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Abstract. The naval domain is characterized by a dynamic environment. This requires constant adaptation of the 
organization, choosing between a wide variety of options. The consequences of the different options are difficult to 
foresee and hence, it is hard to judge which option is best. This paper presents automated support for the simulation, 
visualization, and validation of such adaptive multi-agent organisations. Generic simulation properties are specified using 
a formal modeling approach. Furthermore, results of a realistic case study are presented, and validated by means of 
properties obtained from naval experts. Finally, a tool is introduced that enables an insightful visualization of the 
simulation results. 
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1 Introduction 

The process of setting up a simulation study involves 
steps of problem formulation, data collection, model 
definition, experimental design, running the simulation, 
output data analysis and reporting of results [9]. 
Throughout this process, intermediate validation steps 
assure that the simulation model corresponds with the 
actual system under investigation. The work described in 
this paper relates to two steps in particular, i.e., model 
definition and output data analysis, and describe these in 
more detail. 

Model definition concerns setting up a conceptual 
model of the actual system with respect to project 
objectives, performance measures, data availability, 
computer constraints, etcetera. Many tools exist nowadays 
to support modelers with this activity. For ones specific 
interest, one may choose from a variety of simulation 
languages and software packages. These tools provide 
natural frameworks for model construction. As such, they 
are based on formal system descriptions and include 
concepts like entities, states, events, time, variables, 
etcetera. 

Agent-based modeling techniques are often used to 
model and simulate (natural or artificial) agent systems 
that have to deal with dynamic and uncertain 
environments. Therefore, an important challenge for the 
area of agent-based modeling is the notion of adaptivity. 
Adaptation can take place within a single agent (e.g., an 
individual learning process), or at the level of the multi-
agent organization (e.g, change of roles of agents within 
the organization). In order to create (multi-)agent-based 

simulations with adaptive abilities, adaptation 
mechanisms have to be incorporated in agent-based 
simulation models.  

Adaptation mechanisms can involve not only 
quantitative numerical aspects but also qualitative, logical 
aspects (for example, a role switch between agents within 
an organization). If formalization is used for an adaptation 
mechanism, this is often based on mathematical models 
using differential equations. In contrast, agent-based 
simulation models traditionally make use of qualitative, 
logical languages. Most of these languages are appropriate 
for expressing qualitative relations, but less suitable to 
work with more complex numerical structures as, for 
example, in differential equations. Therefore, integrating 
such mathematical models within the design of (multi-) 
agent-based simulation models is difficult. To achieve this 
integration, it is needed to bridge the gap between 
quantitative approaches and the type of languages 
typically used in agent-based simulation. 

The model definition includes validation of the 
simulation model: “the process of determining whether a 
simulation model is an accurate representation of the 
system, for the particular objectives of the study” [9]. 
Validation is essential for assuring that the simulation 
model corresponds with the actual system. Various 
validation techniques exist, of which one is mentioned in 
particular. By letting the simulation program generate a 
run or trace, i.e., the series of states over time of the 
simulated system (e.g., state variables, statistical 
counters), it is possible to compare the states with hand 
calculations to check the validity of the program.  
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Analysis of output data is in practice still rather 
undervalued as the simulation process is concerned. Much 
time goes into model development and programming, 
rather than addressing the generated output results 
appropriately. A commonly made “error” is that a single 
run is made of some arbitrary length, supposedly to 
provide insight into the workings of the actual system. 
Instead, suitable statistical techniques must be used to 
design the simulation experiments and analyze the results. 

Since the output processes of simulations are almost all 
nonstationary and autocorrelated [9], classical techniques 
may not always be applicable. Validation of a model is 
usually not formally supported. Often validation is done 
informally, by hand (or eye), based on comparison of a 
simulation trace with an empirical trace. In addition, 
sometimes specific (e.g., statistical) techniques are used to 
support certain aspects of validation; e.g., termination 
conditions, mean and average estimations (for analysis of 
single systems), and measuring response differences, 
ranking, selection (for analysis of multiple systems).  
However, formal analysis and validation of global 
dynamic properties describing the system behavior has 
not received much attention in the simulation modeling 
literature.  Usually in the domain that is modeled, global 
properties that should hold for the behavior of a 
simulation model can be identified. As the languages used 
to specify a simulation model are directed to local 
properties (the steps between successive states), such 
global properties cannot be formalized in these languages. 
To obtain more support, also for validation of a simulation 
model, it is needed to integrate the modeling of such 
global properties in a formal manner as well, so that their 
specification and automated checking on simulation traces 
also can be supported by the modeling environment. 

In accordance with the findings mentioned above, this 
paper introduces an approach for simulation and analysis 
of adaptive (multi-)agent systems and underlying 
mechanisms that is integrative in two ways: 

 

(1) It combines in one modeling framework both 
qualitative, logical and quantitative, numerical 
aspects   

(2) It allows to model dynamics at different aggregation 
levels, from a more local level (e.g., behaviors of 
roles within the organization) to a global level 
(behavior of the multi-agent organization as a 
whole); moreover, interlevel relations can be 
specified that express relationships between dynamic 
properties at different levels 

 

Modeling dynamics at a local level often concerns 
expressing temporal relationships between pairs of 

successive states, such as described, for example, by basic 
steps within an adaptation mechanism. Local level 
specifications are the basis for the computation steps for a 
simulation model. From the more global perspective, 
more complex relationships over time can be used to 
model dynamics for adaptive multi-agent organizations: 
for example, how the system’s behavior is changing 
during a history of events to which it adapts.  
 Based on the generic approach for simulation as 
presented above, this paper presents a simulation model 
for the naval domain. The model mainly concentrates on 
adaptation of such naval organizations using replanning.  

 The main objective of the research described in 
this paper is to investigate the suitability of a system 
involving planning, simulation, visualisation, and 
validation with respect to automated planning support in 
naval missions. The longer term aim of this research is to 
contribute to the development of a tool that allows for 
personnel to plan with a confidence and speed that would 
not be otherwise possible.  
 The remainder of this paper is structured as follows. 
Section 2 gives some details about the naval domain 
addressed and how adaptive organisation forms play a 
role. In Section 3, the modelling methodology that has 
been used is presented. Section 4 presents a number of 
simulations that have been conducted based on local 
executable properties, and describes a case study that has 
been investigated. Section 5 presents the plan 
visualisation tool. Section 6 describes validation results in 
the form of non-local properties for the case study. 
Finally, Section 7 concludes and describes future work. 

2 Dynamic Aspects in Naval Missions 

Within the dynamic naval environment actions of possibly 
opposing parties, but also possible interference of non-
military bystanders might induce a need for change in the 
organisation to ensure the safety of the mission. Which 
response to choose in a given situation depends on a 
variety of factors. Elements such as enemy resources and 
innocent bystanders have to be taken into consideration 
and it is hard to predict the consequences of a plan that 
has been chosen. This paper presents an automated 
support system for the simulation, visualization, and 
validation of such processes. Two requirements must be 
met concerning such support: 1) the support must agree 
with the current way of working, and 2) guarantees must 
be given over the resulted planning with respect to given 
conditions including intended outcome and required 
resources. The work presented here researches an 
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approach for implementing automated support that meets 
these two requirements.  
 As the current way of working is concerned, the naval 
domain knows a large volume of well thought out plans 
that are scheduled for and during a mission (the so-called 
‘doctrine’). Everyone involved in a mission is familiar 
with these plans. The performed planning during a 
mission consists mostly of switching between and 
carrying out those plans. On the one hand, such planning 
during a mission may be a matter of executing the plans 
that were decided upon for the mission; on the other hand, 
unexpected events may happen that ask for necessary 
replanning during a mission. Concerning the latter, these 
situations require appropriate and speedy response. It is 
essential that in these situations, current circumstances are 
taken into account, a suitable plan is selected from the 
doctrine, the situation is dealt with and the mission will 
continue as originally planned.  
 Adaptation in the form of replanning in the naval 
domain frequently involves organisational change: it 
actually affects the organisational structure. For example, 
in response to an unexpected event, a ship that was 
originally only an escort of a high-value unit, may have to 
change its role to an attack unit. Such replanning 
situations are not rare: organisational changes are frequent 
and substantial. 
 Another important aspect of naval planning involves 
spatial information. Feasibility of a plan is partly 
determined by the nature of the available resources 
(helicopters, frigates, transporters) and the relative 
location of those resources. Combining the specific 
capabilities of the resources with spatial information and 
timing aspects plays a key role in the planning. Therefore 
plan visualisation that includes spatial information is 
necessary for successful implementation of automated 
planning support in naval applications. 
 In naval missions, it is crucial to consider the planning 
within the broader context of mission goals, available 

resources, intended outcomes, etcetera. In this respect, 
performed planning before and during a mission must be 
checked against such kinds of conditions. For example, 
when an agent is reallocated to another role (e.g., because 
of prevailing circumstances), it must inform others at the 
time that it is able to fulfill its role. It is important to 
recognise that this reallocation does not happen 
instantaneously (e.g., because a ship may have to sail 

towards some location to fulfill its new role), and 
therefore the communication is essential for others to 
know when the agent can receive orders in its new role. 
 This paper presents a simulation model that includes: a 
planner (P) for organisational change; a simulator (S) for 
those plans that reflects the meta-knowledge (see for 
example [5]) of the roles involved regarding 
organisational change; a visualisation tool (VS) for the 
spatial effects of plan execution that is dedicated to the 
naval domain; and a validation tool (VL) for the 
validation of the resulting planning.  
The essential virtue of the model is that it recognises the 
importance of spatial information in naval planning (by 
means of the visualisation) and it offers an inventive way 
to check whether given conditions hold while planning 
(by means of the validation). The model may be used 
offline for analysis purposes and/or mission planning, as 
well as during execution of a mission as an automated 
planning support tool. 

3  Modeling Methodology 

To facilitate formal modeling of a multi-agent 
organization and its dynamics, this section introduces an 
organizational modeling approach and, in addition, a 
modeling language that enables specifying the dynamics 
within an organization (see also [3]). The organizational  
modeling approach is described in Section 3.1, and the 
formal language for expressing dynamics is addressed in 
Section 3.2. 

3.1  AGR Organization Modeling Approach 

For the description of actual multi-agent organizations, 
the AGR (for agent/group/role) model has been adopted 
[2]. In that approach, an organization is viewed as a 
framework for activity and interaction through the 
definition of groups, roles and their relationships. But, by 
avoiding an agent-oriented viewpoint, an organization is 
regarded as a structural relationship between a collection 
of agents. Thus, an organization can be described solely 
on the basis of its structure, i.e. by the way groups and 
roles are arranged to form a whole, without being 
concerned with the way agents actually behave, and 
multi-agent systems will be analyzed from the outside, as 
a set of interaction modes. The specific architecture of 
agents is purposely not addressed in the organizational 
model. The three primitive definitions are: 

Fig. 1. Global overview of the simulation model. 
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•  The agents. The model places no constraints on the 
internal architecture of agents. An agent is only specified 
as an active communicating entity which plays roles 
within groups. This agent definition is intentionally 
general to allow agent designers to adopt the most 
accurate definition of agent-hood relative to their 
application. In this paper, the agents are however assumed 
to be reflective agents, allowing them to reason about the 
role they are playing. 

 
•  Groups are defined as atomic sets of agent aggregation. 
Each agent is part of one or more groups. In its most basic 
form, the group is only a way to tag a set of agents. An 
agent can be a member of n groups at the same time. A 
major point of these groups is that they can freely overlap. 

 
•  A role is an abstract representation of an agent 
function, service or identification within a group. Each 
agent can handle multiple roles, and each role handled by 
an agent is local to a group. Roles can also have beliefs 
due to the assumed reflective capabilities of the agents; 
they can reason about whether they should have a 
particular belief given a certain role. These beliefs can be 
seen as an additional requirement on the agents playing 
that role. 

3.2  Modeling Organizational Behavior 

In this section a method to express dynamics within an 
organizational model is addressed. To formally specify 
dynamic properties at the different aggregation levels that 
are essential in an organization, an expressive language is 
needed. To this end the Temporal Trace Language is used 
as a tool; cf. [7]. For the properties occurring in the paper 
informal, semi-formal or formal representations are given. 
The formal representations are based on the Temporal 
Trace Language (TTL), which is briefly defined as 
follows. 
 A state ontology is a specification (in order-sorted 
logic) of a vocabulary. A state for ontology Ont is an 
assignment of truth-values {true, false} to the set At(Ont) of 
ground atoms expressed in terms of Ont. The set of all 
possible states for state ontology Ont is denoted by 
STATES(Ont). The set of state properties STATPROP(Ont) 
for state ontology Ont is the set of all propositions over 
ground atoms from At(Ont). A fixed time frame T is 
assumed which is linearly ordered. A  trace or trajectory γ 
over a state ontology  Ont  and time frame T  is a 
mapping γ : T → STATES(Ont), i.e., a sequence of states γt 

(t ∈ T) in  STATES(Ont). The set of all traces over state 
ontology Ont is denoted by TRACES(Ont).  Depending on 
the application, the time frame T may be dense (e.g., the 
real numbers), or discrete (e.g., the set of integers or 
natural numbers or a finite initial segment of the natural 
numbers), or any other form, as long as it has a linear 
ordering. The set of dynamic properties DYNPROP(Ont) is 
the set of temporal statements that can be formulated with 
respect to traces based on the state ontology Ont in the 
following manner.  
Given a trace γ over state ontology Ont, the input state of 
some role r within a group g at time point t is denoted by  

 state(γ, t, input(r|g)) 

analogously 

 state(γ, t, output(r|g))  
 state(γ, t, internal(r|g))  
denote the output state and internal state.  
 These states can be related to state properties via the 
formally defined satisfaction relation |=, comparable to 
the Holds-predicate in the Situation Calculus: state(γ, t, 
output(r|g)) |= p denotes that state property p holds in trace γ 
at time t in the output state of role r within group g. Based 
on these statements, dynamic properties can be formulated 
in a formal manner in a sorted first-order predicate logic 
with sorts TIME or T for time points, Traces for traces and 
F for state formulae, using quantifiers over time and the 
usual first-order logical connectives such as ¬, ∧, ∨, ⇒, 
∀, ∃. In trace descriptions, notations such as 
 state(γ, t, output(r|g))|= p  
are shortened to  
 output(r|g)|p. 
 

 
 
 
The Temporal Trace language can be used to specify 
behavioral properties at different aggregation levels, 
according to the organizational structure. Within the AGR 
approach the aggregation levels are the level of the roles, 
the level of the groups and the level of the organization as 
a whole (see Figure 2). The lower level properties can 
often be modeled in simpler formats than the higher level 
properties. In particular, it is often possible to model the 

Fig. 2.  Overview of interlevel relations between dynamic properties 

   transfer  properties      role properties 

group properties intergroup interaction properties 

organization properties 
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properties at the leaves of the tree in the form of directly 
executable properties, i.e., by direct temporal 
dependencies between state properties in two successive 
states. To model direct temporal dependencies between 
two state properties, not the expressive language TTL, but 
the simpler leads to format is used. This is an executable 
format that can be used to obtain a specification of a 
simulation model in terms of local dynamic properties 
(the leaves of the tree in Fig. 2). The format is defined as 
follows. Let α and β be state properties of the form 
‘conjunction of literals’ (where a literal is an atom or the 
negation of an atom), and e, f, g, h non-negative real 
numbers. In the leads to language α →→e, f, g, h β, means: 
 

   If      state property α holds for a certain time interval with duration g, 
   then  after some delay (between e and f) state property β will hold  
  for a certain time interval of  length h. 
 

For a precise definition of the leads to format in terms of 
the language TTL, see [8]. A specification of dynamic 
properties in leads to format has as advantages that it is 
executable and that it can often easily be depicted 
graphically. 

4  Local Properties and Simulations 

This Section presents the simulator component within the 
system. First of all, the executable (leads to) properties 
which specify the simulation model for the simulator are 
presented in Section 4.1. After that, Section 4.2 addresses 
the case study that has been investigated, followed by the 
results of the simulations of the case study. 

4.1   Simulation Model Specification 

This Section describes generic local properties that 
constitute the basis for the simulation model. Each of 
these generic properties can be formed into more scenario 
specific properties whenever necessary. The generic 
properties in the framework work are based on goals, 
plans, beliefs and events. 
 It has to be mentioned that beliefs in this respect are 
used for storing information about the environment as 
well as information about oneself. As shown in the 
scenario below, many plans involve organizational 
change. This means that the actual organizational 
structure adapts to occurring events. Thus, in addition to 
knowing about the environment by observation, it is 
assumed that the agent (reflectively) knows about its role 
in the organization and can change to another role if 

necessary. The formalization is explained in the remainder 
of this section. Firstly, it is assumed that a goal has been 
given. 

internal(r:ROLE|gr:GROUP)|belief(g:GOAL, pos) 

denotes that role r within group gr holds the belief that g 
is a goal. Based on this goal, a plan is selected to achieve 
it: 

internal(r:ROLE:gr:GROUP)|belief(current_plan(p:PLAN), pos) 

says that plan p is selected as to achieve goal g. This plan 
will generate actions as long as no disturbing events 
occur. If such an event occurs and r is informed, this is 
denoted by 

input(r:ROLE:gr:GROUP)|communication_from_to( 
         r1:ROLE|gr1:GROUP, r:ROLE|gr:GROUP ,inform, e:EVENT) 

stating that r1 within group gr1 informs r within group gr 
about event e. This event causes another goal to become 
active. 

internal(r:ROLE|gr:GROUP)|belief(g1:GOAL, pos)  

says that g1 is now a goal and a subsequent plan is 
selected: 

internal(r:ROLE|gr:GROUP)|belief(current_plan(p1:PLAN), pos) 

This plan may involve organisational change. If this is the 
case (as it is in the scenarios below), a modeling approach 
is adopted as developed elsewhere [6]. This involves the 
existence of a ChangeManager who directs the 
organizational change. This approach is explained in more 
detail below. If the plan has been fully executed, this is 
denoted by 

internal(r:ROLE|gr:GROUP)|belief(plan_executed(p:PLAN),pos) 

where the parameter might be left out if it is assumed that 
only one plan can be executed at a time. This causes role r 
to reflect on other still existing goals and resuming the 
plans to achieve these goals. If there are no existing goals, 
a new goal may be generated or given. 
Execution of a certain plan that has been selected often 
consists of organizational change. Therefore, generic 
simulation rules for these organization structure changes 
are needed to enable a generic simulation model. The 
properties shown below are based on the approach 
presented in [6] which is partially based on the AGR 
organization modeling approach as presented in Section 
3.1. In that approach, organizational change can be 
performed in a meta-group called ChangeGroup, in which 
Member roles are present that represent agents within the 
organization. Each agent in the organization is represented 
by exactly one Member role within the ChangeGroup. 
The Member roles have beliefs about the organization and 
these beliefs are transferred to the roles the agent is 
currently playing. To initiate the change process as 
described above, triggers are needed. These are specified 
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in the current plan, and are domain specific. Given this 
specific information for the particular plan, generic 
simulation rules fire to simulate the process of informing 
the members involved and changing their current beliefs 
on the organization. Some example executable local 
properties are presented below. 
 
RP(ChangeManager):Communicate Activity 
[output(ChangeManager|ChangeGroup)|communication_from_t
o(ChangeManager|ChangeGroup, all_involved, inform, 
active(C:CHANGE_GROUP)) & 
internal(ChangeManager|ChangeGroup)|belief(involved_in_group(R:RO
LE, C:CHANGE_GROUP), pos)] 
→→0,0,1,1  
input(R:ROLE|ChangeGroup)|communication_from_to(ChangeManager|
ChangeGroup, R:ROLE|ChangeGroup, inform, 
active(C:CHANGE_GROUP) 
 
RP(Member): Believe Change Activity 
input(R:ROLE|ChangeGroup)|communication_from_to(ChangeManager|
ChangeGroup, R:ROLE|ChangeGroup, inform, 
active(C:CHANGE_GROUP) 
→→0,0,1,1  
[internal(R:ROLE|ChangeGroup)|belief(active(C:CHANGE_GROUP, 
pos) & 
output(R:ROLE|ChangeGroup)|communication_from_to(R:ROLE|Chang
eGroup, ChangeManager|ChangeGroup, inform 
belief(active(C:CHANGE_GROUP), pos))] 
 

Properties such as the examples above cause the 
ChangeGroup to be activated, knowledge about a new 
structure to be communicated, and finally belief emerging 
at the roles that need to have this information. After all of 
this has been performed, the ChangeGroup is deactivated 
and the new structure is in place (part of the internals of 
the roles). 

Roles are attributed with reflective knowledge in the 
approach presented in this paper. This means that roles 
have beliefs on the expected behavior concerning the role. 
For example, a role has the internal belief that when the 
role receives an input x he eventually has to output y, 
formally: 
 

internal(Role|Group)|belief(leadsto(input(Role|Group)|x, 
output(Role|Group)|y, efgh(0,0,1,1)),pos) 

4.2  Simulation Results 

This section contains results of simulations using the 
model presented in Section 3 and the generic properties 
presented in Section 4.1 which have been formalized in 
terms of the formal languages presented in Section 3. First 
of all, two case studies are introduced, thereafter some 
example formal properties which specify the behavior in 
the situations that occur in the case study are shown. 
Finally, the simulation traces for the case studies are 
shown.  

4.2.1 Case studies 
This section presents two case studies that has been 
obtained from experts of the Royal Netherlands Navy. 
The scenarios contain events that are typical within the 
naval domain. 
 
Total Steam Failure 
The first scenario that has been studied is called total 
steam failure. The initial configuration of the fleet is 
shown in Figure 3. In total there are six frigates, denoted 
by F1 - F6, each allocated to a certain area within which 
they reside. Besides the frigates there are also helicopters 
(H1- H6) flying in a particular zone of the fleet. Finally, 
there are certain High Value Units (HVU) within the area 
called ZZ (for Zulu Zulu) that need to be protected. These 
might for example be ships containing troops, or 
amphibian landing vehicles. In total there are five ships 
within ZZ, which is called MainBody throughout this 
paper. 

At a certain point in time the Officer in Tactical 
Command (OTC) receives an assignment to sail to 
Peterselie island and chooses a fleet configuration. On the 
way however, several unexpected events occur. First of 
all, one of the ships within the MainBody gets a total 
steam failure, meaning that it has lost all propulsion. On 
the basis of this event, the OTC has to decide what plan to 
apply. A few hours later, a nixie (a torpedo decoy) hit is 
observed at one of the members of the MainBody, which 
means that a torpedo was fired in the direction of that ship 
and implies re-planning as well. Finally, an hour after 
that, the ship that was suffering from a total steam failure 
gets back up to speed again.  

Fig. 3. Initial Fleet configuration 
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Submarine Threat 
Another scenario which has been under investigation is 
that of a submarine threat. The initial fleet configuration 
is almost identical to the configuration shown in Figure 3, 
except that H6 is missing. The mission remains the same, 
which is to sail to Peterselie island. After a certain time-
point however, frigate F1 detects sonar contact with a 
high probability that it is a submarine. The OTC now has 
to plan the actions to be performed to deal with such an 
event. 

4.2.2 Case Specific Local Properties 
This section presents some example properties that have 
been formalized to enable the simulation of the different 
case studies. 
 
Total Steam Failure 
First, two properties for the total steam failure case study 
is the following: In case a total steam failure is 
communicated to the OTC, then the new current plan is to 
form a screen around this ship. Formal: 
 
RP(OTC): Handle total steam failure 
input(OTC|Fleet)|communication_from_to(R:ROLE|MainBody1,  

OTC|Fleet, inform, total_steam_failure) 
→→0,0,1,1 

internal(OTC|Fleet)|belief(current_plan(form_screen_around_ship( 
R:ROLE|MainBody1)), pos) 

 
Furthermore, if the plan is indeed set to forming a screen 
around the ship, then the ship playing the role of 
FrontLeftProtector within the current screen will be 
allocated to the role of LeftProtector2 in the newly formed 
screen. Formally: 
 
RP(OTC): Perform plan to form screen 
∀A:AGENT, R:ROLE, G:GROUP 
[internal(ChangeManager|ChangeGroup)|current_plan( 

form_screen_around_ship(R:ROLE|MainBody1)), pos) &  
 internal(ChangeManager|ChangeGroup)|belief(allocated_to(A:AGENT,  

FrontLeftProtector1, G:GROUP), pos)] 
→→0,0,1,1 

[internal(ChangeManager|ChangeGroup)|belief(delete(allocated_to( 
A:AGENT, FrontLeftProtector1, G:GROUP)), pos) & 

internal(ChangeManager|ChangeGroup)|belief(add(exists_group( 
Screen2)), pos) & 

internal(ChangeManager|ChangeGroup)|belief(add(exists_role( 
LeftProtector2)), pos) & 

internal(ChangeManager|ChangeGroup)|belief(add(allocated_to( 
A:AGENT, LeftProtector2, Screen2)), pos)] 

Submarine Threat 
Regarding the submarine threat case study, if a role 
informs the OTC that sonar contact with a submarine has 
been made, he forms a search and attack unit: 

 
RP(OTC): Handle sonar contact 
input(OTC|Fleet)|communication_from_to(R:ROLE|Screen1, OTC|Fleet,  

inform, sonarcontact_sub) 
→→0,0,1,1 

internal(OTC|Fleet)|belief(current_plan(eliminate_submarine_threat),  
pos) 

 
The plan to eliminate such a submarine threat involves 
forming a search and attack unit. In case such a unit if 
formed, a new group is created called SAU. Furthermore, 
the role of commander within the SAU, the SAUC is 
performed by the agent previously allocated to 
LeftProtector1. Formally: 

 
RP(OTC): Perform plan to form SAU 
∀A:AGENT, R:ROLE, G:GROUP 
[internal(ChangeManager|ChangeGroup)|current_plan( 

eliminate_submarine_threat), pos) & 
 internal(ChangeManager|ChangeGroup)|belief(allocated_to(A:AGENT,  

LeftProtector1, G:GROUP), pos)] 
→→0,0,1,1 

internal(ChangeManager|ChangeGroup)|belief(delete(allocated_to( 
A:AGENT, FrontLeftProtector1, G:GROUP)), pos) & 

internal(ChangeManager|ChangeGroup)|belief(add(exists_group(SAU)),  
pos) & 

internal(ChangeManager|ChangeGroup)|belief(add(exists_role(SAUC)),  
pos) & 

internal(ChangeManager|ChangeGroup)|belief(add(allocated_to( 
A:AGENT, SAUC, SAU)), pos)] 

4.2.3 Simulation Trace 
The results of the case studies that have been performed 
are presented here. First, the results of the total steam 
failure case study are presented after which the results of 
the submarine threat case study are addressed. 
 
Total Steam Failure 
The simulation results of the total steam failure case study 
are shown in Figure 4. The left side of the Figure shows a 
selection of the atoms that occur during the simulation. 
The right side shows a time-line where a black box 
indicates when an atom is true and a grey box when an 
atoms is false. This subset of the trace focuses on the OTC 
within the fleet, as he is the commander, he is the most 
interesting role to show. More specifically, the trace 
shows that during all time points the current mission is to 
sail to Peterselie island: 

internal(OTC|Fleet)|belief(current_mission( 
sail_to_peterselie_island), pos) 

After the mission has been received, the initial 
organization is set-up according to the approach presented 
in Section 3.1. After the organization change process has 
ended the OTC has beliefs on the structure and allocations 
within the fleet, such as: 
 internal(OTC|Fleet)|belief(exists_role(FrontLeftProtector1), pos) 
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internal(OTC|Fleet)|belief(allocated_to(F1,LeftProtector1, Screen1), pos) 

Suddenly, the OTC receives a communication from the 
role BodyMember1 within the MainBody1 group stating 
that the role has a total steam failure: 
 

input(OTC|Fleet)|communication_from_to(BodyMember1|MainBody1, 
OTC|Fleet, inform, total_steam_failure) 
  

Based on this communication, the OTC decides to form a 
screen around the ship, which means that the current fleet 
configuration as presented in the case-study changes 
drastically. As organizational change comes into play, the 
ChangeManager becomes active again, who forms a new 
group Screen2 (denoting the additional screen) and an 
additional main body (MainBody2). Several agents that 
were at first allocated to the screen around MainBody1 
are now re-allocated to roles in  Screen2 around the newly 
formed MainBody2. To determine which agents to re-
allocate, specific properties are present in the simulator 
that define a preference for which agent to take. Once the 
agents are in their new positions, they communicate this 
in their new role: 

input(OTC|Fleet)|communication_from_to(LeftProtector2|Screen2, 
OTC|Fleet, inform, able_to_fulfill_role) 

After these communications have been received, the OTC 
believes that the plan is executed successfully. A few 
time-points later however, the OTC observes that the 
distance between MainBody1 and MainBody2 is almost 
out of the bounds that have been set. As a response, the 
OTC commands the member of MainBody1 to slow 
down. Just after that command has been executed, an 
unexpected event occurs: A nixie hit is observed. This 
trigger causes the OTC to choose a new plan to be 
executed, because there is a severe danger of being 
attacked. The plan chosen is to form a search and attack 
unit, which will try to pinpoint the ship that fired the 
torpedo. Therefore, another organizational change is 
observed, creating the roles for the search and attack unit 
and re-allocating agents to these roles. In the trace this 
organization change involves a dynamic property being 
communicated, stating what the search and attack unit 
should perform: 
 

internal((SAUC|SAU))|belief(leadsto( 
             internal((SAUC|SAU))|belief(able_to_fulfill_role, pos),       
            output((SAUC|SAU))|communication_from_to((SAUC|SAU), 

(OTC|Fleet), inform, started_plan_spencer),  

         efgh(0, 0, 1, 1)), pos) 
 

internal((’OTC’|’Fleet’))|belief(current_mission(sail_to_peterselie_island), pos)
internal((’OTC’|’Fleet’))|belief(exists_role(’FrontLeftProtector1’), pos)

internal((’OTC’|’Fleet’))|belief(exists_group(’Screen1’), pos)
internal((’OTC’|’Fleet’))|belief(role_belongs_to_group(’FrontLeftProtector1’, ’Screen1’), pos)

internal((’OTC’|’Fleet’))|belief(allocated_to(’F2’, ’FrontLeftProtector1’, ’Screen1’), pos)
input((’OTC’|’Fleet’))|observation_result(speed(’MainBody1’, normal), pos)

internal((’OTC’|’Fleet’))|belief(allocated_to(’JDW’, ’BodyMember1’, ’MainBody1’), pos)
input((’OTC’|’Fleet’))|communication_from_to((’BodyMember1’|’MainBody1’), (’OTC’|’Fleet’), inform, total_steam_failure)

internal((’OTC’|’Fleet’))|belief(current_plan(form_screen_around_ship((’BodyMember1’|’MainBody1’))), pos)
input((’OTC’|’Fleet’))|observation_result(speed(’MainBody2’, dead), pos)

internal((’OTC’|’Fleet’))|belief(allocated_to(’F2’, ’LeftProtector2’, ’Screen2’), pos)
internal((’OTC’|’Fleet’))|belief(allocated_to(’JDW’, ’Body2Member1’, ’MainBody2’), pos)

internal((’OTC’|’Fleet’))|belief(allocated_to(’F2’, ’ASWC2’, ’Screen2’), pos)
internal((’OTC’|’Fleet’))|belief(allocated_to(’F2’, ’ScreenCommander2’, ’Screen2’), pos)

internal((’OTC’|’Fleet’))|belief(plan_executed, pos)
input((’OTC’|’Fleet’))|communication_from_to((’LeftProtector2’|’Screen2’), (’OTC’|’Fleet’), inform, able_to_fulfill_role)

input((’OTC’|’Fleet’))|observation_result(almost_outside_bounds(’MainBody1’, ’MainBody2’), pos)
output((’OTC’|’Fleet’))|communication_from_to((’OTC’|’Fleet’), (’BodyMember2’|’MainBody1’), inform, slow_down)

input((’OTC’|’Fleet’))|communication_from_to((’BodyMember2’|’MainBody1’), (’OTC’|’Fleet’), inform, slowed_down)
input((’OTC’|’Fleet’))|observation_result(speed(’MainBody1’, slow), pos)

input((’OTC’|’Fleet’))|observation_result(nixie_hit(’BodyMember2’, ’MainBody1’), pos)
internal((’OTC’|’Fleet’))|belief(current_plan(form_search_and_attack_unit((’BodyMember2’|’MainBody1’))), pos)

internal((’OTC’|’Fleet’))|belief(allocated_to(’H1’, ’SAUC’, ’SAU’), pos)
output((’OTC’|’Fleet’))|communication_from_to((’OTC’|’Fleet’), (’BodyMember2’|’MainBody1’), inform, accelerate_to_max_speed)
input((’OTC’|’Fleet’))|communication_from_to((’BodyMember2’|’MainBody1’), (’OTC’|’Fleet’), inform, accelerated_to_max_speed)

input((’OTC’|’Fleet’))|observation_result(speed(’MainBody1’, fast), pos)
output((’OTC’|’Fleet’))|communication_from_to((’OTC’|’Fleet’), (’BodyMember2’|’MainBody1’), inform, slow_down_to_regular_speed)

input((’OTC’|’Fleet’))|communication_from_to((’BodyMember2’|’MainBody1’), (’OTC’|’Fleet’), inform, slowed_down_to_regular_speed)
input((’OTC’|’Fleet’))|communication_from_to((’Body2Member1’|’MainBody2’), (’OTC’|’Fleet’), inform, steam)

internal((’OTC’|’Fleet’))|belief(current_plan(restore_old_screen_configuration), pos)
output((’OTC’|’Fleet’))|communication_from_to((’OTC’|’Fleet’), (’Body2Member1’|’MainBody2’), inform, accelerate_to_max_speed)
input((’OTC’|’Fleet’))|communication_from_to((’Body2Member1’|’MainBody2’), (’OTC’|’Fleet’), inform, accelerated_to_max_speed)

input((’OTC’|’Fleet’))|observation_result(speed(’MainBody2’, fast), pos)
input((’OTC’|’Fleet’))|communication_from_to((’Body2Member1’|’MainBody2’), (’OTC’|’Fleet’), inform, arrived_at_mainbody1)

input((’OTC’|’Fleet’))|communication_from_to((’BodyMember1’|’MainBody1’), (’OTC’|’Fleet’), inform, able_to_fulfill_role)
time 0 50 100 150 200 250 300 350 400 450

Fig. 4. Simulation result of the Total Steam Failure scenario 
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This states that once the role is fulfilled, the role will 
execute plan spencer and inform the OTC about this. Due 
to the reflective capabilities of the agent, they are able to 
reason about these dynamic properties and adopt them. 
After the OTC has observed that plan spencer is indeed 
being executed, he orders the remainder of MainBody1 to 
accelerate to maximum speed. After a while, the search 
and attack unit has fully executed plan spencer, resulting 
in the OTC deleting the group and re-allocating the agents 
to their old role. The final event that changes the 
organization is the communication from MainBody2 that 
it has steam again which is a trigger for a new plan, to 
restore the old fleet configuration. This is established by 
having MainBody2 and Screen2 accelerate to maximum 
speed and when it arrives at the MainBody1 allocated all 
the ships and helicopters to their old position again. 
 
Submarine Threat 
Figure 5 shows the trace regarding the simulation of the 
“submarine threat” case study. Briefly, the trace shows the 
following elements: First of all, OTC is informed by the 
LeftProtector1 within Screen1 about a sonar contact with 
a sub. At that same time-point the OTC derives a new 
plan: 

internal(OTC|Fleet)|belief(current_plan(eliminate_submarine_threat, 

pos) 

As a result, a search and attack unit (SAU) is formed 
again, and the submarine is located. After the location is 
known, the OTC orders the rest of the fleet to turn away. 
The command is confirmed by the ships within the 
MainBody1 and they eventually communicate to have 
turned away: 

input(OTC|Fleet)|communication_from_to(BodyMember1|MainBody1, 
OTC|Fleet, inform, turned_away) 

Following the observation that the ships must be 
outside of range for the torpedo’s, the ships are told to 
turn back to their old direction again. All confirm and 
execute the order. The OTC commands the helicopters to 
replace the frigates that take part in the SAU because the 
helicopters are much faster and the distance between the 
SAU and the rest of the Fleet is increasing. 

output(OTC|Fleet)|communication_from_to(OTC|Fleet, 
LeftDetector|Screen1, inform, replace_sau) 

Due to the open position in Screen1 that is left, 
helicopter F3 is allocated to two roles within the Screen. 
After a certain time, the OTC believes the submarine in 
no threat anymore and orders the roles within the SAU 
group to return to their mother ship: 

output(OTC|Fleet)|communication_from_to(OTC|Fleet, SAUC|SAU, 
inform, return_to_mothership) 

internal((OTC|Fleet))|belief(allocated_to(H1, LeftDetector1, Screen1), pos)
input((OTC|Fleet))|observation_result(speed(MainBody1, normal), pos)

internal((OTC|Fleet))|belief(current_plan(eliminate_submarine_threat), pos)
input((OTC|Fleet))|communication_from_to((LeftProtector1|Screen1), (OTC|Fleet), inform, sonarcontact_sub)

input((OTC|Fleet))|communication_from_to((SAUC|SAU), (OTC|Fleet), inform, sub_at_position_p)
output((OTC|Fleet))|communication_from_to((OTC|Fleet), (BodyMember1|MainBody1), inform, turn_away)

input((OTC|Fleet))|communication_from_to((BodyMember1|MainBody1), (OTC|Fleet), inform, turning_away)
input((OTC|Fleet))|communication_from_to((BodyMember1|MainBody1), (OTC|Fleet), inform, turned_away)

input((OTC|Fleet))|observation_result(outside_of_sub_range(MainBody1), pos)
output((OTC|Fleet))|communication_from_to((OTC|Fleet), (BodyMember1|MainBody1), inform, turn_back_to_old_direction)

input((OTC|Fleet))|communication_from_to((BodyMember1|MainBody1), (OTC|Fleet), inform, turning_back_to_old_direction)
input((OTC|Fleet))|communication_from_to((BodyMember1|MainBody1), (OTC|Fleet), inform, turned_back_to_old_direction)

output((OTC|Fleet))|communication_from_to((OTC|Fleet), (LeftDetector1|Screen1), inform, replace_sau)
input((OTC|Fleet))|communication_from_to((LeftDetector1|Screen1), (OTC|Fleet), inform, heading_to_sau)

input((OTC|Fleet))|communication_from_to((LeftDetector1|Screen1), (OTC|Fleet), inform, ready_to_replace_sau)
output((OTC|Fleet))|communication_from_to((OTC|Fleet), (RightProtector1|Screen1), inform, return_to_regular_position)

internal((OTC|Fleet))|belief(allocated_to(H1, SAUC, SAU), pos)
internal((OTC|Fleet))|belief(allocated_to(H3, LeftDetector1, Screen1), pos)

internal((OTC|Fleet))|belief(allocated_to(H3, FrontLeftDetector1, Screen1), pos)
output((OTC|Fleet))|communication_from_to((OTC|Fleet), (SAUC|SAU), inform, return_to_mothership)

internal((OTC|Fleet))|belief(plan_executed, pos)
output((OTC|Fleet))|communication_from_to((OTC|Fleet), (FrontLeftProtector1|Screen1), inform, change_crew)

output((OTC|Fleet))|communication_from_to((OTC|Fleet), (FrontLeftProtector1|Screen1), inform, refuel)
internal((OTC|Fleet))|belief(allocated_to(H1, FrontLeftProtector1, Screen1), pos)

internal((OTC|Fleet))|belief(current_plan(restore_fleet_configuration), pos)
internal((OTC|Fleet))|belief(allocated_to(H1, FrontLeftDetector1, Screen1), pos)

time 0 100 200 300

Fig. 5. Simulation result of Submarine Threat Scenario                                                                                      
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This denotes that at a later point in time, the helicopter 
is allocated to the role of FrontLeftProtector1 within 
Screen1, which is already allocated to frigate F2: 

internal(OTC|Fleet)|belief(allocated_to(H1,  
                                                              FronLeftProtector, Screen1) 

The commands to refuel and change the crew of the 
helicopter are therefore sent to the role to which F1 and 
H2 are allocated. After the refuel is done, the old fleet 
configuration is restored. 

5  Visualization 

For the simulator a visualization tool has also been 
developed. Figure 6 shows a screenshot of the tool. On the 
left side of the figure the fleet is shown in a visual manner 
as previously shown in Figure 3 whereas on the right side 
the trace (of which parts were explained already in 
Section 4.2), that acts as a basis for the visualization, is 
shown. A bar in the trace shows the accompanying time-
point for which this visualization holds. For Navy domain 
experts such a visualization tool is easily interpretable 
whereas a trace as shown on the right side of Figure 6 is 
hard to interpret especially due to the fact that one needs 

to be familiar with such kind of formalisms. 

6 Non-Local Properties and Validation 

When a formalized trace has been obtained either by a 
formalization of an empirical trace or by means of 
simulation it is useful to verify certain essential properties 
in the trace. Below the properties that have been checked 
against the traces presented in Section 4 are shown. The 
properties are independent from the specific scenario and 
should hold for every trace. The properties are formalized 
using the Temporal Trace Language as described in 
Section 3.  
 

P1: Reflective Behavior 
This property states that in case a role has a belief about 
an executable property that should be used when the role 
is being performed, the role should actually show this 
behavior. Formally: 
 

∀γ:TRACES, t:TIME, 
  [∃A:ANTECEDENT, C:CONSEQUENT, R:ROLE, G:GROUP 

state(γ, t, internal(R|G)) |= belief(leadsto(A, C, efgh(_,_,_,_)), pos) 
   ⇒ ∀t2 

���
[state(γ, t2) |= A ⇒ ∃t3 

��� ����� ��� 	�

γ, t3) |= C ]] 

 

Fig. 6. Screenshot of the visualization tool 
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This property is indeed satisfied for the presented traces. 
 

P2: Ship always allocated to a role 
The fact that a ship should always be allocated to a role 
(after the initial fleet setup) is specified using this 
property. In formal form the property is formulated as 
follows: 
 
∀γ:TRACES, t:TIME > 20, A:AGENT 
   [∃R:ROLE, G:GROUP 
          state(γ, t, internal(OTC|Fleet)) |= belief(allocated_to(A, R, G), pos)] 
 

This property is also satisfied for the given traces. 
 

P3: Communication that an agent is able to fulfill its 
role 
This property expresses that when an agent is re-allocated 
to another role, it should always communicate when it is 
able to fulfill the role. There can be a time-delay between 
the re-allocation because the ship might have to sail to a 
particular place to execute the newly assigned role. 
Formally the property can be specified in the following 
way: 
 

∀γ:TRACES, t:TIME > 20, A:AGENT, R:ROLE, G:GROUP 
 [∃R2:ROLE state(γ, t, input(ChangeManager|ChangeGroup)) |= 

communication_from_to(R2|ChangeGroup, 
ChangeManager|ChangeGroup, inform, 
belief(add(allocated_to(A, R, G)), pos)) 

   ⇒ [∃t2:TIME �  t1 state(γ, t2, output(R|G)) |= 
communication_from_to(R|G, OTC|Fleet, inform, able_to_fulfil_fole)]] 
 

This property is satisfied as well for the given traces. 
 

P4: Determine a plan to handle exceptions 
When an exception occurs the OTC within the fleet 
always has a belief about a current plan that handles the 
exception: 
 

∀γ:TRACES, t:TIME 
   [∃E:EXCEPTION state(γ, t, input(OTC|Fleet)) |= E ⇒ 
    ∃t2:TIME �  t, P:PLAN [state(γ, t2, internal(OTC|Fleet)) |= 
belief(current_plan(P), pos)]] 
 

This property is satisfied for the trace presented in Section 
4. 

7  Discussion 

This paper introduces an integrative modeling approach 
for simulation and analysis of adaptive behavior of multi-
agent organizations. The approach is integrative in two 
ways. First, it combines both qualitative, logical and 
quantitative, numerical aspects in one modeling 
framework. Second, it allows to model dynamics at 
different aggregation levels from local to more global 
levels. 

The organizational processes during naval missions 
have been formalized by identifying executable local 
dynamic properties for the basic dynamics. On the basis 
of these local properties simulations have been made. 
Moreover, dynamic properties describing the behavior at a 
global level have been identified. These properties have 
been checked automatically on the simulation traces. To 
this end a system has been introduced that consists of four 
components: (1) A planning component; (2) a simulation 
engine; (3) a visualization tool, and (4) a component 
which enables formal validation. The planning component 
has been equiped with typical plans for the naval domain 
from the so called ‘doctrine’. The simulation engine has 
as a basis an organizational model which is specified by 
means of dynamics in the form of formal executable 
properties. Organizational change and change of plans are 
visualized in an understandable manner for naval experts 
by means of the visualization tool. Finally, the validation 
component enables formal validation of traces. 

The approach taken in this paper has a number of 
advantages over other approaches. When comparing with 
planning achitictures such as [4] and [1], the approach 
presented in this paper provides validation functionalities 
for the simulation results, which is not the case in the 
other architectures. The models of these architectures can 
be formally proven to be correct, however for the complex 
naval domain it might be too diffult to prove such a thing. 
Furthemore the approach in this paper also has the ability 
to validate and visualize empirical traces who can for 
example be obtained from logbooks. These advantages 
could be used to monitor a current mission, and constantly 
check whether the properties that should hold for the 
mission are satisfied. In case a property is not satisfied, a 
warning could for example be given. 

Other simulation engines have been developed 
specifically for the naval domain, such as for example 
presented in [10]. For a matter of validation of the model 
however, navy experts were asked what they considered 
to be the optimal solution. In the approach used in this 
paper, this process is automated due to the formal 
specification of properties provided to us by naval domain 
experts. 
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