

Specification of Adaptive Client-Tailored Product Models

Tibor Bosse, Fiemke Both, Mark Hoogendoorn, and Jan Treur
Vrije Universiteit Amsterdam, Department of Artificial Intelligence,

De Boelelaan 1081a, 1081 HV Amsterdam, The Netherlands
{tbosse, fboth, mhoogen, treur}@cs.vu.nl

Abstract

Traditionally, product models often have a rigid
nature, both with respect to the manner in which they
are initially tailored to clients, and to the way they are
maintained over time. Especially when such products
are offered at a highly interactive medium such as
Internet in the form of web services, addressing such
aspects might be a necessity to obtain a competitive
advantage. To cope with these rigidity problems, this
paper proposes a dynamic approach to product models,
which supports an ongoing interaction process that
continuously adapts a product to the background and
desires of the client. The generic approach has been
formalised and tested in a case study in the domain of
car insurances.

1. Introduction

Nowadays, more and more products are being offered
on the web in the form of web services. Financial
institutions for example, also intend to offer their
products in such a form in the near future. Within the
area of web services, a lot of research has been
conducted to compose such web services [12, 13, 14]. In
order to maximise the probability that the product
offered as a web service is indeed selected as part of
such a composition, the company should offer the best
product configuration it can. Such an offer can only be
made if the product is fully tailored towards the desires
and characteristics of the customer. Hence, a flexible and
adaptive approach to obtain and maintain a product
configuration is needed to maximise the success of
offering a product as a web service.

Usually a product model specifies a product by a
number of attributes and values for them. Financial
products for example, are often described by
specifications of values for certain attributes, for
example for an insurance the coverage, premium, and
way of paying. However, as financial products usually
extend over time, this temporal dimension has to be
covered as well in a product model. For example, for an

insurance, the attribute ‘no claim reduction percentage’
is not a static product aspect, but changes over time,
depending on dynamic interactions of the client and its
environment. Therefore the specification of such an
aspect can not be based (only) on specification of a value
for a certain attribute. Instead of such a simple
specification, a more complex temporal relationship has
to be specified taking into account events and attributes
at different points in time. For example, the no claim
reduction percentage at a certain point in time depends
on the claims made at earlier time points in the past,
which depends on the personal situation of the client
over time. Also for other products such temporal patterns
play an important role.

The dynamic aspects of product models have not
always been given the central position as would be
realistic and useful. Instead, product models often have
been forced in a static format entailing rigidity of two
types: (1) rigidity in the manner most products are
initially fit to clients and (2) rigidity in the way they are
maintained over time after a client has accepted them.
More specifically, examples of rigidity of type (1) are
found in the way how product alternatives are offered as
specific predefined packages or combinations of basic
product attributes, for example, specific types of saving
accounts. The client has to make a choice between a
course-grained couple of predefined alternatives, and is
not allowed to propose a different alternative that may be
more tailored to (the development of) his or her own
situation. Examples of rigidity of type (2) are found in
situations that the development of the client’s situation
makes the choice for a certain product as made in the
past no longer rational. These developments may relate
to various aspects of personal life varying from earning
money by a well-developing career to marriages,
divorces, birth, etc. A simple example is a situation in
which the amount of savings increases to such an extent
that a different type of saving would be more economical
for the client. Often such a client is made aware of this
by a competitive financial organisation, instead of by the
own financial organisation.

As a solution to the situation sketched above, this
paper makes a first attempt to make product models more

dynamic and tailored to specific clients. This dynamic
perspective is explained in detail in Section 2. Based on
this perspective, Section 3 introduces a global outline of
our approach to (re)design product models in a dynamic
manner. Next, Section 4 introduces the formal modelling
concepts underlying the approach. Using these concepts,
the approach itself is formalised in Section 5. Section 6
addresses a case study, in which the approach is applied
in the domain of car insurances. Section 7 concludes the
paper with a discussion.

2. Putting Dynamics into Product Models

To fully cope with the dynamic aspects products have

and to avoid the types of rigidity as discussed above, a
different perspective on product models is needed. From
this dynamical perspective, a product model is basically
a specification of an adaptive dynamical system, which
continuously tailors itself to the client’s situation and the
wider environment, and developments therein. Then
product aspects as offered to the clients are not primarily
static basic attributes such as interest rates or insurance
premiums, but temporal rules that specify how such basic
attributes will behave over time, in interaction with
developments in the client’s life and the wider
environment.

To obtain such a dynamical perspective in an
operational form, the following desiderata can be
formulated:

(a) Fine-grained client-sensitive design of products
(b) Continuous adaptation of products to developments

in the client’s situation and the environment

Concerning (a), it should be possible, at any point in
time, to tailor a product in a fine-grained manner to the
client’s situation and developments therein. A course-
grained approach of choosing between a small number of
predefined alternatives will not be sufficient. In contrast,
it is required that a product can be designed in a more
precise manner based on the specific requirements
imposed by developments in the specific client’s
situation, for example by tuning certain numerical
parameters of the product with a certain precision.

Concerning (b), the fine-grained and client-sensitive
design process should be repeated regularly over time to
be able to continuously adapt the product to
developments in the client’s situation and the wider
environment. Thus instead of a design process at one
point in time, a repeated redesign process has to be
specified within the product model indicating the
ongoing adaptation of the product to the client’s life.

Desiderata (a) and (b) can be realised when a dynamic
product model is specified as an adaptive dynamical
system that takes the form of a continuous product
(re)design process model.

The area of adaptive dynamical systems is often
addressed by mathematical techniques based on
differential equations. Such a purely numerical
perspective has serious shortcomings with respect to
expressivity, in particular for qualitative aspects and
complex temporal relationships between them. In the
next sections it is shown how an integrated modelling
approach can be used to specify a product model as an
adaptive dynamical system.

3. Specifying Continuous Product Design

To specify a product (re)design process model from

the perspective indicated above, a number of elements
are relevant, concerning the processes, ontologies and
types of knowledge. A dynamic product model format
will be defined that incorporates these elements.

First, three main subprocesses can be distinguished:

• design requirements determination (DRD)
• design object determination (DOD)
• design process coordination (DPC)

These subprocesses are inspired by the Global Design
Model (GDM), introduced in [5], and worked out in a
simulation model in [4]. Here, the design requirements
determination process first identifies requirements based
on characteristics and preferences of the client and his or
her situation. Next, these requirements are refined into
more specific requirements relating more directly to
certain basic attributes of a design object (a product).
The process to generate a design object description
determines values for basic attributes of a suitable
product based on the specific requirements as identified.
Moreover, from these basic attributes, values for
dependent attributes are derived. The design process
coordination process provides strategic input for the
design process to be performed.

Second, to represent the relevant information and
knowledge, different types of ontologies are needed:

• ontology to describe the environment
• ontology for client characteristics and preferences
• ontology for temporal relationships
• design requirement ontology
• design object ontology
• design process coordination ontology

The ontology to describe the environment and its
development includes elements referring, for example, to
different aspects of the economical development and the
financial market. The ontology for client characteristics
and preferences is the basis for client models. The
ontology for temporal relationships is used on top of the
other ontologies, to express dynamics. The other three
ontologies are used in the three main processes within
the redesign process.

Third, to model the processes, specification of
different types of dynamical relations is needed:

(1) to identify requirements and to refine them into
more specific requirements

(2) to relate specific requirements to basic design
object attributes

(3) to determine derivable design object attributes from
basic design object attributes

(4) to evaluate a design object with respect to
requirements

Dynamical relations of type (1) to identify and refine
requirements may involve heuristic parameters to relate
one requirement to a number of more specific
requirements relating to different aspects of a product.
For example, if the payment per month for a mortgage is
based on a part that covers the interest and a part that
covers the pay-off, to get a modest payment per month,
both of these parts should be kept modest, according to a
certain proportion (ratio of distribution). In this
refinement knowledge, also sources in the area of multi-
attribute brokering and negotiation can be exploited.

Dynamical relations relating specific requirements to
basic attributes of the design object (2) may have the
form, for example, that based on a requirement
expressing the limit values of an attribute, one of these
limit values is chosen as the value of the attribute.

Dynamical relations to determine derivable design
object attributes from basic design object attributes (3)
may involve specific calculations of values for dependent
attributes from the values of the basic attributes, for
example, an insurance premium from other attributes.

Dynamical relations to evaluate a design object
description with respect to requirements (4) involves, for
example, how based on product attributes it can be
determined whether or not a given requirement is
satisfied by the design object. Moreover, it may also
involve relationships to determine in how far the design
object fulfils the client’s characteristics and preferences
as specified in the client model.

Note that the dynamical relations of type (1) are used
within the DRD subprocess introduced above. Moreover,
relations (2), (3) and (4) are used within the DOD
subprocess.

4. Dynamic Modelling Approach

To model and analyse product dynamics, a

formalisation is needed of such dynamics. Such a
formalisation is introduced in this section. This
formalisation uses the notions of state and trace.

States and State Ontologies State ontologies used are
ClientOnt (for clients), EnvOnt (for environment), ReqOnt
(for requirements) , and DODOnt (for design object
descriptions). The definitions of these ontologies are

shown in Appendix A1. The set of ground state atoms
over an ontology Ont is denoted by GSTATOMS(Ont). A
state � over a state ontology Ont is a mapping assigning
truth values to the ground atoms �� : GSTATOMS(Ont) → {

true, false, undefined }. The set of all possible states over

Ont is denoted by STATES(Ont).
For example, STATES(ClientOnt) denotes the set of

possible states of a client, STATES(EnvOnt) the set of
possible states of the environment, STATES(ReqOnt) the
set of possible states of the requirements, and
STATES(DODOnt) denotes the set of possible states of the
product attributes (design object). A client state
represents a client model at a specific point in time. An
example of an aspect in a client state is the client’s risk
avoidance profile expressed by a risk versus expected
gain proportion. An environment state represents the
state of the environment at a certain time point; aspects
are, for example, current values of indicators of the
economy or the financial market. A requirements state
represents the state of the requirements imposed by the
client and environment states at a certain time point. An
object state represents the state of a product at a certain
time point. An example of an aspect in an object state is
a certain product parameter such as the monthly amount
to pay (e.g., in case of a mortgage).

Traces Traces are time-indexed sequences of states. To
describe such sequences a fixed time frame T is assumed
which is linearly ordered (e.g., the real or natural
numbers). A trace γ� over a design state ontology Ont
and time frame T is a mapping γ�: T → STATES(Ont), i.e., a
sequence of states γ t (t ∈ T) in STATES(Ont). The set of all
traces over state ontology Ont is denoted by TRACES(Ont).
Depending on the application, the time frame T may be
dense (e.g., the real numbers), or discrete (e.g., the set of
integers or natural numbers or a finite initial segment of
the natural numbers), or any other form, as long as it has
a linear ordering.

For example, TRACES(ClientOnt) denotes the set of
possible traces for a client, TRACES(EnvOnt) the set of
possible traces for the environment, TRACES(ReqOnt) the
set of possible traces for the requirements, and
TRACES(DODOnt) denotes the set of possible traces for
the product attributes (design object). A trace for a client
represents the evolution of the client model over time.
An example of an aspect in a trace for a client is the
change over time of the client’s risk avoidance profile, or
a progressive trend in income over time. A trace for the
environment represents the evolution of the environment
state over time. An example of an aspect in such a trace
is the trend in some indicator of the economy or financial
market (for example, an increasing interest rate). A trace
for an object represents the evolution of the object state
over time. An example of an aspect in a trace for an

1 http://www.cs.vu.nl/~tbosse/prodmodels/

object is the change over time of the monthly amount to
be paid.

Dynamical relations The four different types of states
interact with each other over time. For example, the
client state and environment state both affect the
requirements state. Moreover, the requirement state
affects the object state, and the object state affects the
future client states, which makes it a cyclic process.
These temporal relations can be depicted in graphical
format as shown in Figure 1. Here, the numbers that are
attached to the arrows correspond to the four types of
dynamical relations introduced in Section 3. As depicted,
the environment state is not affected by any of the other
states. However, in principle it is possible that the
development of new products over time also affects the
environment state via the client states (if a large scale use
of these new products occurs), which would show
another cycle in the dynamical system. For the time
being this possibility is ignored here.

Figure 1. Global Dynamic relations

The traces of these states representing development

over time can be depicted along a time axis as shown in
Figure 2. Notice that here the arrows pointing
downwards are specified as part of a dynamic product
model. The dashed arrows pointing towards the client
trace are not specified within the dynamic product
model, but indicate the effect of the product and
environment state on the client’s state (taking place
within the client).

Figure 2. Traces for client C, environment E,
requirements R and product P over time

The following is an example of a story as depicted
here. A new client comes in, his profile is identified
(client model), based on that requirements are formulated
fitting this client model and a mortgage is designed with
attributes tailored to his situation. At a next point in time,
the client’s financial situation changes due to a divorce.
An updated client model is obtained, based on which
new requirements are formulated and the basic attributes
of the mortgage adapted to satisfy these new
requirements.

Specification of Dynamic Relations To formally
specify dynamic properties that express characteristics of
processes from a temporal perspective, an expressive
language is needed. To this end, the Temporal Trace
Language TTL [3] can be used as a tool. This language
can be classified as a predicate-logic-based reified
temporal language; see [8, 9]. Within TTL, complex
dynamic properties of design processes can be
expressed. An example is the following property: “ If
between time point t1 and t2, for each existing
requirement a product is found that fulfils it, then at time
point t2 the profit will be at least x” .
 However, this paper only considers properties that
address snapshots of the design process at a single time
point, such as the property “ for each client a suitable
insurance is derived” . Since these properties abstract
away from the temporal aspect, for the moment standard
first-order predicate logic can be used instead of TTL.
Thus, an order-sorted predicate logic ontology Ont to
describe state properties is assumed, consisting of sorts,
subsort relations, constants in sorts, and functions and
relations over sorts; e.g., [10]. Moreover, the usual first-
order logical connectives such as ¬, &, ∨, � ∀, ∃ are
used. In future work, TTL will be used to express the
more complex dynamic properties as shown above.

Executable Dynamic Properties To be able to perform
automated experiments with design processes, a simple
temporal logical language to specify simulation models
is used. This language LEADSTO [2] enables to model
direct temporal dependencies between two state
properties in successive states, as occur in specifications
of a simulation model (for example, if in the current
state, state property p holds, then in the next state, state
property q holds). This language is executable and
therefore enables the automatic generation of simulated
traces; for other executable temporal languages based on
modal logic, see [1]. This section briefly introduces the
logical format used for these LEADSTO simulation
models. This executable format is defined as follows. Let
α and β be state properties of the form ‘conjunction of
ground atoms or negations of ground atoms’. In the leads
to language the notation α →→e, f, g, h β, means:

C

E

R

P

Environment
State

Client
 State

Product
State

Requirements
State

(1)

(2, 3, 4)

LP6 LP5 LP4 LP1 LP3 LP2

(branch b1)

GP

IP2 IP1

(branch b2)

(branch b3) (branch b4)

If state property α holds for a certain time interval with
duration g, then after some delay (between e and f) state
property β will hold for a certain time interval of length h.

5. Dynamic Relations for Product Redesign

Based on the formalisation presented above, this
section presents the specification of the dynamical model
needed to come to a suitable design for a product based
upon the input received (from the environment, or based
upon the client model). First of all, it is shown how to
establish requirements and to refine them into more
specific requirements (i.e., dynamical relations (1) in
Section 3). Thereafter, it is shown how those specific
requirements relate to basic design object attributes (2).
How to derive design object attributes from basic design
objects (3) is presented thereafter, and finally, it is shown
how to evaluate a design object with respect to the
requirements (4). All specifications are in LEADSTO
format.

5.1. Requirements Identification and Refinement

Within this process, it is assumed that different

requirements for a product can be related to each other
by means of a refinement tree. This assumption
corresponds to the idea presented in [7] that (goal-
oriented) requirements may be refined into more specific
requirements on parts of a design object. An abstract
example of such a refinement tree is depicted in Figure 3.

Figure 3. Example requirements tree

In this figure, requirements are represented by boxes,
and refinement relations are depicted by lines between
them. Different lines connected by an arc denote an
AND-branching, meaning that the requirement is refined
into the combination (conjunction) of requirements
below. Lines without an arc denote OR-branches,
indicating alternative refinements. For example, in
Figure 3, GP is the highest requirement for the product.
This requirement can be fulfilled by fulfilling either
requirement IP1 or IP2. Furthermore, IP1 is fulfilled by
fulfilling all of LP1-LP4, and IP2 is fulfilled by fulfilling
both LP5 and LP6. Such refinement relations are

represented by predicates such as
is_a_subrequirement_of_via(IP1,GP,b1), which are part of
ReqOnt (see Section 4).

The idea is that, within a design process, the top level
requirements are context-dependent, and are identified
by the product selling company in interaction with the
client on the basis of the client’s characteristics and
financial indicators. Next, lower level requirements are
derived, based on the following specifications:

LTP1 Requirement Refinement
This LEADSTO property (LTP) expresses that, if a requirement
exists that can be refined to a sub-requirement, then this should
be done by refining via the best branch.

∀p,q:REQUIREMENT, ∀b:BRANCH
is_a_current_requirement(p) ∧ is_a_subrequirement_of_via(q,p,b) ∧
best_branch_for(b,p) →→ is_a_current_requirement(q) ∧
requirement_refined(p) ∧ requirement_refined_via(p,b)

Here best_branch_for(b,p) can be defined in various manners.
An example is to calculate the predicted production costs
for all branches that refine requirement p and to select
branch b for which these costs are lowest.

To formally specify the exact content of a
requirement, the predicate has_expression is used. An
example instance of this predicate, expressed in the TTL
language, is as follows:

 has_expression(LP1,
 ∃X:real variable_has_value(premium, X) ∧ X < 100)

This means that requirement LP1 expresses that there
should exist a real value for the variable premium such
that this value is lower than 100.

5.2. Relating Requirements to Design Objects

As soon as the basic requirements (i.e., the leaves of a

tree such as depicted in Figure 3) have been established,
Design Object Descriptions (DODs) can be found. To
this end, the following specifications are used:

LTP2 DOD Generation
This property expresses that each local requirement should be
satisfied by adding the best product characteristic for that
requirement to the current DOD.

∀l:LOCAL_REQUIREMENT, ∀c: VARIABLE, ∀x:INTEGER, ∀v:VALUE
is_a_current_requirement(l) ∧ best_characteristic_for(c,v,l) ∧
DOD_counter(x) →→ current_DOD(dod(x)) ∧ part_of_DOD(c,dod(x)) ∧
variable_has_value(c,v)

Here best_characteristic_for(c,v,l) is defined, for example, by
picking a value v for variable c that satisfies the
inequality expressed in the requirement l. Note that there
can also be multiple best values for a particular variable,
for more details on the selection process between these
values, see [4].

Figure 4. Requirements tree for car insurances

5.3. From Basic Design Object Attributes to
Derivable Design Object Attributes

Based upon certain basic design objects attributes that

have been generated using the requirements, other
attributes can be derived with the dependencies that exist
between these attributes. An example rule for such
derivation is specified below (see Appendix A for more
examples). The example expresses an explicit
dependency whereby it is explicitly stated what value a
variable has based upon the value of other variables. For
example, for a car insurance, 4 years without collision
means a no claim discount percentage of 20%.

LTP3 Dependency of type explicit
If a variable c1 has a dependency relation of type explicit,
stating that is will get value v1 if another variable c2 has value
v2, and this is indeed the case, then c1 gets value v1.

∀l:LOCAL_REQUIREMENT, ∀c1: VARIABLE, ∀c2:VARIABLE,
∀x:INTEGER, ∀v1,v2:VALUE
is_a_current_requirement(l) ∧ holds_for(l, c1) ∧ DOD_counter(x) ∧
is_dependent_on(c1, [c2]) ∧ dependency_relation_of_type(c1, [c2],
explicit) ∧ dependency_between(c1, v1, [(c2, v2)]) ∧
variable_has_value(c2, v2) →→ current_DOD(dod(x)) ∧
part_of_DOD(c1,dod(x)) ∧ variable_has_value(c1, v1)

5.4. Evaluation of a Design Object

Finally, the generated design object can be evaluated

once more, to check whether it indeed satisfied all
requirements. The following is used for this:

LTP4 Requirement Satisfaction Determination
This property determines when a certain (local) requirement is
satisfied by a DOD. This is the case when the current DOD
contains a variable with a value that satisfies this requirement.

∀d:DOD, ∀c:VARIABLE, ∀l:LOCAL_REQUIREMENT, ∀v:VALUE
current_DOD(d) ∧ part_of_DOD(c,d) ∧ holds_for(l,c) ∧
is_a_current_requirement(l) ∧ variable_has_value(c,v) →→
local_requirement_satisfied(l)

6. Case Study

This section presents a case study where the approach
presented above is applied to the domain of car
insurances. As described earlier, the refinement relations
between requirements are represented as an AND/OR-
tree. For the domain of car insurances, an example of
such a tree is shown in Figure 4. At the highest level in
the hierarchy, requirement R1 expresses that “for each
client a suitable insurance should be derived”. This
property is the conjunction of a number of environmental
(client dependent) conditions (below called client
characteristics), and the requirement that a suitable
premium and own risk should be found (requirement R2).
The latter requirement is refined by means of requiring a
suitable own risk as well as a suitable premium to be
chosen.

Below, these sub-requirements are worked out in
more detail. Section 6.1 addresses the client
characteristics, and Section 6.2 addresses requirement
R2. The product (i.e. design object) is addressed in
Section 6.3. After that, Section 6.4 presents an example
simulation trace for the case study.

6.1. Client Characteristics

The first client characteristic, C(risk_profile, C, R), is a

risk function that determines the tradeoff a particular
client makes between the premium and the own risk he
or she is willing to accept. In Figure 5 the dashed line
indicates such a risk curve. The line indicates the
preference of a person in taking a particular risk. Some
people might be interested in taking a lot more risk
despite the fact that the premium is not even that much
lower, whereas other people might be very unwilling to
take a lot more risk, even though they will get a lower
premium. Using the formal ontology for variables (see
Appendix A), the property can be expressed as follows:

C(risk_profile, C, R)
variable_has_value(client_characteristic(C, risk_profile), R)

This expresses that the variable regarding the risk profile
of a client has a particular value, which represents the
desired risk/premium dependency.

The other three client characteristics can be specified
in a similar fashion, as shown below.

C(age, C, I)
variable_has_value(client_characteristic(C, age), I)

C(collision_free_years, C, I)
variable_has_value(client_characteristic(C,
collision_free_years), I)

C(car, C, I)
variable_has_value(client_characteristic(C, type_of_car, I)

As can be seen, three other characteristics are specified,
namely the age of the client, the number of collision free
years, and finally, the type of car the client is driving
expressed in horsepower (HP).

6.2. Suitable Risk-Premium Combination

Requirement R2 specifies that, given the client, an
optimal combination for the premium and own risk
should be chosen.

R2(C, P, R1, R2): Product on Risk/Premium Curve fitting
Client risk profile
∃R1’:real, R2’:real, R:real
variable_has_value(product_characteristic(P, own_risk), R1) ∧
variable_has_value(product_characteristic(P, premium), R2) ∧
variable_has_value(client_characteristic(C, risk_profile), R) ∧
optimal_own_risk_premium_for_risk_profile(R1’, R2’, R)
∧ R1≤ R1’ ∧ R2 ≤ R2’

The definition of
 optimal_own_risk_premium_for_risk_profile(R1’, R2’, R)
is part of the background knowledge. It can be
determined by the risk/premium curve, given the client’s
characteristics (for an example thereof, see the solid line
in Figure 5) and risk profile R. The precise values can be
found by deriving the point in the risk premium curve of
which the tangent has the same coefficient as the risk
profile of the client (the dotted line). The formula for the
risk/premium curve is as follows:

k
dpremium

premiumownrisk −
−

= 50000
)((1)

When the parameters d and k are altered, the curve shifts
horizontally and vertically, respectively. The basic
values of d and k are 0 and 500. The age of the client
influences k, the number of collision free years
influences d, and the type of car influences both
parameters. A more detailed description of the
calculations is given in Appendix A.

Next, requirement R2 can be refined (by an AND-
branch) to requirements R3 and R4. For this example,
their expressions are:

Figure 5. Example client risk profile and
company risk/premium curve

R3(C, P, R): Suitable Own Risk ≤≤≤≤ R
∃R’:real
variable_has_value(product_characterstics(P, own_risk), R’) ∧
R’ ≤ R

R4(C, P, R): Suitable Premium ≤≤≤≤ R
∃R’:real
variable_has_value(product_characterstics(P, premium), R’) ∧
R’ ≤ R

The idea of a refinement hierarchy is that the refinement
set together entails the original requirement.

6.3. Design Object

For this case study, it is assumed that a complete

insurance product (or design object) is specified to
consist of three parts, namely a premium value, the own
risk value, and the terms type. These are specified as
follows.

D(premium, P, R)
variable_has_value(product_characteristics(P, premium), R)

D(own_risk, P, R)
variable_has_value(product_characteristics(P, own_risk), R)

D(terms, P, T)
variable_has_value(product_characteristics(P, terms_type, T)

6.4. Example Simulation Trace

By applying the dynamic relations presented in

Section 5 to the case study presented in this section, a
number of simulation experiments have been performed.
To this end, the LEADSTO simulation tool (see [2] for
details) has been used. This piece of software takes as
input a set of executable dynamic properties, and uses
these to generate traces describing the course of events
over time. Figure 6 shows the resulting simulation trace
of an example scenario of client John Smith. Here, time
is on the horizontal axis, and the state properties are on
the vertical axis. A dark box on top of the line indicates

Figure 6. Example simulation trace

that a state property is true during a certain time period,
and a lighter box below the line indicates that a property
is false. In the scenario, there are two possible risk
profiles, named profile1 and profile2. The first profile is
a low-risk characteristic, meaning that the person is not
willing to accept own risk and willing to accept a high
premium. The second profile is more risky, meaning that
the person accepts own risk and a low premium. The car
type is this scenario is of type 1, a Cadillac. The type of
car, the age and the number of collision free years
determine the risk/premium curve (see Figure 5).
Combined with the risk profile of the client, the optimal
premium and own risk can be determined.

The client is this scenario has four characteristics: his
age is 27, he owns a car with 200 HP, he has had two
collision free years, and he has a risk profile of 10 (e.g.
c(risk_profile, john_smith, 10)). Initially, requirement R1, to find
a suitable insurance, is identified (see
is_a_current_requirement(R1(john_smith, car_insurance)) at time
point 1). Next, this requirement is refined to
subrequirement R2 (see property
is_a_current_requirement(R2(john_smith, car_insurance, 385.107,

79.9607)) at time point 8). Requirement R2, finding a
suitable premium and own risk, can be refined in
requirements R3 an R4. The risk/premium curve is
calculated using the characteristics of the client (see

formula (1)). Together with the risk profile, the optimal
own risk (requirement R3) and the optimal premium
(requirement R4) can be determined: 385.107 and
79.9607 respectively.

Next, the design objects can be generated by adding
the best object characteristics that match the
requirements to the current DOD. As shown in Figure 6,
these variables are indeed assigned to the first DOD (e.g.
part_of_dod(d(own_risk, car_insurance, 385.107), dod(1)) at time
point 16). When all requirements are evaluated, the
process of generating design object characteristics stops.
The following year, when the client turned 28 and has
had three collision free years, he increases his risk profile
to 30 (see property c(risk_profile, john_smith, 30)). This
increases the optimal own risk and decreases the optimal
premium. The refinement of requirements starts over,
with a new requirement for own risk: 894.745 and for the
premium: 49.6998. Since there are new current
requirements, the process of generating design object
characteristics starts again, new objects are added to the
second DOD, and the requirements are evaluated.

The case study shows that the model, instantiated with
specific knowledge from the domain of car insurances,
indeed outputs tailored car insurance proposals. As the

characteristics of the client change over time, so does the
proposal for a suitable car insurance.

7. Discussion

Traditionally, product models often have been forced
in a static format, entailing rigidity of two types: (1)
rigidity in the manner most products are initially fit to
clients and (2) rigidity in the way they are maintained
over time after a client has accepted them. When offering
the product via an interactive medium like Internet, as a
Web service, solving such rigidity problems increases
the service’s success probability. To cope with these
problems, this paper proposes a dynamic approach to
product models. This approach supports an ongoing
interaction process between the designer and the client.
During such an interaction process, the background and
the desires of the client may change continuously, which
will lead to continuous adaptation of the product.

Globally, the approach is based on the Global Design
Model (GDM) by [5]. It involves four important types of
dynamical relations, i.e., (1) to identify requirements and
to refine them into more specific requirements, (2) to
relate specific requirements to basic design object
attributes, (3) to determine derivable design object
attributes from basic design object attributes, and (4) to
evaluate a design object with respect to requirements.
The approach has been formalised in the high-level
executable language LEADSTO [2], which is a
sublanguage of the predicate logical language TTL [3].
The resulting (generic) specification has been tested in a
case study in the domain of car insurances.

In the domain of web services, extensive research has
been conducted focusing on the composition of web
services (see e.g. [12, 13, 14]). Furthermore, the
specification of the precise services offered has been
investigated as well, proposing for instance semantic web
technology (see e.g. [11]). An additional important
aspect for businesses wanting to offer a service on the
web is to make this service as attractive as possible for a
client, which is addressed in this paper. In [6] such
tailoring is also addressed; that paper introduces a
language that allows for the specification of service level
agreements in a flexible, individual way. The approach
also introduces a way to manage such service levels
throughout the entire life cycle of such a service level
agreement. The approach presented in this paper is
however more generic, since it focuses on tailoring of
products in general, not only particular aspects of such a
product.

In future work, more complex cases will be
addressed, including more realistic examples that involve
a higher amount of parameters. Moreover, to evaluate its
generality, the approach will be tested in other domains,
such as the design of mortgages.

8. References

[1] Barringer, H., M. Fisher, D. Gabbay, R. Owens, and M.

Reynolds (1996). The Imperative Future: Principles of
Executable Temporal Logic, Research Studies Press Ltd.
and John Wiley & Sons.

[2] Bosse, T., Jonker, C.M., Meij, L. van der, and Treur, J.
(2005). LEADSTO: a Language and Environment for
Analysis of Dynamics by SimulaTiOn. In: Eymann, T., et
al. (eds.), Proc. of the Third German Conference on
Multi-Agent System Technologies, MATES'05. LNAI, vol.
3550. Springer Verlag, pp. 165-178.

[3] Bosse, T., Jonker, C.M., Meij, L. van der, Sharpanskykh,
A., and Treur, J. (2006). Specification and Verification of
Dynamics in Cognitive Agent Models. In: Nishida, T.,
Klusch, M., Sycara, K., Yokoo, M., Liu, J., Wah, B.,
Cheung, W., and Cheung, Y.-M. (eds.), Proceedings of the
Sixth International Conference on Intelligent Agent
Technology, IAT'06. IEEE Computer Society Press, 2006,
pp. 247-254.

[4] Bosse, T., Jonker, C.M., and Treur, J. (2004). Analysis of
Design Process Dynamics. In: Lopez de Mantaras, R. and
Saitta, L. (eds.), Proceedings of the 16th European
Conference on Artificial Intelligence, ECAI'04, IOS Press,
2004, pp. 293-297.

[5] Brazier F.M.T., Langen P.H.G. van, and Treur J. (1996). A
logical theory of design. In: J.S. Gero (ed.), Advances in
Formal Design Methods for CAD, Proc. of the Second
International Workshop on Formal Methods in Design.
Chapman & Hall, New York, 1996, pp. 243-266.

[6] Dan, A., et al. (2004). Web Services on Demand: WSLA
Driven Automated Management. IBM Systems Journal,
vol. 43, 2004, pp. 136-158.

[7] Dardenne, A., Lamsweerde, A. van, and Fickas, S. (1993).
Goal-directed Requirements Acquisition. Science in
Computer Programming, vol. 20 (1993), pp. 3-50.

[8] Galton, A. (2003). Temporal Logic. Stanford
Encyclopedia of Philosophy, URL:
http://plato.stanford.edu/entries/logic-temporal/#2

[9] Galton, A. (2006). Operators vs Arguments: The Ins and
Outs of Reification. Synthese, vol. 150 (2006), pp. 415-
441.

[10] Manzano, M., (1996). Extensions of First Order Logic,
Cambridge University Press, 1996.

[11] McIlraith, S.A., Son, T.C., and Zeng, H. (2001). Semantic
Web services. IEEE Intelligent Systems, vol. 16, 2001, pp.
46-53.

[12] Narayanan, S., and McIlraith, S.A. (2002). Simulation,
Verification and Automated Composition of Web
Services. In: Proceedings of the 11th International
Conference on World Wide Web, ACM Press, 2002, pp.
77-88.

[13] Srivastava, B., and Koehler, J. (2003). Web Service
Composition – Current Solutions and Open Problems. In:
Proceedings of the Workshop on Planning for Webs
Services, 2003.

[14] Zeng, L., Benatallah, B., Dumas, M., Kalagnanam, J., and
Sheng, Q. (2003). Quality Driven Webs Service
Composition. In: Proceedings of the 12th International
conference on World Wide Web, ACM Press, 2003, pp.
411-421.

