traces are time-indexed sequences of states. To 
describe such sequences a fixed time frame T is assumed 
which is linearly ordered (e.g., the real or natural 
numbers). A  trace γ�  over a design state ontology  Ont 
and time frame T  is a mapping γ�: T → STATES(Ont), i.e., a 
sequence of states γ t (t ∈ T) in  STATES(Ont). The set of all 
traces over state ontology Ont is denoted by TRACES(Ont). 
Depending on the application, the time frame T may be 
dense (e.g., the real numbers), or discrete (e.g., the set of 
integers or natural numbers or a finite initial segment of 
the natural numbers), or any other form, as long as it has 
a linear ordering.  

For example, TRACES(ClientOnt) denotes the set of 
possible traces for a client, TRACES(EnvOnt) the set of 
possible traces for the environment, TRACES(ReqOnt) the 
set of possible traces for the requirements, and 
TRACES(DODOnt) denotes the set of possible traces for 
the product attributes (design object). A trace for a client 
represents the evolution of the client model over time. 
An example of an aspect in a trace for a client is the 
change over time of the client’s risk avoidance profile, or 
a progressive trend in income over time. A trace for the 
environment represents the evolution of the environment 
state over time. An example of an aspect in such a trace 
is the trend in some indicator of the economy or financial 
market (for example, an increasing interest rate). A trace 
for an object represents the evolution of the object state 
over time. An example of an aspect in a trace for an 

                                                           
1 http://www.cs.vu.nl/~tbosse/prodmodels/  



 

object is the change over time of the monthly amount to 
be paid.  
 

Dynamical relations The four different types of states 
interact with each other over time. For example, the 
client state and environment state both affect the 
requirements state. Moreover, the requirement state 
affects the object state, and the object state affects the 
future client states, which makes it a cyclic process. 
These temporal relations can be depicted in graphical 
format as shown in Figure 1. Here, the numbers that are 
attached to the arrows correspond to the four types of 
dynamical relations introduced in Section 3. As depicted, 
the environment state is not affected by any of the other 
states. However, in principle it is possible that the 
development of new products over time also affects the 
environment state via the client states (if a large scale use 
of these new products occurs), which would show 
another cycle in the dynamical system. For the time 
being this possibility is ignored here.  
 

 
Figure 1. Global Dynamic relations  

 
The traces of these states representing development 

over time can be depicted along a time axis as shown in 
Figure 2. Notice that here the arrows pointing 
downwards are specified as part of a dynamic product 
model. The dashed arrows pointing towards the client 
trace are not specified within the dynamic product 
model, but indicate the effect of the product and 
environment state on the client’s state (taking place 
within the client).  

 
 
 
 
 
 
 
 

 

 

Figure 2. Traces for client C, environment E, 
requirements R and product P over time 

 

The following is an example of a story as depicted 
here. A new client comes in, his profile is identified 
(client model), based on that requirements are formulated 
fitting this client model and a mortgage is designed with 
attributes tailored to his situation. At a next point in time, 
the client’s financial situation changes due to a divorce. 
An updated client model is obtained, based on which 
new requirements are formulated and the basic attributes 
of the mortgage adapted to satisfy these new 
requirements. 
 

Specification of Dynamic Relations To formally 
specify dynamic properties that express characteristics of 
processes from a temporal perspective, an expressive 
language is needed. To this end, the Temporal Trace 
Language TTL [3] can be used as a tool. This language 
can be classified as a predicate-logic-based reified 
temporal language; see [8, 9]. Within TTL, complex 
dynamic properties of design processes can be 
expressed. An example is the following property: “ If 
between time point t1 and t2, for each existing 
requirement a product is found that fulfils it, then at time 
point t2 the profit will be at least x” . 
   However, this paper only considers properties that 
address snapshots of the design process at a single time 
point, such as the property “ for each client a suitable 
insurance is derived” . Since these properties abstract 
away from the temporal aspect, for the moment standard 
first-order predicate logic can be used instead of TTL. 
Thus, an order-sorted predicate logic ontology Ont to 
describe state properties is assumed, consisting of sorts, 
subsort relations, constants in sorts, and functions and 
relations over sorts; e.g., [10]. Moreover, the usual first-
order logical connectives such as ¬, &, ∨, � ∀, ∃ are 
used. In future work, TTL will be used to express the 
more complex dynamic properties as shown above. 
 

Executable Dynamic Properties To be able to perform 
automated experiments with design processes, a simple 
temporal logical language to specify simulation models 
is used. This language LEADSTO [2] enables to model 
direct temporal dependencies between two state 
properties in successive states, as occur in specifications 
of a simulation model (for example, if in the current 
state, state property p holds, then in the next state, state 
property q holds). This language is executable and 
therefore enables the automatic generation of simulated 
traces; for other executable temporal languages based on 
modal logic, see [1]. This section briefly introduces the 
logical format used for these LEADSTO simulation 
models. This executable format is defined as follows. Let 
α and β be state properties of the form ‘conjunction of 
ground atoms or negations of ground atoms’. In the leads 
to language the notation α →→e, f, g, h β, means: 

C 

E 

R 

P 

Environment 
State 

Client 
 State 

Product 
State 

Requirements 
State 

(1) 

(2, 3, 4) 



 

LP6 LP5 LP4 LP1 LP3 LP2 

(branch b1) 

GP 

IP2 IP1 

(branch b2) 

(branch b3) (branch b4) 

If state property α holds for a certain time interval with 
duration g, then after some delay (between e and f) state 
property β will hold for a certain time interval of length h. 

 

5. Dynamic Relations for Product Redesign 
 

Based on the formalisation presented above, this 
section presents the specification of the dynamical model 
needed to come to a suitable design for a product based 
upon the input received (from the environment, or based 
upon the client model). First of all, it is shown how to 
establish requirements and to refine them into more 
specific requirements (i.e., dynamical relations (1) in 
Section 3). Thereafter, it is shown how those specific 
requirements relate to basic design object attributes (2). 
How to derive design object attributes from basic design 
objects (3) is presented thereafter, and finally, it is shown 
how to evaluate a design object with respect to the 
requirements (4). All specifications are in LEADSTO 
format. 

 
5.1. Requirements Identification and Refinement 

 
Within this process, it is assumed that different 

requirements for a product can be related to each other 
by means of a refinement tree. This assumption 
corresponds to the idea presented in [7] that (goal-
oriented) requirements may be refined into more specific 
requirements on parts of a design object. An abstract 
example of such a refinement tree is depicted in Figure 3. 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3. Example requirements tree  
 

In this figure, requirements are represented by boxes, 
and refinement relations are depicted by lines between 
them. Different lines connected by an arc denote an 
AND-branching, meaning that the requirement is refined 
into the combination (conjunction) of requirements 
below. Lines without an arc denote OR-branches, 
indicating alternative refinements. For example, in 
Figure 3, GP is the highest requirement for the product. 
This requirement can be fulfilled by fulfilling either 
requirement IP1 or IP2. Furthermore, IP1 is fulfilled by 
fulfilling all of LP1-LP4, and IP2 is fulfilled by fulfilling 
both LP5 and LP6. Such refinement relations are 

represented by predicates such as 
is_a_subrequirement_of_via(IP1,GP,b1), which are part of 
ReqOnt (see Section 4). 

The idea is that, within a design process, the top level 
requirements are context-dependent, and are identified 
by the product selling company in interaction with the 
client on the basis of the client’s characteristics and 
financial indicators. Next, lower level requirements are 
derived, based on the following specifications: 
 

LTP1 Requirement Refinement 
This LEADSTO property (LTP) expresses that, if a requirement 
exists that can be refined to a sub-requirement, then this should 
be done by refining via the best branch.  
 
∀p,q:REQUIREMENT, ∀b:BRANCH 
is_a_current_requirement(p)       ∧  is_a_subrequirement_of_via(q,p,b) ∧ 
best_branch_for(b,p) →→ is_a_current_requirement(q) ∧ 
requirement_refined(p) ∧ requirement_refined_via(p,b) 
 

Here best_branch_for(b,p) can be defined in various manners. 
An example is to calculate the predicted production costs 
for all branches that refine requirement p and to select 
branch b for which these costs are lowest. 

To formally specify the exact content of a 
requirement, the predicate has_expression is used. An 
example instance of this predicate, expressed in the TTL 
language, is as follows: 
 
   has_expression(LP1, 
   ∃X:real variable_has_value(premium, X) ∧ X < 100) 
 
This means that requirement LP1 expresses that there 
should exist a real value for the variable premium such 
that this value is lower than 100. 
 
5.2. Relating Requirements to Design Objects 

 
As soon as the basic requirements (i.e., the leaves of a 

tree such as depicted in Figure 3) have been established, 
Design Object Descriptions (DODs) can be found. To 
this end, the following specifications are used: 
 

LTP2 DOD Generation 
This property expresses that each local requirement should be 
satisfied by adding the best product characteristic for that 
requirement to the current DOD.  
 
∀l:LOCAL_REQUIREMENT, ∀c: VARIABLE, ∀x:INTEGER, ∀v:VALUE 
is_a_current_requirement(l) ∧ best_characteristic_for(c,v,l) ∧ 
DOD_counter(x) →→ current_DOD(dod(x)) ∧ part_of_DOD(c,dod(x)) ∧ 
variable_has_value(c,v) 
 

Here best_characteristic_for(c,v,l) is defined, for example, by 
picking a value v for variable c that satisfies the 
inequality expressed in the requirement l. Note that there 
can also be multiple best values for a particular variable, 
for more details on the selection process between these 
values, see [4]. 
 
 
 



 

 
 

 

 
 

Figure 4. Requirements tree for car insurances 
 
 
5.3. From Basic Design Object Attributes to 
Derivable Design Object Attributes 

 
Based upon certain basic design objects attributes that 

have been generated using the requirements, other 
attributes can be derived with the dependencies that exist 
between these attributes. An example rule for such 
derivation is specified below (see Appendix A for more 
examples). The example expresses an explicit 
dependency whereby it is explicitly stated what value a 
variable has based upon the value of other variables. For 
example, for a car insurance, 4 years without collision 
means a no claim discount percentage of 20%. 
 

LTP3 Dependency of type explicit 
If a variable c1 has a dependency relation of type explicit, 
stating that is will get value v1 if another variable c2 has value 
v2, and this is indeed the case, then c1 gets value v1. 
 
∀l:LOCAL_REQUIREMENT, ∀c1: VARIABLE, ∀c2:VARIABLE, 
∀x:INTEGER, ∀v1,v2:VALUE 
is_a_current_requirement(l) ∧ holds_for(l, c1) ∧ DOD_counter(x) ∧ 
is_dependent_on(c1, [c2]) ∧ dependency_relation_of_type(c1, [c2], 
explicit) ∧ dependency_between(c1, v1, [(c2, v2)]) ∧ 
variable_has_value(c2, v2) →→ current_DOD(dod(x)) ∧ 
part_of_DOD(c1,dod(x)) ∧ variable_has_value(c1, v1) 

 
5.4. Evaluation of a Design Object 

 
Finally, the generated design object can be evaluated 

once more, to check whether it indeed satisfied all 
requirements. The following is used for this: 
 

LTP4 Requirement Satisfaction Determination 
This property determines when a certain (local) requirement is 
satisfied by a DOD. This is the case when the current DOD 
contains a variable with a value that satisfies this requirement. 
  
∀d:DOD, ∀c:VARIABLE, ∀l:LOCAL_REQUIREMENT, ∀v:VALUE 
current_DOD(d) ∧ part_of_DOD(c,d) ∧ holds_for(l,c) ∧ 
is_a_current_requirement(l) ∧ variable_has_value(c,v) →→ 
local_requirement_satisfied(l) 

 
 

6.  Case Study 
 

This section presents a case study where the approach 
presented above is applied to the domain of car 
insurances. As described earlier, the refinement relations 
between requirements are represented as an AND/OR-
tree. For the domain of car insurances, an example of 
such a tree is shown in Figure 4. At the highest level in 
the hierarchy, requirement R1 expresses that “for each 
client a suitable insurance should be derived”. This 
property is the conjunction of a number of environmental 
(client dependent) conditions (below called client 
characteristics), and the requirement that a suitable 
premium and own risk should be found (requirement R2). 
The latter requirement is refined by means of requiring a 
suitable own risk as well as a suitable premium to be 
chosen. 

Below, these sub-requirements are worked out in 
more detail. Section 6.1 addresses the client 
characteristics, and Section 6.2 addresses requirement 
R2. The product (i.e. design object) is addressed in 
Section 6.3. After that, Section 6.4 presents an example 
simulation trace for the case study. 
 
6.1. Client Characteristics 

 
The first client characteristic, C(risk_profile, C, R), is a 

risk function that determines the tradeoff a particular 
client makes between the premium and the own risk he 
or she is willing to accept. In Figure 5 the dashed line 
indicates such a risk curve. The line indicates the 
preference of a person in taking a particular risk. Some 
people might be interested in taking a lot more risk 
despite the fact that the premium is not even that much 
lower, whereas other people might be very unwilling to 
take a lot more risk, even though they will get a lower 
premium. Using the formal ontology for variables (see 
Appendix A), the property can be expressed as follows: 
 



 

C(risk_profile, C, R) 
variable_has_value(client_characteristic(C,  risk_profile), R) 
 

This expresses that the variable regarding the risk profile 
of a client has a particular value, which represents the 
desired risk/premium dependency.  

The other three client characteristics can be specified 
in a similar fashion, as shown below. 
 

C(age, C, I) 
variable_has_value(client_characteristic(C, age), I) 
 

C(collision_free_years, C, I) 
variable_has_value(client_characteristic(C, 
collision_free_years), I) 
 

C(car, C, I) 
variable_has_value(client_characteristic(C, type_of_car, I) 
 

As can be seen, three other characteristics are specified, 
namely the age of the client, the number of collision free 
years, and finally, the type of car the client is driving 
expressed in horsepower (HP).  
 
6.2. Suitable Risk-Premium Combination 
 

Requirement R2 specifies that, given the client, an 
optimal combination for the premium and own risk 
should be chosen.  
 

R2(C, P, R1, R2): Product on Risk/Premium Curve fitting 
Client risk profile 
∃R1’:real, R2’:real, R:real 
variable_has_value(product_characteristic(P, own_risk), R1) ∧ 
variable_has_value(product_characteristic(P, premium), R2) ∧ 
variable_has_value(client_characteristic(C, risk_profile), R) ∧  
optimal_own_risk_premium_for_risk_profile(R1’, R2’, R)  
∧  R1≤ R1’ ∧ R2 ≤ R2’ 
 

The definition of  
 optimal_own_risk_premium_for_risk_profile(R1’, R2’, R)  
is part of the background knowledge. It can be 
determined by the risk/premium curve, given the client’s 
characteristics (for an example thereof, see the solid line 
in Figure 5) and risk profile R. The precise values can be 
found by deriving the point in the risk premium curve of 
which the tangent has the same coefficient as the risk 
profile of the client (the dotted line). The formula for the 
risk/premium curve is as follows: 
 

k
dpremium

premiumownrisk −
−

= 50000
)(          (1) 

 

When the parameters d and k are altered, the curve shifts 
horizontally and vertically, respectively. The basic 
values of d and k are 0 and 500. The age of the client 
influences k, the number of collision free years 
influences d, and the type of car influences both 
parameters. A more detailed description of the 
calculations is given in Appendix A. 

Next, requirement R2 can be refined (by an AND-
branch) to requirements R3 and R4. For this example, 
their expressions are: 
 
 

 
 

Figure 5. Example client risk profile and 
company risk/premium curve 

 
 
R3(C, P, R): Suitable Own Risk ≤≤≤≤ R 
∃R’:real 
variable_has_value(product_characterstics(P, own_risk), R’) ∧ 
R’ ≤ R 
 

R4(C, P, R): Suitable Premium  ≤≤≤≤ R 
∃R’:real 
variable_has_value(product_characterstics(P, premium), R’) ∧ 
R’ ≤ R 
 

The idea of a refinement hierarchy is that the refinement 
set together entails the original requirement.  
 
6.3. Design Object 

 
For this case study, it is assumed that a complete 

insurance product (or design object) is specified to 
consist of three parts, namely a premium value, the own 
risk value, and the terms type. These are specified as 
follows. 
 

D(premium, P, R) 
variable_has_value(product_characteristics(P, premium), R) 
 

D(own_risk, P, R) 
variable_has_value(product_characteristics(P, own_risk), R) 
 

D(terms, P, T) 
variable_has_value(product_characteristics(P, terms_type, T) 
 
6.4. Example Simulation Trace 

 
By applying the dynamic relations presented in 

Section 5 to the case study presented in this section, a 
number of simulation experiments have been performed. 
To this end, the LEADSTO simulation tool (see [2] for 
details) has been used. This piece of software takes as 
input a set of executable dynamic properties, and uses 
these to generate traces describing the course of events 
over time. Figure 6 shows the resulting simulation trace 
of an example scenario of client John Smith. Here, time 
is on the horizontal axis, and the state properties are on 
the vertical axis.  A dark box on top of the line indicates  



 

 
 

Figure 6. Example simulation trace  
 
 

that a state property is true during a certain time period, 
and a lighter box below the line indicates that a property 
is false. In the scenario, there are two possible risk 
profiles, named profile1 and profile2. The first profile is 
a low-risk characteristic, meaning that the person is not 
willing to accept own risk and willing to accept a high 
premium. The second profile is more risky, meaning that 
the person accepts own risk and a low premium.  The car 
type is this scenario is of type 1, a Cadillac. The type of 
car, the age and the number of collision free years 
determine the risk/premium curve (see Figure 5). 
Combined with the risk profile of the client, the optimal 
premium and own risk can be determined. 

The client is this scenario has four characteristics: his 
age is 27, he owns a car with 200 HP, he has had two 
collision free years, and he has a risk profile of 10 (e.g. 
c(risk_profile, john_smith, 10)). Initially, requirement R1, to find 
a suitable insurance, is identified (see 
is_a_current_requirement(R1(john_smith, car_insurance)) at time 
point 1).  Next, this requirement is refined to 
subrequirement R2 (see property 
is_a_current_requirement(R2(john_smith, car_insurance, 385.107, 

79.9607)) at time point 8). Requirement R2, finding a 
suitable premium and own risk, can be refined in 
requirements R3 an R4. The risk/premium curve is 
calculated using the characteristics of the client (see 

formula (1)). Together with the risk profile, the optimal 
own risk (requirement R3) and the optimal premium 
(requirement R4) can be determined: 385.107 and 
79.9607 respectively. 

Next, the design objects can be generated by adding 
the best object characteristics that match the 
requirements to the current DOD. As shown in Figure 6, 
these variables are indeed assigned to the first DOD (e.g. 
part_of_dod(d(own_risk, car_insurance, 385.107), dod(1)) at time 
point 16). When all requirements are evaluated, the 
process of generating design object characteristics stops. 
The following year, when the client turned 28 and has 
had three collision free years, he increases his risk profile 
to 30 (see property c(risk_profile, john_smith, 30)). This 
increases the optimal own risk and decreases the optimal 
premium. The refinement of requirements starts over, 
with a new requirement for own risk: 894.745 and for the 
premium: 49.6998. Since there are new current 
requirements, the process of generating design object 
characteristics starts again, new objects are added to the 
second DOD, and the requirements are evaluated. 

The case study shows that the model, instantiated with 
specific knowledge from the domain of car insurances, 
indeed outputs tailored car insurance proposals. As the 



 

characteristics of the client change over time, so does the 
proposal for a suitable car insurance. 

 
7. Discussion 
 

Traditionally, product models often have been forced 
in a static format, entailing rigidity of two types: (1) 
rigidity in the manner most products are initially fit to 
clients and (2) rigidity in the way they are maintained 
over time after a client has accepted them. When offering 
the product via an interactive medium like Internet, as a 
Web service, solving such rigidity problems increases 
the service’s success probability. To cope with these 
problems, this paper proposes a dynamic approach to 
product models. This approach supports an ongoing 
interaction process between the designer and the client. 
During such an interaction process, the background and 
the desires of the client may change continuously, which 
will lead to continuous adaptation of the product. 

Globally, the approach is based on the Global Design 
Model (GDM) by [5]. It involves four important types of 
dynamical relations, i.e., (1) to identify requirements and 
to refine them into more specific requirements, (2) to 
relate specific requirements to basic design object 
attributes, (3) to determine derivable design object 
attributes from basic design object attributes, and (4) to 
evaluate a design object with respect to requirements. 
The approach has been formalised in the high-level 
executable language LEADSTO [2], which is a 
sublanguage of the predicate logical language TTL [3]. 
The resulting (generic) specification has been tested in a 
case study in the domain of car insurances.  

In the domain of web services, extensive research has 
been conducted focusing on the composition of web 
services (see e.g. [12, 13, 14]). Furthermore, the 
specification of the precise services offered has been 
investigated as well, proposing for instance semantic web 
technology (see e.g. [11]). An additional important 
aspect for businesses wanting to offer a service on the 
web is to make this service as attractive as possible for a 
client, which is addressed in this paper. In [6] such 
tailoring is also addressed; that paper introduces a 
language that allows for the specification of service level 
agreements in a flexible, individual way. The approach 
also introduces a way to manage such service levels 
throughout the entire life cycle of such a service level 
agreement. The approach presented in this paper is 
however more generic, since it focuses on tailoring of 
products in general, not only particular aspects of such a 
product. 

In future work, more complex cases will be 
addressed, including more realistic examples that involve 
a higher amount of parameters. Moreover, to evaluate its 
generality, the approach will be tested in other domains, 
such as the design of mortgages.  
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