

Modeling Organizational Change for Naval Missions

MARK HOOGENDOORN1, CATHOLIJN M. JONKER2, MARTIJN C. SCHUT1, AND JAN TREUR1

1Vrije Universiteit Amsterdam, Department of Artificial Intelligence,
De Boelelaan 1081a, 1081 HV Amsterdam, The Netherlands

{mhoogen, schut, treur}@cs.vu.nl
2Radboud University Nijmegen, Nijmegen Institute for Cognition and Information,

Montessorilaan 3, 6525 HR Nijmegen, The Netherlands
C.Jonker@nici.ru.nl

Abstract. The naval domain is characterized by a dynamic environment. This requires constant adaptation of the
organization, choosing between a wide variety of options. The consequences of the different options are difficult to
foresee and hence, it is hard to judge which option is best. This paper presents automated support for the simulation,
visualization, and validation of such adaptive multi-agent organisations. Generic simulation properties are specified using
a formal modeling approach. Furthermore, results of a realistic case study are presented, and validated by means of
properties obtained from naval experts. Finally, a tool is introduced that enables an insightful visualization of the
simulation results.

Keywords: simulation, formal validation, agents, adaptation, organization, change

1 Introduction

The process of setting up a simulation study involves
steps of problem formulation, data collection, model
definition, experimental design, running the simulation,
output data analysis and reporting of results [9].
Throughout this process, intermediate validation steps
assure that the simulation model corresponds with the
actual system under investigation. The work described in
this paper relates to two steps in particular, i.e., model
definition and output data analysis, and describe these in
more detail.

Model definition concerns setting up a conceptual
model of the actual system with respect to project
objectives, performance measures, data availability,
computer constraints, etcetera. Many tools exist nowadays
to support modelers with this activity. For ones specific
interest, one may choose from a variety of simulation
languages and software packages. These tools provide
natural frameworks for model construction. As such, they
are based on formal system descriptions and include
concepts like entities, states, events, time, variables,
etcetera.

Agent-based modeling techniques are often used to
model and simulate (natural or artificial) agent systems
that have to deal with dynamic and uncertain
environments. Therefore, an important challenge for the
area of agent-based modeling is the notion of adaptivity.
Adaptation can take place within a single agent (e.g., an
individual learning process), or at the level of the multi-
agent organization (e.g, change of roles of agents within
the organization). In order to create (multi-)agent-based

simulations with adaptive abilities, adaptation
mechanisms have to be incorporated in agent-based
simulation models.

Adaptation mechanisms can involve not only
quantitative numerical aspects but also qualitative, logical
aspects (for example, a role switch between agents within
an organization). If formalization is used for an adaptation
mechanism, this is often based on mathematical models
using differential equations. In contrast, agent-based
simulation models traditionally make use of qualitative,
logical languages. Most of these languages are appropriate
for expressing qualitative relations, but less suitable to
work with more complex numerical structures as, for
example, in differential equations. Therefore, integrating
such mathematical models within the design of (multi-)
agent-based simulation models is difficult. To achieve this
integration, it is needed to bridge the gap between
quantitative approaches and the type of languages
typically used in agent-based simulation.

The model definition includes validation of the
simulation model: “the process of determining whether a
simulation model is an accurate representation of the
system, for the particular objectives of the study” [9].
Validation is essential for assuring that the simulation
model corresponds with the actual system. Various
validation techniques exist, of which one is mentioned in
particular. By letting the simulation program generate a
run or trace, i.e., the series of states over time of the
simulated system (e.g., state variables, statistical
counters), it is possible to compare the states with hand
calculations to check the validity of the program.

2

Analysis of output data is in practice still rather
undervalued as the simulation process is concerned. Much
time goes into model development and programming,
rather than addressing the generated output results
appropriately. A commonly made “error” is that a single
run is made of some arbitrary length, supposedly to
provide insight into the workings of the actual system.
Instead, suitable statistical techniques must be used to
design the simulation experiments and analyze the results.

Since the output processes of simulations are almost all
nonstationary and autocorrelated [9], classical techniques
may not always be applicable. Validation of a model is
usually not formally supported. Often validation is done
informally, by hand (or eye), based on comparison of a
simulation trace with an empirical trace. In addition,
sometimes specific (e.g., statistical) techniques are used to
support certain aspects of validation; e.g., termination
conditions, mean and average estimations (for analysis of
single systems), and measuring response differences,
ranking, selection (for analysis of multiple systems).
However, formal analysis and validation of global
dynamic properties describing the system behavior has
not received much attention in the simulation modeling
literature. Usually in the domain that is modeled, global
properties that should hold for the behavior of a
simulation model can be identified. As the languages used
to specify a simulation model are directed to local
properties (the steps between successive states), such
global properties cannot be formalized in these languages.
To obtain more support, also for validation of a simulation
model, it is needed to integrate the modeling of such
global properties in a formal manner as well, so that their
specification and automated checking on simulation traces
also can be supported by the modeling environment.

In accordance with the findings mentioned above, this
paper introduces an approach for simulation and analysis
of adaptive (multi-)agent systems and underlying
mechanisms that is integrative in two ways:

(1) It combines in one modeling framework both
qualitative, logical and quantitative, numerical
aspects

(2) It allows to model dynamics at different aggregation
levels, from a more local level (e.g., behaviors of
roles within the organization) to a global level
(behavior of the multi-agent organization as a
whole); moreover, interlevel relations can be
specified that express relationships between dynamic
properties at different levels

Modeling dynamics at a local level often concerns
expressing temporal relationships between pairs of

successive states, such as described, for example, by basic
steps within an adaptation mechanism. Local level
specifications are the basis for the computation steps for a
simulation model. From the more global perspective,
more complex relationships over time can be used to
model dynamics for adaptive multi-agent organizations:
for example, how the system’s behavior is changing
during a history of events to which it adapts.
 Based on the generic approach for simulation as
presented above, this paper presents a simulation model
for the naval domain. The model mainly concentrates on
adaptation of such naval organizations using replanning.

 The main objective of the research described in
this paper is to investigate the suitability of a system
involving planning, simulation, visualisation, and
validation with respect to automated planning support in
naval missions. The longer term aim of this research is to
contribute to the development of a tool that allows for
personnel to plan with a confidence and speed that would
not be otherwise possible.
 The remainder of this paper is structured as follows.
Section 2 gives some details about the naval domain
addressed and how adaptive organisation forms play a
role. In Section 3, the modelling methodology that has
been used is presented. Section 4 presents a number of
simulations that have been conducted based on local
executable properties, and describes a case study that has
been investigated. Section 5 presents the plan
visualisation tool. Section 6 describes validation results in
the form of non-local properties for the case study.
Finally, Section 7 concludes and describes future work.

2 Dynamic Aspects in Naval Missions

Within the dynamic naval environment actions of possibly
opposing parties, but also possible interference of non-
military bystanders might induce a need for change in the
organisation to ensure the safety of the mission. Which
response to choose in a given situation depends on a
variety of factors. Elements such as enemy resources and
innocent bystanders have to be taken into consideration
and it is hard to predict the consequences of a plan that
has been chosen. This paper presents an automated
support system for the simulation, visualization, and
validation of such processes. Two requirements must be
met concerning such support: 1) the support must agree
with the current way of working, and 2) guarantees must
be given over the resulted planning with respect to given
conditions including intended outcome and required
resources. The work presented here researches an

 3

approach for implementing automated support that meets
these two requirements.
 As the current way of working is concerned, the naval
domain knows a large volume of well thought out plans
that are scheduled for and during a mission (the so-called
‘doctrine’). Everyone involved in a mission is familiar
with these plans. The performed planning during a
mission consists mostly of switching between and
carrying out those plans. On the one hand, such planning
during a mission may be a matter of executing the plans
that were decided upon for the mission; on the other hand,
unexpected events may happen that ask for necessary
replanning during a mission. Concerning the latter, these
situations require appropriate and speedy response. It is
essential that in these situations, current circumstances are
taken into account, a suitable plan is selected from the
doctrine, the situation is dealt with and the mission will
continue as originally planned.
 Adaptation in the form of replanning in the naval
domain frequently involves organisational change: it
actually affects the organisational structure. For example,
in response to an unexpected event, a ship that was
originally only an escort of a high-value unit, may have to
change its role to an attack unit. Such replanning
situations are not rare: organisational changes are frequent
and substantial.
 Another important aspect of naval planning involves
spatial information. Feasibility of a plan is partly
determined by the nature of the available resources
(helicopters, frigates, transporters) and the relative
location of those resources. Combining the specific
capabilities of the resources with spatial information and
timing aspects plays a key role in the planning. Therefore
plan visualisation that includes spatial information is
necessary for successful implementation of automated
planning support in naval applications.
 In naval missions, it is crucial to consider the planning
within the broader context of mission goals, available

resources, intended outcomes, etcetera. In this respect,
performed planning before and during a mission must be
checked against such kinds of conditions. For example,
when an agent is reallocated to another role (e.g., because
of prevailing circumstances), it must inform others at the
time that it is able to fulfill its role. It is important to
recognise that this reallocation does not happen
instantaneously (e.g., because a ship may have to sail

towards some location to fulfill its new role), and
therefore the communication is essential for others to
know when the agent can receive orders in its new role.
 This paper presents a simulation model that includes: a
planner (P) for organisational change; a simulator (S) for
those plans that reflects the meta-knowledge (see for
example [5]) of the roles involved regarding
organisational change; a visualisation tool (VS) for the
spatial effects of plan execution that is dedicated to the
naval domain; and a validation tool (VL) for the
validation of the resulting planning.
The essential virtue of the model is that it recognises the
importance of spatial information in naval planning (by
means of the visualisation) and it offers an inventive way
to check whether given conditions hold while planning
(by means of the validation). The model may be used
offline for analysis purposes and/or mission planning, as
well as during execution of a mission as an automated
planning support tool.

3 Modeling Methodology

To facilitate formal modeling of a multi-agent
organization and its dynamics, this section introduces an
organizational modeling approach and, in addition, a
modeling language that enables specifying the dynamics
within an organization (see also [3]). The organizational
modeling approach is described in Section 3.1, and the
formal language for expressing dynamics is addressed in
Section 3.2.

3.1 AGR Organization Modeling Approach

For the description of actual multi-agent organizations,
the AGR (for agent/group/role) model has been adopted
[2]. In that approach, an organization is viewed as a
framework for activity and interaction through the
definition of groups, roles and their relationships. But, by
avoiding an agent-oriented viewpoint, an organization is
regarded as a structural relationship between a collection
of agents. Thus, an organization can be described solely
on the basis of its structure, i.e. by the way groups and
roles are arranged to form a whole, without being
concerned with the way agents actually behave, and
multi-agent systems will be analyzed from the outside, as
a set of interaction modes. The specific architecture of
agents is purposely not addressed in the organizational
model. The three primitive definitions are:

Fig. 1. Global overview of the simulation model.

P VSS VL

4

• The agents. The model places no constraints on the
internal architecture of agents. An agent is only specified
as an active communicating entity which plays roles
within groups. This agent definition is intentionally
general to allow agent designers to adopt the most
accurate definition of agent-hood relative to their
application. In this paper, the agents are however assumed
to be reflective agents, allowing them to reason about the
role they are playing.

• Groups are defined as atomic sets of agent aggregation.
Each agent is part of one or more groups. In its most basic
form, the group is only a way to tag a set of agents. An
agent can be a member of n groups at the same time. A
major point of these groups is that they can freely overlap.

• A role is an abstract representation of an agent
function, service or identification within a group. Each
agent can handle multiple roles, and each role handled by
an agent is local to a group. Roles can also have beliefs
due to the assumed reflective capabilities of the agents;
they can reason about whether they should have a
particular belief given a certain role. These beliefs can be
seen as an additional requirement on the agents playing
that role.

3.2 Modeling Organizational Behavior

In this section a method to express dynamics within an
organizational model is addressed. To formally specify
dynamic properties at the different aggregation levels that
are essential in an organization, an expressive language is
needed. To this end the Temporal Trace Language is used
as a tool; cf. [7]. For the properties occurring in the paper
informal, semi-formal or formal representations are given.
The formal representations are based on the Temporal
Trace Language (TTL), which is briefly defined as
follows.
 A state ontology is a specification (in order-sorted
logic) of a vocabulary. A state for ontology Ont is an
assignment of truth-values {true, false} to the set At(Ont) of
ground atoms expressed in terms of Ont. The set of all
possible states for state ontology Ont is denoted by
STATES(Ont). The set of state properties STATPROP(Ont)
for state ontology Ont is the set of all propositions over
ground atoms from At(Ont). A fixed time frame T is
assumed which is linearly ordered. A trace or trajectory γ
over a state ontology Ont and time frame T is a
mapping γ : T → STATES(Ont), i.e., a sequence of states γt

(t ∈ T) in STATES(Ont). The set of all traces over state
ontology Ont is denoted by TRACES(Ont). Depending on
the application, the time frame T may be dense (e.g., the
real numbers), or discrete (e.g., the set of integers or
natural numbers or a finite initial segment of the natural
numbers), or any other form, as long as it has a linear
ordering. The set of dynamic properties DYNPROP(Ont) is
the set of temporal statements that can be formulated with
respect to traces based on the state ontology Ont in the
following manner.
Given a trace γ over state ontology Ont, the input state of
some role r within a group g at time point t is denoted by

 state(γ, t, input(r|g))

analogously

 state(γ, t, output(r|g))
 state(γ, t, internal(r|g))
denote the output state and internal state.
 These states can be related to state properties via the
formally defined satisfaction relation |=, comparable to
the Holds-predicate in the Situation Calculus: state(γ, t,
output(r|g)) |= p denotes that state property p holds in trace γ
at time t in the output state of role r within group g. Based
on these statements, dynamic properties can be formulated
in a formal manner in a sorted first-order predicate logic
with sorts TIME or T for time points, Traces for traces and
F for state formulae, using quantifiers over time and the
usual first-order logical connectives such as ¬, ∧, ∨, ⇒,
∀, ∃. In trace descriptions, notations such as
 state(γ, t, output(r|g))|= p
are shortened to
 output(r|g)|p.

The Temporal Trace language can be used to specify
behavioral properties at different aggregation levels,
according to the organizational structure. Within the AGR
approach the aggregation levels are the level of the roles,
the level of the groups and the level of the organization as
a whole (see Figure 2). The lower level properties can
often be modeled in simpler formats than the higher level
properties. In particular, it is often possible to model the

Fig. 2. Overview of interlevel relations between dynamic properties

 transfer properties role properties

group properties intergroup interaction properties

organization properties

 5

properties at the leaves of the tree in the form of directly
executable properties, i.e., by direct temporal
dependencies between state properties in two successive
states. To model direct temporal dependencies between
two state properties, not the expressive language TTL, but
the simpler leads to format is used. This is an executable
format that can be used to obtain a specification of a
simulation model in terms of local dynamic properties
(the leaves of the tree in Fig. 2). The format is defined as
follows. Let α and β be state properties of the form
‘conjunction of literals’ (where a literal is an atom or the
negation of an atom), and e, f, g, h non-negative real
numbers. In the leads to language α →→e, f, g, h β, means:

 If state property α holds for a certain time interval with duration g,
 then after some delay (between e and f) state property β will hold
 for a certain time interval of length h.

For a precise definition of the leads to format in terms of
the language TTL, see [8]. A specification of dynamic
properties in leads to format has as advantages that it is
executable and that it can often easily be depicted
graphically.

4 Local Properties and Simulations

This Section presents the simulator component within the
system. First of all, the executable (leads to) properties
which specify the simulation model for the simulator are
presented in Section 4.1. After that, Section 4.2 addresses
the case study that has been investigated, followed by the
results of the simulations of the case study.

4.1 Simulation Model Specification

This Section describes generic local properties that
constitute the basis for the simulation model. Each of
these generic properties can be formed into more scenario
specific properties whenever necessary. The generic
properties in the framework work are based on goals,
plans, beliefs and events.
 It has to be mentioned that beliefs in this respect are
used for storing information about the environment as
well as information about oneself. As shown in the
scenario below, many plans involve organizational
change. This means that the actual organizational
structure adapts to occurring events. Thus, in addition to
knowing about the environment by observation, it is
assumed that the agent (reflectively) knows about its role
in the organization and can change to another role if

necessary. The formalization is explained in the remainder
of this section. Firstly, it is assumed that a goal has been
given.

internal(r:ROLE|gr:GROUP)|belief(g:GOAL, pos)

denotes that role r within group gr holds the belief that g
is a goal. Based on this goal, a plan is selected to achieve
it:

internal(r:ROLE:gr:GROUP)|belief(current_plan(p:PLAN), pos)

says that plan p is selected as to achieve goal g. This plan
will generate actions as long as no disturbing events
occur. If such an event occurs and r is informed, this is
denoted by

input(r:ROLE:gr:GROUP)|communication_from_to(
 r1:ROLE|gr1:GROUP, r:ROLE|gr:GROUP ,inform, e:EVENT)

stating that r1 within group gr1 informs r within group gr
about event e. This event causes another goal to become
active.

internal(r:ROLE|gr:GROUP)|belief(g1:GOAL, pos)

says that g1 is now a goal and a subsequent plan is
selected:

internal(r:ROLE|gr:GROUP)|belief(current_plan(p1:PLAN), pos)

This plan may involve organisational change. If this is the
case (as it is in the scenarios below), a modeling approach
is adopted as developed elsewhere [6]. This involves the
existence of a ChangeManager who directs the
organizational change. This approach is explained in more
detail below. If the plan has been fully executed, this is
denoted by

internal(r:ROLE|gr:GROUP)|belief(plan_executed(p:PLAN),pos)

where the parameter might be left out if it is assumed that
only one plan can be executed at a time. This causes role r
to reflect on other still existing goals and resuming the
plans to achieve these goals. If there are no existing goals,
a new goal may be generated or given.
Execution of a certain plan that has been selected often
consists of organizational change. Therefore, generic
simulation rules for these organization structure changes
are needed to enable a generic simulation model. The
properties shown below are based on the approach
presented in [6] which is partially based on the AGR
organization modeling approach as presented in Section
3.1. In that approach, organizational change can be
performed in a meta-group called ChangeGroup, in which
Member roles are present that represent agents within the
organization. Each agent in the organization is represented
by exactly one Member role within the ChangeGroup.
The Member roles have beliefs about the organization and
these beliefs are transferred to the roles the agent is
currently playing. To initiate the change process as
described above, triggers are needed. These are specified

6

in the current plan, and are domain specific. Given this
specific information for the particular plan, generic
simulation rules fire to simulate the process of informing
the members involved and changing their current beliefs
on the organization. Some example executable local
properties are presented below.

RP(ChangeManager):Communicate Activity
[output(ChangeManager|ChangeGroup)|communication_from_t
o(ChangeManager|ChangeGroup, all_involved, inform,
active(C:CHANGE_GROUP)) &
internal(ChangeManager|ChangeGroup)|belief(involved_in_group(R:RO
LE, C:CHANGE_GROUP), pos)]
→→0,0,1,1
input(R:ROLE|ChangeGroup)|communication_from_to(ChangeManager|
ChangeGroup, R:ROLE|ChangeGroup, inform,
active(C:CHANGE_GROUP)

RP(Member): Believe Change Activity
input(R:ROLE|ChangeGroup)|communication_from_to(ChangeManager|
ChangeGroup, R:ROLE|ChangeGroup, inform,
active(C:CHANGE_GROUP)
→→0,0,1,1
[internal(R:ROLE|ChangeGroup)|belief(active(C:CHANGE_GROUP,
pos) &
output(R:ROLE|ChangeGroup)|communication_from_to(R:ROLE|Chang
eGroup, ChangeManager|ChangeGroup, inform
belief(active(C:CHANGE_GROUP), pos))]

Properties such as the examples above cause the
ChangeGroup to be activated, knowledge about a new
structure to be communicated, and finally belief emerging
at the roles that need to have this information. After all of
this has been performed, the ChangeGroup is deactivated
and the new structure is in place (part of the internals of
the roles).

Roles are attributed with reflective knowledge in the
approach presented in this paper. This means that roles
have beliefs on the expected behavior concerning the role.
For example, a role has the internal belief that when the
role receives an input x he eventually has to output y,
formally:

internal(Role|Group)|belief(leadsto(input(Role|Group)|x,
output(Role|Group)|y, efgh(0,0,1,1)),pos)

4.2 Simulation Results

This section contains results of simulations using the
model presented in Section 3 and the generic properties
presented in Section 4.1 which have been formalized in
terms of the formal languages presented in Section 3. First
of all, two case studies are introduced, thereafter some
example formal properties which specify the behavior in
the situations that occur in the case study are shown.
Finally, the simulation traces for the case studies are
shown.

4.2.1 Case studies
This section presents two case studies that has been
obtained from experts of the Royal Netherlands Navy.
The scenarios contain events that are typical within the
naval domain.

Total Steam Failure
The first scenario that has been studied is called total
steam failure. The initial configuration of the fleet is
shown in Figure 3. In total there are six frigates, denoted
by F1 - F6, each allocated to a certain area within which
they reside. Besides the frigates there are also helicopters
(H1- H6) flying in a particular zone of the fleet. Finally,
there are certain High Value Units (HVU) within the area
called ZZ (for Zulu Zulu) that need to be protected. These
might for example be ships containing troops, or
amphibian landing vehicles. In total there are five ships
within ZZ, which is called MainBody throughout this
paper.

At a certain point in time the Officer in Tactical
Command (OTC) receives an assignment to sail to
Peterselie island and chooses a fleet configuration. On the
way however, several unexpected events occur. First of
all, one of the ships within the MainBody gets a total
steam failure, meaning that it has lost all propulsion. On
the basis of this event, the OTC has to decide what plan to
apply. A few hours later, a nixie (a torpedo decoy) hit is
observed at one of the members of the MainBody, which
means that a torpedo was fired in the direction of that ship
and implies re-planning as well. Finally, an hour after
that, the ship that was suffering from a total steam failure
gets back up to speed again.

Fig. 3. Initial Fleet configuration

ZZ

F1

F2 F3

F4

H1

H2 H3

H4

F5 F6

H6

H5

 7

Submarine Threat
Another scenario which has been under investigation is
that of a submarine threat. The initial fleet configuration
is almost identical to the configuration shown in Figure 3,
except that H6 is missing. The mission remains the same,
which is to sail to Peterselie island. After a certain time-
point however, frigate F1 detects sonar contact with a
high probability that it is a submarine. The OTC now has
to plan the actions to be performed to deal with such an
event.

4.2.2 Case Specific Local Properties
This section presents some example properties that have
been formalized to enable the simulation of the different
case studies.

Total Steam Failure
First, two properties for the total steam failure case study
is the following: In case a total steam failure is
communicated to the OTC, then the new current plan is to
form a screen around this ship. Formal:

RP(OTC): Handle total steam failure
input(OTC|Fleet)|communication_from_to(R:ROLE|MainBody1,

OTC|Fleet, inform, total_steam_failure)
→→0,0,1,1

internal(OTC|Fleet)|belief(current_plan(form_screen_around_ship(
R:ROLE|MainBody1)), pos)

Furthermore, if the plan is indeed set to forming a screen
around the ship, then the ship playing the role of
FrontLeftProtector within the current screen will be
allocated to the role of LeftProtector2 in the newly formed
screen. Formally:

RP(OTC): Perform plan to form screen
∀A:AGENT, R:ROLE, G:GROUP
[internal(ChangeManager|ChangeGroup)|current_plan(

form_screen_around_ship(R:ROLE|MainBody1)), pos) &
 internal(ChangeManager|ChangeGroup)|belief(allocated_to(A:AGENT,

FrontLeftProtector1, G:GROUP), pos)]
→→0,0,1,1

[internal(ChangeManager|ChangeGroup)|belief(delete(allocated_to(
A:AGENT, FrontLeftProtector1, G:GROUP)), pos) &

internal(ChangeManager|ChangeGroup)|belief(add(exists_group(
Screen2)), pos) &

internal(ChangeManager|ChangeGroup)|belief(add(exists_role(
LeftProtector2)), pos) &

internal(ChangeManager|ChangeGroup)|belief(add(allocated_to(
A:AGENT, LeftProtector2, Screen2)), pos)]

Submarine Threat
Regarding the submarine threat case study, if a role
informs the OTC that sonar contact with a submarine has
been made, he forms a search and attack unit:

RP(OTC): Handle sonar contact
input(OTC|Fleet)|communication_from_to(R:ROLE|Screen1, OTC|Fleet,

inform, sonarcontact_sub)
→→0,0,1,1

internal(OTC|Fleet)|belief(current_plan(eliminate_submarine_threat),
pos)

The plan to eliminate such a submarine threat involves
forming a search and attack unit. In case such a unit if
formed, a new group is created called SAU. Furthermore,
the role of commander within the SAU, the SAUC is
performed by the agent previously allocated to
LeftProtector1. Formally:

RP(OTC): Perform plan to form SAU
∀A:AGENT, R:ROLE, G:GROUP
[internal(ChangeManager|ChangeGroup)|current_plan(

eliminate_submarine_threat), pos) &
 internal(ChangeManager|ChangeGroup)|belief(allocated_to(A:AGENT,

LeftProtector1, G:GROUP), pos)]
→→0,0,1,1

internal(ChangeManager|ChangeGroup)|belief(delete(allocated_to(
A:AGENT, FrontLeftProtector1, G:GROUP)), pos) &

internal(ChangeManager|ChangeGroup)|belief(add(exists_group(SAU)),
pos) &

internal(ChangeManager|ChangeGroup)|belief(add(exists_role(SAUC)),
pos) &

internal(ChangeManager|ChangeGroup)|belief(add(allocated_to(
A:AGENT, SAUC, SAU)), pos)]

4.2.3 Simulation Trace
The results of the case studies that have been performed
are presented here. First, the results of the total steam
failure case study are presented after which the results of
the submarine threat case study are addressed.

Total Steam Failure
The simulation results of the total steam failure case study
are shown in Figure 4. The left side of the Figure shows a
selection of the atoms that occur during the simulation.
The right side shows a time-line where a black box
indicates when an atom is true and a grey box when an
atoms is false. This subset of the trace focuses on the OTC
within the fleet, as he is the commander, he is the most
interesting role to show. More specifically, the trace
shows that during all time points the current mission is to
sail to Peterselie island:

internal(OTC|Fleet)|belief(current_mission(
sail_to_peterselie_island), pos)

After the mission has been received, the initial
organization is set-up according to the approach presented
in Section 3.1. After the organization change process has
ended the OTC has beliefs on the structure and allocations
within the fleet, such as:
 internal(OTC|Fleet)|belief(exists_role(FrontLeftProtector1), pos)

8

internal(OTC|Fleet)|belief(allocated_to(F1,LeftProtector1, Screen1), pos)

Suddenly, the OTC receives a communication from the
role BodyMember1 within the MainBody1 group stating
that the role has a total steam failure:

input(OTC|Fleet)|communication_from_to(BodyMember1|MainBody1,
OTC|Fleet, inform, total_steam_failure)

Based on this communication, the OTC decides to form a
screen around the ship, which means that the current fleet
configuration as presented in the case-study changes
drastically. As organizational change comes into play, the
ChangeManager becomes active again, who forms a new
group Screen2 (denoting the additional screen) and an
additional main body (MainBody2). Several agents that
were at first allocated to the screen around MainBody1
are now re-allocated to roles in Screen2 around the newly
formed MainBody2. To determine which agents to re-
allocate, specific properties are present in the simulator
that define a preference for which agent to take. Once the
agents are in their new positions, they communicate this
in their new role:

input(OTC|Fleet)|communication_from_to(LeftProtector2|Screen2,
OTC|Fleet, inform, able_to_fulfill_role)

After these communications have been received, the OTC
believes that the plan is executed successfully. A few
time-points later however, the OTC observes that the
distance between MainBody1 and MainBody2 is almost
out of the bounds that have been set. As a response, the
OTC commands the member of MainBody1 to slow
down. Just after that command has been executed, an
unexpected event occurs: A nixie hit is observed. This
trigger causes the OTC to choose a new plan to be
executed, because there is a severe danger of being
attacked. The plan chosen is to form a search and attack
unit, which will try to pinpoint the ship that fired the
torpedo. Therefore, another organizational change is
observed, creating the roles for the search and attack unit
and re-allocating agents to these roles. In the trace this
organization change involves a dynamic property being
communicated, stating what the search and attack unit
should perform:

internal((SAUC|SAU))|belief(leadsto(
 internal((SAUC|SAU))|belief(able_to_fulfill_role, pos),
 output((SAUC|SAU))|communication_from_to((SAUC|SAU),

(OTC|Fleet), inform, started_plan_spencer),

 efgh(0, 0, 1, 1)), pos)

internal((’OTC’|’Fleet’))|belief(current_mission(sail_to_peterselie_island), pos)
internal((’OTC’|’Fleet’))|belief(exists_role(’FrontLeftProtector1’), pos)

internal((’OTC’|’Fleet’))|belief(exists_group(’Screen1’), pos)
internal((’OTC’|’Fleet’))|belief(role_belongs_to_group(’FrontLeftProtector1’, ’Screen1’), pos)

internal((’OTC’|’Fleet’))|belief(allocated_to(’F2’, ’FrontLeftProtector1’, ’Screen1’), pos)
input((’OTC’|’Fleet’))|observation_result(speed(’MainBody1’, normal), pos)

internal((’OTC’|’Fleet’))|belief(allocated_to(’JDW’, ’BodyMember1’, ’MainBody1’), pos)
input((’OTC’|’Fleet’))|communication_from_to((’BodyMember1’|’MainBody1’), (’OTC’|’Fleet’), inform, total_steam_failure)

internal((’OTC’|’Fleet’))|belief(current_plan(form_screen_around_ship((’BodyMember1’|’MainBody1’))), pos)
input((’OTC’|’Fleet’))|observation_result(speed(’MainBody2’, dead), pos)

internal((’OTC’|’Fleet’))|belief(allocated_to(’F2’, ’LeftProtector2’, ’Screen2’), pos)
internal((’OTC’|’Fleet’))|belief(allocated_to(’JDW’, ’Body2Member1’, ’MainBody2’), pos)

internal((’OTC’|’Fleet’))|belief(allocated_to(’F2’, ’ASWC2’, ’Screen2’), pos)
internal((’OTC’|’Fleet’))|belief(allocated_to(’F2’, ’ScreenCommander2’, ’Screen2’), pos)

internal((’OTC’|’Fleet’))|belief(plan_executed, pos)
input((’OTC’|’Fleet’))|communication_from_to((’LeftProtector2’|’Screen2’), (’OTC’|’Fleet’), inform, able_to_fulfill_role)

input((’OTC’|’Fleet’))|observation_result(almost_outside_bounds(’MainBody1’, ’MainBody2’), pos)
output((’OTC’|’Fleet’))|communication_from_to((’OTC’|’Fleet’), (’BodyMember2’|’MainBody1’), inform, slow_down)

input((’OTC’|’Fleet’))|communication_from_to((’BodyMember2’|’MainBody1’), (’OTC’|’Fleet’), inform, slowed_down)
input((’OTC’|’Fleet’))|observation_result(speed(’MainBody1’, slow), pos)

input((’OTC’|’Fleet’))|observation_result(nixie_hit(’BodyMember2’, ’MainBody1’), pos)
internal((’OTC’|’Fleet’))|belief(current_plan(form_search_and_attack_unit((’BodyMember2’|’MainBody1’))), pos)

internal((’OTC’|’Fleet’))|belief(allocated_to(’H1’, ’SAUC’, ’SAU’), pos)
output((’OTC’|’Fleet’))|communication_from_to((’OTC’|’Fleet’), (’BodyMember2’|’MainBody1’), inform, accelerate_to_max_speed)
input((’OTC’|’Fleet’))|communication_from_to((’BodyMember2’|’MainBody1’), (’OTC’|’Fleet’), inform, accelerated_to_max_speed)

input((’OTC’|’Fleet’))|observation_result(speed(’MainBody1’, fast), pos)
output((’OTC’|’Fleet’))|communication_from_to((’OTC’|’Fleet’), (’BodyMember2’|’MainBody1’), inform, slow_down_to_regular_speed)

input((’OTC’|’Fleet’))|communication_from_to((’BodyMember2’|’MainBody1’), (’OTC’|’Fleet’), inform, slowed_down_to_regular_speed)
input((’OTC’|’Fleet’))|communication_from_to((’Body2Member1’|’MainBody2’), (’OTC’|’Fleet’), inform, steam)

internal((’OTC’|’Fleet’))|belief(current_plan(restore_old_screen_configuration), pos)
output((’OTC’|’Fleet’))|communication_from_to((’OTC’|’Fleet’), (’Body2Member1’|’MainBody2’), inform, accelerate_to_max_speed)
input((’OTC’|’Fleet’))|communication_from_to((’Body2Member1’|’MainBody2’), (’OTC’|’Fleet’), inform, accelerated_to_max_speed)

input((’OTC’|’Fleet’))|observation_result(speed(’MainBody2’, fast), pos)
input((’OTC’|’Fleet’))|communication_from_to((’Body2Member1’|’MainBody2’), (’OTC’|’Fleet’), inform, arrived_at_mainbody1)

input((’OTC’|’Fleet’))|communication_from_to((’BodyMember1’|’MainBody1’), (’OTC’|’Fleet’), inform, able_to_fulfill_role)
time 0 50 100 150 200 250 300 350 400 450

Fig. 4. Simulation result of the Total Steam Failure scenario

 9

This states that once the role is fulfilled, the role will
execute plan spencer and inform the OTC about this. Due
to the reflective capabilities of the agent, they are able to
reason about these dynamic properties and adopt them.
After the OTC has observed that plan spencer is indeed
being executed, he orders the remainder of MainBody1 to
accelerate to maximum speed. After a while, the search
and attack unit has fully executed plan spencer, resulting
in the OTC deleting the group and re-allocating the agents
to their old role. The final event that changes the
organization is the communication from MainBody2 that
it has steam again which is a trigger for a new plan, to
restore the old fleet configuration. This is established by
having MainBody2 and Screen2 accelerate to maximum
speed and when it arrives at the MainBody1 allocated all
the ships and helicopters to their old position again.

Submarine Threat
Figure 5 shows the trace regarding the simulation of the
“submarine threat” case study. Briefly, the trace shows the
following elements: First of all, OTC is informed by the
LeftProtector1 within Screen1 about a sonar contact with
a sub. At that same time-point the OTC derives a new
plan:

internal(OTC|Fleet)|belief(current_plan(eliminate_submarine_threat,

pos)

As a result, a search and attack unit (SAU) is formed
again, and the submarine is located. After the location is
known, the OTC orders the rest of the fleet to turn away.
The command is confirmed by the ships within the
MainBody1 and they eventually communicate to have
turned away:

input(OTC|Fleet)|communication_from_to(BodyMember1|MainBody1,
OTC|Fleet, inform, turned_away)

Following the observation that the ships must be
outside of range for the torpedo’s, the ships are told to
turn back to their old direction again. All confirm and
execute the order. The OTC commands the helicopters to
replace the frigates that take part in the SAU because the
helicopters are much faster and the distance between the
SAU and the rest of the Fleet is increasing.

output(OTC|Fleet)|communication_from_to(OTC|Fleet,
LeftDetector|Screen1, inform, replace_sau)

Due to the open position in Screen1 that is left,
helicopter F3 is allocated to two roles within the Screen.
After a certain time, the OTC believes the submarine in
no threat anymore and orders the roles within the SAU
group to return to their mother ship:

output(OTC|Fleet)|communication_from_to(OTC|Fleet, SAUC|SAU,
inform, return_to_mothership)

internal((OTC|Fleet))|belief(allocated_to(H1, LeftDetector1, Screen1), pos)
input((OTC|Fleet))|observation_result(speed(MainBody1, normal), pos)

internal((OTC|Fleet))|belief(current_plan(eliminate_submarine_threat), pos)
input((OTC|Fleet))|communication_from_to((LeftProtector1|Screen1), (OTC|Fleet), inform, sonarcontact_sub)

input((OTC|Fleet))|communication_from_to((SAUC|SAU), (OTC|Fleet), inform, sub_at_position_p)
output((OTC|Fleet))|communication_from_to((OTC|Fleet), (BodyMember1|MainBody1), inform, turn_away)

input((OTC|Fleet))|communication_from_to((BodyMember1|MainBody1), (OTC|Fleet), inform, turning_away)
input((OTC|Fleet))|communication_from_to((BodyMember1|MainBody1), (OTC|Fleet), inform, turned_away)

input((OTC|Fleet))|observation_result(outside_of_sub_range(MainBody1), pos)
output((OTC|Fleet))|communication_from_to((OTC|Fleet), (BodyMember1|MainBody1), inform, turn_back_to_old_direction)

input((OTC|Fleet))|communication_from_to((BodyMember1|MainBody1), (OTC|Fleet), inform, turning_back_to_old_direction)
input((OTC|Fleet))|communication_from_to((BodyMember1|MainBody1), (OTC|Fleet), inform, turned_back_to_old_direction)

output((OTC|Fleet))|communication_from_to((OTC|Fleet), (LeftDetector1|Screen1), inform, replace_sau)
input((OTC|Fleet))|communication_from_to((LeftDetector1|Screen1), (OTC|Fleet), inform, heading_to_sau)

input((OTC|Fleet))|communication_from_to((LeftDetector1|Screen1), (OTC|Fleet), inform, ready_to_replace_sau)
output((OTC|Fleet))|communication_from_to((OTC|Fleet), (RightProtector1|Screen1), inform, return_to_regular_position)

internal((OTC|Fleet))|belief(allocated_to(H1, SAUC, SAU), pos)
internal((OTC|Fleet))|belief(allocated_to(H3, LeftDetector1, Screen1), pos)

internal((OTC|Fleet))|belief(allocated_to(H3, FrontLeftDetector1, Screen1), pos)
output((OTC|Fleet))|communication_from_to((OTC|Fleet), (SAUC|SAU), inform, return_to_mothership)

internal((OTC|Fleet))|belief(plan_executed, pos)
output((OTC|Fleet))|communication_from_to((OTC|Fleet), (FrontLeftProtector1|Screen1), inform, change_crew)

output((OTC|Fleet))|communication_from_to((OTC|Fleet), (FrontLeftProtector1|Screen1), inform, refuel)
internal((OTC|Fleet))|belief(allocated_to(H1, FrontLeftProtector1, Screen1), pos)

internal((OTC|Fleet))|belief(current_plan(restore_fleet_configuration), pos)
internal((OTC|Fleet))|belief(allocated_to(H1, FrontLeftDetector1, Screen1), pos)

time 0 100 200 300

Fig. 5. Simulation result of Submarine Threat Scenario

10

This denotes that at a later point in time, the helicopter
is allocated to the role of FrontLeftProtector1 within
Screen1, which is already allocated to frigate F2:

internal(OTC|Fleet)|belief(allocated_to(H1,
 FronLeftProtector, Screen1)

The commands to refuel and change the crew of the
helicopter are therefore sent to the role to which F1 and
H2 are allocated. After the refuel is done, the old fleet
configuration is restored.

5 Visualization

For the simulator a visualization tool has also been
developed. Figure 6 shows a screenshot of the tool. On the
left side of the figure the fleet is shown in a visual manner
as previously shown in Figure 3 whereas on the right side
the trace (of which parts were explained already in
Section 4.2), that acts as a basis for the visualization, is
shown. A bar in the trace shows the accompanying time-
point for which this visualization holds. For Navy domain
experts such a visualization tool is easily interpretable
whereas a trace as shown on the right side of Figure 6 is
hard to interpret especially due to the fact that one needs

to be familiar with such kind of formalisms.

6 Non-Local Properties and Validation

When a formalized trace has been obtained either by a
formalization of an empirical trace or by means of
simulation it is useful to verify certain essential properties
in the trace. Below the properties that have been checked
against the traces presented in Section 4 are shown. The
properties are independent from the specific scenario and
should hold for every trace. The properties are formalized
using the Temporal Trace Language as described in
Section 3.

P1: Reflective Behavior
This property states that in case a role has a belief about
an executable property that should be used when the role
is being performed, the role should actually show this
behavior. Formally:

∀γ:TRACES, t:TIME,
 [∃A:ANTECEDENT, C:CONSEQUENT, R:ROLE, G:GROUP

state(γ, t, internal(R|G)) |= belief(leadsto(A, C, efgh(_,_,_,_)), pos)
 ⇒ ∀t2

���
[state(γ, t2) |= A ⇒ ∃t3

��� ����� ��� 	�

γ, t3) |= C]]

Fig. 6. Screenshot of the visualization tool

 11

This property is indeed satisfied for the presented traces.

P2: Ship always allocated to a role
The fact that a ship should always be allocated to a role
(after the initial fleet setup) is specified using this
property. In formal form the property is formulated as
follows:

∀γ:TRACES, t:TIME > 20, A:AGENT
 [∃R:ROLE, G:GROUP
 state(γ, t, internal(OTC|Fleet)) |= belief(allocated_to(A, R, G), pos)]

This property is also satisfied for the given traces.

P3: Communication that an agent is able to fulfill its
role
This property expresses that when an agent is re-allocated
to another role, it should always communicate when it is
able to fulfill the role. There can be a time-delay between
the re-allocation because the ship might have to sail to a
particular place to execute the newly assigned role.
Formally the property can be specified in the following
way:

∀γ:TRACES, t:TIME > 20, A:AGENT, R:ROLE, G:GROUP
 [∃R2:ROLE state(γ, t, input(ChangeManager|ChangeGroup)) |=

communication_from_to(R2|ChangeGroup,
ChangeManager|ChangeGroup, inform,
belief(add(allocated_to(A, R, G)), pos))

 ⇒ [∃t2:TIME � t1 state(γ, t2, output(R|G)) |=
communication_from_to(R|G, OTC|Fleet, inform, able_to_fulfil_fole)]]

This property is satisfied as well for the given traces.

P4: Determine a plan to handle exceptions
When an exception occurs the OTC within the fleet
always has a belief about a current plan that handles the
exception:

∀γ:TRACES, t:TIME
 [∃E:EXCEPTION state(γ, t, input(OTC|Fleet)) |= E ⇒
 ∃t2:TIME � t, P:PLAN [state(γ, t2, internal(OTC|Fleet)) |=
belief(current_plan(P), pos)]]

This property is satisfied for the trace presented in Section
4.

7 Discussion

This paper introduces an integrative modeling approach
for simulation and analysis of adaptive behavior of multi-
agent organizations. The approach is integrative in two
ways. First, it combines both qualitative, logical and
quantitative, numerical aspects in one modeling
framework. Second, it allows to model dynamics at
different aggregation levels from local to more global
levels.

The organizational processes during naval missions
have been formalized by identifying executable local
dynamic properties for the basic dynamics. On the basis
of these local properties simulations have been made.
Moreover, dynamic properties describing the behavior at a
global level have been identified. These properties have
been checked automatically on the simulation traces. To
this end a system has been introduced that consists of four
components: (1) A planning component; (2) a simulation
engine; (3) a visualization tool, and (4) a component
which enables formal validation. The planning component
has been equiped with typical plans for the naval domain
from the so called ‘doctrine’. The simulation engine has
as a basis an organizational model which is specified by
means of dynamics in the form of formal executable
properties. Organizational change and change of plans are
visualized in an understandable manner for naval experts
by means of the visualization tool. Finally, the validation
component enables formal validation of traces.

The approach taken in this paper has a number of
advantages over other approaches. When comparing with
planning achitictures such as [4] and [1], the approach
presented in this paper provides validation functionalities
for the simulation results, which is not the case in the
other architectures. The models of these architectures can
be formally proven to be correct, however for the complex
naval domain it might be too diffult to prove such a thing.
Furthemore the approach in this paper also has the ability
to validate and visualize empirical traces who can for
example be obtained from logbooks. These advantages
could be used to monitor a current mission, and constantly
check whether the properties that should hold for the
mission are satisfied. In case a property is not satisfied, a
warning could for example be given.

Other simulation engines have been developed
specifically for the naval domain, such as for example
presented in [10]. For a matter of validation of the model
however, navy experts were asked what they considered
to be the optimal solution. In the approach used in this
paper, this process is automated due to the formal
specification of properties provided to us by naval domain
experts.

Acknowledgements

CAMS-Force Vision, the software development
department associated with the Royal Netherlands Navy,
has provided funding and domain knowledge to enable the
scenarios and simulations presented in this paper. The

12

authors especially want to thank Jaap de Boer (CAMS-
ForceVision) for his expert knowledge.

References

1. d’Inverno, M., Luck, M. Georgeff, M., Kinny, D. and
Wooldridge, M., The dMARS Architechure: A
Specification of the Distributed Multi-Agent
Reasoning System. Journal of Autonomous Agents
and Multi-Agent Systems, 9(1-2):5-53, 2004.

2. Ferber, J. and Gutknecht, O., A meta-model for the
analysis and design of organisations in multi-agent
systems. In: Proceedings of the Third International
Conference on Multi-Agent Systems (ICMAS’98),
IEEE Computer Society Press, pp. 128-135.

3. Ferber, J., Gutknecht, O., Jonker, C.M., Müller, J.P.,
and Treur, J., Organization Models and Behavioural
Requirements Specification for Multi-Agent Systems.
In: Y. Demazeau, F. Garijo (eds.), Multi-Agent
System Organisations. Proc. of the 10th European
Workshop on Modelling Autonomous Agents in a
Multi-Agent World, MAAMAW'01.

4. Georgeff, M. P., and Ingrand, F. F., Decision-making
in an embedded reasoning system. In Proceedings of
the Eleventh International Joint Conference on

Artificial Intelligence (IJCAI-89), pages 972-978,
Detroit, MI, 1989.

5. Goodwin, R., Meta-Level Control for Decision-
Theoretic Planners. PhD thesis, School of Computer
Science, Carnegie Mellon University, Pittsburgh, PA,
1996.

6. Hoogendoorn, M., Jonker, C.M., Schut, M.C., and
Treur, J., Modelling the Organisation of
Organisational Change. In: Proc. of the Sixth
International Workshop on Agent-Oriented
Information Systems, AOIS'04.

7. Jonker, C.M., Treur, J. Compositional verification of
multi-agent systems: a formal analysis of pro-
activeness and reactiveness. International. Journal of
Cooperative Information Systems, vol. 11, 2002, pp.
51-92.

8. Jonker, C.M., Treur, J., and Wijngaards, W.C.A., A
Temporal Modelling Environment for Internally
Grounded Beliefs, Desires and Intentions. Cognitive
Systems Research Journal, vol. 4, 2003, pp. 191-210.

9. Law A.M. and Kelton D.W., Simulation, Modeling
and Analysis. McGraw Hill, 2000. Third edition.

10. Sokolowski, J., Enhanced Military Decision Modeling
Using a MultiAgent System Approach, In
Proceedings of the Twelfth Conference on Behavior
Representation in Modeling and Simulation,
Scottsdale, AZ., May 12-15, 2003, pp. 179-186.

