
Modeling of Change
in Multi-Agent Organizations

Mark Hoogendoorn

Cover illustrations:
© USDA Forest Service, Black Hills National Forest

SIKS Dissertation Series No. 2007-08

The research reported in this thesis has been carried out under the auspices of SIKS, the Dutch
Research School for Information and Knowledge Systems.

VRIJE UNIVERSITEIT

Modeling of Change in Multi-Agent Organizations

ACADEMISCH PROEFSCHRIFT

ter verkrijging van de graad Doctor aan

de Vrije Universiteit Amsterdam,
op gezag van de rector magnificus

prof.dr. L.M. Bouter,
in het openbaar te verdedigen

ten overstaan van de promotiecommissie
van de faculteit der Exacte Wetenschappen

op maandag 18 juni 2007 om 13.45 uur
in de aula van de universiteit,

De Boelelaan 1105

door

Mark Hoogendoorn

geboren te Nieuwkoop

promotoren: prof.dr. J. Treur
 prof.dr. C.M. Jonker

If you want to truly understand something, try to change it.
- Kurt Lewin (1890 – 1947)

vii

Preface

When writing a PhD thesis, and especially writing this part of the thesis, it provides
the author with a good opportunity to reflect on the last four years of his working life.
During these last four years, many people have contributed to this work in one way or
the other. Well, I guess this is the opportunity to thank them.

My whole PhD project started in September 2003 after Catholijn Jonker had asked
me whether I would be interested in becoming a PhD student in the agent systems
group at the Vrije Universiteit. I did not have to think about it for long. My master
thesis project within the research group of Maria Gini at the University of Minnesota,
made me so enthusiastic about doing research, that I accepted the offer of Catholijn,
and came into contact with my other promotor, Jan Treur. I must say that over the
years Catholijn and Jan together have really been the ideal combination of promotores
for me, for which I am very grateful. Coming back from the United States and before
starting my PhD project I used to tell people how many hours people put into their
work over there, which I found unimaginable in the Netherlands. Well, it is
imaginable now. I would really like to thank Catholijn and Jan for always making
time available for me whenever I needed them even though they were usually very
busy. Both of them gave me all the opportunity to develop myself in every aspect that
plays a role in doing research as well as working in an academic institution. I really
learned a lot from them in all of these aspects. Furthermore, I would like to thank
Catholijn for giving me an opportunity to investigate organizational change processes
in real life, by switching her job two times ;-) .

The research I have conducted within my PhD project was part of a number of
large research projects. In such projects both research as well as application partners
are involved. This gave me the highly appreciated opportunity to apply my research in
a practical setting and see the implications of it in real life. The projects in which I
have participated are CIM (for Cybernetic Incident Management), funded by the
Dutch Ministry of Economical Affairs; DEAL (for Distributed Engine for Advanced
Logistics), funded by the same Ministry, and finally a project funded by Force Vision,
the software development company of the Royal Netherlands Navy. I am grateful to
all people involved in these projects for the various contributions they have made.

 Of course, the atmosphere at work is a very important aspect when you are doing
research. In that sense I have been very lucky to be part of the agent systems group. I
would like to thank all of the members next to Catholijn and Jan over the past four
years: Alexei, Annerieke, Charlotte, Egon, Fiemke, Ghazanfar, Lai, Lourens, Martijn,
Peter-Paul, Pinar, Radu, Savas, Tibor, Vera, Viara, and Zulfiqar. I would like to thank
them for being such great colleagues and friends, both during as well as outside
working time, such as going out for a group dinner, the sailing trips, the Russian
movie night and so on. Traveling to conference locations is one of the advantages of
the type of work, but it is even more enjoyable if you have such great colleagues to
accompany you. We have done lots of nice things over the years, from doing a road
trip in the United States together, to enjoying the hectic city of Hong Kong.

viii

Furthermore, I am very grateful to all my co-authors (other than those from the
agent systems group) for their contribution to the chapters in this thesis: Hans Abbink,
Bas de Bruin, Roel van Dijk, Tamas Dobos, Maria Gini, Peet van Tooren, Jeroen
Valk, and Marian Verhaegh. Thank you very much for the great cooperation. Of
course I would also like to thank the reading committee members of the PhD thesis
for the effort and time they spent on reading the thesis, and their valuable comments.
The reading committee consisted of Jaap Boonstra, Kathleen Carley, Virginia
Dignum, Maria Gini, and Frank van Harmelen.

Finally, I would not have been able to perform all this work without the support of
my family and friends. First of all, I would like to thank my parents for always
supporting me in my work and the choices I have made. After a busy day at work, it is
always good to know that you have people to come home to that care about you. They
have really been a big support for me. Furthermore, I am very grateful to my
grandmother who also supported me a lot and was always fascinated by what I was
doing at the university. I feel very sad that she passed away one and a half year ago.
Being her only grandson, I really would have liked her to witness me getting my PhD.
Finally, I would like to thank my friends, whom I am not going to list here, for all the
fun we had, and giving me the relaxation I needed to think about something else than
work!

Mark

ix

Contents

I: Introduction
1. Introduction 3

II: Organizational Change Preparation
2. A Labeled Graph Approach to Analyze Organizational Performance 19
3. An Agent-Based Meta-Level Architecture for Strategic Reasoning in

Naval Planning
35

4. Redesign of Organizations as a Basis for Organizational Change 57
5. Adaptation of Organizational Models for Multi-Agent Systems based on

Max Flow Networks
83

III: Organizational Change Process: Centralized Change Processes
6. Modeling Centralized Organization of Organizational Change 101
7. Modeling Organizational Change for Naval Missions 141
8. A Formal Organizational Modeling Approach to Support Change

Processes: A Case Study in Dutch Municipalities
161

IV: Organizational Change Process: Decentralized Change Processes
 9. Modeling Decentralized Organizational Change in Honeybee Societies 177

10. An Adaptive Multi-Agent Organization Model Based on Dynamic Role
Allocation

193

11. Formation of Virtual Organizations through Negotiation 221
12. Decentralized Task Allocation using MAGNET: An Empirical Evaluation

in the Logistics Domain
235

V: Organizational Change Process: Mixed Change Processes
13. Automated Evaluation of Coordination Approaches for Component-based

Software Systems
255

14. A Specification Language for Coordination in Component-based Software
Systems

287

VI: Organizational Change Evaluation
15. Formal Analysis of Empirical Traces in Incident Management 319
16. Agent-Based Analysis and Support for Incident Management 335
17. Automated Verification of Disaster Plans in Incident Management 361

VII: Discussion
18. Conclusion 383
19. Related Work 389
20. Future Work 399

Samenvatting: Modelleren van Verandering in Multi-Agent Organisaties 403
SIKS Disertation Series 405

x

1

Part I:
Introduction

2

3

Chapter 1

Introduction

4

5

Introduction

1 Organizations

An organization is a systematic arrangement of elements that together aim at
achieving a certain goal. The occurrence of organization is not limited to processes in
human society. In biological systems and nowadays also in (software and hardware)
computing systems organization occurs. In this thesis organizations are analyzed and
simulated in a formal manner, with an emphasis on organizational change.

Historically, human organizations are studied in the fields of economics and social
sciences. The characteristics of human organizations vary to a great extent.
Organizations such as constructed for incident management and military
organizations are extremely hierarchically structured and have detailed descriptions of
what a person is supposed to do within an organization. On the other hand,
adhocracies hardly have any specification of what one is supposed to do and rely on
mutual adjustment of the individuals in the organization [19].

In biology various organizational forms have been investigated as well, for
example, the organization of intracellular processes [3], circulatory systems, and the
organization of for instance social insects [14]. One of the current trends is the
investigation of self-organization in human and biological systems [6]. An interesting
example thereof is a honeybee colony, where individual bees adapt in such a way that
the hive’s organizational form adapts to all normally occurring changes of situation.
For example, when an attack is observed, the organization changes by adaptation of
the bees within the hive, thereby creating a new organization which is suitable for the
new circumstances [21].

Finally, in computer science organization of large software and hardware systems
is being addressed. Such systems are becoming increasingly complex, and the
coordination of the ever increasing number of software components, is of key
importance to allow the systems to function properly. The formal nature of software
and hardware systems make them particularly suitable objects for studying
organizations.

2 Computational and Mathematical Organization Theory

The field of computational and mathematical organization theory aims at
development and testing of organizational theories from disciplines as presented
above, by means of both computational and mathematical models. Among the
disciplines involved in computational and mathematical organization theory is the
field of multi-agent systems. A multi-agent system can be defined as a system
containing several interacting agents that pursue a particular process or goal, for more
information, see e.g. [9; 20]. Although often studied for other reasons, multi-agent

6

systems aid the progress of computational and mathematical organization theory since
they allow the investigation of collective behavior based upon individual agent
behavior. The collective behavior is described by means of an abstract,
organizational, perspective. The advantage of this additional abstraction level is that
more complex processes can be modeled. As a result, more real world phenomena can
be described. Examples of approaches that enable modeling of multi-agent systems at
such an abstract level are AGR [10], MOISE [16], and Opera [8]. The approaches
describe organizations from both a structural and behavioral perspective. In the
structural description, the elements that are part of the organization are described
whereas the behavior of those particular elements is described in the latter
perspective.

The development of approaches to model organizations corresponds to a trend in
agent technology to specify multi-agent systems from a more abstract, organizational
perspective (see e.g. [2;12]), before going into the implementation of the agents
themselves. This approach aids developers of multi-agent systems to maintain a clear
perspective of the system as a whole. The modeling approaches used in computational
and mathematical organization theory can be used for this purpose, as well as for the
analysis and simulation of organizations in other domains.

3 Organizational Change

The percentage of change processes in human business organizations that do not
achieve the intended goal is 70% [1; 13]. As a result of this, the literature on
organization theory shows a growing emphasis on organizational change. In 1986
Cohen [7] stated that “computational and mathematical models are particularly
suited for the study of organizational evolution and change” .

The development of an organizational abstraction level in multi-agent systems, and
various approaches to model the organizational level of such systems is an important
step towards better techniques for the analysis of organizational change processes.
However, in order for an organizational modeling approach to be useful in describing
dynamic multi-agent systems, it needs to have the ability of expressing such change
processes in an adequate manner. Currently, some organizational modeling
approaches do address some important aspects of change [15]. However, a more
detailed analysis of theories of change is needed to provide modelers with a variety of
templates and tools to address organizational change.

4 Research Goals

The goal of the research presented in this thesis is to analyze and model
organizational change processes. In addition, the goal of this thesis is to provide
modelers of organizations with a number of templates and tools that address
organizational change, in such a way that these can be reused by these modelers.

7

5 Modeling Approach

The multi-agent organization modeling approach that has been used throughout this
thesis for analysis and modeling of change processes consists of a structural model as
well as a behavioral model to describe multi-agent organizations. The structural
model is based on the AGR approach [10], the behavioral model extends AGR with
formal behavioral specifications conform [11]. Both aspects are discussed in this
section.

An organization is viewed as a framework for activity and interaction through the
definition of groups, roles and their relationships. Note that by avoiding an agent-
oriented viewpoint, an organization is regarded as a structural relationship between a
collection of roles, where the roles can be fulfilled by agents. Thus, the idea of an
organization can be described solely on the basis of its structure, i.e., by the way
groups and roles are arranged to form a whole, without being concerned about the
way agents actually behave. The specific architecture of the agents themselves is
purposely not addressed in the organizational model, thus allowing for all possible
realizations of the idea of an organization by agents. The approach followed in this
thesis, therefore, allows studying the difference between the idea of an organization
(in terms of groups and roles) and the realization of an organization (in terms of the
behavior of the agents involved).

5.1 Structural Model

For the structural description of multi-agent organizations, the AGR (for
agent/group/role) model has been adopted [10]. The three primitive definitions are:

• The agents. The model places no constraints on the internal architecture of agents.
An agent is only specified as an active communicating entity which plays roles within
groups. This agent definition is intentionally general to allow agent designers to adopt
the most accurate definition of agent-hood relative to their application.

Fig. 1. Example organization modeled within AGR

8

• Α group is defined as an atomic set of roles. Each agent plays a role in one or more
groups. In its most basic form, the group is only a way to tag a set of roles. An agent
can contribute to multiple groups at the same time. A major point of these groups is
that they can freely overlap.

• A role is an abstract representation of an agent function, service or identification
within a group. Each agent can handle multiple roles, and each role handled by an
agent is local to a group.

AGR distinguishes three aggregation levels: the organization as a whole, groups, and
roles, as illustrated in Figure 1. The large ovals denote groups whereas the smaller
ovals denote the roles within the organizations. Furthermore, the solid arrows denote
intra-group interactions between roles within a given group, and the dashed lines
represent inter-group interactions. Agents realizing the roles are not depicted.
However, the specification of the aggregation levels can place additional constraints
on the agents that are to realize the organization. For example, the dashed lines
between role1 and role3 could indicate that those roles will have to be fulfilled by the
same agent.

5.2 Behavioral Model

Describing the structure of an organization is not enough; the behavior has to be
described as well. For example, the intra-group interactions in Figure 1, describe that
Role5 can communicate to Role6, but it does not describe when this should occur, nor
what content is to be communicated.

The specification of behavior follows the same aggregation levels as identified in
AGR, namely the level of roles, groups, and the organization as a whole. The
importance of such aggregation levels and the relation between these aggregations
levels is emphasized by Lomi and Larsen [17]. In the introduction to their book they
describe as a main challenge in the field:
• “ given a set of assumptions about (different forms of) individual behavior, how

can the aggregate properties of a system be determined (or predicted) that are
generated by the repeated interaction among those individual units?”

• “ given observable regularities in the behavior of a composite system, which rules
and procedures - if adopted by the individual units- induce and sustain these
regularities?”

Both views and problems require means to express relationships between dynamics of
different elements and different levels of aggregation within an organization. The
different aggregation levels of the behavioral specification are shown in Figure 2 in
the form of an AND tree.

9

Fig. 2. AND tree of behavioral properties

As can be seen, on the highest level of the tree organizational properties are shown,

which are properties the organization as a whole needs to achieve. At the level below
the organizational level, group properties and inter-group interaction properties are
specified, which together entail the organizational properties. The group properties
are entailed by lowest level, namely role properties, and transfer properties, that
specify interactions between roles within the same group.

The language TTL (for Temporal Trace Language), described in [4], has been
adopted for the specification of behavior in organizational models.

5.2.1 Temporal Trace Language (TTL)
In TTL [4], ontologies for states are formalized as sets of symbols in sorted predicate
logic. For any ontology Ont, the ground atoms form the set of basic state properties
BSTATPROP(Ont). Basic state properties can be defined by nullary predicates (or
proposition symbols) such as incident, or by using n-ary predicates (with n>0) like
observes(amount_of_casualties, 7). The state properties based on a certain ontology Ont are
formalized by the propositions (using conjunction, negation, disjunction, implication)
made from the basic state properties and constitute the set STATPROP(Ont).

In order to express dynamics in TTL, important concepts are states, time points,
and traces. A state S is an indication of which basic state properties are true and
which are false, i.e., a mapping S: BSTATPROP(Ont) → {true, false}. The set of all
possible states for ontology Ont is denoted by STATES(Ont). Moreover, a fixed time
frame T is assumed which is linearly ordered. Then, a trace γ over a state ontology Ont
and time frame T is a mapping γ : T → STATES(Ont), i.e., a sequence of states γt (t ∈ T) in
STATES(Ont). The set of all traces over ontology Ont is denoted by TRACES(Ont).

The set of dynamic properties DYNPROP(Ont) is the set of temporal statements that
can be formulated with respect to traces based on the state ontology Ont in the
following manner. Given a trace γ over state ontology Ont, a certain state at time point
t is denoted by state(γ, t). These states can be related to state properties via the formally
defined satisfaction relation, indicated by the infix predicate |=, comparable to the
Holds-predicate in the Situation Calculus. Thus, state(γ, t) |= p denotes that state property
p holds in trace γ at time t. Likewise, state(γ, t) |≠ p denotes that state property p does not
hold in trace γ at time t. Based on these statements, dynamic properties can be
formulated in a formal manner in a sorted predicate logic, using the usual logical
connectives such as ¬, ∧, ∨, �, and the quantifiers ∀, ∃ (e.g., over traces, time and
state properties). The set DYNPROP(Ont, γ) is the subset of DYNPROP(Ont) consisting

10

of formulae with γ occurring in which is either a constant or a variable without being
bound by a quantifier.

To model direct temporal dependencies between two state properties, not the
expressive language TTL, but the simpler leads to format is used. This is an
executable format that can be used to obtain a specification of a simulation model in
terms of local dynamic properties (the leaves of the tree in Fig. 2). The format is
defined as follows. Let α and β be state properties of the form ‘conjunction of literals’
(where a literal is an atom or the negation of an atom), and e, f, g, h non-negative real
numbers. In the leads to language α →→e, f, g, h β, means:

 if state property α holds for a certain time interval with duration g,
 then after some delay (between e and f) state property β will hold
 for a certain time interval of length h.

For a precise definition of the leads to format in terms of the language TTL, see [4]. A
specification of dynamic properties in leads to format has as advantages that it is
executable and that it can be depicted graphically in a causal graph like style.

6 Research Methodology

The modeling approach presented above has been repeatedly used to analyze and
model particular organizational change cases according to the following general
research methodology:

Identification and formalization of role and interaction properties. Identify and
formalize the dynamic properties of the lowest level of aggregation in the
organization, namely role properties, expressing the behavior of roles, and interaction
properties, expressing nature and timing of the interaction between roles within the
organization (also those within different groups).

Simulation using role and interaction properties. Simulate the organizational
model based upon the identified role and interaction properties. To enable this,
translate these properties in an executable format and input these properties into a
simulation tool [5]. The result is a formal trace.

Formalization of an empirical trace. Obtain a log from the organization being
studied, and formalize the occurrences observed in the trace.

Identification and formalization of group and organization properties. Identify
and formalize the properties of the higher levels of aggregation within the
organization, namely the group and organization properties.

Verification of properties against formal traces. Verify the group and organization
properties identified against the formal traces obtained by simulation and/or by
formalizing an empirical trace. In case of an empirical trace the properties for
verification may also include the role and interaction properties. Such verification can
be performed by a checker that uses the formal properties and the formal traces as
input. The output of the checker states whether the properties are satisfied for all

11

formal traces, and in case a particular property is not satisfied, presents a counter
example. Note that the results of this verification process only hold for the traces that
have been checked, not the entire model. In case all possible traces have been
generated, the results do hold for the entire model. An example of such a checker is
the TTL checker [4].

Verification of organizational behavioral model. Besides verifying the properties
against traces (simulated and/or empirical) of the organization, the inter-level
relations within the behavioral model can also be verified. This can either be done by
means of logical proof of the inter-level relations, or by means of model checking
tools such as SMV [18].

The methodology presented above underlies all research presented in this thesis. In
some chapters, however, not all elements of the general methodology are addressed.

7 Thesis Overview

This thesis is based on a collection of articles. The majority of the articles are reprints
of refereed papers that have been published elsewhere, or are extensions thereof.
Except for the layout of the papers, they have been left unchanged. As a consequence
the overlap between the papers has not been removed, e.g., introductions to TTL and
the organization modeling approach. Another consequence is that the chapters can be
read independently. Note that, unless explicitly stated otherwise, all authors have a
comparable share in the research presented in the articles and are therefore
alphabetically ordered. The chapters in this thesis have been organized in seven parts.

7.1 Introduction

The introductory part positions the research described in the thesis. Furthermore, the
goals of the research are stated. The general modeling approach that has been used
throughout the thesis is briefly described, as well as the research methodology .
Finally, the various parts of the thesis are introduced.

7.2 Organizational Change Preparation

The second part of this thesis addresses the preparation for organizational change.
Such a preparation phase may cover aspects as monitoring and analyzing the current
organization, and preparing a (re)design of the organization. This part presents a
number of techniques that identify potential problems in the organization and tries to
find organizational models that solve such problems. Chapter 2 presents a labeled
graph approach to identify organizational elements that are overloaded when
considering their specified capacity. Such signals could potentially result in a new
organizational model that is able to handle the current load. In Chapter 3 a model of
an agent which uses meta-reasoning capabilities to identify unpredicted occurrences

12

in an organization, and finds solutions that solve such occurrences, is presented. The
approach is illustrated for the naval domain. A component-based model for
organizational redesign is presented in Chapter 4. The model continuously monitors
the environment in which the organization is participating, and the current
requirements that have been posed upon the organization. In case it is observed that
the requirements are no longer satisfied under the current environmental conditions,
the component-based model generates a new organizational model. Finally, Chapter 5
presents an approach that adapts the capacity of an organizational model based upon
max flow networks. Such a capacity adaptation could simply entail addition of
capacity to particular roles or interaction elements, but copying of certain
organizational elements is part of the presented method as well.

7.3 Organizational Change Process: Centralized Change

The implementation of organizational change is the actual process of moving from
one organization form to another. Different types of organizational change can be
distinguished, according to a centralized or a decentralized perspective. This part
addresses organizational change addressed from a centralized perspective, in which a
central decision is made upon the change to be performed. The first chapter, Chapter
6, provides a model and analysis of Lewin’s classical unfreezing-movement-
refreezing theory that is still used in social science nowadays. The analysis is
illustrated by means of a case study drawing inspiration from the organization of the
famous Dutch eleven cities tour. Chapter 7 presents a centralized organizational
change process model for particular cases in the naval domain. The naval domain is
characterized by central decision making; the commander is the one that decides upon
organizational change. The model addresses the particularly important aspects in
change processes of when particular roles are activated and deactivated. Finally,
Chapter 8 presents an extensive case study of change in a number of Dutch
municipalities. The study addresses both an analysis of a current organizational
model, as well as the development of a potential organizational model. Furthermore,
the centralized change process of moving from the current to a new organization is
modeled and analyzed.

7.4 Organizational Change Process: Decentralized Change

Not all organizational change processes are orchestrated from a centralized
perspective. This part addresses the decentralized perspective. In decentralized
organizational change processes, no single entity coordinates the change, but various
individual entities in the organization decide upon change for themselves. In order to
analyze and model such processes, first of all inspiration has been taken from social
insects, and more specific, honeybee colonies. Honeybee colonies are known to
exhibit decentralized organizational change, and are also known to be very robust. A
quantitative organizational model for honeybee colonies is presented in Chapter 9.
Chapter 10 presents a more generic decentralized organizational change model which
specifies adaptation on a more abstract level, covering both a quantitative and a

13

qualitative specialization of the model. For the qualitative model an extensive case
study is presented in the field of incident management. The quantitative specialization
is basically a generalized form of the organizational model presented in Chapter 9.
Another form of decentralized change, is by negotiation between individual agents.
For example, finding particular agents that perform certain tasks within the
organization can be addressed by means of negotiation. Chapter 11 presents a
negotiation model for the formation of virtual organizations. In the model the
preferences and capabilities of individual agents are taken into account to form, by
mutual agreement, an organization capable of performing the tasks presented to the
organization over time. The results of the model are evaluated by means of analysis of
the performance upon data obtained from a logistics company. Chapter 12 presents a
model which aims to forming efficient organizations, ignoring the preferences of
agents for the particular tasks. Again, a dataset in the field of logistics is used to
evaluate how efficient the solutions found by the model are.

7.5 Organizational Change Process: Mixed Change

Besides models that strictly address centralized or decentralized change processes,
also situations occur in which organizational change has both centralized and
decentralized aspects. This part presents models that are able to both address
centralized as well as decentralized (i.e. mixed) forms of organizational change.
Chapter 13 presents an approach for evaluating coordination methods between
various agents within an organization. The coordination approaches addressed vary
from centralized methods, to completely decentralized coordination methods as well
as completely pre-specified coordination methods, which exhaustively specify how to
coordinate, versus methods specified in a more generic fashion. Furthermore, Chapter
14 presents a language for the specification of coordination between components in
an organization. The language allows for the specification of the various types of
coordination methods as mentioned above.

7.6 Organizational Change Process Evaluation

After change has been performed within an organization, the effectiveness of such a
change can be evaluated. Such evaluation processes are the topic of this part. First of
all, traces that have been obtained from an organization after a particular change has
occurred can be analyzed. The analysis of such traces can be addressed by means of
the verification of particular properties that should hold within such an organization
(for instance particular role properties or performance properties for the organization
as a whole). In Chapter 15 an approach is presented that enables automated
verification of such properties against an empirical log. The approach is illustrated by
means of a case study in the domain of incident management. Chapter 16 extends the
approach presented in Chapter 15 in such a way that properties are also specified in a
hierarchical form, and furthermore presents methods that allow for the analysis of
human error. As a result, the approach can be used to analyze change within human
organizations, thereby observing what types of errors are being made within the new

14

organization, allowing for correction of such errors. Finally, Chapter 17 presents an
approach to formalize particular plans that exist for a change of organization, and
evaluate such plans after the change has been performed. Such an evaluation consists
of an automated evaluation of the plan for change compared to formalized traces
corresponding to the current behavior of the organization.

7.7 Discussion

This final part presents conclusions, and discusses related work. The work presented
in this thesis is compared to other approaches and to related literature in general. The
part concludes with a perspective on future avenues for research in organizational
modeling.

References

[1] Bashein, M.L., Marcus, M.L., and Riley, P., Business Process Reengineering:
preconditions for success and failure, Information Systems Management 9, 1994, pp. 24-
31.

[2] Boissier, O., Dignum, V., Matson, E., Sichman, J. (eds.), Proc. of the 1st OOOP
Workshop, 2005.

[3] Bosse, T., Jonker, C.M., and Treur, J., On the use of Organisation Modelling Techniques
to Address Biological Organisation. Multi-Agent and Grid Systems Journal, vol. 3, 2007.

[4] Bosse, T., Jonker, C.M., Meij, L. van der, Sharpanskykh, A., and Treur, J., Specification
and Verification of Dynamics in Cognitive Agent Models, In: Proceedings of the Sixth
International Conference on Intelligent Agent Technology, IAT'06. IEEE Computer
Society Press, 2006.

[5] Bosse, T., Jonker, C.M., Meij, L. van der, and Treur, J., LEADSTO: a Language and
Environment for Analysis of Dynamics by SimulaTiOn. In: Eymann, T., Kluegl, F.,
Lamersdorf, W., Klusch, M., and Huhns, M.N. (eds.), Proc. of the Third German
Conference on Multi-Agent System Technologies, MATES'05. Lecture Notes in Artificial
Intelligence, vol. 3550. Springer Verlag, 2005, pp. 165-178.

[6] Camazine, S., Deneubourg, J.L., Franks, N.R., Sneyd, J., Theraulaz, G., Bonabeau, E.,
Self-Organization in Biological Systems, Princeton University Press, 2001.

[7] Cohen, M.D., Artificial Intelligence and the Dynamics of Performance in Organizational
Designs, In: March, J.G. and Weissinger-Baylon, R. (eds.), Ambiguity and Command:
Organizational Perspectives on Military Decision Making, Marshfield, MA, 1986.

[8] Dignum, V., A Model for Organizational Interaction: Based on Agents, Founded in Logic,
PhD thesis, 2003.

[9] Ferber, J., Multi-Agent System: An Introduction to Distributed Artificial Intelligence,
Addison Wesley, 1999.

[10] Ferber, J. and Gutknecht, O., A meta-model for the analysis and design of organisations in
multi-agent systems. In: Proceedings of the Third International Conference on Multi-
Agent Systems (ICMAS’98), IEEE Computer Society Press, pp. 128-135.

[11] Ferber, J., Gutknecht, O., Jonker, C.M., Müller, J.P., and Treur, J., Organization Models
and Behavioural Requirements Specification for Multi-Agent Systems, in Y. Demazeau,
F. Garijo (eds.), Multi-Agent System Organizations. Proceedings of MAAMAW'01, 2001.

[12] Giorgini, P., Müller, J., Odell, J. (eds.), Agent-Oriented Software Engineering IV, LNCS,
vol. 2935, Springer-Verlag, Berlin, 2004.

15

[13] Hall, G., Rosenthal, T., and Wade, J. How to make reengineering really work, Harvard
Business Review, 71(6), 1993, pp. 119-131.

[14] Hölldobler, B., and Wilson, E.O., The Ants, Harvard University Press, 1990.
[15] Hübner, J.F. and Sichman, J.S., Using the MOISE+ model for a cooperative framework of

MAS reorganization, Boletim Técnico BT/PCS/0314, Escola Politécnica da USP, São
Paulo, 2003.

[16] Hübner, J.F., Sichman, J.S., and Boissier, O., A Model for the Structural, Functional and
Deontic Specification of Organizations in Multiagent Systems. In: Proc. 16th Brazilian
Symposium on Artificial Intelligence (SBIA'02), Porto de Galinhas, Brasil, 2002.
Extended abstract in: C. Castelfranchi and W.L. Johnson (eds.), Proc. of the First
International Joint Conference on Autonomous Agents and Multi-Agent Systems,
AAMAS'02. ACM Press, 2002, pp. 501-502.

[17] Lomi, A., and Larsen, E.R.. Dynamics of Organizations: Computational Modeling and
Organization Theories, AAAI Press, Menlo Park, 2001.

[18] McMillan, K., Symbolic Model Checking: An approach to the state explosion problem,
Kluwer Academic Publishers, 1993.

[19] Mintzberg, H., Structure in Fives: Designing Effective Organizations, Prentice Hall, 1992.
[20] Weiss, G. (editor), Multiagent Systems: A Modern Approach to Distributed Artificial

Intelligence, MIT Press, 1999.
[21] Winston, M.L. and Punnet, E.N., 1982, Factors determining temporal division of labor in

honeybees, Canadian Journal of Zoology, vol. 60, pp. 2947-2952.

16

17

Part II:
Organizational Change

Preparation

18

19

Chapter 2

A Labeled Graph Approach to Analyze
Organizational Performance

This chapter appeared as: Hoogendoorn, M., Treur, J., and Yolum , P., A Labeled
Graph Approach to Analyze Organizational Performance. In: Nishida, T., Klusch, M.,
Sycara, K., Yokoo, M., Liu, J., Wah, B., Cheung, W., and Cheung, Y.-M. (eds.),
Proceeding of the 2006 IEEE/WIC/ACM International Conference on Intelligent
Agent Technology (IAT 2006), IEEE Computer Society Press, 2006, pp. 482-489.

Furthermore, part of this chapter appeared as: Hoogendoorn, M., Treur, J., and
Yolum, P., A Labeled Graph Approach to Support Analysis Organizational
Performance. In: Fischer, K., Berre, A., Elms, K., and Muller, J.P. (eds.), Proceedings
of the Workshop on Agent-based Technologies and applications for enterprise
interOPerability, (ATOP 2005), 2005, pp. 49-60.

20

21

A Labeled Graph Approach to Analyze
Organizational Performance

Mark Hoogendoorn1, Jan Treur1, and Pınar Yolum2

1Vrije Universiteit Amsterdam, Department of Artificial Intelligence
De Boelelaan 1081a, 1081 HV Amsterdam, The Netherlands

{ mhoogen, treur} @cs.vu.nl
2Bogazici University, Department of Computer Engineering,

TR-34342 Bebek, Istanbul, Turkey
pinar.yolum@boun.edu.tr

Abstract. Determining the performance of an organization is a must for both
human and multi-agent organizations. The performance analysis enables
organizations to uncover unexpected properties of organizations and allow them
to reconsider their internal workings. To perform such an analysis, this paper
represents organizations as labeled graphs that capture, not only the interactions
of the entities, but also the characteristics of those interactions, such as their
content, frequency, and so on through labels in the graph. Algebraic
representation and manipulations of the labels enable analysis of a given
organization. Hence, well-known phenomena, such as overloading of
participants or asymmetric distribution of workload among participants can
easily be detected. Finally, a case study is performed within the domain of
incident management.

1 Introduction

Multi-agent organizations consist of agents that interact to carry out their tasks.
Current models of multi-agent organizations usually represent organizations as
consisting of roles that agents adopt. An organization model then specifies the
structure and behavior of the organization in terms of the relations between the roles.
An analysis of such an organization model could check if the model satisfies desired
properties such as the possibility of completing a desired task given that all agents
comply with the requirements of the organization. Whereas such an analysis is useful,
it is not sufficient to analyze an executing organization. The main reason is that many
design-time choices become concrete during execution. Agents choose who they want
to interact with as well as how often they want to do so during run-time. For example,
among two agents that enact a merchant role, one might be preferred over the other
because the agent has better capabilities, more work capacity, and so on. These subtle
interactions of agents at run-time can give rise to interesting situations that can only
be detected during execution. That is, as a result of previous decision, one merchant
agent will be more loaded than the second merchant will be. Further, the agents that
participate in an organization might be designed and developed by independent

22

parties, which requires them to interoperate and execute intelligently at run-time. In
other words, such facts about the workings of a multi-agent organization cannot be
discovered from a static representation of an organization during design time, but can
only be analyzed during the execution time.

Whereas there is a vast literature in the design of multi-agent organizations, there is
little work on the analysis of executing multi-agent systems [9, 10]. For this reason,
this paper provides a complementary treatment of multi-agent organizations, where in
addition to existing design time dynamics of the organizations, a graph representation
is used to analyze executing organizations. Executing multi-agent organizations are
analyzed by logging the performance of the organization in traces. Graph
representations are useful for analyzing organizations; for example for understanding
the structure of an organization through theoretical concepts.

This paper presents a formal specification language based on a graph
representation. The directed graph captures the relationships between participants in
the organization and the labels give semantics to the relationships. Once the labeled
graphs are constructed, they can be used to analyze the functioning of the
organization at runtime, i.e. analyze traces of the execution of the multi-agent system.
Organization designers or analyzers can study the graph to understand the
shortcomings of the organizations and to restructure the organization as they see fit.
This paper further shows that rules related to the organizations can be developed and
automatically checked against the labeled graphs. As a concrete example, detection
of overloaded agents is used.

The rest of this paper is organized as follows. Section 2 gives a representation of
organizations as labeled graphs. Sections 3 discusses the usage of the graph for
external analysis. Section 4 presents a case-study and Section 5 discusses the relevant
literature.

2 Organizations as Labeled Graphs

A directed graph G = (V, E) constitutes the basis of the description of an organization
in this paper. V denotes the set of nodes, which represent agents that enact a role. E
denotes the edges in the graph, which represent the interactions between agents.
Graph-based representations are typically used to model processes in areas such as
(distributed) workflow management, business process design, organization modeling
and organizational performance measurement. Usually the graphs have no labels or
simple labels; such as a number that denotes the strength of a link. However, in real
organizations edges denote different types of relationships with different properties.
To represent such relationships, this paper provides a more complex structure of the
labels and formalizes the structure with an algebra.

The example organizations considered here contain agents that fulfill tasks, assign
subtasks to other agents, and thus run a business together. There are two primitive
concepts we consider: workloads and capacities. An edge e connecting u and v means
in this particular application that u requires some work to be done by v; i.e., edge e
denotes a request for workload. As in real life, u could request different tasks to be
performed by v. A label on an edge specifies the task type and the strength of the task

23

(i.e., how intensive the work is). The label also includes a list consisting of tasks the
current task at hand originates from.

Example 1. Consider the organization in Figure 1. The figure gives a simplified
representation of the disaster prevention organization in case of a plane crash in the
Netherlands in the form of a labeled graph. Four agents enact the roles as shown in
Figure 1: First of all, the airport role is present. This role takes care of the
communication with airplanes and is the one that receives the mayday calls. After it
has received a mayday call from a plane above the sea, it will contact the coastguard
immediately to start a rescue task. The call causes the coastguard a lot of work, as
they are in charge of the entire fleet of rescue ships. For possible precautions or
backup from the land, the coastguard can contact the alarm center role which will
arrange this type of help. The press is also represented as a role as they often request
information regarding the number of casualties, information about the cause of the
crash, and so on. The coastguard is responsible for fulfilling this task, which is called
Inform.

Each agent in the organization has a certain capacity for each of the tasks that it can
perform. Hence, the nodes of the graph are also labeled to denote the capacities of
agents. First, a description of a formal language for the labels is given. Next, the
capacities of the nodes will be discussed. Finally, the workload is defined.

2.1 Formal Specification Language

The formal language presented in this Section is based on many-sorted algebra. The
sorts of the label specification language are shown and explained in Table 1. Based on
these sorts, functions are defined to combine these sorts into labels. Statements of this
language are equations as the examples accompanying the function definitions show.
Throughout the text, when sorts and functions of the algebra are meant, they are
denoted in Courier font.

 First of all, a function is defined to construct a list containing pairs of subtasks. In
general, the relation between tasks could be more general than the subtask
relationship; for example, by incorporating information on the alternative tasks as

Fig. 1. An example organization graph

24

well. However, the focus here is on dividing a task into smaller pieces that will be
performed by agents. Hence, only concentrating on the subtask relationship.

taskSubtaskPair: Task x TaskSubtaskList � TaskSubtaskList

Considering Example 1 one could express that the Rescue task has as a subtask
LandOp which includes the operations that take place on land. Formally this can be
expressed as follows:

tS=taskSubtaskPair(Rescue, taskSubtaskPair(LandOp, null))

Besides that, another function is specified which expresses a regular list of tasks
without the subtask relationship between them.

taskList: Task x TaskList � TaskList

For example, a list containing the tasks that can be performed by the coastguard:
 tL = taskList(Rescue, taskList(Inform, null))

For expressing the load three sorts are used: (i) the list which specifies the task from
which this task originates, (ii) the node that carries the load, and (iii) the time interval
for which this all holds. Intuitively, a load captures the intensity of the task a node has
to do in a given time interval.

loadFor: TaskSubtaskList x Node x TimeInterval � Load

In the running example, the load for the coastguard can be expressed for
TimeInterval I (for example 8 hours) and the Rescue task:

 L = loadFor(tS, Coastguard, I)

A load is accompanied by a value expressing the amount of work caused by the load.

loadValuePair: Load x Value � LoadValue

For the Load defined above the value is set to 5:

Sort Description
Value Sort for real values.
Timepoint Sort for moments.
TimeInterval Sort for names of intervals that contain two time-points of sort Timepoint.
Node Sort to identify a node.
Edge Sort to identify an edge.
Task Sort to identify tasks.
Load Sort to identify loads.
LoadValue Sort for a Load Value pair.
LoadValueList Sort for a list of LoadValue pairs.
Label Sort to identify a label.
LabeledLoad Sort for a pair containing a LoadValueList and a Label.
TaskSubtaskList Sort for a list of tasks with a subtask relationship between them.
TaskList Sort for a list of tasks.
Capacity Sort to identify a capacity.
CapacityValue Sort for a pair containing the Capacity and a Value.
OverallCapacity Sort to identify the overall capacity.
OverallCapacity
Value

Sort for a pair containing the OverallCapacity and a Value.

EdgeActivation Sort for specifying the Value of the amount of activations of an Edge
during a certain TimeInterval

 Table 1. Sorts used in the label algebra

25

 LV = loadValuePair(L, 5)

Constructing a list from these LoadValue pairs can be done by means of a function.
A communication from a role to another role can cause different kinds of load,
therefore there is a need to express more than one load for each edge.

loadValuePairList: LoadValue x LoadValueList � LoadValueList

In the case of the example, only one LoadValue is present:
 LVL = loadValuePairList(LV, null)

Now that the load caused by a connection in a graph can be fully specified it is
combined with a label identifier.

loadLabel: LoadValueList x Label � LabeledLoad

The label specified above is now called L1:
 LL = loadLabel(LVL, L1)

Now a label identifier is associated with an edge.

labeledEdge: Edge x Label � LabeledEdge

 LE = labeledEdge(e1, L1)

Finally, at runtime an edge will be activated a certain number of times over a certain
period, which can also be expressed in the algebra:

edgeActivation: Edge x TimeInterval x Value � EdgeActivation

For example, the edge E1 was activated 2 times during TimeInterval I:
 EA = edgeActivation(e1, I, 2)

Capacities can also be expressed by means of the functions. Capacities belong to
nodes, as they are the ones that need to carry the load. The next Section will go into
more detail on expressing the capacities. The capacity of a node is the amount of task
it can do in a certain time period. The amount of task is denoted by a TaskList and
the time period is denoted by a TimeInterval.

capacityOf: TaskList x Node x TimeInterval � Capacity

A value can be added to the capacity, for example, during the time-interval for which
the capacity is specified, one man-hour is available for rescuing.

capacityValue: Capacity x Value � CapacityValue

Besides a capacity for specific tasks, a node also has an overall capacity. This overall
capacity exists independent of types of tasks it can do.

overallCapacity: Node x TimeInterval � OverallCapacity

A value can again be added to this kind of capacity. It can for example say that during
the time-interval of a day a maximum of 8 man-hours are available for a specific
node.

Using the basic ontology of this algebra, its relations can be expressed, and logical
relationships can be defined: The primitive terms used in the label algebra are defined
by a many-sorted signature. The signature takes into account symbols for sorts,
constants, functions and relations, including the equality relation. Among the
relations, the equality relation has a special position: the identities (equations)
between algebraic term expressions. Further relations can be defined by a relation
symbol instantiated with term expressions. Logical relationships involve conditional
statements involving relations, both the equality relation and other relations. For

overallCapacityValue: OverallCapacity x Value �
OverallCapacityValue

26

simplicity these logical relationships are assumed to be in a clausal format. Examples
of constants are names of values, examples of function symbols are +, x, examples of
relation symbols are = and <. Examples of logical relationships are

if t1 < t2 then f(t1) < f(t2)
if t1 < t2 then f(t1 + t2) = f(t2)

If no other relations than the equality relation occur, the algebra is called functional.

2.2 Capacities

The capacity of a node should be represented flexibly so that realistic situations can
be modeled. The following scenarios are seen frequently. For these scenarios, it is
assumed that the unit of capacity is man-hours. The maximum man-hours available is
fixed: in this case to eight man-hours.
1. Fixed Capacities: An agent has a fixed number of hours it can spend on each task

as dictated by its role. The sum of these hours should not be more than the
maximum amount available.

2. Constant Task-Specific Capacities: This time an agent is told how many hours it
can spend on each individual task. For example, if the role enacted by this agent has
two tasks, coordinating the rescue operations and informing the press, then a
possible restriction could state that the agent playing the role can spend at most 5
hours on the rescue operations and 5 hours on informing the press. Of course,
working on the rescue operations task for 5 hours still leaves 3 hours for the
informing the press task. That is, the maximum number of hours is still constant.

3. Group-Restricted Capacities: This time the restriction is not on individual tasks
but on sets of tasks. For example, a role can spend a maximum 5 hours on the
rescue operations and informing the press and maximum of 4 hours on writing
reports. The choice of distributing the 5 hours between the rescue operations task
and the informing the press task is up to the agent that plays the role. However, the
time spent on the rescue operations and informing the press together cannot exceed
5 hours.

4. Flexible Capacities: An agent can decide to work any number of hours on any of
its tasks, as long as a certain maximum is not exceeded during the time-interval for
which this capacity holds.

It is actually easy to see that both Scenarios 1 and 4 can be modeled in terms of
Scenario 2. To model the first scenario, the only thing that needs to be ensured is that
the total of the fixed capacities adds up to the maximum. This already defines the
scenario in terms of constant task-specific capacities. For the fourth scenario, the
individual restriction for each individual work has to be set to the maximum 8 hours.
Additionally, Scenario 2 can be modeled a special case of Scenario 3 where each set
consists of one task. Hence, accommodating Scenario 3 enables accommodating the
remaining scenarios. For the sake of simplicity, disjoint sets of tasks are assumed for
a specification of the capacity.

Example 2. To give an example, consider the node Coastguard, having capacity
for tasks Rescue and Inform. The capacity of the Coastguard concerning the
Rescue task in the TimeInterval I is 8. For the Inform task this maximum is

27

set to 2. Combined however, the overall capacity is set to 8, meaning that for the
Inform and Rescue tasks together the time spent can not exceed 8. According to
the formal notation as introduced in Section 2.1, the example can be formalized as
shown below.

c1 = capacityOf(taskList(rescue, null), Coastguard, I)
cval1 = capacityValue(c1, 8)
c2 = capacityOf(taskList(inform, null), Coastguard, I)
cval2 = capacityValue(c2, 2)
co = overallCapacity(Coastguard, I)
coval = overallCapacityValue(cO, 8)

2.3 Workloads

A workload of a node is the amount of work it is required to do. Much work has been
done to define the concept of workload more precisely, however there is still little
consensus on a single definition. In [4] the ‘human workload’ is described as follows:
“The intrinsic difficulty of the activities that an operator must perform establishes the
target or nominal level of workload. The difficulty of a particular task may be
influenced by any one or several of the following factors: (1) the goals and
performance criteria set for a particular task; (2) the structure of the task; (3) the
quality, format, and modality in which information is presented; (4) the cognitive
processing required; (5) the characteristics of the response devices.”

In operations management [8] research has been performed to define the time
required to do a job in order to generate a unit of output, which is called work
measurement. The initiator of this type of measurement was F.W. Taylor with his
scientific management approach. It has however fallen into disfavor because if
focuses on routine, repetitive tasks, but recently the labor-intensive service companies
have resulted in a new popularity.

The workload of an agent in this paper is determined based on the tasks assigned to
it now, how often these assignments take place, and how much of these tasks are
delegated to other agents. In general, the agent would perform a percentage of the
tasks on its own and assign the remaining tasks to other agents; i.e., create workloads
for others. In principle, the newly created workload should be less than that of the
initial workload of the agent. The workload of an agent is only determined during
execution. Hence, it is not possible to know the workloads exactly during design time
and distribute work accordingly.

3 Specification for labels with respect to loads

As has been mentioned before, labeled organization graphs can be used to analyze an
organization. It can first be used to model the capacities and the workloads, and
thereafter can be applied to analyze a trace representing the state of affairs within a
multi-agent system during a certain period.

28

3.1 Calculations for values of loads

The workload of a node v during an interval I for a task t can be calculated in the
following way: Let workload(e,t) be the workload for task t caused upon one
activation of edge e. This number can be derived from the labeled algebra. First, look
up the taskSubtaskList associated with this Task t:
taskSubtaskList(t, TSL). Thereafter get the label for edge e:
labeledEdge(e,L1). Now, look up the identifier of the LoadValueList via
the Label: loadLabel(LVL, L1) and scan all entries of the LoadValueList
for a Load in which the TaskSubtaskList starts with an element in TSL or starts
with t, and holds for TimeInterval I. Finally, sum up the Value for each of
these Load elements. Furthermore, for each of these edges, get the amount of
activations, during TimeInterval I, then the workload can be calculated as
shown in Definition 1:

Definition 1. Workload(v, t, I) =
�e ∈ incomingEdges(v) a1 x workload(e, t) where edgeActivation(e, I, a1)
- �e ∈ outgoingEdges(v) a2 x workload(e, t) where edgeActivation(e, I, a2)

Which entails summing up the workload caused by all incoming nodes, and
subtracting from that the workloads distributed through the outgoing edges. The
calculation of the overall workload of a node (for all tasks t) is simply summing up all
separate workloads, as shown in Definition 2.

Definition 2. workload(v, I) = �t ∈ tasks workload(v, t, I)

Example 3. Consider the organization as presented in Example 1 and 2. Imagine the
following scenario (during an interval I): A Dakota airplane has crashed in the sea, the
airport forwards this crash message to the coastguard (causing a load of 5), who in
turn delegates the land operations to the alarm center (causing them a load of 1).
Besides that, the press starts asking questions about the crash (causing a load of 1
each time), as they have observed the plane crashing in the sea. They request
information 40 times, and the Coastguard replies the same number of times (causing
the press a load of 0.8 each time). The workload calculation is as follows:
workload(coastguard, rescue, I) = (1 * 5) – (1 * 1) = 4 man-hours during interval T
for the rescue task workload(coastguard, inform, I) = (40 * 1) – (40 * 0.8)=8 man-
hours during interval I for the inform task.

As the calculation for the workload has been explained, the workload of a node can be
compared with the capacity of a node, this is referred to as the load of a node. Two
different types of loads have been distinguished. First of all, the load for a specific
task t can be calculated. To calculate this load, first remember that the capacities are
defined for a list of tasks, let l be the list of which t is an element. As it is impossible
to calculate loads for individual tasks, loads can only be calculated in terms of these
lists of tasks, therefore the calculation of a load for a task t is done by means of the
list l the task is part of. Let v be a node, t be a task and I be an interval and let
capacity(v, l, I) be the capacity of the node v for task list l, during interval I. This can
be derived from the labeled algebra as follows: Get the capacity for TaskList L
in which task t is defined for node v during interval I: C = capacityOf(L,v,I).

29

Thereafter, look up the Value CV of this capacity: capacityValue(C,CV).
Now the load is defined as shown in Definition 3.

This defines that the load for a task is calculated by summing up all workload within
the list l (so for every task within l) and dividing it by the capacity defined for that
list.

The load can also be calculated for the node as a whole, this is simply done by
taking the workload of the node, and dividing it by the overall capacity, capacity(v, I),
which can be found using the algebra: CA = overallCapacity(v,I) after
which the Value OCV can be looked up: overallCapacityValue(CA,OCV).
The load is now calculated as shown in Definition 4.

Definition 4. load(v, I) = workload(v, I)/ capacity(v, I))

An example of an interesting type of information that can be derived from the load is
the load distributions among the nodes in the graph. An organization with evenly
balanced nodes is typically preferable over a very uneven distribution of loads.

Example 4. Picture the organization in case of an airplane crash in the North-Sea, the
Netherlands again. Following the capacity example as given in Section 2.2 the
coastguard has a capacity of 8 man-hours during I for the rescue task, and a capacity
of 2 man-hours for the inform task, during that same period. Another capacity that is
part of this organization is that of the press. The capacity of the press (which is not
shown in a formalization) is defined as being 50 during the time-interval I in which
the incident management occurs. The load of the coastguard and the press nodes can
be calculated: The general load for the coastguard is: load(coastguard, I) = (12 / 8) =
1.5. More specifically, for the task rescue the load is 0.5 and for the inform task the
load is 4.0. For the press, the workload is only caused by the information coming
from the coastguard, which can not be distributed elsewhere. Therefore the workload
of the press is 40 x 0.8 = 32. As they only have one task, the load of the press, load
(press, I), is equal to 0.64. Based on this, it can be seen that the press has a relatively
low load compared to the coastguard. By means of this information, a person that is
analyzing an organization could suggest that the press should reduce the requests for
information to the coastguard and try getting most of their information within the
press organization, as they still have sufficient capacity.

3.2 Overloading

As the load for a node has been defined, the definition of a node being overloaded can
be given. A certain role is overloaded in case one, or both of the following situations
hold: (1) There exists a task t for which the load is greater than 1.0; (2) The load for
the entire node, load(v, I) exceeds 1.0. A formal definition is presented below. Please
note that due to the choice of representing the capacities by group restricted capacities
it can occur that the loads for the individual group are not overloaded whereas the
overall load is.

Definition 3. load(v, t, I) =
(�task∈l workload(v, task, I))/ capacity(v, l, I) where t∈l

30

Definition 5: overloaded(v, I) =
∃t:Task (load(v,t,I) > 1.0) ∨ (load(v,I) > 1.0)

Example 5. Following from example 4, it can be seen that the role of coastguard is
heavily overloaded, for one of the tasks (inform) the load is 4.0, which means 4 times
the capacity. The press however is not overloaded as it has a load value of 0.64.

4 Case-Study: Dakota Incident

This Section presents details regarding the implementation of the labeled graph
approach into a software tool, and shows an empirical evaluation using a trace
obtained from the domain of incident management.

4.1 Implementation

In order to be able to use the algebra and calculations for analyzing multi-agent
organizations, a software tool has been created. First, the algebra presented in Section
2 has been implemented in PROLOG [1], including the calculations that are presented
in Section 3. For a comparative study of translating an algebraic specification into a
PROLOG program, see [2]. A specific interval can be specified over which the
calculations of the organizational performance are done. Thereafter, in order to make
the calculations of the workloads and loads for the nodes more insightful for e.g.
domain experts to evaluate, a visualization tool has been created that graphically
shows how much work is being transferred between different nodes within the graph,
and represents the load for each of these nodes. Figure 2 shows a screen-shot of the
visualization tool. The radius of a node is increased in case the load increases, so the
bigger the node the heavier the load on that specific node. Further, communication

Fig. 2. Screenshot of the visualization tool

31

channels that are intensively used (i.e. edges that are activated many times during a
particular time interval) are highlighted as well by turning red in case of a lot of
activity (or in case of a huge amount of activity purple).

4.2 Empirical Evaluation

In order to evaluate the functioning of the implementation and the approach itself, a
case study has been performed in the incident management domain. The case-study
itself is based upon reports of a plane crash which occurred in the Netherlands in
1996. A trace of the events that occurred during the rescue of the passengers on board
of the plane has been obtained from domain experts and logs that have been made of
the communications that took place during the incident management in 1996. The
examples used in Sections 2 and 3 include simplifications used for this case study. To
enable an analysis, the organization, including the roles and the communications that
took place, has been translated to a graph. Thereafter, a domain expert has labeled the
graph with the values he thinks are appropriate values for workload caused by
activation of a communication line (i.e. an edge). Furthermore, the expert has set
capacities for the roles (i.e. nodes) within the incident management organization.
According to the experts in the field (written down in incident management reports)
the role of the coastguard (abbreviated in the figure to KWC) was heavily overloaded
due to too many requests for information of the press, regional alarm center (RAC)
and the military airport (MVKK). This indeed showed in the visualization, based on
the capacities and workloads set in the graph. The coastguard has a large capacity for
handling all the work, but is unable to handle all incoming requests. This shows that
the analysis using the labeled graph approach is indeed in line with the manual expert
evaluations.

5 Discussion

This paper has presented a formal language for specifying organizations. The
specification is based on a graph formalism. The nodes of the graph represent agents
and the edges between the nodes are labeled to denote why those edges exist. This
allows us to represent the interactions between the agents in an expressive way. It has
been shown that using this organization structure properties of executing
organizations can be detected, such as the cases where the organization hosts
overloaded agents, successfully.

Operations research is a closely related field to the research presented in this paper,
see e.g. [5]. Many theories have been developed in that field of research to enable a
proper functioning of the organization as a whole, creating a planning for these
operations, etc. The research presented in this paper is meant to monitor the
performance of these organizations, not to design these operations within the
organization.

Another related field is workflow management, in which tools exist that measure
and analyze the execution of processes so that continuous improvements can be made.
The approach in workflow management can be used as a support tool to analyze the

32

execution, however workflow management systems constitute a huge system which is
put into the organization to measure the performance, whereas the approach in this
paper simply needs traces of the events and values for the capacities of nodes and
workloads regarding tasks. This also enables the presented approach to be used for
analyzing occurrences in the past and organizations in which introducing a workflow
management system is not feasible.

There is a vast literature on designing multi-agent organizations. Zambonelli et al.
develop a design methodology, GAIA [11]. GAIA identifies roles, organization rules,
environment, and so on as necessary organizational abstractions. Using these
constructs, GAIA methodology helps a system designer build its system in a
systematic way. Padgham and Winikoff develop Prometheus, an agent-based software
development methodology [7]. It consists of a system specification, architectural
design, and detailed design phases. While these approaches are useful for designing
multi-agent systems, they do not provide any mechanisms for analyzing executing
organizations. That is, these methodologies only care for the design phase, but are not
targeted for analyzing the multi-agent system during execution, which is the case for
the methodology presented in this paper.

Handley and Levis create a model to evaluate the effect of organizational
adaptation by means of colored Petri nets [4]. The Petri nets are used to represent
external interaction of decision makers as well as internal algorithms the decision
maker must perform, and are equipped with labels. In this model the workload of the
decision makers is monitored and is used as a performance indicator. The concept of
entropy is used to measure the total activity value (which is linked to the workload) of
a decision maker. When an overload of a decision maker occurs, the execution time of
the internal algorithm has a delay of one additional time point. Decision makers can
also base decisions on who to forward an output to on the total activity of the decision
maker that can be chosen. Their approach differs from the approach in this paper in
the sense that they specify the entire process within the organization, and use the Petri
nets to actually simulate an organization. Therefore, their aim is more towards the
decision process and the evaluation thereof whereas the approach presented here is
more intended as a separate method for evaluating the performance of an organization
from an external viewpoint.

Fink et al. develop a visualization system to help monitor the performance of
businesses [3]. The focus of their work is on presenting a tool that can incorporate
different performance metrics from different sources. The aim of the approach
presented here is to analyze workings of a business automatically. In this sense, the
work of Fink et al. is complementary to the work in this paper. Once certain
properties are detected by the approach in this paper, they could be feed into a
visualization tool to ease the exposure.

The work presented in this paper is open for further improvements. Whereas this
paper mainly deals with calculating the effect of an edge on its endpoints, it is also
possible to calculate the effects of an edge on nodes that are not immediate endpoints.
This can be regarded as calculating the cascading effects of interactions on third
parties. Similarly, the representation can be made richer by adding capacities or
workflows for groups of agents to model the smaller units in an organization. Ideas
developed in this paper can also be used to help agents model others and reason about
others’ workloads to manage their interactions more efficiently. Such reasoning could

33

possibly even result in change of an organization in case the workload simply cannot
be handled, see [6] for more extensive results on this. Furthermore, investigations on
how well the approach scales up to large scale multi-agent systems will need to be
performed in the future. One important possibility to note here is that of specifying
such a system on multiple aggregation levels, whereby the analysis can take place at
the highest level (e.g. the workload between departments) while at the lower level
focus on parts of the organization (e.g. the workload within a department).

References

[1] Colmerauer, A., Kanoui, H., Pasero, R., and Roussel, P., Un Système de Communication
Homme-Machine en Français. Groupe de Recherche en Intelligence Artificielle,
Université d’Aix-Marseille, Lumini, 1971.

[2] Drosten, K., Translating algebraic specifications to Prolog programs: a comparative study.
In: J. Grabowski, P. Lescanne, and W. Wechler, eds., Algebraic and Logic Programming,
LNCS 343, pp 137–146, Springer, 1988.

[3] Fink G., Krishnamoorthy S., and Kanade A., Naval Crew Workload Monitoring and
Visualization. In: First Annual Conf. on Systems Integration, NJ, 2003

[4] Handley, H., and Levis, A., A Model to Evaluate the Effect of Organizational Adaptation.
Computational & Mathematical Organization Theory 7(1) pp 5–44, 2001.

[5] Hillier, F.S. and Lieberman, G.J., Introduction to Operations Research, McCraw-Hill, SF,
2002.

[6] Hoogendoorn, M., Adaptation of Organizational Models for Multi-Agent Systems based
on Max Flow Networks, In: Proceedings of IJCAI 2007, Morgan Kaufmann Publishers,
To Appear, 2007.

[7] Padgham, L. and Winikoff, M. Prometheus: A Methodology for Developing Intelligent
Agents. In: F. Giunchiglia et al. (eds.) Proc. of the AOSE Workshop, LNCS 2585, pp.
174–185, 2003.

[8] Russell, R.S., and Taylor, B.W., Operations Management, Prentice Hall, New Jersey,
2003.

[9] Shehory O, Sturm A: Evaluation of modeling techniques for agent-based systems.
Proceedings of the Intl. Conf. on Autonomous Agents, pa 624–631, ACM Press 2001.

[10] Sudeikat J., Braubach L, Pokahr A., and Lamersdorf W. Evaluation of Agent Oriented
Software Methodologies Examination of the Gap between Modeling and Platform.
Preproceedings of the AOSE Workshop, 2004.

[11] Zambonelli F., Jennings N.R., Wooldridge M. J., Developing Multiagent Systems: The
Gaia Methodology, ACM Transactions on Software Engineering and Methodology, 12(3),
September 2003.

34

35

Chapter 3

An Agent-Based Meta-Level Architecture
for Strategic Reasoning in Naval Planning

Part of this chapter appeared as: Hoogendoorn, M., Jonker, C.M., Maanen, P.P. van,
and Treur, J., An Agent-Based Meta-Level Architecture for Strategic Reasoning in
Naval Planning. In: Kolp, M., Bresciani, P., Henderson-Sellers, B., and Winikoff, M.
(eds.), Agent-Oriented Information Systems III: Post-Proceedings of the 7th
International Bi-Conference Workshop AOIS 2005, LNAI 3529, Spinger Verlag,
2006, pp. 216-230. The original publication is available at www.springerlink.com.

Furthermore, a three page abstract of this paper appeared as: Hoogendoorn, M.,
Jonker, C.M., Maanen, P.P. van, and Treur, J., A Meta-Level Architecture for
Strategic Reasoning in Naval Planning (extended abstract). In: Ali, M., and Esposito,
F. (eds.), Innovations in Applied Artificial Intelligence: Proceedings of the 18th
International Conference on Industrial and Engineering Applications of Artificial
Intelligence and Expert Systems, LNAI 3533, Springer Verlag, 2005, pp. 848-850.
The original publication is available at www.springerlink.com.

36

37

An Agent-Based Meta-Level Architecture
for Strategic Reasoning in Naval Planning

Mark Hoogendoorn1, Catholijn M. Jonker3, Peter-Paul van Maanen1,2,

and Jan Treur1

1 Vrije Universiteit Amsterdam, Dept. of Artificial Intelligence,

De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
{mhoogen, treur}@cs.vu.nl

2 TNO Human Factors, Dept. of Information Processing,
P.O. Box 23, 3769 ZG Soesterberg, The Netherlands

peter-paul.vanmaanen@tno.nl
3 Radboud University Nijmegen, Nijmegen Institute for Cognition and Information,

Montessorilaan 3, 6525 HR Nijmegen, The Netherlands
c.jonker@nici.ru.nl

Abstract. The management of naval organizations aims at the maximization of
mission success by means of monitoring, planning, and strategic reasoning.
This paper presents an agent-based meta-level architecture for strategic
reasoning in naval planning. The architecture is instantiated with decision
knowledge acquired from naval domain experts and is formed into an
executable agent-based model which is used to perform a number of simulation
runs. To evaluate the simulation results, relevant properties for the planning
decision are identified and formalized. These important properties are validated
for the simulation traces.

Keywords: Meta-reasoning, planning, intelligent agent systems.

1 Introduction

The management of naval organizations aims at the maximization of mission success
by means of monitoring, planning, and strategic reasoning. In this domain, strategic
reasoning more in particular helps in determining in resource-bounded situations if a
go or no go should be given to, or to shift attention to, a certain evaluation of possible
plans after an incident. An incident is an unexpected event, which results in an
unmeant chain of events if left alone. Strategic reasoning in a planning context can
occur both in plan generation strategies (cf. [15]) and plan selection strategies.
 The above context gives rise to two important questions. Firstly, what possible
plans are first to be considered? And secondly, what criteria are important for
selecting a certain plan for execution? In resource-bounded situations first generated
plans should have a high probability to result in a mission success, and the criteria to
determine this should be as sound as possible.

38

In this paper a generic agent-based meta-level architecture (cf. [10]) is presented for
planning, extended with a strategic reasoning level. Besides the introduction of an
agent-based meta-level architecture, expert knowledge is used in this paper to
formally specify executable properties for each of the components of the agent
architecture. In contrast to other approaches, this can be done on a conceptual level.
These properties can be used for simulation and facilitate formal validation by means
of verification of the simulation results.
 The agent architecture and its components are described in Section 2. Section 3
presents the method used to formalize the architecture. Section 4 presents each of the
individual components on a more detailed level and instantiates them with knowledge
from the naval domain. Section 5 describes a case study and discusses simulation
results. In Section 6 a number of properties of the model’s behavior are identified and
formalized. A formal tool TTL Checker is used to check the validity of these
properties in the simulated traces. Section 7 is a discussion.

2 An Agent-Based Meta-level Architecture for Naval Planning

The agent-based architecture has been specified using the DESIRE framework [2].
For a comparison of DESIRE with other agent-based modeling techniques, such as
GAIA, ADEPT, and MetateM, see [13, 11]. The top-level of the system is shown in
Figure 1 and consists of the ExternalWorld and the Agent. The ExternalWorld generates
observations which are forwarded to the Agent, and executes the actions that have
been determined by the Agent. The composition of the Agent is based on the generic

agent model described in [3] of which two components are used:
WorldInteractionManagement and OwnProcessControl, as shown in Figure 2.
WorldInteractionManagement takes care of monitoring the observations that are received
from the ExternalWorld. In case these observations are consistent with the current plan,
the actions which are specified in the plan are executed by means of forwarding them
to the top-level. Otherwise, evaluation information is generated and forwarded to the
OwnProcessControl component. Once OwnProcessControl receives such an evaluation it
determines whether the current plan needs to be changed, and in case it does,
forwards this new plan to WorldInteractionManagement.

Agent

ExternalWorld

observation_results

actions_to_be_performed

Fig. 1. Top-level architecture

39

WorldInteractionManagement can be decomposed into two components, namely
Monitoring and PlanExecution which take care of the tasks as previously presented (i.e.
monitoring the observations and executing the plan). For the sake of brevity the
Figure regarding these components has been omitted.

OwnProcessControl can also be decomposed, which is shown in Figure 3. Three
components are present within OwnProcessControl: StrategyDetermination, PlanGeneration,
and PlanSelection. The PlanGeneration component determines which plans are suitable,
given the evaluation information received in the form of beliefs from
WorldInteractionManagement, and the conditional rules given by StrategyDetermination.
The candidate plans are forwarded to PlanSelection where the most appropriate plan is
selected. In case no plan can be selected in PlanSelection this information is forwarded
to the StrategyDetermination component. StrategyDetermination reasons on a meta-level
(the input is located on a higher level as well as the output as shown in Figure 3),
getting input by translating beliefs into reflected beliefs and by means of receiving the
status of the plan selection process from PlanSelection. The component has the

possibility to generate more conditional rules and pass them to PlanGeneration, or can
change the evaluation criteria in PlanSelection by forwarding these criteria.

Fig. 2. Agent architecture

OwnProcessControl
1
in

OwnProcessControl
2
in

OwnProcessControl
1

out

OwnProcessControl
2

out

StrategyDetermination

PlanGeneration PlanSelection

reflected_beliefs_to_SD

belief_info_to_PG

plans_to_be_considered_to_PG

possible_plans_to_PS

evaluation_info_to_SD

selected_plan_from_PS

evaluation_criteria_to_PS

Fig. 3. Components within OwnProcessControl

OwnProcessControl
1
in

OwnProcessControl
2
in

OwnProcessControl
1

out

OwnProcessControl
2

out

StrategyDetermination

PlanGeneration PlanSelection

reflected_beliefs_to_SD

belief_info_to_PG

plans_to_be_considered_to_PG

possible_plans_to_PS

evaluation_info_to_SD

selected_plan_from_PS

evaluation_criteria_to_PS

40

The model has some similarities with the model presented in [7]. A major
difference is that an additional meta-level is present in the architecture presented here
for the StrategyDetermination component. The advantage of having such an additional
level is that the reasoning process will be more efficient, as the initial number of
options are limited but are required to be the most straightforward ones.

3 Formalization Method

In this section the method used for the formalization of the model presented in section
2 is explained in more detail. To formally specify dynamic properties that are
essential in naval strategic planning processes and therefore essential for the
components within the agent, an expressive language is needed. To this end the
Temporal Trace Language (TTL) is used as a tool; cf. [8]. In this section of the paper
both an informal and formal representation of the properties are given.

A state ontology is a specification (in order-sorted logic) of a vocabulary. A state
for ontology Ont is an assignment of truth-values {true, false} to the set At(Ont) of
ground atoms expressed in terms of Ont. The set of all possible states for state
ontology Ont is denoted by STATES(Ont). The set of state properties STATPROP(Ont)
for state ontology Ont is the set of all propositions over ground atoms from At(Ont). A
fixed time frame T is assumed which is linearly ordered. A trace or trajectory γ over
a state ontology Ont and time frame T is a mapping γ : T → STATES(Ont), i.e., a
sequence of states γt (t ∈ T) in STATES(Ont). The set of all traces over state ontology
Ont is denoted by TRACES(Ont). Depending on the application, the time frame T may
be dense (e.g., the real numbers), or discrete (e.g., the set of integers or natural
numbers or a finite initial segment of the natural numbers), or any other form, as long
as it has a linear ordering. The set of dynamic properties DYNPROP(�) is the set of
temporal statements that can be formulated with respect to traces based on the state
ontology Ont in the following manner.

Given a trace γ over state ontology Ont, the input state of a component c within the
agent (e.g., PlanGeneration, or PlanSelection) at time point t is denoted by state(γ, t,
input(c)).

Analogously state(γ, t, output(c)) and state(γ, t, internal(c)) denote the output state, internal
state and external world state.

These states can be related to state properties via the formally defined satisfaction
relation |=, comparable to the Holds-predicate in the Situation Calculus: state(γ, t,
output(c)) |= p denotes that state property p holds in trace γ at time t in the output state
of agent-component c. Based on these statements, dynamic properties can be
formulated in a formal manner in a sorted first-order predicate logic with sorts T for
time points, Traces for traces and F for state formulae, using quantifiers over time and
the usual first-order logical connectives such as ¬, ∧, ∨, �, ∀, ∃. In trace
descriptions, notations such as state(γ, t, output(c))|= p are shortened to output(c)|p.

To model direct temporal dependencies between two state properties, the simpler
leads to format is used. This is an executable format defined as follows. Let α and β
be state properties of the form ‘conjunction of literals’ (where a literal is an atom or
the negation of an atom), and e, f, g, h non-negative real numbers. In the leads to
language α →→e, f, g, h β, means:

41

if state property α holds for a certain time interval with duration g, then after some delay (between e and
f) state property β will hold for a certain time interval of length h.

For a precise definition of the leads to format in terms of the language TTL, see [9].
A specification of dynamic properties in leads to format has as advantages that it is
executable and that it can easily be depicted graphically.

4 Component Specification for Naval Planning

This Section introduces each of the components within the strategic planning process
in more detail. The components presented in this section are only those part of
OwnProcessControl within the agent as they are most relevant for the planning process.
A partial specification of executable properties in formal format is also presented for
each of these components. The properties introduced in this Section are generic for
naval (re)planning and can easily be instantiated with mission specific knowledge. All
of these properties are the result of interviews with officers of the Royal Netherlands
Navy.

4.1 Plan Generation

The rules for generation of a plan can be stated very generally as the knowledge about
plans. Conditions for those plans are stored in the StrategyDetermination component,
which is treated later. Basically, in this domain the component contains one rule:

if belief(S:SITUATION, pos)

 and conditionally_allowed(S:SITUATION, P:PLAN)

then candidate_plan(P:PLAN)

Stating that in case Monitoring evaluated the current situation as being situation S and
the PlanGeneration has received an input that situation S allows for plan P then it is a
candidate plan. This information is passed to the PlanSelection component.

4.2 Plan Selection

Plan selection is the next step in the process and for this domain there are three
important criteria that determine whether a plan is appropriate or not: (1) Mission
success; (2) safety, and (3) fleet morale criterion. In this scenario it is assumed that a
weighed sum can be calculated and used in order to make a decision between
candidate plans. The exact weight of each criterion is determined by the
StrategyDetermination component. The value for the criteria can be derived from
observations in the world and for example a weighed sum can be taken over time. To
obtain the observations, for each candidate plan the consequence events of the plan
are determined and formed into an observation. Thereafter the consequences of these
observations for the criteria can be determined. In the examples shown below the

42

bridge between changes of the criteria after an observation and the overall value of
the criteria are not shown in a formal form for the sake of brevity.

Mission Success. An important criterion is of course the mission success. Within this
criterion the objective of the mission plays a central role. In case a certain decision
needs to be made, the influence this decision has for the mission success needs to be
determined. The criterion involves taking into account several factors. First of all, the
probability that the deadline is reachable. Besides that, the probability that the mission
succeeds with a specific fleet configuration. The value of the mission success
probability is a real number between 0 and 1. A naval domain expert has labeled
certain events with an impact value on mission success. This can entail a positive
effect or a negative effect. The mission starts with an initial value for success, taking
into consideration the assignment and the enemy. In case the situation changes this
can lead to a change of the success value. An example of an observation with a
negative influence is shown below.

if current_success_value(S:REAL)

 and belief(ship_left_behind, pos)

then new_succes_value(S:REAL * 0.8)

Safety. Safety is an important criterion as well. When a ship loses propulsion the
probability of survival decreases dramatically if left alone. Basically, the probability
of survival depends on three factors: (1) the speed with which the task group is
sailing; (2) the configuration of own ships, which includes the amount and type of
ships, and their relative positions; (3) the threat caused by the enemy, the kind of
ships the enemy has, the probability of them attacking the task group, etc.

The safety value influences the evaluation value of possible plans. The duration of
a certain safety value determines its weight in the average risk value, so a weighed
sum based on time duration is taken. The value during a certain period in time is again
derived by means of an initial safety value and events in the external world causing
the safety value to increase or decrease. An example rule:

if current_safety_value(S:REAL)

 and belief(speed_change_from_to(full, slow), pos)

then new_safety_value(0.5 * S:REAL)

Fleet morale. The morale of the men on board of the ships is also important as
criterion. Morale is important in the considerations as troops with a good morale are
much more likely to win compared to those who do not have a good morale. Troop
morale is represented by a real number with a value between 0 and 1 and is
determined by events in the world observed by the men. Basically, the men start with
a certain morale value and observations of events in the world can cause the level to
go up or down, similar to the mission success criterion. One of the negative
experiences for morale is the observation of being left behind without protection or
seeing others solely left behind:

if current_morale_value(M:REAL)

 and belief(ship_left_behind, pos)

then new_morale_value(M:REAL * 0.2)

43

An observation increasing the morale is that of sinking an enemy ship:

if current_morale_value(M:REAL)

and belief(enemy_ship_eliminated, pos)

and min(1, M:REAL * 1.6, MIN:REAL)

then new_morale_value(MIN:REAL)

4.3 Strategy Determination

The StrategyDetermination component within the model has two functions: First of all, it
determines the conditional plans that are to be used given the current state. Secondly,
it provides a strategy for the selection of these plans.

In general, naval plans are generated according to a preferred plan library or in
exceptional cases outside of this preferred plan library. The StrategyDetermination
component within the model determines which plans are to be used and thereafter
forwards these plans to the PlanGeneration component. The StrategyDetermination
component determines one of three modes of operation on which conditional rules are
to be used in this situation:
1. Limited action demand. This mode is used as an initial setting and is a subset of

the preferred plan library. It includes the more common actions within the
preferred plan library;

2. Full preferred plan library. Generate all conditional rules that are allowed
according to the preferred plan library. This mode is taken when the limited action
mode did not provide a satisfactory solution;

3. Exceptional action demand. This strategy is used in exceptional cases, and only
in case the two other modes did not result in an appropriate candidate plan.

Next to determining which plans should be evaluated, the StrategyDetermination
component also determines how these plans should be evaluated. In Section 4.3 it was
stated that the plan selection depends on mission success, safety, and fleet morale. All
three factors determine the overall evaluation of a plan to a certain degree. Plans can
be evaluated by means of an evaluation formula, which is described by a weighted
sum. Differences in weights determine differences in plan evaluation strategy. The
plan evaluation formula is as follows (in short):

evaluation_value(P:PLAN) =

 (α x mission_success_value(P:PLAN)) + (β x safety_value(P:PLAN)) + (γ x fleet_morale_value(P:PLAN))

where all values and degrees are in the interval [0,1], and � +
�

 + � = 1. The degrees
depend on the type of mission and the current state of the process. For instance, if a
mission is supposed to be executed safely at all cost or the situation shows that
already many ships have been lost, the degree

�
 should be relatively high.

In case of equally important criteria the following rule holds:

if problem_type(mission_success_important)

 and problem_type(safety_important)

 and problem_type(fleet_morale_important)

 and candidate_plan(P:PLAN)

 and mission_success_value(P:PLAN, R1:REAL)

 and safety_value(P:PLAN, R2:REAL)

44

 and fleet_morale_value(P:PLAN, R3:REAL)

then evaluation_value(no_propulsion(ship), 0.33 * R1:REAL + 0.33 * R2:REAL + 0.33 *R3:REAL)

In case two criteria are most important the following rule holds:

if problem_type(mission_success_important)

 and problem_type(safety_important)

 and not problem_type(fleet_morale_important)

 and candidate_plan(P:PLAN)

 and mission_success_value(P:PLAN, R1:REAL)

 and safety_value(P:PLAN, R2:REAL)

 and fleet_morale_value(P:PLAN, R3:REAL)

then evaluation_value(no_propulsion(ship), 0.45 * R1:REAL + 0.45 * R2:REAL + 0.1 *R3:REAL)

This holds for each of the problem type combinations where two criteria are
important: A weight of 0.45 in case the criterion is important for the problem type and
0.1 otherwise. Finally, only one criterion can be important:

if problem_type(mission_success_important)

 and not problem_type(safety_important)

 and not problem_type(fleet_morale_important)

 and candidate_plan(P:PLAN)

 and mission_success_value(P:PLAN, R1:REAL)

 and safety_value(P:PLAN, R2:REAL)

 and fleet_morale_value(P:PLAN, R3:REAL)

then evaluation_value(no_propulsion(ship), 0.6 * R1:REAL + 0.2 * R2:REAL + 0.2 *R3:REAL)

The plan generation modes and plan selection degrees presented above can be

specified by formal rules which have been omitted for the sake of brevity.

5 Case-studies

This Section presents several case studies which have been formalized using the
agent-based model presented in Section 2 and 4. These case studies are again based
upon interviews with expert navy officers of the Royal Netherlands Navy. The
formalization of this process follows the methodology presented in Section 3. Three
case studies are presented: total steam failure, submarine threat, and frigate loss.

5.1 Total Steam Failure

The first scenario used as a case study is called total steam failure. First, the scenario
is described, after which the simulation results are presented.

5.1.1 Scenario Description
The scenario used as an example is the first phase within a total steam failure
scenario. A fleet consisting of 6 frigates (denoted by F1 – F6) and 6 helicopters

45

(denoted by H1 – H6) are protecting a specific area called Zulu Zulu (denoted by ZZ).
For optimal protection of valuable assets that need to be transported to a certain
location, and need to arrive before a certain deadline, the ships carrying these assets
are located in ZZ. These ships should always maintain their position in ZZ to
guarantee optimal protection. The formation at time T0 is shown in Figure 4. On that
same time-point the following incident occurs: An amphibious transport ship, that is
part of ZZ, loses its propulsion and cannot start the engines within a few minutes.
When a mission is assigned to a commander of the task group (CTG), he receives a
preferred plan library from the higher echelon. This library gives an exhaustive list of
situations and plans that are allowed to be executed within that situation. Therefore
the CTG has to make a decision: What to do with the ship and the rest of the fleet.
In the situation occurring in the example scenario the preferred plan library consists of
four plans:

1. Continue sailing. Leave the ship behind. The safety of the main fleet will therefore
be maximal, however the risk for the ship is high. The morale of all the men
within the fleet will drop.

2. Stop the entire fleet. Stopping the fleet ensures that the ship is not left behind and
lost, however the risks for the other ships increase rapidly as an attack is more
likely to be successful when not moving.

3. Return home without the ship. Rescue the majority of the men from the ship,
return home, but leave a minimal crew on the ship that will still be able to fix the
ship. The ship will remain in danger until it is repaired and the mission is surely
not going to succeed. The morale of the men will drop to a minimal level. This
option is purely hypothetical according to the experts.

4. Form a screen around the ship. This option means that part of the screen of the
main fleet is allocated to form a screen around the ship. Therefore the ship is
protected and the risks for the rest of the fleet stay acceptable.

Fig. 4. Scenario for meta-reasoning

46

Option 4 involves a lot more organizational change compared to the other options and
is therefore considered after the first three options. The CTG decides to form a screen
around the ship

5.1.2 Simulation Results

The most interesting results of the simulation using the architecture and properties
described in Section 2 and 4, and instantiated with the case-study specific knowledge
from Section 5.1 are shown in Figure 5. The trace, a temporal description of chains of
events, describes the decision making process of the agent which plays the role of
Commander Task Group (CTG). The atoms on the left side denote the information
between and within the components of the agent. To keep the Figure clear only the
atoms of the components on the lowest level of the agent architecture are shown. The
right side of the figure shows when these atoms are true. In case of a black box the
atom is true during that period, in the other cases the atom is false (closed world

internal(StrategyDetermination)|operation_mode(limited_action_demand)
output(StrategyDetermination)|to_be_assumed(conditionally_allowed(has_problem(no_propulsion, ship), continue_without_ship))

output(StrategyDetermination)|to_be_assumed(conditionally_allowed(has_problem(no_propulsion, ship), return_home_without_ship))
output(StrategyDetermination)|to_be_assumed(conditionally_allowed(has_problem(no_propulsion, ship), stop_fleet))

input(Monitoring)|observation_result(no_propulsion(ship), pos)
input(PlanGeneration)|conditionally_allowed(has_problem(no_propulsion, ship), stop_fleet)

input(PlanGeneration)|conditionally_allowed(has_problem(no_propulsion, ship), continue_without_ship)
input(PlanGeneration)|conditionally_allowed(has_problem(no_propulsion, ship), return_home_without_ship)

output(Monitoring)|evaluation_is_current(has_problem(no_propulsion, ship), pos)
output(Monitoring)|belief(no_propulsion(ship), pos)

output(PlanSelection)|current_plan(continue_without_ship)
input(PlanGeneration)|evaluation_is_current(has_problem(no_propulsion, ship), pos)

input(PlanSelection)|belief(no_propulsion(ship), pos)
input(PlanExecution)|belief(no_propulsion(ship), pos)

input(StrategyDetermination)|true(belief(no_propulsion(ship), pos))
output(PlanGeneration)|candidate_plan(stop_fleet)

output(PlanGeneration)|candidate_plan(continue_without_ship)
output(PlanGeneration)|candidate_plan(return_home_without_ship)

input(PlanSelection)|candidate_plan(stop_fleet)
input(PlanSelection)|candidate_plan(continue_without_ship)

input(PlanSelection)|candidate_plan(return_home_without_ship)
internal(PlanSelection)|plan_evaluation(stop_fleet, 0.3)

internal(PlanSelection)|plan_evaluated(stop_fleet)
internal(PlanSelection)|plan_evaluation(continue_without_ship, 0.2)

internal(PlanSelection)|plan_evaluated(continue_without_ship)
internal(PlanSelection)|plan_evaluation(return_home_without_ship, 0.1)

internal(PlanSelection)|plan_evaluated(return_home_without_ship)
internal(PlanSelection)|best_plan(stop_fleet, 0.3)

output(PlanSelection)|selection_info(selection_failed)
input(StrategyDetermination)|true(selection_info(selection_failed))
internal(StrategyDetermination)|operation_mode(full_plan_library)

output(StrategyDetermination)|to_be_assumed(conditionally_allowed(has_problem(no_propulsion, ship), form_screen_around_ship))
input(PlanGeneration)|conditionally_allowed(has_problem(no_propulsion, ship), form_screen_around_ship)

output(PlanGeneration)|candidate_plan(form_screen_around_ship)
input(PlanSelection)|candidate_plan(form_screen_around_ship)

internal(PlanSelection)|plan_evaluation(form_screen_around_ship, 0.6)
internal(PlanSelection)|plan_evaluated(form_screen_around_ship)
internal(PlanSelection)|best_plan(form_screen_around_ship, 0.6)

internal(PlanSelection)|plan_change
output(PlanSelection)|current_plan(form_screen_around_ship)

time 0 5 10 15 20

Fig. 5. Trace of the total steam failure simulation

47

assumption). The atoms used are according to the model presented in Section 2. For
example, internal(PlanGeneration) denotes that the atom is internal within the
PlanGeneration component. More specifically, the trace shows that at time-point 1 the
Monitoring component receives an input that the ship has no propulsion

 input(Monitoring)|observation_result(no_propulsion(ship), pos)

The current plan is to continue without the ship, as the fleet continues to sail without
any further instructions:

output(PlanSelection)|current_plan(continue_without_ship)

As the StrategyDetermination component always outputs the options currently available
for all sorts of situations (in this case only a problem with the propulsion of a ship) it
continuously outputs the conditionally allowed information in the limited action
mode, for example:

output(StrategyDetermination)|to_be_assumed(
conditionally_allowed(has_problem(no_propulsion, ship),continue_without_ship))

The information becomes an input through downward reflection, a translation from a
meta-level to a lower meta-level:

input(PlanGeneration)|conditionally_allowed(
has_problem(no_propulsion, ship), continue_without_ship)

The Monitoring component forwards the information about the observation to the
components on the same level as beliefs. The StrategyDetermination component also
receives this information but instead of a belief it arrives as a reflected belief through
upward reflection which is a translation of information at a meta-level to a higher
meta-level:

 input(StrategyDetermination)| true(belief(no_propulsion(ship), pos))

Besides deriving the beliefs on the observations the Monitoring component also
evaluates the situation and passes this as evaluation info to the PlanGenerator.

 input(PlanGenerator)|evaluation(has_problem(no_propulsion, ship), pos)

This information acts as a basis for the PlanGenerator to generate candidate plans,
which are sent to the PlanSelection, for example.

input(PlanSelection)|candidate_plan(continue_without_ship)

Internally the PlanSelection component determines the evaluation value of the different
plans, compares them and derives the best plan out of the candidate plans:

internal(PlanSelection)|best_plan(stop_fleet, 0.3)

48

This value is below the threshold evaluation value and therefore the PlanSelection
component informs the StrategyDetermination component that no plan has been
selected:

output(PlanSelection)|selection_info(selection_failed)

Thereafter the StrategyDetermination component switches to the full preferred plan
library and informs PlanGeneration of the new options. PlanGeneration again generates
all possible plans and forwards them to PlanSelection. PlanSelection now finds a plan
that is evaluated above the threshold and makes that the new current plan.

output(PlanSelection)|current_plan(form_screen_around_ship)

This plan is forwarded to the PlanExecution and Monitoring components (not shown in
the trace) and is executed and monitored.

5.2 Submarine Threat

The second scenario is called submarine threat, and deals with a hostile submarine
being detected within the fleet. First, a description of the scenario is given and
thereafter simulation results are presented.

5.2.1 Scenario Description
The initial fleet formation and mission for this scenario is identical to the one
explained in Section 5.1.1. Another event however occurs that needs to be dealt with.
Frigate F1 suddenly detects sonar contact with a high probability that it concerns a
hostile submarine. The position of this submarine is such that the assets in Zulu Zulu
are within torpedo range of the submarine. The plan library for the CTG in this
particular situation is as follows:

1. Eliminate and turn. This option consists of two actions: First of all, F1 will fire

a torpedo in the direction of the detected submarine. Thereafter, several frigates
are sent to eliminate the submarine whereas the remainder of the fleet turns away
from the submarine, positioning several frigates between the submarine and Zulu
Zulu. This option results in risk for the frigates chasing the submarine whereas
the remainder of the fleet remains relatively safe. Morale of the men will go up,
and mission success is not so much endangered.

2. Full attack. This plan entails a full attack on the submarine with all available
resources. Disadvantage is however that Zulu Zulu is no longer protected, and
another enemy ship could possibly attack Zulu Zulu. The risk for mission success
is therefore high, and morale of the men on board of the ships part of Zulu Zulu
will drop, since they are being left behind without protection.

3. Full throttle. Accelerate to maximum speed, in order to try and outrun the
submarine, zig zag to avoid the submarine getting a lock on one of the ships
within Zulu Zulu. Morale of the troops will go down since they know there is a
submarine somewhere trying to attack, and mission success will be much lower

49

as well since the submarine might have the ability to successfully fire torpedo’s
at Zulu Zulu. Safety is also low.

Option 3 is considered only after the first two have been considered as trying to
escape from a submarine is highly dangerous and therefore seriously threatens
mission success. Preferred plan is therefore to try and eliminate the submarine. The
CTG decides to choose the eliminate and turn plan.

5.2.2 Simulation Results

internal(StrategyDetermination)|operation_mode(limited_action_demand)
output(StrategyDetermination)|to_be_assumed(conditionally_allowed(has_problem(submarine_detected, ship), eliminate_and_turn))

output(StrategyDetermination)|to_be_assumed(conditionally_allowed(has_problem(submarine_detected, ship), full_attack))
input(Monitoring)|observation_result(detected(submarine), pos)

input(PlanGeneration)|conditionally_allowed(has_problem(submarine_detected, ship), eliminate_and_turn)
input(PlanGeneration)|conditionally_allowed(has_problem(submarine_detected, ship), full_attack)

output(Monitoring)|evaluation_is_current(has_problem(submarine_detected, ship), pos)
output(Monitoring)|belief(detected(submarine), pos)

output(PlanSelection)|current_plan(continue)
input(StrategyDetermination)|true(belief(detected(submarine), pos))

input(PlanSelection)|belief(detected(submarine), pos)
input(PlanExecution)|belief(detected(submarine), pos)

input(PlanGeneration)|evaluation_is_current(has_problem(submarine_detected, ship), pos)
output(PlanGeneration)|candidate_plan(eliminate_and_turn)

output(PlanGeneration)|candidate_plan(full_attack)
input(PlanSelection)|candidate_plan(eliminate_and_turn)

input(PlanSelection)|candidate_plan(full_attack)
internal(PlanSelection)|plan_evaluation(eliminate_and_turn, 0.8)

internal(PlanSelection)|plan_evaluated(eliminate_and_turn)
internal(PlanSelection)|plan_evaluation(full_attack, 0.4)

internal(PlanSelection)|plan_evaluated(full_attack)
internal(PlanSelection)|best_plan(eliminate_and_turn, 0.8)

internal(PlanSelection)|plan_change
output(PlanSelection)|current_plan(eliminate_and_turn)

time 0 5 10 15 20

Figure 6 shows the results of a simulation of the submarine threat scenario. Initially,
again the operation mode is set to limited action demand, which results in two plans
being outputted by the StrategyDetermination component:

output(StrategyDetermination)|to_be_assumed(conditionally_allowed(has_problem(

submarine_detected), ship), eliminated_and_turn)
output(StrategyDetermination)|to_be_assumed(conditionally_allowed(has_problem(

submarine_detected), ship), full_attack)

Suddenly, an event occurs which is precisely the event for which these conditional
plans are meant, namely that a submarine has been detected by a ship:

output(Monitoring)|belief(detected(submarine), pos)

As a result the current plan selected to handle the situation is again to continue with
the current plan, which is to continue sailing. The PlanGeneration component generates

Fig. 6. Trace of the submarine threat simulation

50

the currently available plans for handling the event, which it has received from the
StrategyDetermination component:

output(PlanGeneration)|cadidate_plan(eliminated_and_turn)
output(PlanGeneration)|cadidate_plan(full_attack)

This output is received by the PlanSelection component, which starts to evaluate the
two available plans. After evaluation, the plan to eliminate and turn is found to be best
and is evaluated above the threshold value. As a result, it is selected as the new
current plan:

output(PlanSelection)|current_plan(elminate_and_turn)

As can be seen in the simulation, only two out of three available plans have been
evaluated before selecting a new plan. Since the plans being evaluated first are the
ones typically best suitable in the situation, this saves a lot of precious evaluation
most of the time.

5.3 Frigate Loss

Final scenario which has been investigated is that of a frigate being hit by a submarine
torpedo.

5.3.1 Scenario Description
Again, the initial fleet configuration and mission are identical to the description
presented in Section 5.1.1. Again, a submarine is detected, for which the CTG decides
to send in H3 to eliminate the submarine. The submarine however fires a torpedo
which strikes F3 causing it to sink. There are now several options how to continue:

1. Eliminate and save. Eliminate the submarine first by reinforcing the current

attack units. Thereafter, save the drowning crew of frigate F3. This option
maximizes the morale of the troops as they see their colleagues being saved,
mission success is however slightly endangered as picking up the drowning crew
will result in frigates lying still, which makes them more vulnerable for enemy
attacks.

2. Save crew. Immediately use all resources to save the crew on board of the sunken
ship. In this scenario this is devastating for mission success as the submarine can
easily attack the ships within Zulu Zulu. Furthermore, the submarine could even
attack the resources that are being used to save the crew of the sunken ship. The
safety for the crew of the sunken ship is relatively high whereas the safety for the
other ships is low.

3. Surrender. Hoist the white flag and surrender to avoid further casualties. Morale
will be very low, mission success probability is down to zero, and safety is highly
unknown as the crew and assets are now in the hands of the enemy.

51

Again, options 1 and 2 are first considered before the last option is taken into
consideration since surrender is the last option a fleet commander wants to think of.

5.3.2 Simulation Results
Figure 7 shows the simulation results of the Frigate loss scenario. In this particular
trace, the α, β, and γ value passed to the PlanSelection component by
StrategyDetermination are shown as well. Again, initially the operation mode is set to
limited action demand and the accompanying conditional rules for this scenario are
passed as well, namely the following:

input(PlanGeneration)|conditionally_allowed(has_problem(submarine_attack_hit, ship),

eleminate_and_save)
input(PlanGeneration)|conditionally_allowed(has_problem(submarine_attack_hit, ship),

save_crew)

internal(StrategyDetermination)|operation_mode(limited_action_demand)
input(PlanGeneration)|conditionally_allowed(has_problem(submarine_attack_hit, ship), eliminate_and_save)

input(PlanGeneration)|conditionally_allowed(has_problem(submarine_attack_hit, ship), save_crew)
input(PlanSelection)|has_value(alpha, 0.45)
input(PlanSelection)|has_value(beta, 0.45)

input(PlanSelection)|has_value(gamma, 0.1)
output(PlanSelection)|current_plan(continue)

input(PlanGeneration)|evaluation_is_current(has_problem(submarine_attack_hit, ship), pos)
output(PlanGeneration)|candidate_plan(eliminate_and_save)

output(PlanGeneration)|candidate_plan(save_crew)
input(PlanSelection)|candidate_plan(eliminate_and_save)

input(PlanSelection)|candidate_plan(save_crew)
internal(PlanSelection)|plan_evaluation(eliminate_and_save, 0.26)

internal(PlanSelection)|plan_evaluation(save_crew, 0.14)
internal(PlanSelection)|best_plan(eliminate_and_save, 0.26)

output(PlanSelection)|selection_info(selection_failed)
internal(StrategyDetermination)|operation_mode(full_plan_library)

input(PlanGeneration)|conditionally_allowed(has_problem(submarine_attack_hit, ship), surrender)
output(PlanGeneration)|candidate_plan(surrender)

input(PlanSelection)|candidate_plan(surrender)
internal(PlanSelection)|plan_evaluation(surrender, 0.1175)

internal(StrategyDetermination)|value_change(alpha)
internal(StrategyDetermination)|value_change(beta)

internal(StrategyDetermination)|value_change(gamma)
input(PlanSelection)|has_value(alpha, 0.2)
input(PlanSelection)|has_value(beta, 0.2)

input(PlanSelection)|has_value(gamma, 0.6)
internal(PlanSelection)|plan_evaluation(eliminate_and_save, 0.56)

internal(PlanSelection)|plan_evaluation(surrender, 0.08)
internal(PlanSelection)|plan_evaluation(save_crew, 0.34)

internal(PlanSelection)|best_plan(eliminate_and_save, 0.56)
internal(PlanSelection)|plan_change

output(PlanSelection)|current_plan(eliminate_and_save)
time 0 2 4 6 8 10 12 14 16 18 20 22 24 26

The initial α, β, and γ values passed are respectively 0.45, 0.45, and 0.1:

input(PlanSelection)|has_value(alpha, 0.45)
input(PlanSelection)|has_value(beta, 0.45)
input(PlanSelection)|has_value(gamma, 0.1)

Denoting that in this case mission success and safety are considered to be more
important aspects for plan evaluation than morale. Suddenly the problem of a frigate
being hit by an enemy submarine is observed, which is forwarded to the
PlanGeneration component:

Fig. 7. Trace of the frigate loss scenario

52

input(PlanGeneration)|evaluation_is_current(has_problem(submarine_attack_hit), ship),
pos)

Based on the detected problem, the two plans that are currently conditionally allowed
are generated, and forwarded to PlanSelection:

input(PlanSelection)|candidate_plan(eliminate_and_save)
input(PlanSelection)|candidate_plan(save)

Based on the previously mentioned α, β, and γ values, the component evaluates the
candidate plans, and concludes that eliminate and save is the best plan, with an
evaluation value of 0.26:

internal(PlanSelection)|best_plan(eliminate_and_save, 0.26)

Since the threshold for plan selection is set to a higher value, namely 0.35, the
component outputs that selection has failed for this set. As a result the
StrategyDetermination component switches to full plan library mode:

internal(StrategyDetermination)|operation_mode(full_plan_library)

The plans that have been added to the library and which are appropriate for the
current situation are again forwarded to PlanSelection which evaluates the new
additional plan (surrender) to the even lower value of 0.1175:

internal(PlanSelection)|best_plan(eliminate_and_save, 0.26)

Again, selection has failed, however there are no additional plans available in the
exceptional action demand mode. Therefore, the StrategyDetermination component
decides to adapt the weights of the parameters, and gives more weight to moral (γ):

input(PlanSelection)|has_value(alpha, 0.2)
input(PlanSelection)|has_value(beta, 0.2)
input(PlanSelection)|has_value(gamma, 0.6)

As a result, the best plan is now eliminate and save which now evaluates above the
threshold. Finally, the plan is set to be the current plan.

6 Validation by Verification

After a formalized trace has been obtained, either by formalization of an empirical
trace or by means of simulation (such as done in the previous section), in this section
it is validated whether the traces comply to certain desired properties for this trace.
Below the verification of these properties against the traces are shown. The properties
are independent from the specific scenario and should hold for every scenario for
which the agent-based meta-level architecture presented in Section 2 and 4 is applied.
The properties are formalized using Temporal Trace Language as described in Section
3.

53

P1: Upward reflection. This property states that information generated at the level of
the Monitoring and PlanSelection components should always be reflected upwards to the
level of the StrategyDetermination component. In semi-formal notation:

At any point in time t,
if Monitoring outputs a belief about the world at time t
then at a later point in time t2 StrategyDetermination receives this information through upward reflection
At any point in time t,
if PlanSelection outputs selection info at time t
then at a later point in time t2 StrategyDetermination receives this information though upward reflection.

In formal form the property is as follows:

∀t [[∀O:OBS, S:SIGN [state(γ, t, output(Monitoring)) |= belief(O, S)
� ∃t2 ≥ t state(γ, t2, input(StrategyDetermination)) |= true(belief(O,S))]]
& [∀SI:SEL_INFO [state(γ, t, output(PlanSelection)) |= selection_info(SI)
� ∃t2 ≥ t state(γ, t2, input(StrategyDetermination)) |= true(selection_info(SI))]]]

This property has been automatically checked and thus shown to be satisfied within
the traces.

P2: Downward reflection. Property P2 verifies that all information generated by the
StrategyDetermination component for a lower meta-level is made available at that level
through downward reflection. In formal form:

∀t, S:SITUATION, P:PLAN [state(γ, t, output(StrategyDetermination))
|= to_be_assumed(conditionally_allowed(S, P))
� ∃t2 ≥ t state(γ, t2, input(PlanGeneration)) |= conditionally_allowed(S, P)]

This property is also satisfied for the given traces.

P3: Extreme measures. This property states that measures that are not part of the
preferred plan library (extreme measures) are only taken in case some other options
failed. In formal form:

∀t, t2 > t, S:SITUATION, P1:PLAN, P2:PLAN
[[state(γ, t, output(Monitoring)) |= evaluation(exception(S), pos) & state(γ, t, output(PlanSelection)) |=
current_plan(P1) & state(γ, t2, output(PlanSelection)) |= current_plan(P2) & P1 ≠ P2
& ¬state(γ, t2, internal(StrategyDetermination)) |= to_be_assumed(preferred_plan(S, P2)]
� ∃t’ [t’ ≥ t & t’ ≤ t2 & state(γ, t’, output(PlanSelection)) |= selection_info(selection_failed)]]

The property is satisfied for the given traces.

P4: Plans are changed only if an exception was encountered. Property P4 formally
describes that a plan is only changed in case there has been an exception that triggered
this change. Formal:

∀t, t2 ≥ t, P:PLAN [[state(γ, t, output(PlanSelection)) |= current_plan(P) &
¬state(γ, t2, output(PlanSelection)) |= current_plan(P)] � ∃t’, S:SITUATION [t’ ≥ t & t’ ≤ t2 &
state(γ, t’, output(Monitoring)) |= evaluation(exception(S), pos)]]

This property is again satisfied for the given traces.

54

7 Discussion

This paper presents an agent-based architecture for strategic planning (cf. [15]) for
naval domains. The architecture was designed as a meta-level architecture (cf. [10])
with three levels. The interaction between the levels in this paper is modeled by
reflection principles (e.g., [1]). The dynamics of the architecture is based on a multi-
level trace approach as an extension of what is described in [6]. The architecture has
been instantiated with naval strategic planning knowledge. The resulting executable
model has been used to perform a number of simulation runs. To evaluate the
simulation results desired properties for the planning decision process have been
identified, formalized, and then validated for the simulation traces.

A meta-level architecture for strategic reasoning in another area, namely that of
design processes is described in [4]. This architecture has been used as a source of
inspiration for the current architecture for strategic planning. In other architectures,
such as in PRS [5], meta-level knowledge is also part of the system, however this
knowledge is not explicitly part of the architecture (it is part of the Knowledge Areas)
as is the case in the architecture presented in this paper.

Agent models of military decision making have been investigated before. In [14]
for example an agent based model is presented that mimics the decision process of an
experienced military decision maker. Potential decisions are evaluated by checking if
they are good for the current goals. A case study of decisions to be made at an
amphibian landing mission is used. The outcome of the evaluations of the decisions
that can be made in the case-study are compared to the decisions made by real
military commanders. The approach presented is different from the approach taken in
this paper as a more formal approach is taken here to evaluate the model created. Also
the focus in this paper is more on the model of the decision maker itself and not on
the correctness of the decisions, which is the case in [14]. The main advantage of the
approach taken is that the system is specified and can be simulated on a conceptual
level contrary to other approaches. Furthermore for knowledge intensive domains,
such as the naval domain, there is the problem of scalability. We acknowledge this
and suggest further research for different domains and variants. It is possible for
instance to add or change the described criteria or apply particular planning
algorithms. Finally, this paper addressed resource-bounded situations. In [12] an
overview is presented of models for human behavior that can be used for simulations.
Similar to research done in other agent-based systems using the DESIRE framework
[2], future research in simulation and the validation of relevant properties for the
resulting simulation traces is expected to give key insight for the implementation of
future complex resource-bounded agent-based planning support systems used by
commanders on naval platforms.

Acknowledgments

CAMS-Force Vision, a software development company associated with the Royal
Netherlands Navy, funded this research and provided domain knowledge. The authors
especially want to thank Jaap de Boer (CAMS-Force Vision) for his expert
knowledge.

55

References

[1] Bowen, K. and Kowalski, R., Amalgamating language and meta-language in logic
programming. In: K. Clark, S. Tarnlund (eds.), Logic programming. Academic Press,
1982.

[2] Brazier, F.M.T., Dunin Keplicz, B., Jennings, N., and Treur, J., DESIRE: Modelling
Multi-Agent Systems in a Compositional Formal Framework. International Journal of
Cooperative Information Systems, vol. 6, 1997, pp. 67-94.

[3] Brazier, F.M.T., Jonker, C.M., and Treur, J., Compositional Design and Reuse of a
Generic Agent Model. Applied Artificial Intelligence Journal, vol. 14, 2000, pp. 491-538.

[4] Brazier, F.M.T., Langen, P.H.G. van, and Treur, J., Strategic Knowledge in Design: a
Compositional Approach. Knowledge-based Systems, vol. 11, 1998 (Special Issue on
Strategic Knowledge and Concept Formation, K. Hori, ed.), pp. 405-416.

[5] Georgeff, M. P., and Ingrand, F. F., Decision-making in an embedded reasoning system.
In Proceedings of the Eleventh International Joint Conference on Artificial Intelligence
(IJCAI-89), pages 972-978, Detroit, MI, 1989.

[6] Hoek, W. van der, Meyer, J.-J.Ch., and Treur, J., Formal Semantics of Meta-Level
Architectures: Temporal Epistemic Reflection. International Journal of Intelligent
Systems, vol. 18, 2003, pp. 1293-1318.

[7] Jonker, C.M., and Treur, J., A Compositional Process Control Model and its Application
to Biochemical Processes. Applied Artificial Intelligence Journal, vol. 16, 2002, pp. 51-71.

[8] Jonker, C.M., and Treur, J. Compositional verification of multi-agent systems: a formal
analysis of pro-activeness and reactiveness. International. Journal of Cooperative
Information Systems, vol. 11, 2002, pp. 51-92.

[9] Jonker, C.M., Treur, J., and Wijngaards, W.C.A., A Temporal Modelling Environment for
Internally Grounded Beliefs, Desires and Intentions. Cognitive Systems Research Journal,
vol. 4, 2003, pp. 191-210.

[10] Maes, P, Nardi, D. (eds), Meta-level architectures and reflection, Elsevier Science
Publishers, 1988.

[11] Mulder, M, Treur, J., and Fisher, M., Agent Modelling in MetateM and DESIRE. In: M.P.
Singh, A.S. Rao, M.J. Wooldridge (eds.), Intelligent Agents IV, Proc. Fourth International
Workshop on Agent Theories, Architectures and Languages, ATAL'97. Lecture Notes in
AI, vol. 1365, Springer Verlag, 1998, pp. 193-207.

[12] Pew, R.W. and Mavor, A.S.. Modeling Human and Organizational Behavior, National
Academy Press, Washington, D.C. 1999.

[13] Shehory, O., and Sturm, A., Evaluation of modeling techniques for agent-based systems,
In: Proceedings of the fifth international conference on Autonomous agents, Montreal,
Canada, May 2001, pp. 624-631.

[14] Sokolowski, J., Enhanced Military Decision Modeling Using a MultiAgent System
Approach, In Proceedings of the Twelfth Conference on Behavior Representation in
Modeling and Simulation, Scottsdale, AZ., May 12-15, 2003, pp. 179-186.

[15] Wilkins, D.E., Domain-independent planning Representation and plan generation.
Artificial Intelligence 22 (1984), pp. 269-301.

56

57

Chapter 4

Redesign of Organizations
as a Basis for Organizational Change

Part of this chapter appeared as: Hoogendoorn, M., Jonker, C.M., and Treur, J.,
Redesign of Organizations as a Basis for Organizational Change. In: Boella, G.,
Boissier, O., Matson, E., and Vazquez-Salceda, J. (eds.), Proceedings of the
Workshop on Coordination, Organization, Institutions, and Norms in Agent Systems
(COIN @ ECAI 2006), 2006, pp. 38-46. (Also to appear in Springer LNAI post-
proceedings).

Furthermore, part of this chapter appeared as: Hoogendoorn, M., Jonker, C.M., and
Treur, J., Simulating Organizational Change Triggered by a Changing Environment.
In: Borutzky, W., Orsoni, A., Zobel, R. (eds.) Proceedings of the 20th European
Conference on Modelling and Simulation (ECMS 2006), 2006, pp. 532-539.

An extended abstract of this chapter appeared as: Hoogendoorn, M., Jonker, C.M.,
and Treur, J., Redesign of Organizations as a Basis for Organizational Change
(Extended Abstract). In: Poster Abstracts of the Second International Conference on
Design Computing and Cognition (DCC '06), 2006, pp. 7-8.

58

59

Redesign of Organizations
as a Basis for Organizational Change

Mark Hoogendoorn1, Catholijn M. Jonker2, and Jan Treur1

1Vrije Universiteit Amsterdam, Department of Artificial Intelligence,
De Boelelaan 1081a, 1081 HV Amsterdam, The Netherlands

email: {mhoogen, treur}@cs.vu.nl
2Radboud University Nijmegen, Nijmegen Institute for Cognition and Information,

Montessorilaan 3, 6525 HR Nijmegen, The Netherlands,
email: C.Jonker@nici.ru.nl

Abstract. Artificial Intelligence has contributed (formal) design models and
software support tools to application areas such as architecture, engineering and
software design This paper explores the effectiveness of applying design
models to the area of organization (re)design. To that purpose a component-
based model for (re)design of organizations is presented as a specialization of
an existing generic design model. Using recently developed formalizations
within Organization Theory organization models are described as design object
descriptions, and organization goals as design requirements. A formal design
process description is presented that models the redesign process for an
organization that adapts to changes in the environment. The formally specified
and implemented approach to organization redesign thus obtained has been
tested for a well-known historical case study from the Organization Theory
literature.

1 Introduction

Organizations are created to smoothen processes in all aspects of society, even in the
artificial societies of software agents. From a design perspective organizations have
goals to be achieved or maintained that serve as requirements for their functioning.
The behavior of the elements or parts of the organization and their interaction together
should result in overall organization behavior that fulfills the goals of the
organization. Environmental circumstances impose constraints on the organization
with respect to the way its goals can be fulfilled. As the environment changes over
time, so do these constraints. To adapt to such changes in constraints, the organization
might have to change itself. From a design perspective the changing constraints can
be interpreted as changing requirements to a re-organization problem.

Within the area of AI and Design, in the last decade formally specified generic
models for (re)design processes have been developed; e.g., [2, 4]. Application of a
generic redesign model to the area of organizations requires specialized knowledge
on: (1) organization goals; (2) how to derive refined requirements from such goals
given a variable environment; (3) the current design object description, and (4) what

60

components for a design object satisfy which requirements. A redesign process results
in a new design object description as a modification of the existing one and a
specification of changed (new) design requirements.

The redesign process as formally modeled in [4] involves generation and
modification steps for the specification of the requirement set and for the design
object description. A formal model of a redesign process thus requires formalizations
of design objects, design requirements, and of the dynamics of redesign processes.
This paper proposes such formalizations for the area of organizational (re)design, in
the context of a component based model for (re)design of organizations. Formalized
organization models [5,10,11,14,18] serve as design object descriptions.
Formalizations of organizational behavior are used for design requirements
specifications [10,11,14,18]. Finally, for design process dynamics a formalization is
used as put forward in [2]. The resulting formal approach contributes to the domain of
organization redesign in that it facilitates formal modeling, simulation and verification
of the redesign process. The approach is supported by tools to model and analyze such
redesign processes.

Section 2 gives the components based model for the design and redesign process
and describes the types of domain specific knowledge needed in such a process.
Section 3 addresses the formalization of design object descriptions by means of an
organization model format in which different components and aggregation levels can
be distinguished. In Section 4 the relation between goals, a changing environment and
requirements is described, including example cases described in Organization Theory.
Section 5 presents the method of refinement of such requirements and shows a
specific example. Thereafter, Section 6 presents examples of design object that are
known to satisfy certain design requirements, and Section 7 presents generic
properties which enable an evaluation of the successfulness of the whole (re)design
process. Section 8 presents simulation results of the model whereas Section 9
verification of these simulation results is addressed. Finally Section 10 is a discussion.

2 A Component-Based model for (re)design of organizations

This Section presents a component-based generic model for design of organizations
based on requirements manipulation and design object description manipulation. The
component-based model presented draws inspiration from [4] and was specified
within the DESIRE [3] framework. The model for design is composed of three
components, see Figure 1:

Fig. 1. Top level of the design model

61

• RQSM, which stands for Requirement Qualification Set Manipulation. Such

requirements are for example acquired by elicitation in cooperation with
managers within a company. Within RQSM the appropriate requirements are
determined in relation to the goals set for the organization and the current
environmental conditions. After having selected a set of requirements, these are
refined to more specific ones.

• DODM, for Design Object Description Manipulation, creates a design object
description based on the (specific) requirements received from RQSM. In order
to determine such a design object description, a number of alternative solutions
known to satisfy the requirements are generated and according to certain strategic
knowledge one of those is selected.

• Design Process Coordination (DPC) is the coordinating component for the design
process. The component determines the global design strategy (e.g., [4]) and can
evaluate whether the design process is proceeding according to plan.

Information exchange possibilities are represented by the links between input and
output of the components and the input and output of the model. Input and output are
represented by the small boxes left and right of components.

The next sections describe the three components in more detail. The model as
described here, is a generic design model for organizational design without
application- or domain-specific knowledge. In later sections such knowledge is
specified for a case study.

2.1 RQSM

The component RQSM is composed from two sub-components, namely Requirements
Sets Generation and Requirements Set Selection, see Figure 2.

Fig. 2. Components within RQSM

The component Requirements Sets Generation receives as an input the current

environmental conditions and the organizational goals. The sub-component contains
knowledge on what requirements entail fulfillment of organizational goals given the
environmental conditions. Such knowledge can be depicted in the form of AND/OR
trees as shown in Figure 3.

If for example E1 is observed, requirement R1 is an example of a requirement that,
when fulfilled, guarantees to satisfy goal G under environmental conditions E1. If the
environment changes to situation E2, the requirement has to change as well; the
example tree shows how R1 can be changed to requirement R2 that guarantees G
under the new environmental conditions E2. After a requirement is determined, it can

62

be refined in order to
obtain requirements
on a more specific
level. Making such a
requirement more
specific can result in
several options being
generated. For
example, it might be
possible to establish a
certain market share by having the best quality products but also by having the lowest
priced products. After having refined each of the requirements, all possible sets of
refined requirements are forwarded to the component Requirements Set Selection.

After the component Requirements Set Selection has received the alternative sets
of requirements its task is to select one of those alternatives, and to forward it to the
component DODM which will in turn find a suitable organization design for such a
requirement set. Different selection methods exist, e.g., explicit ranking, on the basis
of strategic knowledge. Such strategic knowledge can for example be based on the
source of requirements: requirements that originate from users can for example be
preferred over those derived by default rules which are in turn preferred over
requirements derived from previous requirements (see [12]).

2.2 DODM

DODM receives a set of refined requirements from RQSM, which is handled by two
sub-components, Design Object Description Generation and Design Object
Description Selection. The design object descriptions are descriptions of designs of
the organization, including both structural aspects as behavioral aspects.

Design Object Description Generation receives the requirements and delivers
descriptions of possible alternative design objects (i.e., organization design
descriptions), such that the (specific) requirements as received from RQSM are
satisfied. To establish satisfaction, knowledge is needed that specifies what part of a
design object contributes to fulfillment of a specific requirement. If, for example, the
requirement is to produce products of the highest quality, then a satisfactory design is
an organization having a department dedicated to checking quality and repairing of
production errors. Again, there can be many possibilities available that satisfy the
requirements. All alternatives found are forwarded to the component Design Object
Description Selection.
The component Design Object Description Selection can use several criteria to choose
the optimal design, such as operational costs effectiveness, and production time
effectiveness. In order to make such a selection, the component has (strategic)
knowledge concerning these aspects. It might for example know the typical price for
hiring an agent for a particular role Eventually, the component outputs a new design
for the organization.

Fig. 3. Example AND/OR tree relating environmental
conditions and requirements to a goal

63

2.3 DPC

The component DPC is the component which determines the global design strategy
and oversees whether the design process proceeds according to plan. Two different
tasks are distinguished. DPC checks whether a design object description determined
by DODM satisfies the refined requirements. It might for example be the case that the
combination of two suitable design object parts causes a conflict. In case the refined
requirements are not satisfied control information is passed to DODM stating that an
alternative should be found (e.g., taking a different branch of an OR tree). In case
these refined requirements are satisfied whereas the high-level requirements are not,
the requirements refining process has failed, therefore control information is given to
RQSM to refine the requirements in another way (again by for example taking
another OR branch).

3 Organization Models as Design Objects

An organizational structure defines different elements in an organization and relations
between them. The dynamics of these different elements can be characterized by sets
of dynamic properties. An organizational structure has the aim to keep the overall
dynamics of the organization manageable; therefore the structural relations between
the different elements within the organizational structure have to impose relationships
or dependencies between their dynamics; cf. [18]. In the introduction to their book
Lomi and Larsen [20] emphasize the importance of such relationships:
• ‘given a set of assumptions about (different forms of) individual behavior, how

can the aggregate properties of a system be determined (or predicted) that are
generated by the repeated interaction among those individual units?’

• ‘given observable regularities in the behavior of a composite system, which rules
and procedures - if adopted by the individual units- induce and sustain these
regularities?’

Both views and problems require means to express relationships between dynamics of
different elements and different levels of aggregation within an organization. In [20]
two levels are mentioned: the level of the organization as a whole versus the level of
the units. Also in the development of MOISE [11,12,14] an emphasis is put on
relating dynamics to structure. Within MOISE dynamics is described at the level of
units by the goals, actions, plans and resources allocated to roles to obtain the
organization’s task as a whole.
Specification of the task as a whole
may involve achieving a final (goal)
state, or an ongoing process
(maintenance goals) and an
associated plan specification.

The approach in this paper is
illustrated for the AGR [9]
organization modeling approach.
Figure 4 shows an example Fig. 4. An AGR Organization Structure

64

organization modeled using AGR. Within AGR organization models three
aggregation levels are distinguished: (1) the organization as a whole; the highest
aggregation level, denoted by the big oval, (2) the level of a group denoted by the
middle size ovals, and (3) the level of a role within a group denoted by the smallest
ovals. Solid arrows denote transfer between roles within a group; dashed lines denote
inter-group interactions. This format is adopted to formalize organization models as
design object descriptions. In addition, behavioral properties of elements of an
organization are part of a design object description. TTL [17] is used to express such
behavioral properties.

In TTL state ontology is a specification (in order-sorted logic) of a vocabulary. A
state for ontology Ont is an assignment of truth-values {true, false} to the set At(Ont) of
ground atoms expressed in terms of Ont. The set of all possible states for state
ontology Ont is denoted by STATES(Ont). The set of state properties STATPROP(Ont) for
state ontology Ont is the set of all propositions over ground atoms from At(Ont). A fixed
time frame T is assumed which is linearly ordered. A trace or trajectory γ over a state
ontology Ont and time frame T is a mapping γ : T → STATES(Ont), i.e., a sequence of
states γt (t ∈ T) in STATES(Ont). The set of all traces over state ontology Ont is denoted
by TRACES(Ont). Depending on the application, the time frame T may be dense (e.g.,
the real numbers), or discrete (e.g., the set of integers or natural numbers or a finite
initial segment of the natural numbers), or any other form, as long as it has a linear
ordering. The set of dynamic properties DYNPROP(�) is the set of temporal statements
that can be formulated with respect to traces based on the state ontology Ont in the
following manner.

Given a trace γ over state ontology Ont, the state in γ at time point t is denoted by
state(γ, t). These states can be related to state properties via the formally defined
satisfaction relation |=, comparable to the Holds-predicate in the Situation Calculus:
state(γ, t) |= p denotes that state property p holds in trace γ at time t. Based on these
statements, dynamic properties can be formulated in a formal manner in a sorted first-
order predicate logic, using quantifiers over time and traces and the usual first-order
logical connectives such as ¬, ∧, ∨, �, ∀, ∃. A special software environment has
been developed for TTL, featuring both a Property Editor for building and editing
TTL properties and a Checking Tool that enables formal verification of such
properties against a set of (simulated or empirical) traces.

4 RQSM: Changing Requirements upon Environmental Change

Organizational requirements change due to changing environmental circumstances.
The circumstances are input to RQSM. The general pattern is follows. A certain
organizational goal G (e.g. sufficient demand) is no longer reached, due to an
environmental change, say from E1 to E2. In the old situation requirement R1 was
sufficient to guarantee G under environmental condition E1: E1 & R1 � G. Here R1
is a requirement expressing a relation which states that under the condition E1 the
organization is able to achieve G. The change from E1 to E2 makes that requirement
R1, which is still fulfilled but has become insufficient, is to be replaced by a new,
stronger requirement R2 which expresses that under environment E2 goal G can be

65

achieved; therefore: E2 & R2 � G. Thus, the organization is triggered to change to
fulfill R2 and as a consequence fulfill goal G again.

Jaffee [16] distinguishes several of these external triggers for organizational
change. This paper presents a classification (see Figure 5) of those triggers based on
the flow of information for an organization. The input type of external trigger
includes the triggers the organization notices on its input, for example changes in the
resources or suppliers. Enabling /
constraining factors are external
triggers such as government rules
and technology that concern
processes within the organization.
Finally, output can influence the
input of an organization and can
therefore affect the triggers received
by an organization. Output
information itself is however not
considered a trigger for
organizational change.

4.1 Input Changes

The input of an organization can originate from a variety of different sources. Each of
these sources can cause a change of requirements, and possibly trigger an
organization to change.

A first source is formed by the suppliers who can increase their price of a product
P, which is used by the organization for the production, at time t from M1 to M2. A
formal form of this environmental condition is specified in E1 using the Temporal
Trace Language (TTL) as explained in Section 3.

E1(P, M, t): Supplier Price
∃R:REAL state(γ, t) |= environmental_condition(price(P, R), pos) & R ≤ M

Before the environmental change, E1(P1, M1, t) specifies the relevant property of the
environment. After the change of supplier price however, this property no longer
holds whereas E1(P1, M2, t) does hold. The overall goal to be maintained within the
organization is to keep the demand of product P above a threshold D. A formal
specification of the goal is presented in OP1.

OP1(P, D, t): Sufficient demand
∃I:INTEGER
state(γ, t) |= environmental_condition(customer_demand(P, I), pos) & I ≥ D

The requirement imposed for the organization is to maintain the goal of keeping
demand for product P2 above D, in the new situation given the environmental
condition of the price M for product P1 which is needed for the production of P2. This
requirement is specified below in property R.

R(P1, P2, M, D): Maintain demand
∀t :TIME
[state(γ, t) |= needed_for_production_of(P1, P2) & E1(P1, M, t)] � OP1(P2, D, t)

Fig. 5. Flow of information in an
organization

66

Before the change in the environment, requirement R1 which is R(P1, P2, M1, D) was
sufficient to ensure the goal being reached. After the change however, this
requirement is still satisfied but might be insufficient to ensure the goal. This is due to
the fact that the environmental condition E1 in the antecedent of E1 & R1 � G does
not hold, and hence, cannot be used to entail G (although the requirement R1 is
fulfilled all the time). The requirement is therefore withdrawn and replaced by the
requirement R2 which is R(P1, P2, M2, D). This R2, however, is not necessarily
satisfied and may require an organizational change to enable fulfillment.

Secondly, an input trigger can be formed by resources that run out, becoming a lot
more expensive. Therefore, the requirement for an organization triggered in such a
way is to reduce the usage of the particular resource. This can for example be
accomplished by focusing on a completely different, more viable product, or
producing the same goods using different resources.

Another source is formed by the customers whose demands decreases for the good
being produced. The organization can change direction (and thus change the
organization) or keep producing the same good but decrease the output (and therefore
also change the organization).

Finally, competitors might change their production methods causing a more
efficient production process for products within the same product group as P,
lowering their price from C1 to C2.

4.2 Changes in Enabling / Constraining Factors

Besides triggers on the input of an organization, another type of trigger exists: the
enabling and constraining factors. First of all, the enabling factors within the
organization include technology. In case the technology available to produce a
product P changes from T1 to T2, the profit margin should remain at least at the same
level D for a company.

OP’(P, D, t): Sufficient Profit Margin
∃R:REAL state(γ, t) |= belief(profit_margin(P, R), pos) & R ≥ D

E’(P, T, t): New Technology
∃R:REAL state(γ, t) |= environmental_condition(technology_available_for(T, P), pos)

R’(P, T, D): Maintain Profit
∀t :TIME E3(P, T, t) � OP1(P, D, t)

All properties have been specified similar to those presented in the previous
subsection. Before the environmental change of available technology E’(P, T1, t) was
the case whereas E’(P, T2, t) is the new environment. Secondly, constraining forces
include government regulations and labor aspects. Government regulations for
workers might affect human resource practices and composition of the workforce.
Concerning labor aspects, the union might demand a reduction from 40 to 36 hours a
week, which naturally causes organizational change. All these aspects should
however not decrease overall profitability of the organization.

67

5 RQSM: Refining Requirements Based on Interlevel Relations

To fulfill requirements at the level of the organization as a whole as discussed in
Section 4, parts of the organization need to behave adequately (see also the central
challenges put forward by Lomi and Larsen [20] as discussed in Section 2). Based on
this idea, in this paper dynamics of an organization are characterized by sets of
dynamic properties for the respective elements and aggregation levels of the
organization. An important issue is how organizational structure (the design object
description determined in DODM) relates to (mathematically defined) relationships
between these sets of dynamic properties for the different elements and aggregation
levels within an organization (cf. [18]). Preferably such relations between sets of
dynamic properties would be of a logical nature; this would allow the use of logical
methods to analyze, verify and validate organization behavior in relation to
organization structure. Indeed, following [18], in the approach presented below,
logical relationships between sets of dynamic properties of elements in an
organization turn out an adequate manner to (mathematically) express such dynamic
cross-element or cross-level relationships.

A general pattern for the dynamics in the organization as a whole in relation to the
dynamics in groups is as follows:

dynamic properties for the groups &
dynamic properties for inter-group interaction
dynamic properties for the organization

Moreover, dynamic properties of groups can be related to dynamic properties of roles
as follows:

dynamic properties for roles &
dynamic properties for transfer between roles
dynamic properties for a group

The idea is that these are properties dynamically relating a number of roles within one
group.

A generic overview of
the logical relationships
between dynamic
properties at different
aggregation levels is
depicted as an AND-tree
in Figure 6. It is possible
that each level shown in
the tree (for example
organization properties)
again consists of multiple
levels. The logical
relationships put forward
above can be formalized
further as shown in [18].

 transfer properties role properties

group properties inter-group interaction
properties

organization
properties

Fig. 6. Overview of relations between dynamic properties

68

Figure 7 shows an example of a hierarchy of dynamic properties for an

organization producing certain products, the properties follow field observations at
the Ford Motor Company in 1980 described in [25]. The overall organizational goal is
to maintain sufficient demand for the goods being produced, as was also the case in
OP1 in Section 4. The organization has separate departments for design, production
and quality control, which are modeled as groups in the organization. The highest
levels represent organizational properties or goals at the aggregation level of the
organization as a whole, whereas the lowest level shown here represents properties at
the aggregation level of the groups. Note that the fact that these are group properties
already restricts the design of the object in DODM, which makes the process less
complex.

A definition for each of the properties in Figure 5 is presented below. Notice that
this hierarchy could easily be extended by other aspects (e.g., of quality of the
products as a reason for the demand decreasing or not).

Property OP1 is described in Section 4. One of the environmental conditions is that
the cyclic market is not going down for a product P at time t in case the demand for
the product group as a whole (i.e., all goods produced by different companies in this
particular category) is not going down.

E2(P, t): Cyclic market not going down
∀G:PRODUCT_GROUP, I1,I2:INTEGER
[state(γ, t) |= belongs_to_product_group(P, G) &
 state(γ, (t-1)) |= environmental_condition(customer_demand(G, I1), pos) &
 state(γ, t) |= environmental_condition(customer_demand(G, I2), pos)]
� I2 ≥ I1

Furthermore, an environmental condition E3 poses a requirement on the price of
competitors in the form of the average price of products within the product group to
which product P belongs. These prices should not be higher than V:

E3(P, V, t): Competitor Price
∀G:PRODUCT_GROUP, V1:REAL
[state(γ, t) |= belongs_to_product_group(P, G) &
 state(γ, t) |= environmental_condition(average_price(G,V1), pos) & V1 ≥ V]

To achieve goal OP1 given environmental conditions E2 and E3, the price of the
products being produced by the organization should be low enough, which in turn is

Fig. 7. Hierarchy of Organizational and Group properties

69

the requirement posed on the organization. Prices are considered low enough for a
product P at time t in case the price for the product is equal or below the average price
level within the product group (i.e. prices are ≤ V as set above).

OP2(P, V, t): Price low enough
∀G:PRODUCT_GROUP, V1:REAL [state(γ, t) |= price(P, V1)] � V1 ≤ V

Whether the price is low enough depends on the cost price for the particular product P
at time t, which purely depends on the costs for the different groups within the
organization, as expressed in the group properties (GP’s).

OP3(P, V, t): Cost price low enough
∀V1,V2,V3:REAL
[state(γ, t) |= design_cost(P, V1) &
 state(γ, t) |= production_cost(P, V2) &
 state(γ, t) |= quality_repair_cost(P, V3)]
 � V1+V2+V3 ≤ V

Finally, the individual group properties can be specified such that the costs of each
group are below a certain value. that the division of such costs over groups is a
refinement choice. An example decision could be the to allow only a small percentage
of the costs for quality repair and to divide the brunt of the costs equally over
production and design. Each group should meet their individual requirements. First of
all, design costs should be low enough:

GP1(P, V1, t): Design costs low enough
∀Q:REAL [state(γ, t) |= design_cost(P, Q)] � Q ≤ V1

Also, the production costs for product P should be low enough:

GP2(P, V2, t): Production costs low enough
∀Q:REAL [state(γ, t) |= production_cost(P, Q)] � Q ≤ V2

Finally, quality repair costs should be low enough for product P:

GP3(P, V3, t): Quality repair costs low enough
∀Q:REAL [state(γ, t) |= quality_repair_cost(P, Q)] � Q ≤ V3

After having generated all options in RQSM, selection knowledge is used to select
one of the available options. In this paper, such selection knowledge is not further
addressed. The output of RQSM is, however, of the form selected_basic_refinement_set(RS)

where RS is a name for a requirements set. The elements within this set are defined as
follows: in_selected_basic_refinement_set(R, RS) where R is a requirement, as the ones shown
above, and RS is the selected basic refinement set.

6 DODM: Constructing Design Objects

As stated in Section 2, DODM contains a library of templates for (parts of) design
objects which are known to satisfy certain requirements (of the form as specified in
the last paragraph of the previous section). For the case study, the DODM library
contains two templates. One of those is a template in which a mass production system
is used to produce goods. Such a system produces goods at reasonable production
costs but at high quality repair costs. The template for mass production includes a

70

group of production workers (e.g. a production worker for attaching a wheel to a car).
The mass production template also contains a quality repair department of
considerable size with quality repair worker roles.

The second template in the library is a lean production organization. Lean
production has no quality repair costs, since there is no separate quality repair
department. The production costs are at the same level as the production costs for
mass production organizations. In the lean production method (see e.g. [25]), multi-
task production workers are present which perform several tasks, and also handle
errors in case they are observed. As a result of such immediate error detection and
correction, a quality repair department is not present within a lean production model.

Figure 8 shows an example AND/OR tree for DODM (focusing at lean production

as a solution) in which options for changes in a design object not satisfying the
requirement that design costs are low enough. The specific changes in the design
object are presented below. First of all, the highest level property states that design
costs will at least at the required level within a duration d:

CP1(P, D, t):Lower Quality Repair Costs
∀V1,V2:REAL
[state(γ, t) |= selected_basic_requirement_in(GP3(P, V1, t), RS) &
 state(γ, t) |= DOD_includes(D, quality_repair_cost(P, V2)) & V1 < V2]
� ∃t2:TIME > t, V3:REAL
 [t2 < t+d & state(γ, t2) |=DOD_includes(D,quality_repair_cost(P, V3)) & V3 ≤ < V1]

On a lower level, property CP2(P, D, t) specifies the introduction of lean production
into an organization. This reduces the quality repair costs to 0 as shown by CP3(P, D,
t). Although more options are possible for reducing quality repair costs, shown by the
dots in Figure 8, these are not addressed in this paper.

CP2(P, D, t): Introduce Lean Production
∀V1,V2:REAL
 [state(γ, t) |= selected_basic_requirement_in(GP3(P, V1, t), RS) &
 state(γ, t) |= DOD_includes(D, design_cost(P, R2)) & V1 < V2]
� ∃t2:TIME > t
 [t2 < t + d & state(γ, t2) |= DOD_includes(D, lean_production_method(P))]

Fig. 8. Redesign options specified in the form of an AND/OR tree

71

CP3(P, D, t): Effect of Lean Production
[state(γ, t) |= DOD_includes(D, lean_production_method(P))
 � state(γ, t) |= DOD_includes(D, quality_repair_cost(P, 0))]

Introducing a lean production system entails that within the production process the
specialized roles for mass-production and quality repair department are deleted.

CP4(P, D, t): Delete Roles
 ∀R1,R2:REAL
 [state(γ, t) |= DOD_includes(D, lean_production_method(P))
� ∃t2:TIME > t
[t2 < t + d &
 state(γ,t2)|=¬DOD_includes(D,exists_role(spec_production_worker)) &
 state(γ, t2)|=¬DOD_includes(D,exists_group(quality_repair_group))]]

Moreover, roles are created that perform multiple tasks, and teams are created such
that the roles combined in the team have all the abilities to make a car.

CP5(P, D, t): Add New Roles
∀R1,R2:REAL
 [state(γ, t) |= DOD_includes(D, lean_production_method(P))
� ∃t2:TIME > t, ∀A:AGENT, R:ROLE
 [t2 < t + d &
 state(γ, t2) |= DOD_includes(D, exists_role(multi_task_production_worker)) &
 state(γ, t2) |= DOD_includes(D, previously_allocated_to(A, R, quality_repair)) &
 state(γ, t2) |= DOD_includes(D, allocated_to(A, multi_task_production_worker, production_group))]]

Agents that were allocated to the deleted roles in the production process are allocated
to the newly formed roles. Agents formerly allocated to a role in quality repair are
fired. Once the system is organized in this fashion, quality repair in a separate
department becomes obsolete, and quality repair costs are down to 0 as the production
workers are now performing the task. CP6 expresses that the measures as described in
CP4 and CP5 results in a lean production method for the product P:

CP6(P, D, t): Lean Production
∀A:AGENT, R:ROLE
[state(γ, t) |= ¬ DOD_includes(D, exists_role(spec_production_worker)) &
 state(γ, t) |= ¬ DOD_includes(D, exists_group(quality_repair_group)) &
 state(γ, t) |= DOD_includes(D, exists_role(multi_task_production_worker)) &
 state(γ, t) |= DOD_includes(D, previously_allocated_to(A, R, quality_repair))
 state(γ, t) |= DOD_includes(D, allocated_to(A, multi_task_production_worker, production_group))]
�
∃t2:TIME < t + d
state(γ, t2) |= DOD_includes(D,lean_production_method(P))

After such options for (re)design of the object have been generated based on the
requirements, selection knowledge is used to select one of the options that have been
generated. This knowledge is not addressed in this paper. Eventually, DODM outputs
a design object description of the form selected_DOD_output(D) where D is the design
object description. Furthermore to identify properties of the DOD or its parts, output
of the form in_selected_DOD_output(P,D) is generated where P is a property of (a part of)
the DOD and D is the selected DOD. This is based on the internal information
represented in the form of DOD_includes(D, P).

72

7 (Re)design Process Evaluation

This section addresses the evaluation of the whole design process. The overall design
process is successful when both RQSM and DODM show the proper behavior.

RQSM shows the proper behavior in case it generates requirements, and these
requirements indeed result in the goal set for the organization being met. Such
properties are formulated in a formal form below.

RQSM_generate
If RQSM receives new environmental conditions on its input, then RQSM eventually
generates a set of requirements

∀t:TIME, γ:TRACE, E:ENV_COND
 state(γ, t, input(RQSM)) |= environment_property(E) &
 ¬∃t’:TIME < t [state(γ, t’, input(RQSM)) |= environment_property(E)]
� ∃t2:TIME > t, G:GOAL, RS:REQUIREMENT_SET
 [state(γ, t2, output(RQSM)) |= main_requirement(G) &
 state(γ, t2, output(RQSM)) |= selected_basic_refinement_set(RS)]

RQSM_successful
If RQSM generates requirements, then the combination of these requirements entail the
goal set for the organization.

∀t:TIME, γ:TRACE, RS :REQUIREMENT_SET, G :GOAL
 [state(γ, t, output(RQSM)) |= main_requirement(G) &
 state(γ, t, output(RQSM)) |= selected_basic_refinement_set(RS)]
� entails_goal(RS, G)

DODM shows the proper behavior in case it first of all generates a design object
description in case a new requirement set is received. Besides simply generating such
a design object description, the object also needs to satisfy the requirements received
on its input.

DODM_generate
If DODM receives a new requirements set on its input, then DODM eventually generates
a design object description as output.

∀t:TIME, γ:TRACE, RS :REQUIREMENTS_SET
[state(γ, t, input(DODM)) |= selected_basic_refinement_set(RS) &
¬∃t’:TIME < t
 state(γ, t’, input(DODM)) |= selected_basic_refinement_set(RS)]
� ∃t2:TIME, D:DESIGN_OBJECT_DESCRIPTION
 state(γ, t2, output(DODM)) |= selected_DOD_output(D)]

DODM_successful
If DODM generates a design object description as output, then the design object
description satisfies the requirements set on the input of DODM.

∀t:TIME, γ:TRACE, R :REQUIREMENT_SET,
 D:DESIGN_OBJECT_DESCRIPTION
 [state(γ, t, input(DODM)) |= selected_basic_refinement_set(R) &
 state(γ, t, output(DODM)) |= selected_DOD_output(D)]
� fulfills_requirements(D, R)

73

8 Simulation Results

In order to show the functioning of the model, and to validate whether the model
indeed behaves correctly, simulation runs have been performed. The results for one of
these simulation runs are presented in this Section. The simulation has been
performed using a subset of the Temporal Trace Language (TTL) called leads to. This
is an executable format that can be used to obtain a specification of a simulation
model in terms of local dynamic properties (the leaves of the tree in Figure 6). The
format is defined as follows. Let α and β be state properties of the form ‘conjunction
of literals’ (where a literal is an atom or the negation of an atom), and e, f, g, h non-
negative real numbers. In the leads to language α →→e, f, g, h β, means:

 if state property α holds for a certain time interval with duration g,
 then after some delay (between e and f) state property β will hold
 for a certain time interval of length h.

For a precise definition of the leads to format in terms of the language TTL, see [1]. A
specification of dynamic properties in leads to format has as advantages that it is
executable and that it can often easily be depicted graphically.

The setup of the simulation is as follows: A historic case taken from [25] is used as
an input for the model. The case concerns the Ford Motor Company who has been
one of the leading car manufacturers since the introduction of mass production in
1913. In 1980 the Ford Motor Company suffered a major crisis. The company began
to loose vast amounts of money a vast amount of car demand. The model presented in
this paper is used to reorganize the Ford organization such that demand is restored
again.

8.1 Simulation Results: High-Level Overview

First of all, results are presented in this section that abstract from the details of the
organization and the internal functioning of the model. This is to show that on this
high level the model indeed shows the expected results. In the following sections,
more details will be shown regarding the internal functioning of the model.

The results of the simulation in the form of a trace are shown in Figure 9. In the
figure, the left side shows the relevant atoms, the right part represents a time-line
indicating when an atom is true (dark box) or false (lighter box). It can be observed in
the figure that initially the market conditions are equal for the four car manufacturers
included in the simulation. First of all, the average costs for design, production, and
quality repair are the same:

environmental_condition(design_cost(average, 1000), pos)
design_cost(ford, 1000)
environmental_condition(production_cost(average, 15000), pos)
design_cost(ford, 15000)
environmental_condition(quality_repair_cost(average, 3500), pos)
quality_repair_cost(ford, 3500)

As a result, the price for these cars is the same, also resulting in the same demand for
cars from the four manufacturers (it is assumed here that there is no preference of

74

customers for particular brands, if the price is the same, each manufacturer gets an
equal share of the total demand).

environmental_condition(customer_demand(ford, 500000), pos)
environmental_condition(customer_demand(general_motors, 500000), pos)
environmental_condition(customer_demand(toyota, 500000), pos)
environmental_condition(customer_demand(daimler_chrysler, 500000), pos)

Suddenly however, at time point 4 the other three manufacturers lower their price
whereas Ford does not:

environmental_condition(price(general_motors, 16000), pos)
environmental_condition(price(toyota, 16000), pos)

 environmental_condition(price(daimler_chrysler, 16000), pos)
This lowering of the price is performed due to a drop in the cost for quality repair cost
of the other companies:

environmental_condition(quality_repair_cost(average, 875), pos)
As a result, demand for Ford cars drops whereas the other manufacturers see an
increase in demand:

environmental_condition(customer_demand(ford, 432692), pos)
environmental_condition(customer_demand(general_motors, 527344), pos)
environmental_condition(customer_demand(toyota, 527344), pos)

 environmental_condition(customer_demand(daimler_chrysler, 527344), pos)

environmental_condition(design_cost(average, 1000), pos)
environmental_condition(production_cost(average, 15000), pos)

environmental_condition(price(toyota, 19500), pos)
environmental_condition(price(general_motors, 19500), pos)
environmental_condition(price(daimler_chrysler, 19500), pos)

environmental_condition(quality_repair_cost(average, 3500), pos)
production_cost(ford, 15000)

design_cost(ford, 1000)
environmental_condition(average_price(cars, 19500), pos)

quality_repair_cost(ford, 3500)
price(ford, 19500)

environmental_condition(customer_demand(ford, 500000), pos)
environmental_condition(customer_demand(toyota, 500000), pos)

environmental_condition(customer_demand(general_motors, 500000), pos)
environmental_condition(customer_demand(daimler_chrysler, 500000), pos)

environmental_condition(price(toyota, 16000), pos)
environmental_condition(price(general_motors, 16000), pos)
environmental_condition(price(daimler_chrysler, 16000), pos)

environmental_condition(quality_repair_cost(average, 875), pos)
environmental_condition(customer_demand(ford, 432692), pos)

environmental_condition(customer_demand(toyota, 527344), pos)
environmental_condition(customer_demand(general_motors, 527344), pos)
environmental_condition(customer_demand(daimler_chrysler, 527344), pos)

environmental_condition(average_price(cars, 16875), pos)
quality_repair_cost(ford, 0)

price(ford, 16000)
environmental_condition(average_price(cars, 16000), pos)

environmental_condition(quality_repair_cost(average, 0), pos)
time 0 2 4 6 8 10

Fig. 9. High-level simulation results using the redesign model

75

Now the model introduced in this paper comes into play. The results obtained after
application of this model are shown in the figure as well, using the new organization
structure brings the quality repair cost of Ford down to 0 as well:

quality_repair_cost(ford, 0)
As a result, demand is restored again to the old value of 500,000 cars. These results
indeed correspond to the results described in the historic case.

8.2 RQSM Simulation Results

In order to achieve the result of restoring demand for Ford cars, RSQM and DODM
are used to redesign the organization of Ford. In this section, RQSM is addressed.
Figure 10 shows the atoms related to the RQSM component. As input, RQSM
receives the environmental conditions as shown in the trace of the previous section.
The goal of the organization is set to keep demand above or at least equal to 500,000
cars (a quarter of the constant total demand for cars of 2,000,000), which is initially
satisfied:

internal(RQSM)|property(OP1(ford, 500000), pos)
The environmental conditions under which the initial Ford organization is obtaining
its goal are the following:

internal(RQSM)|property(E2(ford), pos)
internal(RQSM)|property(E3(ford, 19500), pos)

Which means that first of all, the cyclic market is not going down, and secondly, that
the competitor prices are not below 19,500. Given these environmental conditions,
OP2(ford, 19500) is indeed a sufficient requirement posed upon the organization to
guarantee satisfaction of the overall goal. From time point 4 and on however, the
environmental condition E3(ford, 19500) no longer holds due to competitors lowering
their price. Another condition does however hold:

internal(RQSM)|property(E3(ford, 16000), pos)

internal(RQSM)|property(E2(ford), pos)
internal(RQSM)|property(OP2(ford, 16000), neg)
internal(RQSM)|property(OP2(ford, 19500), pos)

internal(RQSM)|property(E3(ford, 16000), pos)
internal(RQSM)|property(E3(ford, 19500), pos)

internal(RQSM)|property(OP1(ford, 500000), pos)
internal(RQSM)|property(E3(ford, 19500), neg)

internal(RQSM)|property(OP1(ford, 500000), neg)
internal(RQSM)|active_requirement(OP2(ford, 16000), pos)

internal(RQSM)|refined_requirement(OP3(ford, 16000), pos)
output(RQSM)|selected_basic_refinement_set(s1)

output(RQSM)|in_selected_basic_refinement_set(GP1(ford, 1000), s1)
output(RQSM)|in_selected_basic_refinement_set(GP2(ford, 15000), s1)

output(RQSM)|in_selected_basic_refinement_set(GP3(ford, 0), s1)
internal(RQSM)|property(OP2(ford, 16000), pos)

time 0 2 4 6 8 10

Fig. 10. RQSM reasoning process

76

Given this new environmental condition, property Op2(ford, 19500) is no longer
sufficient to obtain the goal:

internal(RQSM)|property(OP1(ford, 500000), neg)
A new requirement is determined by RQSM that will satisfy the goal under these new
environmental conditions:

internal(RQSM)|active_requirement(OP2(ford, 16000), pos)
This requirement is thereafter refined until the level of basic requirements of which a
set is sent to the output:

output(RQSM)| selected_basic_requirement(s1)
output(RQSM)|in_selected_basic_refinement_set(GP1(ford, 1000), s1)
output(RQSM)|in_selected_basic_refinement_set(GP2(ford, 15000), s1)
output(RQSM)|in_selected_basic_refinement_set(GP3(ford, 0), s1)

In this case the selected basic refinement includes bringing down the cost of the
quality repair cost to 0 whereas the requirements for the rest of the costs (i.e.
production and design) remain the same.

8.3 DODM Simulation Results

Figure 11 shows the simulation results for the DODM component. After RQSM has
refined and outputted these requirements, DODM receives these on its input.
Furthermore, DODM has knowledge about the current organization used by the Ford
organization:

DOD_includes(ford_design, exists_group(design_group), pos)
DOD_includes(ford_design, exists_group(production_group), pos)
DOD_includes(ford_design, exists_group(quality_repair_group), pos)
DOD_includes(ford_design,role_belongs_to_group(spec_prod_worker, production_group),

 pos)
The Ford organization consists of three groups, namely a design group, a production
group, and a quality repair group. Furthermore, the production group consists of
specialized production workers. In other words, Ford is using a mass production type
of company. After having received the basic refinement set, DODM starts to search

DOD_includes(ford_design, exists_group(design_group), pos)
DOD_includes(ford_design, exists_group(production_group), pos)

DOD_includes(ford_design, exists_group(quality_repair_group), pos)

DOD_includes(ford_design, role_belongs_to_group(spec_prod_worker, production_group), pos)
input(DODM)|selected_basic_refinement_set(s1)

input(DODM)|in_selected_basic_refinement_set(GP1(ford, 1000), s1)
input(DODM)|in_selected_basic_refinement_set(GP2(ford, 15000), s1)

input(DODM)|in_selected_basic_refinement_set(GP3(ford, 0), s1)
internal(DODM)|active(CP1(ford, ford_design), pos)
internal(DODM)|active(CP2(ford, ford_design), pos)
internal(DODM)|active(CP3(ford, ford_design), pos)

output(DODM)|selected_DOD_output(ford_design)
output(DODM)|in_selected_DOD_output(ford_design, exists_group(quality_repair_group), neg)

output(DODM)|in_selected_DOD_output(ford_design, has_expr(d1, leadsto(err, report_err, efgh(0, 0, 1, 1))), pos)
output(DODM)|in_selected_DOD_output(ford_design, has_expr(d2, leadsto(and(report_err, responsible_for_err), correct_err, efgh(0, 0, 1, 1))), pos)

output(DODM)|in_selected_DOD_output(ford_design, role_belongs_to_group(multi_task_team_prod_worker, production_group), pos)
output(DODM)|in_selected_DOD_output(ford_design, role_belongs_to_group(spec_prod_worker, production_group), neg)

output(DODM)|in_selected_DOD_output(ford_design, role_property(d1, multi_task_team_prod_worker, production_group), pos)
output(DODM)|in_selected_DOD_output(ford_design, role_property(d2, multi_task_team_prod_worker, production_group), pos)

DOD_includes(ford_design, exists_group(quality_repair_group), neg)
DOD_includes(ford_design, has_expr(d1, leadsto(err, report_err, efgh(0, 0, 1, 1))), pos)

DOD_includes(ford_design, has_expr(d2, leadsto(and(report_err, responsible_for_err), correct_err, efgh(0, 0, 1, 1))), pos)

DOD_includes(ford_design, role_belongs_to_group(multi_task_team_prod_worker, production_group), pos)
DOD_includes(ford_design, role_belongs_to_group(spec_prod_worker, production_group), neg)

DOD_includes(ford_design, role_property(d1, multi_task_team_prod_worker, production_group), pos)
DOD_includes(ford_design, role_property(d2, multi_task_team_prod_worker, production_group), pos)

time 0 2 4 6 8 10

Fig. 11. DODM reasoning process

77

for an appropriate organization that indeed meets the requirements that have been set.
In this case, it first determines that the quality repair cost should go down:

internal(DODM)|active(CP1(ford, ford_design), pos)
This is further refined to the point of the introduction of lean production within the
organization, which is one of the solutions to bring down the quality repair cost to 0:

internal(DODM)|active(CP2(ford, ford_design), pos)
internal(DODM)|active(CP3(ford, ford_design), pos)

As a result of this choice to introduce lean production, many changes in the current
Ford design are sent to the output of DODM. First of all, the quality repair group is
deleted:

output(DODM)|in_selected_DOD_output(ford_design, exists_group(quality_repair_group),
 neg)

Furthermore, the specialized production worker role within the production group is
deleted as well:

output(DODM)|in_selected_DOD_output(ford_design,
role_belongs_to_group(spec_prod_worker, production_group), neg)

As a replacement for the specialized production workers, multi-task production
workers are inserted into the organization.

output(DODM)|in_selected_DOD_output(ford_design,
 role_belongs_to_group(multi_task_prod_worker, production_group), pos)

Of course the behavior of this role is completely different from the behavior of the
classical specialized production worker role. Since the approach which is used
throughout the paper also allows for the specification of behavior of the roles, this
behavior is also present on the output of DODM.

output(DODM)|in_selected_DOD_output(ford_design,
role_property(d1, multi_task_prod_worker, production_group), pos)

output(DODM)|in_selected_DOD_output(ford_design,
 role_property(d2, multi_task_prod_worker, production_group), pos)

The actual behavior expected of an agent allocated to such a role is communicated in
the form of a leads to property as introduced in the beginning of this section.

output(DODM)|in_selected_DOD_output(ford_design,
has_expr(d1, leadsto(err, report_err, efgh(0,0,1,1)), pos)

This first property states that if an error is observed this error should be reported
immediately. The second role property is specified as follows:

output(DODM)|in_selected_DOD_output(ford_design,
 has_expr(d2, leadsto(and(report_err, reposible_for_err),
 correct_err, efgh(0,0,1,1)), pos)

Stating that if an error is reported, and the worker is responsible for this error, he
should correct the error immediately. Both properties are typical for the lean
production system. Note that communicating such properties requires properties about
properties, i.e. a meta-language in this case called meta-TTL. Finally, after all this has
been sent to the output, the actual DOD is updated which eventually results in a
restored demand again, as already shown in the high-level trace presented in section
8.1.

9 Verification

To see whether the properties as expressed in Section 7 hold for the simulation trace,
first of all, the RQSM_generate and DODM_generate properties have been checked against

78

the trace shown in Figure 7 using a software tool called the TTL Checker [17]. Both
properties were shown to hold for the trace.

In order to see whether the refinement process within RQSM is properly
performed, the tree used for the simulation as presented before in Section 5 has been
formally proven by means of the SMV model checker [22]. The translation of the
properties expressed in Section 5 to the input language of SMV is not trivial. In order
to improve the efficiency of the checking process, the numbers as introduced in the
case study above have been divided by 1000. In order to verify whether the property
hierarchy is indeed correct, the property hierarchy is indeed correct, four rules have
been specified in the SVM input language. The first rule concerns the calculation of
the average price of cars on the market, which is simply calculated by adding the
average design cost, production cost, and quality repair cost:

next(average_car_price) := average_design_cost + average_production_cost +
average_quality_repair_cost;

Furthermore, the calculation of the price of Ford is also specified in the same fashion
as the calculation of the average price for cars with one intermediate step, namely the
cost price. In this case the two are considered to be equivalent.

next(ford_cost_price) := ford_design_cost + ford_production_cost +
 ford_quality_repair_cost;

next(ford_price) := ford_cost_price;

Final element is the calculation of the demand for Ford cars, which is directly coupled
to the cost price. Notice that the calculation presented here are identical to the ones
used in the simulations.

next(ford_demand) := (2000 * 4 * average_car_price) / ford_price;

Now finally, two checks are performed after having inputted the initial facts based on
the scenario as used in the simulation and the transition rules as specified above.
These checks are specified in CTL. The first one states that if the costs at the lowest
level of the Ford organization are all equal all lower to the average costs over all
companies, demand for Ford cars will be at least equal to a quarter of the total
demand (constant at 2000):

 AG (((ford_design_cost <= average_design_cost) &
 (ford_production_cost <= average_production_cost) &
 (ford_quality_repair_cost <= average_quality_repair_cost))
 -> AX(ford_demand >= 500))

A second version is a stronger requirement. It states that if the sum of the costs of all
different groups is lower or equal to the average, demand will be at least a quarter of
the total demand:

 AG (((ford_design_cost + ford_production_cost + ford_quality_repair_cost) <=
 (average_design_cost + average_production_cost + average_quality_repair_cost))
 -> AX(ford_demand >= 50))

79

Indeed, both properties are satisfied given the initial conditions and the rules
specified. Besides checking whether the lowest level properties satisfy the highest
level property, each of the interlevel relationships have also been checked in a similar
manner, and were all shown to hold. Furthermore, to prove the successfulness of
DODM, the property hierarchy shown in Figure 6 has also been proven by the SMV
model checker which shows that introducing lean production in a design object
indeed results in canceling the quality repair costs, which satisfied the property
DODM_successful. Two input rules have been specified, first of all, the definition of lean
production, and secondly the effect of lean production (i.e. 0 quality repair cost):

 next(production_method) := case
 !q_r_group & multi_task_team_prod_worker & multi_task_team_prod_worker_beh &
 !spec_prod_worker: lean;
 1 : mass;
 esac;

 next(ford_design_cost):= case
 production_method = lean: 0;
 1: 4;
 esac;

The following property has been shown to hold:

 AG ((!q_r_group & multi_task_team_prod_worker & multi_task_team_prod_worker_beh &
 !spec_prod_worker)
 -> AF (ford_design_cost = 0))

In other words, for all time points, in case CP4-5-6 are indeed accomplished this
reduces quality repair cost to 0, which clearly satisfies property CP1. Again, the
intermediate relationships have been checked as well, and all were proven to hold. As
a result, the DODM_successful property is satisfied as well as the RQSM_successful property
in case the components indeed generate the output based on these property
hierarchies.

10 Discussion

Organizations aim to meet their organizational goals. Monitoring whether events
occur that endanger fulfillment of these goals enables organizations to consciously
adapt and survive. Adaptation is essential once an organizational goal becomes
unreachable. This paper views such a change as a (re)design process. A component-
based formal generic model for design developed within the area of AI and Design is
specialized into a model for organization (re)design.

Formalizations developed within the area of Organization Theory and AI (or
computational organization theory), have proved suitable for the description of
organization models as design object descriptions, and organization goals as design
requirements. Furthermore, different types of specialized knowledge have been
identified: (1) about main organization goals and their relation for given
environmental conditions to organization requirements, (2) about refinement of

80

organization requirements, (3) about design object descriptions, and (4) which
components for a design object description satisfy which requirements. The generic
design model was instantiated with such types of knowledge to constitute a
specialized component-based model for (re)design of organizations. Example
properties have been taken from a well known example in Organization Theory
describing the introduction of lean production within an organization [25].

This paper focuses on external triggers for organizational change. Triggers are
related to specific goals that play the role of design requirements which the
organizational change should comply to. These requirements tend to be high-level
goals and lack the detail needed for specifying how an organization should change.
Therefore, design requirement refinement is introduced in the form of hierarchies of
requirements. Such hierarchies relate objectives of the organization (e.g., high
demand for cars) to organizational change properties at different organizational levels
(e.g., change in some departments). Thus, they relate triggers at the level of the
organization to properties at the level of parts (groups) within the organization. For
example, the cause of why a certain type of car is not selling according to the goals
that have been set is related to the costs of quality repair. Requirements hierarchies
help to localize where to change the organization. High-level goals for an
organization as well as goals for organizational redesign have been related to low-
level executable properties. Formal verification has been performed and the results
show satisfaction of the non-leaf properties in the property tree.

When comparing the approach to previous work in the redesign of organizations
the main strength is the formal description of the whole redesign process in terms of a
generic redesign model for organizations. In the field of management for example, an
overview of which can be found in [7], only informal descriptions are given about
redesign processes. In Systems Theory, see e.g. [23], goal oriented behavior is
addressed. The gap observed between the actual state of the system and the desired
state causes redesign, which corresponds with the approach taken in this paper.
Formalizations by means of property hierarchies are, however, not present, therefore
formal verification as done in this paper cannot be performed.

In [13] a general diagnosis engine is presented which drives adaptation processes
within multi-agent organizations using the TAEMS modeling language as the primary
representation of organizational information. In the design of the diagnostic engine
three distinct layers are identified: symptoms, diagnosis, and reactions which in the
approach presented in this paper roughly correspond to Section 4, 5, and 6
respectively. The implementation of these elements differs in both approaches. The
goals and requirements in this paper are explicitly connected to each other. Once an
organizational goal is observed not to be fulfilled, such a dissatisfaction is related
directly to a goal for change. In the approach presented in [13] lacks such an explicit
relation between goals and error diagnosis. Furthermore, this paper also introduces an
approach to diagnose whether the whole reorganization process was successful, which
is not the case in [13]. [6] explores dynamic reorganization of agent societies and
focuses on changes to the structure of an organization, this paper presents an approach
that enables such a dynamic reorganization.

In [15] an approach is introduced which aims to archive adaptive real-time
performance through reorganizations of the society. As a domain of application,
production systems are used throughout that paper. Whereas that paper focuses on

81

adaptive agents, this paper concentrates on adaptation of an organizational model that
abstracts from agents and specifies elements on the level of roles the agents can
fulfill.

The work presented in this paper can also be compared with the work on
institutions as a way to describe multi-agent organizations. In [8] an institution is said
to structure interactions and enforce individual and social behavior by obliging
everybody to act according to norms. In that same paper, a formalization language is
introduced for such an institution. The approach to use dynamic expression as a
restriction of the behavior of agents allocated to that role used in this paper is also
expressive enough to describe such norms. For example, in [21] an example of a
norms is said to be the following: “Students are prohibited from sitting the exam if
they have not completed the assignment” such can easily be formulated in terms of a
dynamic property for the student role. The approach presented in this paper could
therefore also be applied to institutions and normative organizations.

Finally, in the field of coalition formation (see e.g. [19, 24]), the main purpose of
forming a coalition is to perform a task that cannot be performed by a single agent.
That work can be combined with our approach by addressing the problem of the
allocation of agents to roles, after the change of the organizational model by our
approach.

References

[1] Bosse, T., Jonker, C.M., Meij, L. van der, and Treur, J., LEADSTO: a Language and
Environment for Analysis of Dynamics by SimulaTiOn. In: Eymann, T., Kluegl, F.,
Lamersdorf, W., Klusch, M., and Huhns, M.N. (eds.), Proceedings of the Third German
Conference on Multi-Agent System Technologies, MATES'05. Lecture Notes in AI, vol.
3550. Springer Verlag, 2005, pp. 165-178.

[2] Bosse, T., Jonker, C.M., and Treur, J., Analysis of Design Process Dynamics. In: R. Lopez
de Mantaras, L. Saitta (eds.), Proceedings of the 16th European Conference on Artificial
Intelligence, ECAI'04 , 2004, pp. 293-297.

[3] Brazier, F.M.T., Jonker, C.M., and Treur, J., Principles of Component-Based Design of
Intelligent Agents. Data and Knowledge Engineering, vol. 41, 2002, pp. 1-28.

[4] Brazier, F.M.T., Langen, P.H.G. van, and Treur, J., Strategic knowledge in design: a
compositional approach, Knowledge-Based Systems 11:405-415, 1998.

[5] Ciancarini, P., Wooldridge, M. (eds.), Agent-Oriented Software Engineering, Lecture
Notes in Computer Science, vol. 1957, Springer-Verlag, Berlin, 2001.

[6] Dignum, V., Sonenberg, L., Dignum, F., 2004, Dynamic Reorganization of Agent Societies, In:
Proceedings of CEAS: Workshop on Coordination in Emergent Agent Societies at ECAI
2004.

[7] Douglas, C., Organization redesign: the current state and projected trends, Management
Decision 37(8), 1999.

[8] Esteva, M., Padget, J., and Sierra, C., Formalizing a language for institutions and norms,
In: Intelligent Agents VIII, Lecture Notes in Artificial Intelligence volume 2333, 2002, pp.
348-366.

[9] Ferber, J. and Gutknecht, O., A meta-model for the analysis and design of organisations in
multi-agent systems. In: Proceedings of the Third International Conference on Multi-
Agent Systems (ICMAS’98), IEEE Computer Society Press, pp. 128-135.

82

[10] Hannoun, M., Sichman, J.S., Boissier, O., and Sayettat, C., Dependence Relations between
Roles in a Multi-Agent System: Towards the Detection of Inconsistencies in Organization.
In: J.S. Sichman, R. Conte, and N. Gilbert (eds.), Multi-Agent Systems and Agent-Based
Simulation (Proc. of the 1st. Int. Workshop on Multi-Agent Based Simulation, MABS'98),
Lecture Notes in Artificial Intelligence, vol. 1534, Springer-Verlag, 1998, pp. 169-182.

[11] Hannoun, M., Boissier, O., Sichman, J.S., and Sayettat, C., MOISE: An organizational
model for multi-agent systems. In: M. C. Monard and J. S. Sichman (eds.), Advances in
Artificial Intelligence, Lecture Notes in Artificial Intelligence, vol. 1952, Springer-
Verlag, Berlin, 2000, pp. 152-161.

[12] Haroud, D., Boulanger, S., Gelle, E., and Smith, I.F.C., Strategies for conflict management
in preliminary engineering design, In: Proceeding of the AID 1994 Workshop Conflict
Management in Design, 1994.

[13] Horling, B., Benyo, B, and Lesser, V., Using Self-Diagnosis to Adapt Organizational
Structures, In: Muller, J.P., Ander, E., Sen, S., and Frasson, C., Proceedings of the Fifth
International Conference on Autonomous Agents, ACM Press, 2001, pp. 529-536.

[14] Hubner, J.F., Sichman, J.S., and Boissier, O., A Model for the Structural, Functional and
Deontic Specification of Organizations in Multiagent Systems. In: Proc. 16th Brazilian
Symposium on Artificial Intelligence (SBIA'02), Porto de Galinhas, Brasil, 2002.
Extended abstract in: C. Castelfranchi and W.L. Johnson (eds.), Proc. of the First
International Joint Conference on Autonomous Agents and Multi-Agent Systems,
AAMAS'02. ACM Press, 2002, pp. 501-502.

[15] Ishida, T., Yokoo, M., and Gasser, L., An Organizational Approach to Adaptive
Production System, In: Proceedings of the 8th National Conference on Artificial
Intelligence, Boston, USA, 1990, pp. 52-58.

[16] Jaffee, D., Organization Theory: Tension and Change, McGraw-Hill Publishers, New
York, 2001.

[17] Jonker, C.M., Treur, J. Compositional verification of multi-agent systems: a formal
analysis of pro-activeness and reactiveness. Int. J. of Cooperative Information Systems,
vol. 11, 2002, pp. 51-92.

[18] Jonker, C.M., and Treur, J., Relating Structure and Dynamics in an Organisation Model.
In: J.S. Sichman, F. Bousquet, and P. Davidson (eds.), Multi-Agent-Based Simulation II,
Proc. of the Third Int. Workshop on Multi-Agent Based Simulation, MABS'02. Lecture
Notes in AI, vol. 2581, Springer Verlag, 2003, pp. 50-69.

[19] Klusch, M. Gerber, A., Dynamic Coalition Formation among Rational Agents, IEEE
Intelligent Systems 17(3), 2002, pp. 42-47.

[20] Lomi, A., and Larsen, E.R.. Dynamics of Organizations: Computational Modeling and
Organization Theories, AAAI Press, Menlo Park, 2001.

[21] McCallum, M., Vasconcelos, W.W., and Norman, T.J., Verification and Analysis of
Organisational Change. In: Boissier, O., Dignum, V., Matson, E., Sichman, J. (eds.), Proc.
1st OOOP Workshop, 2005, pp. 91-106.

[22] McMillan, K., Symbolic Model Checking: An approach to the state explosion problem, Kluwer
Academic Publishers, 1993.

[23] Rapoport, A., General System Theory, Abacus Press, 1986.
[24] Shehory, O., and Kraus, S., Task allocation via coalition formation among autonomous

agents, In: proceedings of IJCAI 1995, 1995, pp. 655-661.
[25] Womack, J.P., Jones, D.T., and Roos, D., The Machine That Changed The World: The

Story of Lean Production, HarperCollins Publishers, New York, 1991.

83

Chapter 5

Adaptation of Organizational Models for
Multi-Agent Systems based on Max Flow Networks

This chapter appeared as: Hoogendoorn, M., Adaptation of Organizational Models for
Multi-Agent Systems based on Max Flow Networks. In: Veloso, M.M. (ed.),
Proceedings of the Twentieth International Joint Conference on Artificial
Intelligence, AAAI Press, 2007, pp. 1321-1326.

84

85

Adaptation of Organizational Models for
Multi-Agent Systems based on Max Flow Networks

Mark Hoogendoorn

Vrije Universiteit Amsterdam, Department of Artificial Intelligence
De Boelelaan 1081a, 1081HV Amsterdam, The Netherlands

mhoogen@cs.vu.nl

Abstract. Organizational models within multi-agent systems literature are of a
static nature. Depending upon circumstances adaptation of the organizational
model can be essential to ensure a continuous successful function of the system.
This paper presents an approach based on max flow networks to dynamically
adapt organizational models to environmental fluctuation. First, a formal
mapping between a well-known organizational modeling framework and max
flow networks is presented. Having such a mapping maintains the insightful
structure of an organizational model whereas specifying efficient adaptation
algorithms based on max flow networks can be done as well. Thereafter two
adaptation mechanisms based on max flow networks are introduced each being
appropriate for different environmental characteristics.

1 Introduction

With the need for more complex software, arose the need for a higher abstraction
level than the concept agent. As a result, organization modeling is becoming a
practiced stage within multi-agent system design (see e.g. [2] and [1]). The
organizational model poses various constraints on agents populating the organization.
Frameworks have been introduced for representing such an organizational model e.g.
AGR (Agent/Group/Role)[4], GAIA [10] and MOISE [6].

A common problem encountered with the current organizational modeling
frameworks is their static nature. The frameworks do not support the organizational
model itself to be dynamic in that it changes based on e.g. the environment.
Especially when a multi-agent system participates in a dynamic and unpredictable
environment, an organizational model might become obsolete, making dynamic
adaptation of the model essential. Imagine a design for a negotiation system on the
Internet, in which buyer and seller agents are present. The organizational model
specifies the number of buyers and seller that should be present, based on a certain
expected input for the system. Suddenly, an increase in usage requires much more
buyer and seller agents. Such an event requires adaptation of the current
organizational model to the new usage level, otherwise the system would no longer
function correctly due to overload.

The aim of this paper is to introduce a method for capacity management of
organizations by dynamically adapting an organizational model based on the

86

environmental fluctuation. For this purpose, the AGR framework is adopted. AGR
has been chosen because the framework is closely related to graph representations.
Furthermore, extensions of the framework with capacities for each of the elements
within the organizational model are introduced. The method itself is based on graph
theory, and more specifically, on max flow networks. Specifying methods for
adaptation in max flow networks has the advantage of efficient algorithms being
available to perform calculations on the network. The method can be incorporated
into an agent maintaining such an organizational model, attributing the agent with the
capabilities to properly adapt the organizational model. This paper however only
deals with evaluating the effectiveness of the method itself.

The paper is organized as follows: Section 2 introduces max flow networks and the
terminology associated with it. Thereafter, Section 3 discusses the existing modeling
framework for organizations and extends it with capacity elements. Section 4 presents
a mapping between the extended organizational modeling framework and max flow
networks. Static analysis methods for analyzing the current functioning of the
organizational model are presented in Section 5 whereas Section 6 expresses
adaptation rules that can be used when the analysis shows an improper functioning.
Section 7 presents simulation results of these adaptation mechanisms, and finally,
Section 8 is a discussion.

2 Max Flow Networks

This Section provides a brief introduction to max flow networks within graph theory.
Max flow theory (see e.g. [5]) is a very well known part of graph theory, appreciated
because of its practical applicability. A max flow network is defined as follows.

Let G=(V,E) be a directed graph with a set of nodes V and a set of edges E. Within
V two special nodes are distinguished, namely the source s ∈ V and the sink t ∈ V.
The source has an indegree of 0 and the sink an outdegree of 0. Furthermore, let c: E

→ � + be a capacity function for the edges. A network is then defined as N =

(V,E,s,t,c). Now let f: E → ��� + denote the flow value under the following conditions:

f(x,y) ≤ c(x,y) for all (x,y) ∈ E

fin(v) = fout(v) for all v ∈ V-{s,t}

Where fin(v) and fout(v), respectively the inflow and the outflow of a node v, are
defined as follows:

fin(v) = �x ∈ V f(x,v) with (x,v) ∈ E

fout(v) = �y ∈ V f(v,y) with (v,y) ∈ E

For the source s and the sink t the following thus holds:

fin(s) = fout(t) = 0
The flow value throughout the network is now defined as follows:

|f| := fout(s) where fout(s) = fin(t)

87

The max flow is the maximum among all flows, and the max flow problem is to find
such a flow. Several algorithms have been published which can find such a flow, in
1956 Ford and Fulkerson [5] were the first to publish such an algorithm where finding
a minimal cut for the graph was proven to be equal to the max flow. Later efficiency
improvements have been proposed, see e.g. [3].

To enable a formal mapping between the organizational modeling framework and
max flow network, node capacities should be expressible. Specifying capacities for
nodes can be incorporated into the classical max flow network as follows: let cnode:V

→ � + denote the capacity of such a node. Now split up the node v with capacity
cnode(v) into two nodes: v1 and v2 where node v1 inherits all incoming nodes of v
whereas v2 inherits all outgoing edges. Finally, draw an edge (v1,v2) with the
following capacity value:

c(v1,v2) = cnode(v)

3 Multi-Agent Organizational Framework and Extensions

In this Section, the AGR approach is introduced. AGR is used because the
representation of the organizational modeling framework is closest to graph theory.
As the purpose of this paper is to investigate adaptations in the capacity of an
organizational model, AGR is extended with elements specifying such capacity.

3.1 Agent/Group/Role approach

As a basis for representing a multi-agent organization the AGR approach introduced
by Ferber and Gutknecht [4] is used. In the approach, as the name already suggests,
three main elements are used: (1) the agent which is only specified as an active
communicating entity which plays roles within groups; (2) the group defined as
atomic sets of agent behavior, and (3) the role which is an abstract representation of
an agent function, service or identification within a group. More formally on an
abstracter level, Ferber and Gutknecht define a group structure as a tuple
S=<R,G,L>. In the definition, R is a set of role identifiers whereas G is an interaction
graph specifying the valid interactions between two roles (later referred to as role
links): G: R x R → L, where L is the interaction language. The organizational
structure is defined as the set of group structures expressing the design of a multi-
agent organization scheme. It is expressed as O=<S,Rep>, where S is a set of group
structures. Rep is a representative graph specifying interactions between role of
different groups (later referred to as group links): Rep:S x R x S x R, e.g. Rep(Sa, r1,
Sb, r2) where r1 ∈ Sa and r2 ∈ Sb, and Sa, Sb ∈ S. A constraint is that a single agent is
playing both role r1 and role r2.

88

3.2 Agent/Group/Role Extensions

In addition to the AGR approach, it is assumed that in the specification of roles a
certain capacity is present. This capacity places a requirement on what an agent to be
allocated to the role within the organization should be able to handle computationally
per time unit (universal for the whole organization). This capacity is denoted by RC:

R → � +. In addition, a capacity can also be set for role links: CC: R x R → � + and

group links: SC: R x R → � +.
One crucial aspect is however still missing, namely the interaction with the

environment. AGR is mainly based on interaction between roles, whereas the
emphasis of this paper is to adapt to environmental fluctuations. Therefore, it is
assumed that the environment causes a certain pressure upon the organization. Such
pressure is expressed as the amount of processing needed by the organization to deal
with the pressure, it can be seen as the demand of the environment upon the system.
In the organizational model this is represented by adding an entity called the
environment ein and having links from the environment to the roles receiving that
stress directly: (ein, ri) which has a particular value at a certain time point: Ein: R →

� +. At different points in time the amount of pressure can differ, requiring different
processing capabilities. Furthermore, besides receiving pressure from the
environment, most roles are assumed to perform actions in the environment (eout) as

well, affecting the environment: (ri, eout) which again has a value: Eout: R → � +.
Assumed is that a correctly functioning multi-agent organization affects the
environment to the exact same amount as the environment affects the organization.

4 Mapping the Organizational Framework to Max Flow
Networks

A mapping between the extended AGR model and the max flow networks as
introduced in Section 2 is presented. The translation algorithm of the extended AGR
model to a max flow network can be described as follows:

• For each role ri∈O create a node vi
• For each role link G(ri, rj) create an edge (vi, vj)
• For each role link with capacity CC(ri, rj) set the capacity of the edge (vi, vj)

to that value: c(vi, vj)=CC(ri, rj)
• For each group link (ri, rj) where ri∈Sa, rj∈Sb and Sa ≠ Sb create an edge (vi,

vj)
• For each group link with capacity SC(ri, rj) set the capacity of the edge (vi,

vj) to that value: c(vi, vj)=SC(ri, rj)
• For each role with capacity RC(ri) set the capacity of the node vi to that

value: cnode(vi)=RC(ri), reduce the graph to a classical max flow graph using
the method presented in Section 2.

• Add a node s to represent the environment ein and add a node t to represent
the environment eout

89

• For each (ein, ri) with capacity Ein(ri) create an edge (s, vi). Set the capacity
c(s, vi)=Ein(ri)

• For each (ri, ein) with capacity Eout(ri) create an edge (vi, t). Set the capacity
c(vi, t)=Eout(ri)

Fig. 1. Example organization represented in AGR

Fig. 2. Max Flow equivalent of the example organization

Figure 1 shows an example AGR organization. In the figure, the big ovals denote
groups, whereas the smaller ovals denote the roles. Capacities of roles are depicted as
a box with a number specifying the capacity. Furthermore, interactions between roles
within a group or between a role and the environment are depicted by arrows,
including a label specifying the capacity. Finally, capacities for interactions between
groups are specified by dashed lines, including a capacity number depicted in italics.
Figure 2 shows the accompanying max flow network using the previously presented
translation algorithm (including the translation of node capacity to a classical max
flow network) with a max flow of 50.

90

5 Analyzing an Organizational Model using the Max Flow
Equivalent

Now that an equivalent max flow network can be derived from the extended form of
an AGR organizational model, this Section shows in what way the max flow network
can aid in the analysis of the organizational model. Such an analysis can be performed
in two ways: (1) checking whether the current organizational model can meet the
expected environmental conditions (i.e. an analysis beforehand), and (2) checking at
runtime whether the organizational model can meet the actual environmental
conditions.

5.1 Analysis of the Organizational Model based on Expected Values

Creating an organizational model is done having certain requirements in mind. In this
paper organizational requirements in the form of organizational capacities are
considered. Requirements on capacities are in the form of pressure from the
environment (i.e. the organization should be able to handle x requests of a certain
type). For checking whether such a requirement can theoretically be met by a multi-
agent organization, the max flow equivalent can be used, enabling the usage of tools
and algorithms from graph theory. To this end an organizational model, including
capacities for the various organization elements as introduced in the previous section,
is translated into a max flow problem. Remember the notation for the flow: |f|:=fout(s)
where fout(s) =fin(t). Now let the maximum flow be noted as follows:

|f|max(N):=fout, max(s) where fout, max(s) =fin, max(t)

The requirements posed for the organizational model can be translated into
requirements on the flow. Requirements regarding the amount of pressure can be
translated to a max flow requirement of the form

fout, max(s) ≥ r

where r is the requirement. Using the max flow problem algorithms from e.g. [5];[3]
it can be determined whether the organization can theoretically fulfill the
requirements. Note that non-fulfillment of the requirements guarantees that the
organization will never be able to meet the requirements when complying to the
design specification.

5.2 Analysis of the Organizational Model based on Observed Values

Besides performing an analysis at design time, an analysis at runtime can also be
performed. It can be the case that the environment in which the multi-agent system is
participating is highly dynamic and hard to predict, causing an unknown amount of
pressure for the organization. Therefore, the requirement r posed for the system is
dynamic. The requirement can however be observed: observing the amount of
pressure received by the multi-agent system. In case this exceeds the maximum flow
in the network equivalent, the organizational model is incorrect. Note that it is still

91

possible that the multi-agent system is functioning correctly, since the agents
allocated to the roles within the organizational model might have a higher capacity
than required. The model however should always be updated to make sure that the
system continues to function correctly. It could for example be that an agent can
handle the pressure for a while, but after a certain duration suffers a burn out.
Methods for updating such a model are presented in the next section.

6 Adaptation of an Organizational Model using the Max Flow
equivalent

As shown in the previous Section, when participating in a highly dynamic
environment the organizational model sometimes needs to be changed in order to
handle the environmental fluctuations appropriately. This Section proposes two
methods to perform such a change, each working under specific circumstances. These
methods only concern extending the capacity as the aim of this paper is to adapt the
organizational model in such a way that the environment can be handled, which does
not include decreasing the capacity.

6.1 Adapting the Bottlenecks

The first method for improving the network equivalent of the organizational model
involves finding the path which requires a minimum additional capacity, and adding
capacity to the bottleneck within the path. In other words, pinpointing the bottleneck
within the organization and improving it. Let P = s → ... → t denote a path from the
source s to the sink t in the network. In the explanation of the method, capacities of
edges are assumed to be natural numbers, however this can easily be extended to
rational numbers. Given that the environment has imposed requirement r, and the
parameter η which represents the safety margin to be taken:

• calculate the current max flow of the network |f|max(N)
• if |f|max(N) < (η x r):

1. n = 1
2. try finding a path P of the form P=s→+1...... xi →

0 yi →+1 t where n edges
{(x1,y1),...,(xn,yn)} do not have sufficient capacity to add a flow of 1 to
the path. In case such a path cannot be found: n=n+1

3. set the capacity for all the edges (xi,yi) in the set {(x1,y1),...,(xn,yn)} to
c(xi,yi) = c(xi,yi)+1

4. if the new max flow |f|max(N) < (η x r) then continue at point 1, else the
algorithm ends

The specification of the algorithm draws inspiration from the algorithms proposed for
finding the max flow through a network. These algorithms work with finding paths
from source to sink that can be increased with a flow of 1. Finding a path which can
almost be increased and extending the capacity therefore results in an immediate
increase in the max flow of the network.

92

6.2 Adding Organizational Elements

The capacity required for allocation of an agent to a certain role is of course limited;
agents with very high capacities might be too expensive. Therefore, an algorithm for
adding roles and the accompanying role and group links to an organization is
presented here. The algorithm as presented above is therefore adapted to cope with
addition of organizational elements as well. The extension states the following: in
case the max flow of the network can no longer be increased as a further increase of
the max flow would necessarily require exceeding of the maximum capacity set (i.e.
the current capacity c(xi,yi) exceeds the maximum capacity cmax(xi,yi):
1. For each two nodes vi1, vi2 and set of edges of the form (vx, vi1) where x∈V and

(vx, vi1)∈E, (vi1, vi2), and (vi2, vy) where y∈V and (vi2, vy)∈E representing a role ri
and its role and group links:

If at least one of the elements has reached the maximum capacity: calculate the
increase of the max flow in case the nodes and edges were to be doubled (i.e.
Nnew=N∪{vi1,2,vi2,2, (vx, vi1,2), (vi1,2, vi2,2), (vi2,2, vy)}): |f|max(Nnew)- |f|max(N)

• If the highest increase exceeds 0, in other words the network can be
improved by copying a single role, copy the two nodes and edges having
the highest value.

• Otherwise, copy the two nodes vi1, vi2 and accompanying edges (vx, vi1)
where vx∈V and (vx, vi1)∈E, (vi1, vi2), and (vi2, vy) where vy∈V and (vi2,
vy)∈E which maximize the following:
min (|{(vx, vi1) | (vx, vi1)∈E}|, |{(vi2, vy) |v(i2, vy)∈E}|)
Where {(vx, vi1) | (vx, vi1)∈E} is the set of incoming edges of vi1 and
{(vi2, vy) |v(i2, vy)∈E} the set of outgoing edges of vi2. In other words,
take the node which has a maximal connection with other nodes.
Thereafter, return to 1.

The intuition behind the algorithm is to find the nodes and edges representing the role
of which a copy would improve the max flow most. If no increase is possible, take the
nodes and edges representing the role which is most connected within the
organization to maximize the chances that an addition of a role after the copy will
result in an increase of the max flow.

7 Evaluation of the Different Methods for Improving an
Organizational Model

In order to characterize the methods presented in the previous Section, this section
presents an evaluation method, and compares the results of the different methods
using different settings. First, a cost model is presented expressing the cost function
used for evaluation. Thereafter, the different methods are evaluated based on the cost
model and several environmental settings.

93

7.1 Cost Model

Each element within the organizational model has a certain cost attached to it. The

cost for role and group links is expressed as costlink: R x R → � + and defined as
follows:

costlink(x,y) = e(CC(x,y)/�) where (x,y)∈(G∪Rep)

In other words, cost for links increase exponentially (a commonly used type of cost
function), where the parameter � can be varied. The same holds for the cost of a node

costrole:R → � + which is thus defined as follows:

costrole(r) = e(RC(r)0.5/�) where r∈R

The factor 0.5 is arbitrarily set in the cost function because typically interaction
capacity costs are lower than agent capacity costs. In order to punish an
organizational model not being able to meet the environmental pressure, a penalty is

introduced of the form p: N x r → � +, where r is the environmental requirement. The
penalty function is defined as follows:

p(N, r) = � x (r - |f|max(N))

The parameter � specifies the penalty for each requirement unit not fulfilled. The
network N represents the multi-agent organization. Finally, the overall cost for the
organizational model is defined as follows:

costtotal = p(N, r) + �r∈Rcostrole (r) + �(x,y)∈ G∪Rep costlink (x,y)

7.2 Evaluation

An implementation in Java has been created of the two algorithms for reorganization,
and the translation procedure of an organizational model to the accompanying
network. In order to evaluate the performance of the two algorithms the example
organizational model shown in Figure 1 is used. As a benchmark, no adaptation of the
organizational model is used. Using the implementation, simulation runs are
performed with an environmental pressure causing a requirement r based on a normal
distribution f(x;� ,�). One step within such a simulation entails: (1) generating the
environmental requirement r based on the normal distribution; (2) calculating the
current max flow of the network: |f|max(N); (3) calculating the cost costtotal, and (4)
updating the network for the next step, using one of the improvement methods. Each
step is performed 100 times, and each simulation is performed 10 times, generating
from a different seed each time. After the steps have been performed, the average of
the costtotal per step is calculated. In order to evaluate the different methods, two
settings for the cost model have been used: relatively high penalty cost compared to
agent/communication cost (e.g. a critical domain such as incident management), and
relatively low penalty cost compared to agent/communication cost (a non-critical
domain). Furthermore, the environment setting � is by default set to the initial max
flow (in this case 50), whereas the fluctuation � has been set to different values:

� ={0,5,20}.

94

7.2.1 Relatively High Penalty Cost
The results of an organization in which penalty costs are relatively high compared to
labor cost are presented here. This reflects in the cost model in which � is set to 80,
meaning an initial cost of 34 for the whole organization, whereas

�
 is set to 200, a

penalty cost significantly higher than the initial cost of the whole organization.

0.8 0.9 1 1.1 1.2 1.3 1.4 1.5
0

50

100

150

200

250

300

350

400

η

a
ve

ra
g

e
 c

o
st

σ=0
σ=5
σ=20

Fig. 3. Bottleneck algorithm performance for high penalty cost

0.8 0.9 1 1.1 1.2 1.3 1.4 1.5
0

50

100

150

200

250

300

350

400

η

av
er

ag
e

co
st

σ=0, max=90
σ=5, max=90
σ=20, max=90

Fig. 4. Role addition algorithm performance for high penalty cost with max capacity 90

First, the bottleneck algorithm is used. Figure 3 shows the results for different
setting given environmental fluctuation � and varying η value (the algorithm
parameter specifying how much to update the capacity). As can be seen, with no
environmental fluctuation, the costs stay stable for the lower η values whereas they
slightly increase for the higher settings, as the capacities are even increased when the
current max flow is identical to the requirement r. For small environmental fluctuation
(� =5) an η value of 1.2 gives the best results, which is also the case for large
environmental fluctuation. In both cases, having a higher η value results in the

95

capacity being too high (i.e. costs too high) whereas a lower η value increases the
amount of penalties.

0.8 0.9 1 1.1 1.2 1.3 1.4 1.5
0

50

100

150

200

250

300

350

400

η

av
er

ag
e

co
st

σ=0, max=60
σ=5, max=60
σ=20, max=60

Fig. 5. Role addition algorithm performance for high penalty cost with max capacity 60

Table 1. Average costs of the organizational model resulting from the different algorithms,

penalty is set to either 5 or 200 �
 � No

adaptation
max flow �

No
adaptation
max flow 2�

Optimal
Bottleneck

Role
addition
max=90

Role
addition
max=60

200 0 34 199 34 34 34
200 5 370 199 42 42 75.6
200 20 1518 210 129 141 116
5 0 34 199 34(η≤1.2) 34(η≤1.2) 34(η≤1.2)
5 5 42 199 35(η=1.0) 35(η=1.0) 37(η=0.9)
5 20 71 210 35(η=0.8) 37(η=0.7) 69(η=0.5)

Figure 4 and 5 show the results of the bottleneck algorithm extended with role

addition. In Figure 5 the max capacity has been set to 90 whereas in Figure 6 60 is
used. In the case of no environmental fluctuation, Figure 5 shows a similar shape as
the bottleneck algorithm, whereas Figure 6 shows a large increase above a value of
η=1.2. This is the result of roles being copied due to the low setting of the maximum
capacity. Each role in the network has already reached the maximum capacity,
resulting in a need for a copy, which causes a severe overcapacity. In case of little
environmental fluctuation, the setting 90 for the maximum capacity is better since no
large increase for capacity is required, whereas with high environmental fluctuation
60 is best since larger capacity increases are required.

Finally, the top part of Table 1 (the rows where � =200) shows the comparison
between the different methods, given optimal parameter settings. As can be seen, no
adaptation is always worse compared to the other algorithms, even when an
overcapacity is initially present. Furthermore, in case of small environmental
fluctuation adding capacity to the current roles is best (despite the exponential cost

96

function) whereas for larger fluctuation, adding roles immediately is the best option
due to the exponential cost function.

7.2.2 Relatively Low Penalty Cost
Table 1 also shows the result when the penalty is set to a relatively low value (the
rows where � =5). Still the algorithms are better than no adaptation, however the value
for η needs to be set to a lower value as having too much capacity is relatively
expensive compared to the penalty for not meeting the requirements. Therefore, the
role addition algorithm with a maximum capacity 60 performs worse than the one
with 90.

8 Discussion

This paper has presented an approach to adapt an organizational model to fluctuations
within the environment. Such an approach can be incorporated into an agent
responsible for maintaining the organizational model. In a highly dynamic and
unpredictable environment, such an adaptation mechanism might be a necessity to
guarantee successfulness of a multi-agent system. The approach used in this paper is
to translate an organizational model to a max flow network and specify two
algorithms for adaptation. Specifying analysis constructs and reorganization
algorithms for the graph representation has as an advantage that knowledge and
algorithms from the well established graph domain can be reused (such as calculation
of the max flow [3]). The algorithm used for adaptation of bottlenecks is indeed a
known algorithm within graph theory for addition of capacity. The addition of
organizational elements however requires knowledge about the meaning of the
elements within the max flow network (e.g. what the roles are), algorithms from
graph theory can therefore not be re-used. The algorithms as proposed in this paper
have been evaluated by simulation runs, and were shown to be more effective
compared to no adaptation, especially in critical domains in which the penalty
function is relatively high. Limits of the approach for instance include the case where
the environmental pressure is at first above the capacity of the organizational model
and thereafter steadily decreases. In such cases the organizational model using the
adaptation mechanism will adapt to the initial high pressure, and suffer from an
overcapacity at the later time points. The total sum of the penalties received in the
beginning by the non-adaptive organizational model might be lower than the total cost
of the overcapacity in the adaptive case. Very rare outliers with a very high
environmental pressure can have the same effect.

In the field of adaptive agents and multi-agent systems (see e.g.[9];[8]) learning
from the environment is an important topic. Adapting organizational models based on
the environmental conditions is, as argued before in this paper, one of the necessities
for the new organizational paradigm. Especially with continuously changing
circumstances and agents leaving and arriving a well specified and up-to-date
organizational model is required to guarantee proper functioning of the organization.

When comparing the approach with other organizational modeling approaches in
multi-agent systems, those approaches often include much more concepts than

97

capacity of a role. An extension of GAIA [10] for example adds the notion of
organizational rules. Such rules express relationships and constraints between roles,
protocols, and roles and protocols. These relationships and constraints can be
incorporated in the approach presented in this paper as well. When copying a role one
can simply copy those relationships involving the role being copied and adapt them to
specify the relationships and constraints of the copy of the role. MOISE [6] defines
missions for roles, which can include concepts such as goals, plans, actions, and
resources. Furthermore, authority links between roles can also be specified. Again, as
already stated for GAIA, these concepts can be reused when copying a role. Several
of these organizational models have been extended with organizational change
notions, see for example [7]. These extensions are however typically very generic
models without going into specific details on how to reorganize the organization
whereas this paper does.

Finally, for future work an interesting continuation would be to look at the
performance in other simulation settings, and possibly compare how well different
types of organizational structures perform in changing circumstances.

Acknowledgements

The author would like to thank Catholijn Jonker, Jan Treur, and Evert Wattel for the
fruitful discussions, and the anonymous reviewers for their useful comments.

References

[1] Boissier, O., Dignum, V., Matson, E., and Sichman, J. (editors), Proceedings of the First
OOOP Workshop, Utrecht, 2005.

[2] Ciancarini, P. and Wooldridge, M. (editors),Agent-Oriented Software Engineering, LNCS,
Spinger Verlag, 1957 edition, 2001.

[3] Edmunds, J. and Karp, R.M., Theoretical improvements in algorithmic efficiency for
network flow problems, Journal of the Association for Computing Machinery, 19:248--
264, 1972

[4] Ferber, J. and Gutknecht, O., A meta-model for the analysis and design of organizations in
multiagent systems, In Proc. of ICMAS 1998, pages 128--135. IEEE CS Press, 1998

[5] Ford, L.R. and Fulkerson, D.R., Maximum flow though a network, Canadian Journal of
Mathematics, 8:399--404, 1956.

[6] Hannoun, M., Boissier, O., Sichman, J., and Sayettat, C., Moise: An organizational model
for multi-agent systems, In: IBERAMIA-SBIA ‘00: Proceedings of the International Joint
Conference, 7th Ibero-American Conference on AI, pages 156—165, Springer-Verlag,
2000.

[7] Hoogendoorn, M., Jonker, C.M., Schut, M.C., and Treur, J., Modeling centralized
organization of organizational change. Computational and Mathematical Organization
Theory, In Press, 2006.

[8] Kudenko, D., Kazakov, D., and Alonso, E. (editors), Adaptive Agents and Multi-Agent
Systems II, Springer Verlag, 2005

[9] Schaal, S., Ijspeert, A.J., Billard, A., Vijayakumar, S., Hallam, J., and Meyer, J.A.
(editors), From animals to animats 8, MIT Press, 2004

98

[10] Zambonelli, F., Jennings, N., and Wooldridge, M., Organizational rules as an abstraction
for the analysis and design of multi-agent systems. Journal of Software and Knowledge
Engineering, 11:303--328, 2001.

99

Part III:
Organizational Change Process:

Centralized Change Processes

100

101

Chapter 6

Modeling Centralized Organization
of Organizational Change

This chapter appeared as: Hoogendoorn, M., Jonker, C.M., Schut, M.C., and Treur, J.,
Modeling Centralized Organization of Organizational Change, Computational and
Mathematical Organization Theory, vol. 13, 2007, pp.147-184. The original
publication is available at www.springerlink.com.

Furthermore, part of this chapter appeared as: Hoogendoorn, M., Jonker, C.M., Schut,
M.C., and Treur, J., Modelling the Organisation of Organisational Change. In:
Giorgini, P., and Winikoff, M., (eds.), Proceedings of the Sixth International
Workshop on Agent-Oriented Information Systems, AOIS’04 , 2004, pp. 29-46.

102

103

Modeling Centralized Organization
of Organizational Change

Mark Hoogendoorn1, Catholijn M. Jonker2, Martijn C. Schut1, and Jan Treur1

1Vrije Universiteit Amsterdam, Department of Artificial Intelligence
De Boelelaan 1081a, 1081 HV Amsterdam, The Netherlands

Email: {mhoogen, schut, treur}@cs.vu.nl
URL: http://www.cs.vu.nl/~{mhoogen, schut, treur}

2Radboud University Nijmegen, Nijmegen Institute for Cognition and Information
Montessorilaan 3, 6525 HR Nijmegen, The Netherlands

Email: C.Jonker@nici.ru.nl
URL: http://www.nici.ru.nl/~catholj

Abstract. Organizations change with the dynamics of the world. To enable
organizations to change, certain structures and capabilities are needed. As all
processes, a change process has an organization of its own. In this paper it is
shown how within a formal organization modeling approach also organizational
change processes can be modeled. A generic organization model (covering both
organization structure and behavior) for organizational change is presented and
formally evaluated for a case study. This model takes into account different
phases in a change process considered in Organization Theory literature, such
as unfreezing, movement and refreezing. Moreover, at the level of individuals,
the internal beliefs and their changes are incorporated in the model. In addition,
an internal mental model for (reflective) reasoning about expected role behavior
is included in the organization model.

Keywords: organizational change, formal organizational modeling,
organizational simulation, multi-agent organizations, organization verification

1 Introduction

Within the literature on Organization Theory changing organizations play a dominant
role [30; 21; 22]. As change processes involve many factors ranging from making the
employees aware of changes to come and taking away resistance to change to the
design of efficient organizational structures. Changes can concern rather simple
processes of slight changes in one or more role descriptions. They may affect only a
part of the organization or practically the whole organization. Roles or big parts of the
organization may be deleted, new ones created. The realization of the organization
probably changes, e.g., agents fulfilling other roles than before, agents leaving the
organization, agents joining the organization [16]. A change may be initiated by the
environment or by the organization itself. The organization of a change process may
involve agents from outside the organization (e.g., consultation) or from inside. In this

104

paper, the process of (business) organizational change is analyzed in more detail.
Methods used in this analysis are those of formalization, simulation and verification.
To organize change processes, a generic organization model for organizational change
is introduced and formalized. This organization model incorporates both multi-agent
co-operation aspects and individual cognitive aspects in the form of the internal
mental states (e.g., beliefs) of those involved in the change.

A specific area in which organizational change is inherent, is in the organization
that is needed to cope with a big upcoming event. Such an event can be a planned
event in the area of sports or concerts, for example, but also an incident that can grow
out to a disaster. The latter area is the focus of the project CIM (for Cybernetic
Incident Management); cf. [1; 18; 19]. A common characteristic for incidents and big
planned events is that the organizational structures start almost at zero, i.e., no
activity, and hence no organization, but (have to) grow out to a scale and form of
organization that is able to address large and complex processes by multiple parties
and multiple agents. To test ideas on organizational change modeling and to get more
insight in cases with these characteristics, the organization of a big sports event has
been chosen: the famous Dutch 11 cities ice skating tour (10.000s of people all
performing 200 km of ice skating on one day, going from city to city). In this case
study the usefulness of the developed organization model for organizational change is
evaluated.

To model the organizational change process, the theory presented in [27; 20] has
been used as inspiration, and has been evaluated on its usefulness in an operational
(modeling) sense. The three phases unfreezing, moving, refreezing distinguished have
been incorporated in the generic model for organizational change developed. The case
study shows that this theory indeed can be integrated in an organizational change
modeling approach in a useful manner.

This paper is organized as follows: Section 2 gives an overview of organizational
change literature, and introduces the stages that can be identified in an organizational
change process. Section 3 introduces the approach which has been used to model the
stages in organizational change in a formal way. The model itself is specified in
Section 4 both from a structural as well as from a behavioral perspective. Section 5
presents a language used to specify an organizational change and Section 6 presents
results of a case study which has been performed to show how the approach can be
applied. In Section 7 formal verification is performed upon the simulation results to
show that the simulated organization indeed satisfies the desired properties. Finally,
Section 8 draws conclusions based on the results presented in this paper.

2 Organizational Change Literature

Organizational change is a well studied topic in recent literature on sociology,
psychology, and economics. Change within organizations has become part of
everyday life, some organizations are even continuously undergoing change.
Changing an organization is not a simple process, often difficulties are encountered
within such a change process. Research has shown that over 70 percent of the change
programs in organizations do not achieve the intended goal [17; 5]. Boonstra [6]

105

criticizes typical explanations given for these failures in that they pay insufficient
attention to the complexity of the change process itself. Three types of organizational
change are distinguished within the introduction of his book: First, planned
organizational change, which addresses questions with respect to problems that
require change in technical and instrumental aspects in which the problems and
solutions are known. Secondly, organizational development which is said to be
suitable when “ the changes to be made are far-reaching, the problems not entirely
unambiguous but still recognizable, and there is some idea as to the direction in which
the solutions must be sought” . Cummings and Worley [9] define organizational
development as “a system-wide process of applying behavioral science knowledge to
the planned change and development of strategies, design components, and processes
that enable organizations to be effective” . The final type of organizational change
distinguished is transformational change, in which the change processes include
“renewal processes involving actors from various organizations” . In Ackerman [2]
transformational change is said to be the emergence of a totally new state of being out
of the remains of the old state.

Both in planned change and organizational development an approach is taken in
which a move is performed from one stable state to another. The change processes
involve the phases in which an organization is unfrozen, changed, and refrozen. These
phases within the organizational change process originate from the ideas of Kurt
Lewin [27]. He states that there are two opposing forces at work when changing an
organization: forces that resist the change, and forces that drive towards the newly
desired organization. Figure 1 presents the phases and forces within organizational
change in a graphical manner (from [30]). The unfreezing phase begins at the moment
that change becomes necessary and consists of the process of changing

the resisting and driving forces in such a way that change becomes possible (i.e., the
driving forces outweigh the resisting forces). Both Schein [31] and Hosking [20]
stress the importance of communication within this unfreezing phase to enable a
successful change. According to Cummings [10] organizational development has
discovered a long list of causes for resistance to change, such as structural inertia,
work habits, fear of the unknown, powerful interests, and members’ security needs.

Fig. 1. Movement of an organization from a status quo to a desired state [30]

Unfreezing Movement Refreezing

Resistant forces

Driving Forces

Time

 Desired state

 Status quo

106

Forces that drive an organization to change can be found in Jaffee [22] and for
example include change on the supply side, customer behavior, available technology
(see e.g. [29]), etc. The actual change of the organization is contained in the
movement phase in which the organization is moved from the current state to the
desired stated. The refreezing phase involves freezing the newly formed organization
so that there is no possibility to return to the former status quo or to continue
changing in another unwanted direction. The whole re-organization process is
completed when all phases have been completed. The unfreezing can be performed by
increasing the driving forces and/or by decreasing the resisting forces. In their book,
Cummings and Worley [9] state that Lewin’s model remains closely identified with
the fields of planned change and organizational development.

Since the model of Lewin is a highly generic model, effort in organizational
development research has gone into making it more concrete. Lippitt et al. [28]for
example arrange Lewin’s model in seven steps: within the unfreezing phase they
identify scouting, entry and diagnosis. The movement phase is split up into planning
and action, and finally, stabilization and evaluation, and termination are placed within
the refreezing phase.

Particularly of interest for this paper are further refinements regarding the actors
within organizational change. Kotter [26] has defined characteristics for change
managers to prevent organizations from falling into pitfalls due to bad change
management. These include having industrial and organizational knowledge, relations
in the firm and industry, and reputation and track record. Power is an important aspect
related to actors in organizational change processes as well, since the resisting and
driving forces of the actors need to be changed to enable an organizational change.
This particular research branch is called power dynamics. Research started in 1946
when Kurt Lewin introduced T-groups in a laboratory training setting and was mainly
based on group-based approaches where people learn about group dynamics,
leadership and interpersonal relationships. Bradshaw and Boonstra (2004) identify
several different notions of power. Firstly, manifest-personal power which takes the
viewpoint that a person can have power over other people and can make them do
something they would not do otherwise. Research concerning this form of power
research is said to have started with the work of Dahl [11], Emerson [12] and Wrong
[33]. In manifest-structural power, power is no longer viewed from the personal
perspective, but from a group perspective. Bacharach and Lawler [4] is named as a
reference for this notion of power. Negotiations are said to be an important part of the
models regarding manifest structural power. Latent-Cultural Power sees organizing
as “a process of the creation and reproduction of shared meanings that are largely
latent or unconscious”, they also refer to Alvesson [3] for more details about the
notion of latent-cultural power. Finally, latent-personal power which is said to be
relatively new in organization theory. This type of power is said to differ from latent-
cultural power is several different ways. First of all, power is said to be scattered
throughout the organization, even individuals at the bottom of the organization can
deploy their power. Secondly, power relations are assumed to become part of the
psyche of the individual.

As the theory of Lewin is still considered being the underlying theory for
organizational change research and considered valid, this paper tries to model the
theory in a generic sense as a first step towards modeling and understanding complex

107

organizational change processes. Further extensions might focus on the idea sketched
above such as on more complex power relationships, the role of different
characteristics for change managers, and the different ways to enable unfreezing an
organization.

3 Modeling Approach for Organizations

Before being able to model the organizational change processes identified by Lewin, a
methodology is required which enables modeling organizations in general. This
Section presents such a methodology which allows modeling of organizations from
two perspectives. First, the structural perspective, merely specifying the structural
blueprint of an organization, and secondly, the behavioral perspective which specifies
the behavior of an organization and the actors within such an organization.

3.1 The structural description of an organization

For the structural description of actual multi-agent organizations, the AGR (for
agent/group/role) modeling approach has been adopted [14]. In that approach, an
organization is viewed as a framework for activity and interaction through the
definition of groups, roles and their relationships. But, by avoiding an agent-oriented
viewpoint, an organization is regarded as a structural relationship between a collection
of agents. Thus, an organization can be described solely on the basis of its structure,
i.e. by the way groups and roles are arranged to form a whole, without being
concerned with the way agents actually behave, and multi-agent systems will be
analyzed from the outside, as a set of interaction modes. The specific architecture of
agents is purposely not addressed in the organizational model. The three primitive
definitions are:

• The agents. The model places no constraints on the internal architecture of agents.
An agent is only specified as an active communicating entity which plays roles within
groups. This agent definition is intentionally general to allow agent designers to adopt
the most accurate definition of agent-hood relative to their application.

• Groups are defined as atomic sets of agent aggregation. Each agent is part of one or
more groups. In its most basic form, the group is only a way to tag a set of agents. An
agent can be a member of n groups at the same time. A major point of these groups is
that they can freely overlap.

• A role is an abstract representation of an agent function, service or identification
within a group. Each agent can handle multiple roles, and each role handled by an
agent is local to a group.
Figure 2 presents an example of an organization modeled in AGR. The large ovals
denote groups whereas the smaller ovals denote the roles within the organizations.

108

Furthermore, the solid arrows denote interactions between roles, and the dashed lines
represent inter-group interactions. Agents realizing the roles are not depicted.
To enable simulation and reasoning about such an organizational model, the Structural
Language SL is used, based on the set of sorts (a class or type of objects) that is
shown in Table 1. These sorts enable talking about structural elements in the
organization model. Additionally, Table 2 shows a set of predicates within SL that
define relations between the introduced sorts.

Table 1. Sorts in SL

Sort Description
ROLE Sort for a role within an organization.
AGENT Sort for an agent that can be allocated to a certain role.
GROUP Sort for a group within an organization.
TRANSFER Sort for a connection between two roles within one group.
GROUP_INTERACTION Sort for a connection between two roles in a different group.

Table 2. Predicates defined in SL to describe the structure of an organization

Predicate Description
exists_role: ROLE A role exists within an organization.
allocated_to: AGENT x ROLE x GROUP An agent is allocated to a role within a group.
exists_group: GROUP A group exists within the organization.
role_belongs_to_group: ROLE x GROUP A role belongs to a group.
intra_group_connection: ROLE x ROLE x
GROUP x TRANSFER

A role is connected to another role (directed)
within a certain group by means of a transfer
connection. The source and destination roles are
allowed to be equivalent.

inter_group_connection: ROLE x
GROUP x ROLE x GROUP x
GROUP_INTERACTION

A role within a group is connected to a role within
another group by means of a group interaction
connection.

Fig. 2. Example organization modeled within AGR

109

3.2 The behavioral description of an organization

In this section a method to express dynamics within an organizational model is
addressed. To formally specify dynamic properties at the different aggregation levels
that are essential in an organization, an expressive language is needed. To this end the
Temporal Trace Language is used as a tool; cf. [23]. For the properties occurring in
the paper informal, semi-formal or formal representations are given. The formal
representations are based on the Temporal Trace Language (TTL), which is briefly
described as follows; for more formal details, see Appendix A.

A state ontology Ont is a specification (in order-sorted logic) of a vocabulary. A
state for ontology Ont is defined as an indication of which state properties expressed
in ontology Ont hold in the state and which do not hold. The set of all states is
modeled by the sort STATE. A fixed time frame T is assumed which is linearly
ordered. A trace or trajectory γ over a state ontology Ont and time frame T is an
indication of which state occurs at which time point, for example if a discrete time
frame based on natural numbers is taken, a trace is a sequence of states γt (t ∈ T). The
set of all traces over state ontology Ont is modeled by the sort TRACE. Depending on
the application, the time frame T may be dense (e.g., the real numbers), or discrete
(e.g., the set of integers or natural numbers or a finite initial segment of the natural
numbers), or any other form, as long as it has a linear ordering. A dynamic property
over state ontology Ont is a temporal statement that can be formulated with respect to
traces based on the state ontology. Such temporal statements can express, for
example, a temporal relationship between the fact that in a given trace a certain state
property holds at a certain time point and another state property holds at some other
time point. For more formal details, see Appendix A.

The Temporal Trace language can be used to specify behavioral properties at
different aggregation levels, according to the organizational structure. Within the
AGR approach the aggregation levels are the level of the roles, the level of the groups
and the level of the organization as a whole (see Figure 3). The lower level properties
can often be modeled in simpler formats than the higher level properties. In particular,
it is often possible to model the properties at the leaves of the tree in the form of
directly executable properties, i.e., by direct temporal dependencies between state
properties in two successive states. To model direct temporal dependencies between
two state properties, not the expressive language TTL, but the simpler leads to format
is used. This is an executable format that can be used to obtain a specification of a
simulation model in terms of local dynamic properties (the leaves of the tree in Fig.
3). The format is defined as follows. Let α and β be conjunctions of elementary state
properties, and e, f, g, h non-negative real numbers. In the leads to language α →→e, f, g,

h β, means:

 if state property α holds for a certain time interval with duration g,
 then after some delay (between e and f) state property β will hold
 for a certain time interval of length h.

For a precise definition of the leads to format in terms of the language TTL, see [23].
A specification of dynamic properties in leads to format has as advantages that it is
executable and that simulation results can be depicted graphically.

110

Table 3 shows the predicates within the Behavioral Language BL which allows the
specification of the behavioral part of the organization at different aggregation levels,
using the TTL language as described above. The sort DYNPROP expresses an identifier
of a dynamic property whereas DYNPROPEXP expresses the dynamic property itself in
terms of TTL.

Table 3. Predicates defined in BL to define the dynamics within an organization

Predicate Description
role_property: DYNPROP x ROLE x GROUP A role within a group has a role property.
transfer_property: DYNPROP x ROLE x ROLE x
GROUP

Within a group, a transfer property with an
identifier holds between two roles.

group_property: DYNPROP x GROUP A group has a certain group property.
group_interaction_property: DYNPROP x ROLE
x GROUP x ROLE x GROUP

An interaction property with an identifier
holds between two roles in different groups.

organization_property: DYNPROP A certain or property holds for the
organization.

has_expression: DYNPROP x DYNPROPEXP A specific dynamic property has an
expression.

Based on the sort DYNPROPEXP it is possible to put more constraints on particular
types of properties. The constraints for the different properties are defined below. The
formal representations of these properties can be found in Appendix B.

Role dynamic properties
Role properties involve only one role, namely the role for which the property holds.
Therefore, a role property should only contain elements that are part of the ontology
of that role. The group is also part of the definition of the ontology since roles in
different groups can have the same name and might have a different ontology. Role
properties can be divided into different types which in turn can be defined more
restricted than the general definition. An example of such a refinement is an
executable role dynamic property.

Fig. 3. Overview of interlevel relations between dynamic properties

 transfer properties role properties

group properties intergroup interaction properties

organization properties

111

Transfer dynamic properties
Transfer properties relate the output of a role to the input of a destination role,
therefore the restriction on this dynamic property is that it should be expressed in
terms of the output ontology of the source role combined with the input ontology of
the destination role.

Group dynamic properties
Group dynamic properties are dynamic properties expressed in terms of the state
ontologies of (some of) the roles within the group. The most common type of group
property relates an output state of a role within the group to an input state of another
role within that group.

Intergroup interaction dynamic properties
Group interaction properties involve the input of a role within one group which is
related to the output of a role within another group.

Organization dynamic properties
For the organization dynamic properties the same holds as for group properties: states
of multiple roles (this time in different groups) can be involved; there is no further
specific definition for this type of property.

4 Organizing Organizational Change

The term organizing organizational change makes it explicit that organizational
change is a behavior process of that organization. Therefore, when formalizing
organization dynamics, also the process of change must be formally specified as one
of the possible ways of behavior of the organization. As all organizational behavior is
described in terms of the behavior properties of the roles in that organization, also the
whole process of organizational change is attributed to a set of roles in that
organization. This section presents an organization model of organizational change
that is based on the three stages of change introduced by Lewin.

4.1 Structure and Informal Behavior of the Change Organization

Modeling the forces indicated in Lewin’s model entails attributing these forces to
roles. Given an existing organization model that does not model organizational
change, there are two basic choices that can be made: assigning these forces to roles
already in the model, or extending the model with additional organizational elements.
The first can be a part of the second approach by first extending the existing model
with additional organizational elements, and then applying the first approach.
Although the first approach can be a part of the second, when modeling an
organization in which the realizing agents cannot reason about the change or even
about the role that they are playing (e.g., when modeling an ant hill), only the first

112

approach can be followed and the roles must be modeled as adaptive roles to ensure
the possibility of change. In this article, the realizing agents can reason about roles and
organizations. The second approach is chosen to most explicitly show the
organizational change process. In both cases the behavioral specification of the
organization elements needs extension, resulting in an organization model that
incorporates organizing organizational change.
Consider, as an example, the organization as presented in Section 3.1, Figure 2 which
is also shown at the bottom part of Figure 4a. An organizational change might for
example concern the removal of Group3, which in turn could imply that one of the
agents realizing the organization will be fired. It might further entail a re-allocation of
agents over roles in groups. The organization in its state before change resists change
(resisting forces outweigh the driving forces). To formally model this phenomenon,
the resisting and driving forces must be attributed to roles. Attributing them to the
existing roles is counterintuitive, because different roles have been identified to
specify different behaviors. The resisting and driving behaviors are of a different
category. The way chosen in this article, is to recognize that all agents part of the
realization of the organization have one thing in common: they are all members of the
organization. Some members of the organization might be in favor of change, some
against, and this might change over time. This is modeled by adding the role Member
to the organization model, and attributing driving and resisting forces to that role.
Given that the organization changes from one stable situation to a new stable
situation, there is a need to model the focus existing in the organizational change. For
this reason the role of Change Manager is added to the organizational model. The
Change Manager is attributed with driving forces. This role can be realized by an
agent from an external company, i.e. a consultant type of role, or by an agent from
within the organization. In Figure 4(a), the new roles are grouped together in an
organizational element called the Change Group, the members are represented by
Member One, Member Two, etc.

The Change Group is depicted in grey in Figure 4(a) to indicate that in stable
situations this group is inactive. The Change Manager can be of several different
types, for example there can be a global Change Manager, that is allowed to change

Fig. 4. (a) Organization before the change (b) Organization after the
 organizational change

113

the entire organization. It is however also possible to have a local Change Manager
that is only allowed to change a certain part within an organization and therefore can
only communicate with a sub-group of the members within the Change Group.
Because the Change Manager can be a representative of the company itself or of an
external company there is no predefined shared allocation between this role and
another. Every realizing agent of the organization is (next to the role it was already
allocated to) also allocated to one instance of the Member role of the Change Group.
The Change Group has a meta-view on the organization, and can, therefore, be seen
as a meta-group. The start of an unfreezing phase (meaning a change is due) is
characterized by a sudden activity of the Change Manager within the Change Group.
The Change Manager might, for example, inform (all or some of) the instances of the
Member role of the impending organizational change and the reasons for this change.
Aside from the resulting reduction of resisting forces that this information might bring
about, this interaction can also be used to model the preparation for the movement
phase.

At the end of a well-performed unfreezing stage, maybe all Member role instances,
but at least every Member role instance whose realizing agent is somehow involved in
the change, now has beliefs about which role its realizing agent may have to play in
the new organization. These beliefs include the expected role behavior. The end of
the unfreezing phase may be characterized by the presence of these beliefs in the
respective member role instances or communication of this presence to the Change
Manager. Note that this does not say anything about all activities required to
accomplish these shared beliefs.

The start of the movement phase, after a well-performed unfreezing phase, is
characterized by the Change Manager informing all Members of when the actual
change in organization is to take place. At the indicated moment, all Member roles are
to consider in their beliefs the new organization form to be the current organization
form. The movement phase is used to achieve (for example, by being informed) that
all involved will get the appropriate beliefs on the new structure and their roles in this
structure. As a result, the affected parts of the organization will start behaving
according to the behavior specification of the new organization form. This process is
modeled by means of the shared allocation of agents. Behavior that has become
obsolete within the organization will disappear over time.

The start of the refreezing phase is characterized by regular functioning of the new
organization form and a de-activation of the Change Group, see Figure 4(b). The
refreezing phase is complete when the behavior of the organization shows the routines
that correspond to the expected behavior of the new, now current, organization.

Next to the structural properties of the organization model of organizational
change, also the behavioral properties of the roles involved should be described to get
a complete model. The next sections describe the behavioral properties of the main
roles; the Change Manager and the Member.

4.2 Dynamic Properties for the Behavior of the Change Organization

The Change Manager is active in all stages of the organizational change. The
properties in this section are described in a domain independent manner, more

114

describing the global behavior than the actual behavior. Examples of more specific
properties can be found in Section 6. First, properties regarding the unfreezing phase
are presented, after which the behavior during the movement phase is described.
Finally, the behavior during the refreezing phase is described.

4.2.1 Dynamic properties for the Unfreezing Phase

First of all, the following property states the global behavior during the unfreezing
phase, namely that once there is an upcoming change, eventually enough key
Members (fraction e) within the Change Group will be unfrozen which takes the form
of a communication of acceptance of the new organization model.

GP1(ChangeGroup): Unfreezing Organization
if at time t the Change Manager within the Change Group has access to a plan which specifies

a condition C for a decision to reorganize based on a new organizational model OM
 and condition C is met at time t,
 and the Change Manager uses fraction e
then at a later point in time t2 , at least fraction e of the key Members within the Change Group

will have informed the Change Manager upon their acceptance of the new organization
model OM.

This property can be fulfilled by means of several lower level properties. First of all,
the Change Manager informs all Member within the Change Group that are involved
in the change based on the new organizational model.

RP1(ChangeManager): Communicate Change
if at time t the Change Manager within the Change Group has access to a plan which specifies

a condition C for a decision to reorganize based on a new organizational model OM
 and condition C is met at time t
 and Member M1 is involved in the change to organizational model OM at time t
then at a later point in time t2 the Change Manager will inform Member M1 about the upcoming
 change to organizational model OM.

Furthermore, ideally once a Member is informed about such an upcoming change, the
member will eventually communicate the acceptance of the new organizational model
OM and thus will show to be unfrozen. Fraction e is given as a parameter for the
property. Note that these properties describe a successful unfreezing phase where at
least fraction e of the Members accepts the change.

GP2(ChangeGroup, e): Confirm Change Acceptance
for at least a fraction e of the key Members in the Change Group
if at time t a Member M1 is informed about the new organizational model OM
then at a later point in time t2 Member M1 will inform the Change Manager of its acceptance of

the change to the new organizational model OM.

The property above is again specified in a general sense, as there might be a whole
process involved in convincing the Member of the improvements that come with the
new organizational model OM. Hence, there are two ways in which property GP2 can
be fulfilled by the Members. First, the Member can immediately agree with the
organizational model, and as a result be unfrozen at once.

RP2(Member): No Resistance to Change
if a Member M1 is informed about a new organizational model M at time t,
then at a later point in time t2 Member M1 will inform the Change Manager upon its acceptance

of the new organizational model OM
 and there does not exist a time t’ between t and t2 at which Member M1 has expressed resistance

115

to the change to the organizational model OM.

Another option is that a Member expresses temporary resistance to the change.

GP3(ChangeGroup): Belief Change after Resistance
for all Members M1 in the Change Group
if Member M1 is informed about a new organizational model OM at time t,
then at a later point in time t2 Member M1 will inform the Change Manager of its resistance to

the change to the new organizational model OM,
 and at a time t3 later than t2 Member M1 will inform the Change Manager of its acceptance of

the new organizational model OM.

Opposition to change can be split up into several lower level properties. First, the
Member opposes the change.

RP3(Member): Oppose to Change
if a Member is informed about a change to a new organizational model OM at time t,
then at a later point in time t2 Member M1 will inform the Change Manager of its resistance to

the change to the new organizational model OM.

In response the Change Manager puts forward a communication that hopefully will
convince the Member that organizational model OM is an appropriate option for him.
Note that these terms are kept abstract on purpose as there are many ways to convince
such Members in organizational change literature, and depending on the particular
case a choice can be made (see also Section 6).

RP4(ChangeManager): Convince Member
if Member M1 informs the Change Manager of its resistance to the change to the new
 organizational model OM at time t,
then at a later point in time t2 the Change Manager will put forward additional arguments to

Member M1 for the change to the organizational model OM.

Once this information is received by the Member it is assumed that he will be
unfrozen.

RP5(Member): Member Convinced
if Member M1 receives additional arguments for organizational model OM at time t,
 and Member M1 is convinced by the additional arguments for organizational model OM at

time t,
then at a later point in time t2 Member M1 will inform the Change Manager upon its acceptance

of the organizational model OM

RP1: Communicate
Change

GP1: Unfreezing
organization

GP2: Confirm
Belief Change

RP2: No Resistance
to Change

GP3: Belief Change
after Resistance

RP5: Member
Convinced

RP4: Convince
Member

RP3: Oppose to
Change

Fig. 5. Unfreezing property hierarchy specified by means of an AND/OR tree

116

There is also the possibility that a Member does not get convinced, which means that
the Member again communicates resistance. The Change Manager can put forward
more arguments in response (or use another method from organizational change
theory). The possibility exists that not enough key Members of the organization
communicate the acceptance of the organizational model OM, resulting in an
organization which is not unfrozen. To show the relation between the different
properties for a successful unfreezing phase, Figure 5 shows a property tree.

The tree depends upon the number of Members involved in the change of the
organization, this tree covers only one Member.

4.2.2 Dynamic properties for the Movement Phase

The movement phase is rather straightforward after the unfreezing phase, in case a
fraction e of the key Members have communicated their acceptance of the
organizational change towards the organizational model OM, and the condition for
the change to occur holds, the roles within the groups of the organization will show
the behavior as specified in the organizational model OM. Property OP1 specifies this
movement and is referred to as an organizational property as it also includes roles
outside of the Change Group.

OP1: Successful move
if at time t the Change Manager within the Change Group has access to a plan which specifies

a condition C for a decision to reorganize based on a new organizational model OM
 and condition C is met at time t,
 and the Change Manager uses fraction e
 and at least fraction e of the key Members involved in the change have informed the
 Change Manager of their acceptance of the change to organizational model OM at time t,
 and organizational model OM specifies behavior B for a role R within group G at time t,
then at a later point in time t2 role R within group G behaves according to the behavior
 specification B.

Satisfaction of this high level property can be accomplished by means of a group
property for the Change Group and group interaction properties between the Change
Group and the other groups within the organization. First, the group property states
that all Members involved in the change will receive an announcement of the
organizational model being activated, as expressed in GP4 below.

GP4(ChangeGroup, e): Change Activation
if at time t the Change Manager within the Change Group has access to a plan which specifies

a condition C for a decision to reorganize based on a new organizational model OM
 and condition C is met at time t,
 and at least fraction e of the key Members involved in the change have informed the
 Change Manager of their acceptance of the organizational model OM at time t,
then at a later point in time t2 all Members involved in the change have received the

announcement of organizational model OM being active.

This property is entailed by two lower level properties. First, the Change Manager
announces the activation of the of the organizational model OM based on the
conditions specified.

RP6(Change Manager): Announce Change
if at time t the Change Manager within the Change Group has access to a plan which specifies

a condition C for a decision to reorganize based on a new organizational model OM

117

 and condition C is met at time t,
 and at least fraction e of the key Members involved in the change have informed the Change

Manager of their acceptance of the change to organizational model OM at time t,
then at a later point in time t2 the Change Manager announces the new organizational model OM

being active.

And furthermore, this information is received by the Members via transfer property
TP1.

TP1(Change Manager, Member): Transfer announcement
if at time t the ChangeManager announces organizational model OM being active
 and at time t Member M1 is involved in the change to organizational model OM
then at a later point in time t2 Member M1 will receive this announcement on his input.

Finally, the group interaction properties state that after the announcement has been
received by a Member role, the roles with which the Member that receives the
announcement of activation will show the behavior as specified in the organizational
model OM, expressed in GIP1.

GIP1(Member, ChangeGroup, R, G): New organization active
if at time t Member M1 is informed about a new organizational model OM being active,
 and Member M1 has a shared allocation with a role R within group G at time t,
 and role R has a behavior description B in organizational model OM at time t,
then at a later point in time t2 role R within group G behaves according to behavior B.

Figure 6 shows the property hierarchy for the movement phase.

4.2.3 Dynamic properties for the Refreezing Phase

The final step in the model of Lewin entails refreezing the organization. Within the
model presented in this paper, this is expressed in the following way. There are two
conditions to start the refreezing phase. First, the organizational model OM has been
activated. Second, all roles are actually behaving according to the behavior
specification. During the refreezing phase, key Members inform the Change Manager
about what roles are showing the correct behavior. In case enough of these key
Members (i.e. a fraction e1) communicate that a critical mass of roles (i.e. fraction e2)
indeed show the correct behavior for a sufficient period of time p2, after a

OP1: Successful
move

RP6: Announce
change

GP4: Change
activation

GIP1: New
organization active

TP1: Transfer
announcement

Fig. 6. Movement property hierarchy specified by means of an AND tree

118

conditioning phase of length p1, the refreezing phase is said to be ended successfully.
This property is expressed as OP2.

OP2: Successful Refreezing
if before time t the Change Manager has informed the Members that a new organizational

model OM is active,
 and at time t all the roles within organization are just behaving according to behavior

specification B within the organizational model OM,
 and the Change Manager uses a conditioning period p1, a critical period of length p2, and

fractions e1 and e2,
then there exists a time point t2 (t2 > t + p2) such that at t2 the Change Manager is informed by at
 least fraction e1 key elements that behavior B is efficiently performed by at least fraction e2

of the roles within the organization over the last period p2

The property can be accomplished by means of a group interaction property and a
group property. First, the group property states that from the time point the behavior
is first shown by a role R within group G, there exists a time point at which the role R
has shown the correct behavior for the minimum duration p, set by the Change
Manager. The fraction e2 and periods p1 and p2 are specified as parameters.

GP5(G, e2, p1, p2): Show Proper behavior
for at least a fraction e2 of the roles within group G,
if at time t a role R within group G just shows behavior B
then there exists a time point t2 (t2 > t + p1 + p2) such that at all time points between t2 and

t2 – p2 role R within group G shows behavior B

Some roles will immediately satisfy this property within the group, as specified by
property RP7. This means that the behavior shown is always according to the
specified behavior.

RP7(R, p1, p2): Immediately Show Behavior
if at time t a role R within group G just shows behavior B
then for all time points t2 such that t < t2 � t + p1 + p2 role R within group G shows behavior B

Of course it is also possible that the role R within group G falls back into its old
habits, not complying to the behavior specification within the new organizational
model. After correction however, the role shows the correct behavior again in case of
successful refreezing. Such temporarily falling back into old habits is specified in
property GP6.

GP6(G, p1, p2): Show Behavior after Correction
for at least a fraction e2 of the roles within group G
if at time t a role R within group G just shows behavior B
 and there exists a time point t1 > t and t1 < t + p1 at which role R within group G does not show
 behavior B
then there exists a time point t2 (t2 � t1 + p1 + p2) such that at all time points between t2 and

t2 – p2 role R within group G shows behavior B

Property GP6 is entailed by three lower level properties. First, RP8 expresses the
improper behavior of the role R:

RP8(R, p1, p2): Improper behavior
if at time t a role R within group G just shows behavior B
then there exists a time point t2 < t + p1 at which role R within group G does not show behavior B

To correct this improper behavior, another role within the same group can correct role
R by reminding the role of the proper behavior B:

RP9(R): Correct Improper Behavior
if at time t a role R within group G does not show the required behavior B
then at a later point in time another role R2 within group G will remind role R within group G of

the proper behavior.

119

In a successful refreezing phase the correction indeed works, and role R returns to the
correct behavior again (RP10). In case the role R is not properly refrozen such a
correction might not work and therefore role R will continue to show the unwanted
behavior.

RP10(R): Behave correct again
if at a time point t role R within group G is reminded by role R2 within group G of the proper
 behavior he should show
then for all later points in time t2 > t role R within group G shows behavior B as long as no new
 reorganization has been announced

Finally, GIP2 specifies that after having shown the correct behavior for a period
longer than length p, the Member within the Change Group communicates this to the
Change Manager.

GIP2(R, G, Member, ChangeGroup, p1, p2): Communicate correct behavior
if between time point t and t2 (where t2 > t + p2) role R within group G shows the behavior
 according to B
 and role R within group G has a shared allocation with Member M1
then at time t2 +1 Member M1 informs the Change Manager within the Change Group that

behavior B is efficiently performed by role R within group G over the last period p2.

The property hierarchy for the refreezing phase is shown in Figure 7.

5 Change Language

Since communication between the Change Manager and the Members within the
Change Group also concerns changes to the current organization (i.e., a new

GIP2: Communicate
correct behavior

OP2: Successful
Refreezing

GP5: Show
proper behavior

RP7: Immediately Show
Behavior

GP6: Show Behavior
after Correction

RP10: Behave
Correct Again

RP9: Correct
Improper Behavior

RP8: Improper
Behavior

Fig. 7. Refreezing property hierarchy specified by means of an AND/OR tree

120

organizational model), this section describes functions for describing such changes to
be made. The sorts that have been used for this language are shown in table 4, and are
basically the sorts that make it possible to use the structural and behavioral languages
SL and BL introduced in Section 3. Moreover, the sort ACTION models actions that
can be performed. If a conjunction of elements of ORG_ELEMENT is deleted or added,
then all conjuncts are removed from or added to the model.

Table 4. Sorts used for the functions to describe organizational change.

Sort Description
ORG_BEHAVIOR_ELEMENT Defined by the behavioral language BL.
ORG_STRUCTURE_ELEMENT Defined by the structural language SL.
ORG_ELEMENT Union of the sorts ORG_BEHAVIOR_ELEMENT or and

ORG_STRUCTURE _ELEMENT
ORG_PART Conjunctions of elements from ORG_ELEMENT.
ACTION Sort for actions.

The functions and predicates that can be used to describe organizational change are
shown in table 5. The modify function is basically a combination of the delete and add
function, but because it is most likely that change includes modification of certain
elements it is more intuitive to include it as a function. The add function possibly
takes a conjunction of ORG_ELEMENT as an input (denoted as ORG_PART), this
however is impossible for the delete because this would not result in a unique system
configuration. The performance of the actions is done internally within the role,
resulting in a communication that the structure is in place.

Table 5. Functions and predicates used to describe organizational change.

Function or Predicate Description
add: ORG_PART � ACTION Add takes an ORG_PART and creates the

action to add that part.
delete: ORG_ELEMENT � ACTION Delete takes an ORG_ELEMENT and

creates the action to delete it.
modify: ORG_PART x ORG_PART �
ACTION

The first element models the current
organization, the second specifies the
modifications that need to be done. An
action is constructed by means of this.

to_be_performed: ACTION Predicate that a certain action is to be
performed. This can be add, delete or
modify.

An organization model for organizational change as described informally in Sections
2 and 3, involves a number of issues:

• changing internal (belief) states of all those involved in the changing
organization

• changing organization structure
• taking up new roles by agents

121

• internal state properties of the agents involved incorporate beliefs on
organization structure as well as beliefs on dynamic properties characterizing
role behavior

• internal state properties (beliefs) play a role as part of the dynamic properties
characterizing role behavior

A language to express dynamic properties of a changing organization has to be a rich
language able to express all these aspects in combination. Such a language is defined
in Appendix C as an extension of TTL [23] called meta-TTL. Note that in this
language not only dynamic properties are defined on top of state properties, but also
state properties (in particular beliefs) are defined on top of dynamic properties. This
makes it possible to express a dynamic property built using a belief state property
which itself refers to a dynamic property, and so on. So on the top level this is a
dynamic property built on state properties (the beliefs), which themselves refer to state
properties concerning the organization structure and to a dynamic (leads to) property
again. An example property is the following, describing that a role performs the
behavior it believes that is expected from the role:

If at time t
 a role believes that
 this role has as part of its behavior description that
 upon input v the output action w is done,
 and
 v occurs as input,
then
 at a next point in time this role will provide output w.

More formal details can be found in Appendix C.

6 Simulation of the Case Study: the Eleven Cities Tour example

This Section presents a case study to illustrate the usage of the organizational change
model as presented in the previous Sections. First, the organization under
investigation is explained and thereafter simulation results are presented as well as
domain specific properties that have been used to enable a simulation.

6.1 Case study description

The organization model of organizational change has been applied to the organization
that is responsible for the famous Frisian skating tour called the Eleven Cities Tour.
The association is called “De Friesche Elf Steden” in Dutch.

Although the association has fixed parts in the organization, it also has an annual
dynamics in its structure. The association has a board consisting of 3 members
namely the Chairperson, the Treasurer, and the Secretary. The Board has two
responsibilities: running the association smoothly at all times and organizing the tour.
Most of the year only the board is active, but there is also a permanent group which

122

contains all members of the eleven cities tour society, which includes the people
within the Board as well. This off-season organization is shown in Figure 8. Once a
year, at the beginning of winter, the organization changes its structure by formation of
Region groups and the election of Region Heads for the coming winter season to
enable monitoring of the ice conditions. This change process takes place within the
Eleven Cities Tour Society group where the Member with a shared allocation to the
Chairperson in the board is in charge of the change process. In the real organization,
21 Region groups are formed, for the case study however only the groups for the
cities of Woudsend and Sneek are assumed to be created. The Region groups consist
of more roles than the Region Head role (Monitor roles), however these roles have
been left out of the case study for the sake of clarity. The election of the Region
Heads is always a difficult part of the organizational change, as many people resist to
the election of certain people because they think these people are not suitable for the
job, or because they prefer another candidate, but in this case study we only consider
suitability. Once the Regions have been formed and the Region Heads have been
appointed, they start their work of monitoring the ice condition along the route. After
certain conditions are met, such as a certain period of frost, another change occurs
within the organization: A group called Region Representatives is formed which
consists of representatives of all Region groups and representatives of the Board. This
group discusses the conditions along the entire trajectory of the tour. If the conditions
are good, this group organizes the Tour. The organization after formation of the
Regions and Region Representatives group is shown in Figure 9. Note that the shared
allocations between the members of the Board and the representatives of these in the
Region Representatives group have been omitted to keep the Figure clear. To ensure

Fig. 8. Off-season eleven cities tour organization

123

that indeed all roles within the Region Representatives group show the desired
behavior, the Chairperson Representative monitors whether the representatives of
each of the Regions are indeed behaving according to the specification and do not fall
back into their prior behavior.

Finally, at the end of the winter, the Chair of the Meeting of Region Heads thanks
all participants and deactivates all roles in that group as well as all Region Head role
instances. At this point in time the agents are de-allocated from their roles, and the
roles immediately cease to exist. The involved agents only remain allocated to the
continuous roles / role instances in the Board and Eleven City Tour Society group.

6.2 Simulation Results

Based on the generic properties as specified in Section 4, a domain specific simulation
model for the eleven cities tour has been created. All of the properties that underline
the basis of this model have been specified in the leadsto format as introduced in
Section 3. Since this format is executable, simulations can be performed using the
leadsto software tool [7]. This Section presents a selection of the simulation results,
and gives example of the domain specific properties that have been used for the
simulation. Furthermore, several events are put into the model to see how well the
organization changes in case this is required. The results have been ordered based on
the different phases in organizational change distinguished by Lewin.

6.2.1 Initial organization

The initial organizational setup for the simulation is shown in Figure 10. On the left
hand side of the Figure statements are shown about the organization whereas the right

Fig. 9. Eleven cities tour organization after formation of the Regions and Region
Representatives groups.

124

hand side presents a timeline where a black box indicates that the statement is true at
that particular time point. The Eleven Cities Tour Society group is called Change
Group within the initial organization since this group’s only function is organizational
change, hence it is considered a Change Group. Note that the Figure only presents part
of the initial organization: only a selection of the intra and inter group interactions,
and only the beliefs of the Change Manager are shown. The Figure for example shows
the presence of the role Chairperson:
 internal(GlobalChangeManager|ChangeGroup)|belief(exists_role(Chairperson))
Furthermore, the existence of the group Board is shown:
 internal(GlobalChangeManager|ChangeGroup)|belief(exists_group(Board))
The role Chairperson is specified to be part of the Board group:
 internal(GlobalChangeManager|ChangeGroup)|belief(role_belongs_to_group(Chairperson,
 Board))
Intra group interaction is part of the Board group as well, the Secretary can for
example communicate with the Chairperson:
 internal(GlobalChangeManager|ChangeGroup)|belief(intra_group_connection(Secretary,
 Chairperson, Board, t1))
And finally, inter group connections are part of the beliefs of the Change Manager.
The inter group connection shown is the one between the Chairperson in the Board
and the Change Manager within the Change Group:
 internal(GlobalChangeManager|ChangeGroup)|belief(inter_group_connection(Chairperson,
 Board, GlobalChangeManager, ChangeGroup, gi1))
This inter group connection is based on shared allocation, which means that the agent
playing the role of Chairperson within the Board also plays the role of Change
Manager within the Change Group. Within the Figure, the Change Group consists of
five Member roles and one Change Manager. The additional Members in the Change
Group are played by agents that are not yet part of the organization, but can be used
by the Change Manager for the fulfillment of new roles to be played.

internal((GlobalChangeManager|ChangeGroup))|belief(exists_role(Chairperson))
internal((GlobalChangeManager|ChangeGroup))|belief(exists_role(GlobalChangeManager))

internal((GlobalChangeManager|ChangeGroup))|belief(exists_role(MemberFive))
internal((GlobalChangeManager|ChangeGroup))|belief(exists_role(MemberFour))
internal((GlobalChangeManager|ChangeGroup))|belief(exists_role(MemberOne))

internal((GlobalChangeManager|ChangeGroup))|belief(exists_role(MemberThree))
internal((GlobalChangeManager|ChangeGroup))|belief(exists_role(MemberTwo))

internal((GlobalChangeManager|ChangeGroup))|belief(exists_role(Secretary))
internal((GlobalChangeManager|ChangeGroup))|belief(exists_role(Treasurer))

internal((GlobalChangeManager|ChangeGroup))|belief(exists_group(Board))
internal((GlobalChangeManager|ChangeGroup))|belief(exists_group(ChangeGroup))

internal((GlobalChangeManager|ChangeGroup))|belief(role_belongs_to_group(Chairperson, Board))
internal((GlobalChangeManager|ChangeGroup))|belief(role_belongs_to_group(Secretary, Board))
internal((GlobalChangeManager|ChangeGroup))|belief(role_belongs_to_group(Treasurer, Board))

internal((GlobalChangeManager|ChangeGroup))|belief(role_belongs_to_group(GlobalChangeManager, ChangeGroup))
internal((GlobalChangeManager|ChangeGroup))|belief(role_belongs_to_group(MemberFive, ChangeGroup))
internal((GlobalChangeManager|ChangeGroup))|belief(role_belongs_to_group(MemberFour, ChangeGroup))
internal((GlobalChangeManager|ChangeGroup))|belief(role_belongs_to_group(MemberOne, ChangeGroup))

internal((GlobalChangeManager|ChangeGroup))|belief(role_belongs_to_group(MemberThree, ChangeGroup))
internal((GlobalChangeManager|ChangeGroup))|belief(role_belongs_to_group(MemberTwo, ChangeGroup))

internal((GlobalChangeManager|ChangeGroup))|belief(intra_group_connection(Chairperson, Secretary, Board, t1))
internal((GlobalChangeManager|ChangeGroup))|belief(intra_group_connection(Secretary, Chairperson, Board, t2))

internal((GlobalChangeManager|ChangeGroup))|belief(inter_group_connection(Chairperson, Board, GlobalChangeManager, ChangeGroup, gi1))
internal((GlobalChangeManager|ChangeGroup))|belief(inter_group_connection(Secretary, Board, MemberFour, ChangeGroup, gi2))

time 0 1 2 3 4 5

Fig. 10. Initial setup of the organization for the simulation.

125

6.2.2 Unfreezing phase for region formation

After the initial setup of the organization, an event is put into the simulation which

requires an organizational change, namely the onset of winter meaning that it is time
to form the regions within the organization. The first phase within this change process
is unfreezing. The occurrences during this phase are shown in Figure 11. The event
requiring change is the Chairperson within the board observing that it is time to form
the regions:
 input(Chairperson|Board)|time_to_form_regions
An inter-group interaction property in the form of a leadsto rule now fires which
specifies that if the Chairperson within the Board observes it is time to form the
regions, the Change Manager activates the Change Group and announces the
organizational model for the region structure:

GIP_specific(Chairperson, Board, ChangeManager, ChangeGroup): Form Regions when winter
if at time t the Chairperson within the Board observes that it is time to form the Region groups
then at time t + 1 the Global Change Manager within the Change Group informs the Members

within the Change Group that the group is now active
 and at time t + 1 the Global Change Manager within the Change Group announces the new
 organizational model regarding the Regions.

The results of this rule show in the trace by the following elements:
 output(GlobalChangeManager|ChangeGroup)|inform(change_group_active)
 output(GlobalChangeManager|ChangeGroup)|inform(organizational_model(region_structure))
Only a reference i.e. the statement region_structure, to the whole specification of this
organizational structure is presented in the Figure for the sake of clarity. None of the
Members oppose the change as all are skating fanatics that long for a tour and all are
convinced that winter has started. For them the onset of winter naturally means the
formation of regions, so all communicate the acceptance of the organizational model,
for example Member One:
 input(GlobalChangeManager|ChangeGroup)|accept(organizational_model(region_structure),
 MemberOne, ChangeGroup)
The unfreezing for this particular organizational structure is therefore accomplished,
following RP2 as described in Section 4. Another element of the change is to allocate
the appropriate agents to the specific roles within the new organizational model:
appoint the Region Heads. For this a more complicated unfreezing phase is performed.

input((Chairperson|Board))|time_to_form_regions
output((GlobalChangeManager|ChangeGroup))|inform(change_group_active)

output((GlobalChangeManager|ChangeGroup))|inform(organizational_model(region_structure))
input((MemberOne|ChangeGroup))|inform(organizational_model(region_structure))
input((MemberTwo|ChangeGroup))|inform(organizational_model(region_structure))

input((GlobalChangeManager|ChangeGroup))|accept(organizational_model(region_structure), MemberOne, ChangeGroup)
input((GlobalChangeManager|ChangeGroup))|accept(organizational_model(region_structure), MemberTwo, ChangeGroup)

output((GlobalChangeManager|ChangeGroup))|request_candidates_for_regions
input((GlobalChangeManager|ChangeGroup))|proposal(MemberOne, RegionHeadSneek, RegionSneek)

input((GlobalChangeManager|ChangeGroup))|proposal(MemberTwo, RegionHeadWoudsend, RegionWoudsend)
output((GlobalChangeManager|ChangeGroup))|inform(shared_allocation, MemberOne, RegionHeadSneek, RegionSneek)

output((GlobalChangeManager|ChangeGroup))|inform(shared_allocation, MemberTwo, RegionHeadWoudsend, RegionWoudsend)
output((MemberTwo|ChangeGroup))|accept(shared_allocation, MemberTwo, RegionHeadWoudsend, RegionWoudsend)

input((GlobalChangeManager|ChangeGroup))|oppose(inform(shared_allocation, MemberOne, RegionHeadSneek, RegionSneek), MemberTwo, not_suitable_candidate)
output((GlobalChangeManager|ChangeGroup))|additional_argument(inform(shared_allocation, MemberOne, RegionHeadSneek, RegionSneek), only_candidate)

output((MemberTwo|ChangeGroup))|accept(shared_allocation, MemberOne, RegionHeadSneek, RegionSneek)
time 0 5 10 15 20 25

Fig. 11. First unfreezing phase during simulation

126

First, the Change Manager within the Change Group requests candidates for the newly
formed roles:
 output(GlobalChangeManager|ChangeGroup)|request_candidates_for_regions
The Members within the ChangeGroup receive the request and propose candidates for
the positions, based upon their availability during the winter:
 input(GlobalChangeManager|ChangeGroup)|proposal(MemberOne, RegionHeadSneek,
 RegionSneek)
 input(GlobalChangeManager|ChangeGroup)|proposal(MemberTwo, RegionHeadWoudsend,
 RegionWoudsend)
After receiving the proposals, the Change Manager decides upon an optimal
allocation. Since there are two roles that need to be fulfilled and there is one proposal
per role, these allocations are chosen and communicated:
 output(GlobalChangeManager|ChangeGroup)|inform(shared_allocation, MemberOne,
 RegionHeadSneek, RegionSneek)
 output(GlobalChangeManager|ChangeGroup)|inform(shared_allocation, MemberTwo,
 RegionHeadWoudsend, RegionWoudsend)
Member Two is however not convinced about the suitability of Member One for the
role of Region Head Sneek and opposes to the organizational model following a
domain specific instantiation of RP3 in Section 4:

RP3_specific(MemberTwo): Oppose to Change
if at time t Member Two is informed about a change to an organizational model M in which a
 Member M1 has a shared allocation to a Role R1
 and Member Two observes M1 is unsuitable for the Role R1 at time t
then at time t + 1 Member Two opposes to the change to the organizational model stating that M1

is not suitable for R1

The result of this rule is shown in the trace by the following statement:
 input(GlobalChangeManager|ChangeGroup)|oppose(inform(shared_allocation, MemberOne,
 RegionHeadSneek, RegionSneek), MemberTwo, not_suitable_candidate)
As a result a domain specific instantiation of RP4 fires which is specified below.

RP4_specific(ChangeManager): Convince Member
if at time t a Member M1 communicates opposing to the change to organizational model M to

the Change Manager because candidate M2 is considered not suitable for the allocation to
role R1

 and the Change Manager observed M2 is the only candidate for the role R1 at time t
then at time t + 1 the ChangeManager communicates that M2 is the only candidate for role R1.

In the trace, the communication can be seen in the following format:
 output(GlobalChangeManager|ChangeGroup)|additional_argument(inform(shared_allocation,
 MemberOne, RegionHeadSneek, RegionSneek), MemberTwo, only_candidate)
Finally, a rule RP5 is specified for this domain as well, as shown below. Since the
successful organization of an eleven cities tour is most important for the Members and
all roles being allocated is essential for such a successful organization, they seize to
oppose to an allocation in case they are informed about the existence of only one
candidate.

RP5_specific(Member Two): Member Convinced
if at time t Member Two opposes to the change to the organizational model M regarding the
 allocation of Member M1 to Role R1
 and at time t2 later than t Member Two receives the argument that Member M1 is the only

candidate for role R1
then at time t2 + 1 Member Two will inform the Change Manager upon its acceptance of the

change to the organizational model M

In the trace the Member indeed outputs the belief upon the shared allocation:

127

 output(MemberTwo|ChangeGroup)|accept(shared_allocation, MemberOne,
 RegionHeadSneek, RegionSneek)
Since all Members have now communicated their acceptance of the new
organizational model, the unfreezing phase is performed successfully.

6.2.3 Movement and Refreezing of the region formation

The movement and refreezing phase for the case study are much shorter than the
unfreezing phase, as the new organizational model is already accepted by all Members
of the organization. The two phases are shown in Figure 12. Trigger for the
ChangeManager to start the movement phase is when an acceptance on all parts of the
organizational model M has been communicated to the Change Manager, as specified
before in RP6. The movement phase starts with the communication of the region
structure being active:
 output(GlobalChangeManager|ChangeGroup)|
 inform(active(organizational_model(region_structure)))
The phase ends after all participants of the change have confirmed that the
organizational model will be active, which they instantly do as they are already
unfrozen:
 input(GlobalChangeManager|ChangeGroup)|
 accept(active(organizational_model(region_structure)), MemberOne, ChangeGroup)
 input(GlobalChangeManager|ChangeGroup)|
 accept(active(organizational_model(region_structure)), MemberTwo, ChangeGroup)
Finally, the refreezing phase ends after the duration set by the Change Manager. In
this particular refreezing phase, all roles immediately behave correctly after the
change (according to RP7 in Section 4.2.3) which is not shown in the trace for the
sake of brevity. Eventually, the Change Group is deactivated:
 output(GlobalChangeManager|ChangeGroup)|inform(change_group_inactive)

6.2.4 Unfreezing phase for regions representatives group

The second unfreezing phase which is required to form the Region Representatives
group is shown very briefly in Figure 13. As a start of the unfreezing phase the
following events are put into the simulation:
 input(Chairperson|Board)|one_week_frost_period_just_passed
 input(Chairperson|Board)|before_that_week_no_frost
 input(Chairperson|Board)|no_tour_held_this_winter

output((GlobalChangeManager|ChangeGroup))|inform(active(organizational_model(region_structure)))
input((GlobalChangeManager|ChangeGroup))|accept(active(organizational_model(region_structure)), MemberOne, ChangeGroup)
input((GlobalChangeManager|ChangeGroup))|accept(active(organizational_model(region_structure)), MemberTwo, ChangeGroup)

output((GlobalChangeManager|ChangeGroup))|inform(change_group_inactive)
time 0 5 10 15 20 25 30

Fig. 12. First movement and Refreezing

128

As a result, the following inter group interaction property fires:

GIP_specific(Chairperson, Board, ChangeManager, ChangeGroup): Form Region Representatives group
after frost period
if at time t the Chairperson within the Board observes a period of one week of frost
 and at time t – (1 week) the Chairperson within the observed that there was no frost
 and at no time point this year the Chairperson within the Board observed that a tour has been held
then at time t + (1 day) the Change Manager within the Change Group informs the Members

within the Change Group that the group is now active
 and at time t + (1 day) the Change Manager within the Change Group announces the new
 organizational model regarding the Regions Representatives group.

The resulting communication of the Change Manager is shown in the trace: A
communication of the Change Group being active again, and communication of the
new organizational model:
 output(GlobalChangeManager|ChangeGroup)|inform(change_group_active)
 output(GlobalChangeManager|ChangeGroup)|
 inform(organizational_model(region_coordination_structure))
All Members accept the new structure, as they are very eager just thinking about a
possible eleven cities tour, the event of the year, and are therefore immediately
unfrozen, communicating their acceptance to the Change Manager. Therefore, the
unfreezing is performed using RP2. Resistance can however easily be incorporated
using properties such as presented in Section 6.2.2. The unfreezing process has now
ended successfully.

6.2.5 Movement and Refreezing of the region representatives group

After unfreezing the organization, the Change Manager communicates that the new
organization with the new Region Representatives structure is now active, which is
shown in the partial trace in Figure 14:
 output(GlobalChangeManager|ChangeGroup)|inform(active(
 organizational_model(region_coordination_structure))
As a result, the organizational model becomes active in the actual organization, not
only in the internal beliefs of the Members of the Change Group. Within the
simulation there is a mapping between the name of general organizational structures
(e.g. region coordination structure) and the actual changes on a lower level. For the
Region Head Woudsend for example, the internal belief that a new role Region
Representative Woudsend exists is added:
 internal((RegionHeadWoudsend|RegionWoudsend))|
 belief(exists_role(RegionRepresentativeWoudsend))

input((Chairperson|Board))|before_that_week_no_frost
input((Chairperson|Board))|no_tour_held_this_winter

input((Chairperson|Board))|one_week_frost_period_just_passed
output((GlobalChangeManager|ChangeGroup))|inform(Change_group_active)

output((GlobalChangeManager|ChangeGroup))|inform(organizational_model(region_representatives_structure))
input((GlobalChangeManager|ChangeGroup))|accept(organizational_model(region_representatives_structure), MemberOne, ChangeGroup)
input((GlobalChangeManager|ChangeGroup))|accept(organizational_model(region_representatives_structure), MemberTwo, ChangeGroup)

time 0 20 40 60 80

Fig. 13. Second unfreezing phase

129

o
u

tp
u

t(
(G

lo
b

a
lC

h
a
n

g
e

M
a

n
a

g
e

r|
C

h
a

n
g

e
G

ro
u

p
))

|in
fo

rm
(a

ct
iv

e
(o

rg
a

n
iz

a
tio

n
a

l_
m

o
d

e
l(

re
g

io
n

_
re

p
re

se
n

ta
tiv

e
s_

st
ru

c
tu

re
))

)
in

p
u
t(

(G
lo

b
a
lC

h
a

n
g
e

M
a

n
a

g
e

r|
C

h
a

n
g

e
G

ro
u

p
))

|a
cc

e
p

t(
a

c
ti
ve

(o
rg

a
n
iz

a
ti
o

n
a

l_
m

o
d

e
l(

re
g
io

n
_

re
p

re
s
e

n
ta

ti
ve

s
_

st
ru

ct
u

re
))

,
M

e
m

b
e

rO
n

e
,

C
h

a
n

g
e

G
ro

u
p

)
in

p
u
t(

(G
lo

b
a
lC

h
a

n
g
e

M
a

n
a

g
e

r|
C

h
a

n
g

e
G

ro
u

p
))

|a
cc

e
p

t(
a

c
ti
ve

(o
rg

a
n
iz

a
ti
o

n
a

l_
m

o
d

e
l(

re
g
io

n
_

re
p

re
s
e

n
ta

tiv
e

s
_

st
ru

ct
u

re
))

,
M

e
m

b
e

rT
w

o
,

C
h

a
n

g
e

G
ro

u
p

)
in

te
rn

a
l(

(R
e

g
io

n
H

e
a

d
W

o
u

d
se

n
d

|R
e

g
io

n
W

o
u
d
s
e

n
d

))
|b

e
lie

f(
h

a
s_

e
xp

re
ss

io
n

(g
ip

1
,
le

a
d

s_
to

((
in

p
u

t(
(R

e
g

io
n

H
e

a
d
W

o
u

d
se

n
d

|R
e

g
io

n
W

o
u

d
s
e
n

d
))

|r
e

p
o

rt
(R

e
g
io

n
W

o
u

d
se

n
d

,
g

o
o

d
))

,

(o
u

tp
u

t(
(R

e
g
io

n
R

e
p

re
se

n
ta

ti
ve

W
o

u
d

s
e

n
d

|R
e

g
io

n
R

e
p

re
se

n
ta

ti
ve

s)
)|

re
p

o
rt

(R
e

g
io

n
W

o
u

d
se

n
d

,
g

o
o

d
))

))
)

in
te

rn
a
l(

(R
e

g
io

n
H

e
a

d
W

o
u

d
se

n
d

|R
e

g
io

n
W

o
u
d
s
e

n
d

))
|b

e
lie

f(
e

xi
st

s_
ro

le
(R

e
g
io

n
R

e
p
re

s
e

n
ta

ti
ve

W
o

u
d

s
e

n
d

))

in
te

rn
a
l(

(R
e

g
io

n
H

e
a

d
W

o
u

d
se

n
d

|R
e

g
io

n
W

o
u
d
s
e

n
d

))
|b

e
lie

f(
e

xi
st

s_
g

ro
u
p

(R
e

g
io

n
R

e
p

re
s
e
n

ta
tiv

e
s
))

in

te
rn

a
l(

(R
e

g
io

n
H

e
a

d
W

o
u

d
se

n
d

|R
e

g
io

n
W

o
u
d
s
e

n
d

))
|b

e
lie

f(
ro

le
_

b
e
lo

n
g

s_
to

_
g

ro
u
p

(R
e

g
io

n
R

e
p

re
s
e

n
ta

ti
ve

W
o

u
d

se
n

d
,

R
e

g
io

n
R

e
p

re
s
e
n

ta
tiv

e
s
))

in

te
rn

a
l(

(R
e

g
io

n
H

e
a

d
W

o
u

d
s
e

n
d

|R
e

g
io

n
W

o
u
d
se

n
d

))
|b

e
lie

f(
g
ro

u
p

_
in

te
ra

c
tio

n
_

p
ro

p
e

rt
y(

g
ip

1
,
R

e
g

io
n

H
e

a
d
W

o
u

d
se

n
d

,
R

e
g

io
n
W

o
u

d
se

n
d

,
R

e
g

io
n

R
e

p
re

se
n

ta
tiv

e
W

o
u

d
se

n
d

,
R

e
g
io

n
R

e
p
re

se
n

ta
tiv

e
s
))

in

te
rn

a
l(

(R
e

g
io

n
H

e
a

d
W

o
u

d
s
e

n
d

|R
e

g
io

n
W

o
u
d
se

n
d

))
|b

e
lie

f(
in

te
r_

g
ro

u
p

_
c
o
n

n
e

ct
io

n
(R

e
g
io

n
H

e
a

d
W

o
u

d
se

n
d
,

R
e

g
io

n
W

o
u
d

se
n

d
,

R
e

g
io

n
R

e
p

re
se

n
ta

ti
ve

W
o

u
d

se
n

d
,

R
e

g
io

n
R

e
p

re
s
e
n

ta
tiv

e
s
,

g
i2

4
))

o

u
tp

u
t(

(G
lo

b
a
lC

h
a
n

g
e

M
a

n
a

g
e
r|

C
h

a
n

g
e

G
ro

u
p
))

|in
fo

rm
(C

h
a

n
g

e
_

g
ro

u
p

_
in

a
ct

iv
e

)
in

p
u

t(
(R

e
g

io
n

H
e

a
d
W

o
u
d

s
e

n
d

|R
e

g
io

n
W

o
u

d
se

n
d

))
|r

e
p

o
rt

(R
e

g
io

n
W

o
u

d
se

n
d

,
g

o
o

d
)

in
p

u
t(

(R
e
g

io
n

H
e

a
d

S
n

e
e

k|
R

e
g
io

n
S

n
e

e
k)

)|
re

p
o

rt
(R

e
g
io

n
S

n
e
e

k
,

g
o

o
d

)
o

u
tp

u
t(

(R
e

g
io

n
R

e
p
re

se
n
ta

tiv
e

S
n

e
e

k|
R

e
g

io
n

R
e

p
re

se
n

ta
tiv

e
s)

)|
re

p
o
rt

(R
e

g
io

n
S

n
e

e
k
,

g
o

o
d

)
o

u
tp

u
t(

(C
h

a
ri

p
e

rs
o

n
R

e
p

re
s
e

n
ta

ti
ve

|R
e

g
io

n
R

e
p

re
se

n
ta

ti
ve

s
))

|r
e

m
in

d
(g

ip
1
)

o
u

tp
u

t(
(R

e
g
io

n
R

e
p
re

s
e

n
ta

ti
ve

W
o

u
d

s
e
n

d
|R

e
g

io
n

R
e

p
re

se
n

ta
ti
ve

s)
)|

re
p

o
rt

(R
e

g
io

n
W

o
u

d
se

n
d

,
g

o
o

d
)

o
u

tp
u

t(
(C

h
a
ir

p
e

rs
o

n
|B

o
a

rd
))

|le
t_

th
e
_

to
u

r_
b

e
_
h

e
ld

_
o

n
_

d
a

te

T
im

e

0

2
0

4
0

6
0

8
0

F

ig
. 1

4.
 S

ec
on

d
M

ov
em

en
t a

nd
 r

ef
re

ez
in

g

130

Furthermore, the group Region Representatives is added to the internal beliefs:
 internal((RegionHeadWoudsend|RegionWoudsend))|
 belief(exists_group(RegionRepresentatives))
The role RegionRepresentativeWoudsend belongs to the group
RegionRepresentatives:
 internal((RegionHeadWoudsend|RegionWoudsend))|belief(role_belongs_to_group(
 RegionRepresentativeWoudsend, RegionRepresentatives))
A belief on an inter-group connection is added between the Region Head Woudsend
within the Region Woudsend and the Region Representative Woudsend within the
Region Representatives:
 internal((RegionHeadWoudsend|RegionWoudsend))|
 belief(inter_group_connection(RegionHeadWoudsend, RegionWoudsend,
 RegionRepresentativeWoudsend, RegionRepresentatives, gi24))
Besides the structure itself, the new roles also require new behavior. When first
starting to perform a new role, the new behavior associated with the role is far from
automated, and requires internal beliefs on the desired behavior. Such elements are
shown in the trace of Figure 9 as well. First of all, there is an internal belief about the
existence of a group interaction property gip1:
 internal((RegionHeadWoudsend|RegionWoudsend))|belief(group_interaction_property(gip1,
 RegionHeadWoudsend, RegionWoudsend, RegionRepresentativeWoudsend,
 RegionRepresentatives))
The specification of the behavior required by such a property is done using a TTL
expression, more particular in leadsto format:
 internal((RegionHeadWoudsend|RegionWoudsend))|belief(has_expression(gip1,
 leads_to(
 (input((RegionHeadWoudsend|RegionWoudsend))|report(RegionWoudsend,good)),
 output((RegionRepresentativeWoudsend|RegionRepresentatives))|
 report(RegionWoudsend, good),
 efgh(0,0,1,1))))
This specifies that if the Region Head Woudsend receives a report that the ice is good,
then this will be communicated by the Region Representative Woudsend in the
Region Representatives group as well, with an efgh value of (0,0,1,1). Around time
point 65 the antecedent of this rule becomes true, however, the consequent is not true
after 1 time point within the Region Representatives group. As a result, the
Chairperson Representative within the Region Representatives group reminds the role
of the desired behavior gip1 (according to RP9 in Section 4.2.3):
 output((CharipersonRepresentative|RegionRepresentatives))|remind(gip1)
After having received this reminder, the Region Representative Woudsend does
behave according to gip1 and outputs the consequent:
 output((RegionRepresentativeWoudsend|RegionRepresentatives))|report(RegionWoudsend,
 good)
This refreezing therefore takes the form of GP6 (Section 4.2.3) and the properties
below it in the property tree. In exceptional years, all Region Representatives report
that the ice is good, and the Chairperson within the board announces the date the tour
will take place:
 output((Chairperson|Board))|let_the_tour_be_held_on_date

131

7 Verification of the Case Study Simulation

As verification of the organization process of the Eleven Cities Tour is concerned, a
distinction is made between two types of verification. Firstly, guarantees are given
that concern the tour itself (so-called content properties). For example, it the
circumstances permit so (if the ice is thick enough over the whole trajectory) then a
tour should be organized as soon as possible. Secondly, guarantees on the organization
of organizational change for setting up the tour are verified (so-called organizational
change properties). This Section presents both verification types.

Logical relationships between properties, as depicted in the tree of Section 4, can
be very useful in analyzing the dynamic properties of an organization. For example, if
for a given trace of the system some global property OP is not satisfied, then by a
refutation process it can be concluded that either one of the group properties, or one
of the group interaction properties in the tree does not hold. If, after checking these
properties, it turns out that a group property does not hold, then either one of the role
properties or the intra group interaction properties is not satisfied. By this refutation
analysis it follows that if OP does not hold for a given trace, then, via the intermediate
properties, the cause of this malfunctioning can be found in the set of leaves of the
tree of Section 4.

In order to determine which one of the properties encountered in this refutation
process actually is refuted, some mechanism is needed to check if a certain property
holds for a given trace. To this end, the simulation software described in Section 6
automatically produces log files containing the traces. In addition, software has been
developed that is able to read in these log files together with a set of dynamic
properties (in TTL format), and to perform the checking process. Traces are thus
analyzed with an automated logic-based checker. This checker takes as input a
property of interest about the trace and logically validates whether the property holds
in the given trace. If the property holds in the trace, the checker outputs success
otherwise it outputs failure. But the software determines not only whether the
properties hold for the trace or not, but in case of failure, it also pinpoints which parts
of the trace violate the properties. The results of different checks that have been
performed are described below.

7.1 Content Properties

The overall goal of the Eleven Cities Tour organization is to arrange for a tour to be
organized when possible, i.e., when the ice along the tour is thick enough to ensure a
safe passage. This following property expresses this goal: the tour has to be organized
whenever possible, ensuring a safe passage over the ice for all skaters.

OP3: Organize tour in case of good conditions
if the ice conditions in all regions are good
then it is announced that the tour will be held

This property has been checked against the simulation trace that was presented in the
previous Section and is indeed satisfied within that trace. Other content properties to

132

consider in this context are, for example, the organization daily decides on the
possibility and date (if appropriate) of a tour: ‘it giet oan’ (in Frisian language a go
decision) decisions, and in wintertime, the organization daily monitors the weather.
However, only OP3 is addressed in this paper.

7.2 Organizational Change Properties

The properties as presented in the previous Section depend on some organizational
structure to ensure the fulfillment of each property and all of them combined. For this
purpose, the aim of this paper is exactly this: a way to specify and model such an
organization itself has been presented, as well as the actual process of setting up the
organization. As such, this organization can support the organizational properties as
presented above.

For the purpose of verifying the organizational change in the Eleven Cities Tour
simulation, automatic checking of the high-level properties presented in Section 4.2
has been performed on the generated trace. The results are shown in Table 6. In the
simulation trace, there are 2 change moments: the formation of the regions structure
and the formation of the region representatives group. For the last changes, there is no
resistance to the organization change, while there is for the first one. The automated
checker has verified that all properties specifying a successful phase are indeed
satisfied, hence, both changes have passed a successful unfreezing, movement, and
refreezing phase. There is however a difference in how this success was
accomplished. In the first change, property GP3 was satisfied, specifying that there
was resistance to the change which was taken away. In the second change however,
the change went without resistance; property GP3 was not satisfied in that change. In
the refreezing phase of the first change, property GP6 was not satisfied as no
improper behavior was encountered. In the second change however, improper
behavior did show, after which the behavior was corrected, satisfying property GP6.
The following setting were used for checking. For the unfreezing phase e was set to
1.0. Regarding the refreezing phase both e1 and e2 have been set to 1.0, for p1 a value
of 10 was used, and finally, p2 was set to 20.

 Table 6. Checked Properties (Yes = satisfied, No = not satisfied)

Stage Property Change 1 Change 2
Unfreezing GP1 Yes Yes
 GP3 Yes No
Moving OP1 Yes Yes
Refreezing OP2 Yes Yes
 GP6 No Yes

133

8 Conclusions

Organizations often have to survive in a dynamic world. To enable organizations in
practice to adapt to the dynamics of the world, certain facilities, structures and
capabilities are needed that support organizational change. This paper shows how the
organization of organizational change processes can be modeled within a formal
organization modeling approach. A generic organization model for organizational
change was presented and formally verified for a case study concerning the
organization of a major event in the Netherlands: the eleven cities tour. The formal
verification sets it apart from existing work on organization modeling, e.g., [15; 32].
Previous work of the authors on organizational change [25] considered change as an
instantaneous event instead of a process of change as is done in this paper.
Additionally, previous work did not include the distinction between formal languages
for expressing the change process. The change model in this paper takes into account
different phases in a change process (unfreezing, movement and refreezing)
considered in [27], which is still considered valid in current organizational change
literature, see e.g. [30; 29]. In [29] a distinction is made between anticipated change
(for which the model of Lewin is said to be suitable), emergent change and
opportunity-based change. In this paper only anticipated change is being modeled and
therefore the other two types of change are not addressed. In change processes the
internal (mental) states of those involved in the organization are important. Therefore,
also internal states of individuals have to be part of a model for organizational change.
In particular, beliefs and their changes have been incorporated in the model. In
addition, an internal model for (reflective) reasoning about expected role behavior was
included. Hence, a model was created that combines organization aspects and
cognitive aspects.

Acknowledgements

This research has been performed as part of two projects: CIM, for Cybernetic
Incident Management, and DEAL, for Distributed Engine for Advanced Logistics.
Both projects are funded by the Dutch Ministry of Economic Affairs. Furthermore, the
authors would like to thank the anonymous reviewers for their useful comments that
helped to improve the paper.

References

[1] Abbink, H., Dijk, R. van, Dobos, T., Hoogendoorn, M., Jonker, C.M., Konur, S., Maanen,
P.P. van, Popova, V., Sharpanskykh, A., Tooren, P. van, Treur, J., Valk, J., Xu, L., Yolum,
P., (2004). Automated Support for Adaptive Incident Management. In: Walle, B. van de,
and Carle, B. (eds.), Proc. of the First International Workshop on Information Systems for
Crisis Response and Management, ISCRAM'04, pp. 69-74..

[2] Ackerman, L.S., Development, transition, or transformation: the question of change in
organization, OD Practitioner, 18(4) , 1986, pp. 1-9.

134

[3] Alvesson, M., Cultural Perspectives on Organizations, Cambridge University Press, New
York, 1993.

[4] Bacharach, S.B. and Lawler, E.J., Power and politics in organizations, Jossey-Bass, San
Francisco, 1980.

[5] Bashein, M.L., Marcus, M.L., and Riley, P., Business Process Reengineering:
preconditions for success and failure, Informations Systems Management 9, 1994, pp. 24-
31.

[6] Boonstra, J.J. (editor), Dynamics of Organizational Change and Learning, Wiley, 2004.
[7] Bosse, T., Jonker, C.M., Mey, L. van der, and Treur, J., LEADSTO: a Language and

Environment for Analysis of Dynamics by SimulaTiOn. In: Eymann, T., et al. (eds.), Proc.
of the Third German Conference on Multi-Agent System Technologies, MATES'05.
Lecture Notes in Artificial Intelligence, vol. 3550. Springer Verlag, 2005, pp. 165-178.

[8] Bradshaw, P., and Boonstra, J.J., Power Dynamics in Organizational Change, In:
Boonstra, J.J. (editor), Dynamics of Organizational Change and Learning, Wiley, 2004,
pp. 279-299.

[9] Cummings, T.G., and Worley, C.G., Organization Development and Change, South
Western College Publishing, 2001.

[10] Cummings, T.G., Organization Development and Change, In: Boonstra, J.J. (editor),
Dynamics of Organizational Change and Learning, Wiley, 2004, pp. 25-42.

[11] Dahl, R.A., The concept of power, Behavioral Science, 2, 1975, pp. 201-215.
[12] Emerson, R.M., Power dependence relations, American Sociological Review, 27, 1962,

pp. 31-41.
[13] Ferber, J. and Gutknecht, O. (1998), “A meta-model for the analysis and design of

organizations in multi-agent systems,“ Proceedings of the Third International Conference
on Multi-Agent Systems (ICMAS’98), IEEE Computer Society Press, pp. 128-135.

[14] Ferber, J., Gutknecht, O., Jonker, C.M., Müller, J.P., and Treur, J. (2001), ”Organization
Models and Behavioural Requirements Specification for Multi-Agent Systems,“ in Y.
Demazeau, F. Garijo (Eds.), Multi-Agent System Organizations. Proceedings of
MAAMAW'01.

[15] Fox, M.S., and Gruninger, M. (1998), “Enterprise Modelling,” . AI Magazine, 19(3),
AAAI Press, pp. 109-121.

[16] Glaser, N., and Morignot, P. (1997), “The Reorganization of Societies of Autonomous
Agents,” in Boman, M. Velde, W. van de (eds.), Multi-Agent Rationality, 8th European
Workshop on Modelling Autonomous Agents in a Multi-Agent World, Lecture Notes in
Computer Science, vol. 1237, Springer, pp. 98-111.

[17] Hall, G., Rosenthal, T., and Wade, J. How to make reengineering really work, Harvard
Business Review, 71(6), 1993, pp. 119-131.

[18] Hoogendoorn, M., Jonker, C. M., Konur, S., Maanen, P.P. van, Popova, V., Sharpanskykh,
A., Treur, J., Xu, L., Yolum, P., (2004). Formal Analysis of Empirical Traces in Incident
Management, In: Macintosh, A., Ellis, R., and Allen, T. (eds.), Applications and
Innovations in Intelligent Systems XII, Proceedings of AI-2004, the 24th SGAI
International Conference on Innovative Techniques and Applications of Artificial
Intelligence. Springer Verlag, 2004, pp. 237-250.

[19] Hoogendoorn, M., Jonker, C.M., Popova, V., Sharpaskykh, A., Xu, L., Formal Modelling
and Comparing of Disaster Plans. (2005). In: Carle, B., and Walle, B. van de, (eds.),
Proceedings of the Second International Conference on Information Systems for Crisis
Response and Management ISCRAM '05, pp. 97-107.

[20] Hosking, D.M., Social construction as process: some new possibilities for research and
development, Concepts and Transformation, 4(2), 1999, pp. 117-132.

[21] Huczynski, A., and Buchanan, D. (2001), Organizational Behaviour, Prentice Hall.
[22] Jaffee, D. (2001), Organization Theory – Tension and Change, McGraw-Hill Companies.

135

[23] Jonker, C.M., and Treur, J. (2002), “Compositional Verification of Multi-Agent Systems:
a Formal Analysis of Pro-activeness and Reactiveness,” International Journal of
Cooperative Information Systems, 11, pp. 51-92.

[24] Jonker, C.M., and Treur, J. (2003), “Relating Structure and Dynamics in an Organization
Model,” In J.S. Sichman, F. Bousquet, and P. Davidson (eds.), Multi-Agent-Based
Simulation II, Proceedings of the Third International Workshop on Multi-Agent Based
Simulation, MABS'02. Lecture Notes in AI, vol. 2581, Springer Verlag, pp. 50-69.

[25] Jonker, C.M., Schut, M.C., and Treur, J. (2003), “Modelling the Dynamics of
Organizational Change,” In Klusch, M., Omicini, A., and Ossowski, S., and Laamanen,
H., (eds.), Cooperative Information Agents VII, Proceedings of the Seventh International
Workshop on Cooperative Information Agents, CIA 2003, Lecture Notes in AI, vol. 2782,
Springer Verlag, pp. 336-344.

[26] Kotter, J.P., Leading Change, Harvard Business School Press, Boston, 1999.
[27] Lewin, K. (1951), Field Theory in Social Science, Harper & Row, New York.
[28] Lippit, R., Watson, J., Westley, B., The Dynamics of Planned Change, Harcourt, New

York, 1958.
[29] Orlikowski, W. and Hofman, D. (1997), “An Improvisational Model of Change

Management: The Case of Groupware Technologies,” Sloan Management Review vol. 38
(2), pp 11-22.

[30] Robbins, S.P. (1998), Organizational Behaviour, Prentice Hall, New Jersey.
[31] Schein, E.H., On dialogue, culture, and organizational learning, Organizational Dynamics

22(2), 1993, pp. 40-51.
[32] Steen, M.W.A., Lankhorst, M.M. and Wetering, R.G. van de (2002), “Modelling

Networked Enterprises,” Proceedings of the 6th International Enterprise Distributed
Object Computing Conference (EDOC), IEEE Computer Society, pp. 109-119.

[33] Wrong, D.H., Some problems in defining social power, American Journal of Sociology,
73, 1968, pp. 673-681.

136

Appendix A The Temporal Trace Language TTL: more formal details

A state ontology is a specification (in order-sorted logic) of a vocabulary. A state for
ontology Ont is an assignment of truth-values {true, false} to the set At(Ont) of ground
atoms expressed in terms of Ont. The set of all possible states for state ontology Ont is
denoted by STATES(Ont). The set of state properties STATPROP(Ont) for state ontology
Ont is the set of all propositions over ground atoms from At(Ont). A fixed time frame T
is assumed which is linearly ordered. A trace or trajectory γ over a state ontology Ont
and time frame T is a mapping γ : T → STATES(Ont), i.e., a sequence of states γt (t ∈ T)
in STATES(Ont). The set of all traces over state ontology Ont is denoted by
TRACES(Ont). Depending on the application, the time frame T may be dense (e.g., the
real numbers), or discrete (e.g., the set of integers or natural numbers or a finite initial
segment of the natural numbers), or any other form, as long as it has a linear ordering.
The set of dynamic properties DYNPROP(Ont) is the set of temporal statements that can
be formulated with respect to traces based on the state ontology Ont in the following
manner.
Given a trace γ over state ontology Ont, the input state of some role r within a group g
at time point t is denoted by
 state(γ, t, input(r|g))
analogously
 state(γ, t, output(r|g))
 state(γ, t, internal(r|g))
denote the output state and internal state.
 These states can be related to state properties via the formally defined
satisfaction relation |=, comparable to the Holds-predicate in the Situation Calculus:
state(γ, t, output(r|g)) |= p denotes that state property p holds in trace γ at time t in the
output state of role r within group g. Based on these statements, dynamic properties
can be formulated in a formal manner in a sorted first-order predicate logic with sorts
TIME or T for time points, Traces for traces and F for state formulae, using quantifiers
over time and the usual first-order logical connectives such as ¬, ∧, ∨, �, ∀, ∃. In
trace descriptions, notations such as state(γ, t, output(r|g))|= p are shortened to
output(r|g)|p.

137

Appendix B Constraints on the Language Elements

Role dynamic properties

if has_expression(p:DYNPROP, d:DYNPROPEXP)
 and role_property(p, r:ROLE, g:GROUP)
then element_of(d, DYNPROPEXP(r|g, ONT(r|g)))

The group is also part of the definition of the ontology since roles in different groups
can have the same name and might have a different ontology.
Role properties can be divided into different types which in turn can be defined more
restricted than the general definition. An example of such a refinement is an
executable role dynamic property. This special type is defined as follows:

if has_expression(p:DYNPROP, d:DYNPROPEXP)
 and role_property(p, r:ROLE, g:GROUP)
then element_of(d, DYNPROPEXP((r|g), role_input_ontologies(r|g) ∪
 role_ouput_ontologies(r|g)))

Transfer dynamic properties

if has_expression(p:DYNPROP, d:DYNPROPEXP)
 and transfer_property(p, r1:ROLE, r2:ROLE, g:GROUP)
then element_of(d, DYNPROPEXP({r1|g, r2|g}, role_output_ontologies(r1|g) ∪
 role_input_ontologies(r2|g)))

Group dynamic properties

if has_expression(p:DYNPROP, d:DYNPROPEXP)
 and group_property(p, g:GROUP)
then element_of(d, DYNPROPEXP(g, ONT(g)))

Intergroup interaction dynamic properties

if has_expression(p:DYNPROP, d:DYNPROPEXP)
 and group_interaction_property(p, r1:ROLE, g1:GROUP, r2:ROLE, g2:GROUP)
then element_of(d, DYNPROPEXP({r1|g1, r2|g2}, role_input_ontologies(r1|g1)
 ∪ role_output_ontologies(r2|g2)))

138

Appendix C Changing Organizations Formalized in meta-TTL

This is the formal part from Section 5.

C.1 Sorts and Subsorts in meta-TTL

Table C.1. Sorts in meta-TTL

Sort Description
TRACE for traces
STATE for states within a trace.
T time frame.
STATOMS expressions for state atoms.
CONSTATOMS expressions for conjunctions of state atoms.
STATPROPEXP expressions for state properties.

The sorts that are included in meta-TTL are shown in Table C.1. The subsort relation
STATOMS ⊆ CONSTATOMS holds.
The function
 and: CONSTATOMS x CONSTATOMS → CONSTATOMS

is used to build conjunctions of state atoms; it is also written as ∧ in infix notation
Furthermore, the relation <: T x T for time ordering is used , and the function
 state: TRACE x T x PART → STATE
that indicates the state of part of the considered system within a trace at some point in
time.
For the changing organization it is needed to use names and expressions for dynamic
properties within other formulae. Therefore two sorts
 DYNPROP names for dynamic properties
 DYNPROPEXP expressions for dynamic properties
have been introduced in the Appendix A.
Moreover,
 holds: STATE x STATPROPEXP → DYNPROPEXP
indicates the dynamic property that a state property expression is true in a state; this
predicate holds is often written as |= in infix notation.

C.2 Example formalization in change language
By means of an example the use of the functions combined with the language is
shown below.

139

to_be_performed(delete(exists_role(RoleTwo))) ∧
to_be_performed(delete(role_belongs_to_goup(RoleTwo, Group1))) ∧
to_be_performed(delete(intra_group_connection(RoleOne, RoleTwo, Group1, t1))) ∧
to_be_performed(delete(intra_group_connection(RoleTwo, RoleOne, Group1, t1))) ∧
to_be_performed(delete(transfer_property(tp1, RoleOne, RoleTwo, Group1))) ∧
to_be_performed(delete(has_expression(tp1, {expression1}))) ∧
to_be_performed(delete(transfer_property(tp2, RoleTwo, RoleOne, Group1))) ∧
to_be_performed(delete(has_expression(tp2, {expression2})))

The example models the deletion of Role One from Group1. Both specification
languages have been used to model this change as is shown by the braces at the side.

C.3 Building properties for the changing organization
In a change process it is needed that the roles have beliefs about the organization
structure. Therefore all organization structure representations described in Section 4
are included ; some examples are shown in Table C.2,

Table C.2. Examples of included organization structure representations

exists_role : ROLE → STATPROPEXP
role_belongs_to_group: ROLE x GROUP → STATPROPEXP
role_property: DYNPROP x ROLE x GROUP → STATPROPEXP
has_expression: DYNPROP x DYNPROPEXP → STATPROPEXP
allocated_to: AGENT x ROLE x GROUP → STATPROPEXP

Moreover, to express beliefs, the following language construct is used :
 belief: STATPROPEXP → STATPROPEXP
An example of its use is: belief(exists_role(s) ∧ role_belongs_to_group(s, g))
Furthermore it is needed that the roles have beliefs about the behavioral properties that
are expected from a certain role. Therefore first a representation
 leads_to: CONSTATOMS x CONSTATOMS → DYNPROPEXP
is introduced for a simple type of such properties. A more general type of dynamic
property is built using:
 & : DYNPROPEXP x DYNPROPEXP → DYNPROPEXP

and similarly for other logical connectives such as not, �, ∀, ∃.
Thus within the sort DYNPROPEXP two types of expressions are built:

• temporal statements based on atoms of the form state(γ, t, P) |= p for state
properties p

• leads to statements of the form leads_to(V, W) with V and W conjunctions of
atoms

Although the latter type of expressions can be mapped to (are definable in terms of)
the former type of expressions, for simplicity they are kept separate.
 An example of an expression that can be built using the constructs above is the
following

∃t state(γ, t, internal(r)) |= belief(exists_role(s) ∧ role_belongs_to_group(s, g)) ∧
belief(role_property(d1, s, g)) ∧
belief(has_expression(d1, leads_to(a∧b, c)))

This expression states that

SL

\

BL

140

 there will be a time that
 within role r there is the belief that
 the organization structure includes role s in group g, and
 this role has dynamic property d1 which
 is expressed by leads_to(a∧b, c).
Another example property is the following, describing that a role performs the
behavior it believes that is expected from the role:

If at time t
 a role believes that
 this role has as part of its behavior description that
 upon input v the output action w is done,
and
 v occurs as input,
then
 at a next point in time this role will provide output w.

Here the nesting is visible in the informal structured text representation using tabs.
The formalization of this property also shows a nesting as indicated.

[state(γ, t, internal(RegHead)) |= belief(role_property(d, RegHead, RegGroup1)) ∧
belief(has_expression(d, leads_to(v, w))) & state(γ, t, input(RegHead)) |= v]
� ∃t' ≥ t state(γ, t', output(RegHead)) |= w

141

Chapter 7

Modeling Organizational Change
 for Naval Missions

Part of this chapter appeared as: Hoogendoorn, M., Jonker, C.M., Schut, M.C., and
Treur, J., Simulation, Visualization, and Validation of Adaptive Multi-Agent
Organizations in Naval Applications. In: Proceedings of the Military Modeling and
Simulation Symposium. Part of the Spring Simulation Multiconference
(SpringSim'06), 2006.

142

143

Modeling Organizational Change
for Naval Missions

Mark Hoogendoorn1, Catholijn M. Jonker2, Martijn C. Schut1, and Jan Treur1

1Vrije Universiteit Amsterdam, Department of Artificial Intelligence,
De Boelelaan 1081a, 1081 HV Amsterdam, The Netherlands

{mhoogen, schut, treur}@cs.vu.nl
2Radboud University Nijmegen, Nijmegen Institute for Cognition and Information,

Montessorilaan 3, 6525 HR Nijmegen, The Netherlands
C.Jonker@nici.ru.nl

Abstract. The naval domain is characterized by a dynamic environment. This
requires constant adaptation of the organization, choosing between a wide
variety of options. The consequences of the different options are difficult to
foresee and hence, it is hard to judge which option is best. This paper presents
automated support for the simulation, visualization, and validation of such
adaptive multi-agent organizations. Generic simulation properties are specified
using a formal modeling approach. Furthermore, results of a realistic case study
are presented, and validated by means of properties obtained from naval
experts. Finally, a tool is introduced that enables an insightful visualization of
the simulation results.

1 Introduction

The process of setting up a simulation study involves steps of problem formulation,
data collection, model definition, experimental design, running the simulation, output
data analysis and reporting of results [9]. Throughout this process, intermediate
validation steps assure that the simulation model corresponds with the actual system
under investigation. The work described in this paper relates to two steps in particular,
i.e., model definition and output data analysis, and describe these in more detail.

Model definition concerns setting up a conceptual model of the actual system with
respect to project objectives, performance measures, data availability, computer
constraints, etcetera. Many tools exist nowadays to support modelers with this
activity. For ones specific interest, one may choose from a variety of simulation
languages and software packages. These tools provide natural frameworks for model
construction. As such, they are based on formal system descriptions and include
concepts like entities, states, events, time, variables, etcetera.

Agent-based modeling techniques are often used to model and simulate (natural or
artificial) agent systems that have to deal with dynamic and uncertain environments.
Therefore, an important challenge for the area of agent-based modeling is the notion
of adaptivity. Adaptation can take place within a single agent (e.g., an individual
learning process), or at the level of the multi-agent organization (e.g, change of roles

144

of agents within the organization). In order to create (multi-)agent-based simulations
with adaptive abilities, adaptation mechanisms have to be incorporated in agent-based
simulation models.

Adaptation mechanisms can involve not only quantitative numerical aspects but
also qualitative, logical aspects (for example, a role switch between agents within an
organization). If formalization is used for an adaptation mechanism, this is often
based on mathematical models using differential equations. In contrast, agent-based
simulation models traditionally make use of qualitative, logical languages. Most of
these languages are appropriate for expressing qualitative relations, but less suitable
to work with more complex numerical structures as, for example, in differential
equations. Therefore, integrating such mathematical models within the design of
(multi-) agent-based simulation models is difficult. To achieve this integration, it is
needed to bridge the gap between quantitative approaches and the type of languages
typically used in agent-based simulation.

The model definition includes validation of the simulation model: “the process of
determining whether a simulation model is an accurate representation of the system,
for the particular objectives of the study” [9]. Validation is essential for assuring that
the simulation model corresponds with the actual system. Various validation
techniques exist, of which one is mentioned in particular. By letting the simulation
program generate a run or trace, i.e., the series of states over time of the simulated
system (e.g., state variables, statistical counters), it is possible to compare the states
with hand calculations to check the validity of the program.

Analysis of output data is in practice still rather undervalued as the simulation
process is concerned. Much time goes into model development and programming,
rather than addressing the generated output results appropriately. A commonly made
“error” is that a single run is made of some arbitrary length, supposedly to provide
insight into the workings of the actual system. Instead, suitable statistical techniques
must be used to design the simulation experiments and analyze the results.

Since the output processes of simulations are almost all nonstationary and
autocorrelated [9], classical techniques may not always be applicable. Validation of a
model is usually not formally supported. Often validation is done informally, by hand
(or eye), based on comparison of a simulation trace with an empirical trace. In
addition, sometimes specific (e.g., statistical) techniques are used to support certain
aspects of validation; e.g., termination conditions, mean and average estimations (for
analysis of single systems), and measuring response differences, ranking, selection
(for analysis of multiple systems). However, formal analysis and validation of global
dynamic properties describing the system behavior has not received much attention in
the simulation modeling literature. Usually in the domain that is modeled, global
properties that should hold for the behavior of a simulation model can be identified.
As the languages used to specify a simulation model are directed to local properties
(the steps between successive states), such global properties cannot be formalized in
these languages. To obtain more support, also for validation of a simulation model, it
is needed to integrate the modeling of such global properties in a formal manner as
well, so that their specification and automated checking on simulation traces also can
be supported by the modeling environment.

145

In accordance with the findings mentioned above, this paper introduces an
approach for simulation and analysis of adaptive (multi-)agent systems and
underlying mechanisms that is integrative in two ways:
1. It combines in one modeling framework both qualitative, logical and

quantitative, numerical aspects.
2. It allows to model dynamics at different aggregation levels, from a more local

level (e.g., behaviors of roles within the organization) to a global level (behavior
of the multi-agent organization as a whole); moreover, interlevel relations can be
specified that express relationships between dynamic properties at different levels

Modeling dynamics at a local level often concerns expressing temporal relationships
between pairs of successive states, such as described, for example, by basic steps
within an adaptation mechanism. Local level specifications are the basis for the
computation steps for a simulation model. From the more global perspective, more
complex relationships over time can be used to model dynamics for adaptive multi-
agent organizations: for example, how the system’s behavior is changing during a
history of events to which it adapts.

Based on the generic approach for simulation as presented above, this paper
presents a simulation model for the naval domain. The model mainly concentrates on
adaptation of such naval organizations using replanning.

The main objective of the research described in this paper is to investigate the
suitability of a system involving planning, simulation, visualisation, and validation
with respect to automated planning support in naval missions. The longer term aim of
this research is to contribute to the development of a tool that allows for personnel to
plan with a confidence and speed that would not be otherwise possible.

The remainder of this paper is structured as follows. Section 2 gives some details
about the naval domain addressed and how adaptive organization forms play a role. In
Section 3, the modeling methodology that has been used is presented. Section 4
presents a number of simulations that have been conducted based on local executable
properties, and describes a case study that has been investigated. Section 5 presents
the plan visualisation tool. Section 6 describes validation results in the form of non-
local properties for the case study. Finally, Section 7 concludes and describes future
work.

2 Dynamic Aspects in Naval Missions

Within the dynamic naval environment actions of possibly opposing parties, but also
possible interference of non-military bystanders might induce a need for change in the
organization to ensure the safety of the mission. Which response to choose in a given
situation depends on a variety of factors. Elements such as enemy resources and
innocent bystanders have to be taken into consideration and it is hard to predict the
consequences of a plan that has been chosen. This paper presents an automated
support system for the simulation, visualization, and validation of such processes.
Two requirements must be met concerning such support: 1) the support must agree
with the current way of working, and 2) guarantees must be given over the resulted
planning with respect to given conditions including intended outcome and required

146

resources. The work presented here researches an approach for implementing
automated support that meets these two requirements.

As the current way of working is concerned, the naval domain knows a large
volume of well thought out plans that are scheduled for and during a mission (the so-
called ‘doctrine’). Everyone involved in a mission is familiar with these plans. The
performed planning during a mission consists mostly of switching between and
carrying out those plans. On the one hand, such planning during a mission may be a
matter of executing the plans that were decided upon for the mission; on the other
hand, unexpected events may happen that ask for necessary replanning during a
mission. Concerning the latter, these situations require appropriate and speedy
response. It is essential that in these situations, current circumstances are taken into
account, a suitable plan is selected from the doctrine, the situation is dealt with and
the mission will continue as originally planned.

Adaptation in the form of replanning in the naval domain frequently involves
organizational change: it actually affects the organizational structure. For example, in
response to an unexpected event, a ship that was originally only an escort of a high-
value unit, may have to change its role to an attack unit. Such replanning situations
are not rare: organizational changes are frequent and substantial.

Another important aspect of naval planning involves spatial information.
Feasibility of a plan is partly determined by the nature of the available resources
(helicopters, frigates, transporters) and the relative location of those resources.
Combining the specific capabilities of the resources with spatial information and
timing aspects plays a key role in the planning. Therefore plan visualisation that
includes spatial information is necessary for successful implementation of automated
planning support in naval applications.

In naval missions, it is crucial to consider the planning within the broader context
of mission goals, available resources, intended outcomes, etcetera. In this respect,
performed planning before and during a mission must be checked against such kinds
of conditions. For example, when an agent is reallocated to another role (e.g., because
of prevailing circumstances), it must inform others at the time that it is able to fulfill
its role. It is important to recognise that this reallocation does not happen
instantaneously (e.g., because a ship may have to sail towards some location to fulfill
its new role), and therefore the communication is essential for others to know when
the agent can receive orders in its new role.

This paper presents a simulation model that includes: a planner (P) for
organizational change; a simulator (S) for those plans that reflects the meta-
knowledge (see for example [5]) of the roles involved regarding organizational
change; a visualisation tool (VS) for the spatial effects of plan execution that is
dedicated to the naval domain; and a validation tool (VL) for the validation of the
resulting planning.

Fig. 1. Global overview of the simulation model.

P VS S VL

147

The essential virtue of the model is that it recognises the importance of spatial
information in naval planning (by means of the visualisation) and it offers an
inventive way to check whether given conditions hold while planning (by means of
the validation). The model may be used offline for analysis purposes and/or mission
planning, as well as during execution of a mission as an automated planning support
tool.

3 Modeling Methodology

To facilitate formal modeling of a multi-agent organization and its dynamics, this
section introduces an organizational modeling approach and, in addition, a modeling
language that enables specifying the dynamics within an organization (see also [3]).
The organizational modeling approach is described in Section 3.1, and the formal
language for expressing dynamics is addressed in Section 3.2.

3.1 AGR Organization Modeling Approach

For the description of actual multi-agent organizations, the AGR (for
agent/group/role) model has been adopted [2]. In that approach, an organization is
viewed as a framework for activity and interaction through the definition of groups,
roles and their relationships. But, by avoiding an agent-oriented viewpoint, an
organization is regarded as a structural relationship between a collection of agents.
Thus, an organization can be described solely on the basis of its structure, i.e. by the
way groups and roles are arranged to form a whole, without being concerned with the
way agents actually behave, and multi-agent systems will be analyzed from the
outside, as a set of interaction modes. The specific architecture of agents is purposely
not addressed in the organizational model. The three primitive definitions are:
• The agents. The model places no constraints on the internal architecture of

agents. An agent is only specified as an active communicating entity which plays
roles within groups. This agent definition is intentionally general to allow agent
designers to adopt the most accurate definition of agent-hood relative to their
application. In this paper, the agents are however assumed to be reflective agents,
allowing them to reason about the role they are playing.

• Groups are defined as atomic sets of agent aggregation. Each agent is part of one
or more groups. In its most basic form, the group is only a way to tag a set of
agents. An agent can be a member of n groups at the same time. A major point of
these groups is that they can freely overlap.

• A role is an abstract representation of an agent function, service or identification
within a group. Each agent can handle multiple roles, and each role handled by an
agent is local to a group. Roles can also have beliefs due to the assumed
reflective capabilities of the agents; they can reason about whether they should
have a particular belief given a certain role. These beliefs can be seen as an
additional requirement on the agents playing that role.

148

3.2 Modeling Organizational Behavior

In this section a method to express dynamics within an organizational model is
addressed. To formally specify dynamic properties at the different aggregation levels
that are essential in an organization, an expressive language is needed. To this end the
Temporal Trace Language is used as a tool; cf. [7]. For the properties occurring in the
paper informal, semi-formal or formal representations are given. The formal
representations are based on the Temporal Trace Language (TTL), which is briefly
defined as follows.

A state ontology is a specification (in order-sorted logic) of a vocabulary. A state
for ontology Ont is an assignment of truth-values {true, false} to the set At(Ont) of
ground atoms expressed in terms of Ont. The set of all possible states for state
ontology Ont is denoted by STATES(Ont). The set of state properties
STATPROP(Ont) for state ontology Ont is the set of all propositions over ground
atoms from At(Ont). A fixed time frame T is assumed which is linearly ordered. A
trace or trajectory γ over a state ontology Ont and time frame T is a mapping γ : T
→ STATES(Ont), i.e., a sequence of states γt (t ∈ T) in STATES(Ont). The set of all
traces over state ontology Ont is denoted by TRACES(Ont). Depending on the
application, the time frame T may be dense (e.g., the real numbers), or discrete (e.g.,
the set of integers or natural numbers or a finite initial segment of the natural
numbers), or any other form, as long as it has a linear ordering. The set of dynamic
properties DYNPROP(Ont) is the set of temporal statements that can be formulated
with respect to traces based on the state ontology Ont in the following manner.

Given a trace γ over state ontology Ont, the input state of some role r within a
group g at time point t is denoted by

 state(γ, t, input(r|g))

analogously

 state(γ, t, output(r|g))
 state(γ, t, internal(r|g))
denote the output state and internal state.

These states can be related to state properties via the formally defined satisfaction
relation |=, comparable to the Holds-predicate in the Situation Calculus: state(γ, t,
output(r|g)) |= p denotes that state property p holds in trace γ at time t in the output state
of role r within group g. Based on these statements, dynamic properties can be
formulated in a formal manner in a sorted first-order predicate logic with sorts TIME
or T for time points, Traces for traces and F for state formulae, using quantifiers over
time and the usual first-order logical connectives such as ¬, ∧, ∨, �, ∀, ∃. In trace
descriptions, notations such as
 state(γ, t, output(r|g))|= p
are shortened to
 output(r|g)|p.
The Temporal Trace language can be used to specify behavioral properties at different
aggregation levels, according to the organizational structure. Within the AGR
approach the aggregation levels are the level of the roles, the level of the groups and
the level of the organization as a whole (see Figure 2). The lower level properties can
often be modeled in simpler formats than the higher level properties. In particular, it
is often possible to model the properties at the leaves of the tree in the form of directly

149

executable properties, i.e., by direct temporal dependencies between state properties
in two successive states. To model direct temporal dependencies between two state
properties, not the expressive language TTL, but the simpler leads to format is used.
This is an executable format that can be used to obtain a specification of a simulation
model in terms of local dynamic properties (the leaves of the tree in Fig. 2). The
format is defined as follows. Let α and β be state properties of the form ‘conjunction
of literals’ (where a literal is an atom or the negation of an atom), and e, f, g, h non-
negative real numbers. In the leads to language α →→e, f, g, h β, means:

 if state property α holds for a certain time interval with duration g,
 then after some delay (between e and f) state property β will hold
 for a certain time interval of length h.

For a precise definition of the leads to format in terms of the language TTL, see
[8]. A specification of dynamic properties in leads to format has as advantages that it
is executable and that it can often easily be depicted graphically.

4 Local Properties and Simulations

This Section presents the simulator component within the system. First of all, the
executable (leads to) properties which specify the simulation model for the simulator
are presented in Section 4.1. After that, Section 4.2 addresses the case study that has
been investigated, followed by the results of the simulations of the case study.

4.1 Simulation Model Specification

This Section describes generic local properties that constitute the basis for the
simulation model. Each of these generic properties can be formed into more scenario
specific properties whenever necessary. The generic properties in the framework work
are based on goals, plans, beliefs and events.

Fig. 2. Overview of interlevel relations between dynamic properties

 transfer properties role properties

group properties intergroup interaction properties

organization properties

150

It has to be mentioned that beliefs in this respect are used for storing information
about the environment as well as information about oneself. As shown in the scenario
below, many plans involve organizational change. This means that the actual
organizational structure adapts to occurring events. Thus, in addition to knowing
about the environment by observation, it is assumed that the agent (reflectively)
knows about its role in the organization and can change to another role if necessary.
The formalization is explained in the remainder of this section. Firstly, it is assumed
that a goal has been given.
 internal(r:ROLE|gr:GROUP)|belief(g:GOAL, pos)

denotes that role r within group gr holds the belief that g is a goal. Based on this goal,
a plan is selected to achieve it:
 internal(r:ROLE:gr:GROUP)|belief(current_plan(p:PLAN), pos)

says that plan p is selected as to achieve goal g. This plan will generate actions as
long as no disturbing events occur. If such an event occurs and r is informed, this is
denoted by
 input(r:ROLE:gr:GROUP)|communication_from_to(
 r1:ROLE|gr1:GROUP, r:ROLE|gr:GROUP ,inform, e:EVENT)
stating that r1 within group gr1 informs r within group gr about event e. This event
causes another goal to become active.

internal(r:ROLE|gr:GROUP)|belief(g1:GOAL, pos)
says that g1 is now a goal and a subsequent plan is selected:

internal(r:ROLE|gr:GROUP)|belief(current_plan(p1:PLAN), pos)
This plan may involve organizational change. If this is the case (as it is in the
scenarios below), a modeling approach is adopted as developed elsewhere [6]. This
involves the existence of a ChangeManager who directs the organizational change.
This approach is explained in more detail below. If the plan has been fully executed,
this is denoted by

internal(r:ROLE|gr:GROUP)|belief(plan_executed(p:PLAN),pos)
where the parameter might be left out if it is assumed that only one plan can be
executed at a time. This causes role r to reflect on other still existing goals and
resuming the plans to achieve these goals. If there are no existing goals, a new goal
may be generated or given.

Execution of a certain plan that has been selected often consists of organizational
change. Therefore, generic simulation rules for these organization structure changes
are needed to enable a generic simulation model. The properties shown below are
based on the approach presented in [6] which is partially based on the AGR
organization modeling approach as presented in Section 3.1. In that approach,
organizational change can be performed in a meta-group called ChangeGroup, in
which Member roles are present that represent agents within the organization. Each
agent in the organization is represented by exactly one Member role within the
ChangeGroup. The Member roles have beliefs about the organization and these
beliefs are transferred to the roles the agent is currently playing. To initiate the change
process as described above, triggers are needed. These are specified in the current
plan, and are domain specific. Given this specific information for the particular plan,
generic simulation rules fire to simulate the process of informing the members
involved and changing their current beliefs on the organization. Some example
executable local properties are presented below.

151

RP(ChangeManager):Communicate Activity
[output(ChangeManager|ChangeGroup)|communication_from_to(ChangeManager|Ch
angeGroup, all_involved, inform, active(C:CHANGE_GROUP)) &
internal(ChangeManager|ChangeGroup)|belief(involved_in_group(R:ROLE,
C:CHANGE_GROUP), pos)]

→→0,0,1,1
input(R:ROLE|ChangeGroup)|communication_from_to(ChangeManager|ChangeGroup,
R:ROLE|ChangeGroup, inform, active(C:CHANGE_GROUP)

RP(Member): Believe Change Activity
input(R:ROLE|ChangeGroup)|communication_from_to(ChangeManager|ChangeGroup,
R:ROLE|ChangeGroup, inform, active(C:CHANGE_GROUP)

→→0,0,1,1
[internal(R:ROLE|ChangeGroup)|belief(active(C:CHANGE_GROUP, pos) &
output(R:ROLE|ChangeGroup)|communication_from_to(R:ROLE|ChangeGroup,
ChangeManager|ChangeGroup, inform belief(active(C:CHANGE_GROUP), pos))]

Properties such as the examples above cause the ChangeGroup to be activated,
knowledge about a new structure to be communicated, and finally belief emerging at
the roles that need to have this information. After all of this has been performed, the
ChangeGroup is deactivated and the new structure is in place (part of the internals of
the roles).

Roles are attributed with reflective knowledge in the approach presented in this
paper. This means that roles have beliefs on the expected behavior concerning the
role. For example, a role has the internal belief that when the role receives an input x
he eventually has to output y, formally:

 internal(Role|Group)|belief(leadsto(input(Role|Group)|x, output(Role|Group)|y,
efgh(0,0,1,1)),pos)

4.2 Simulation Results

This section contains results of simulations using the model presented in Section 3
and the generic properties presented in Section 4.1 which have been formalized in
terms of the formal languages presented in Section 3. First of all, two case studies are
introduced, thereafter some example formal properties which specify the behavior in
the situations that occur in the case study are shown. Finally, the simulation traces for
the case studies are shown.

4.2.1 Case studies
This section presents two case studies that has been obtained from experts of the
Royal Netherlands Navy. The scenarios contain events that are typical within the
naval domain.

Total Steam Failure
The first scenario that has been studied is called total steam failure. The initial
configuration of the fleet is shown in Figure 3. In total there are six frigates, denoted
by F1 - F6, each allocated to a certain area within which they reside. Besides the

152

frigates there are also helicopters (H1- H6) flying in a particular zone of the fleet.
Finally, there are certain High Value Units (HVU) within the area called ZZ (for Zulu
Zulu) that need to be protected. These might for example be ships containing troops,
or amphibian landing vehicles. In total there are five ships within ZZ, which is called
MainBody throughout this
paper.

At a certain point in time
the Officer in Tactical
Command (OTC) receives an
assignment to sail to Peterselie
island and chooses a fleet
configuration. On the way
however, several unexpected
events occur. First of all, one
of the ships within the
MainBody gets a total steam
failure, meaning that it has lost
all propulsion. On the basis of
this event, the OTC has to
decide what plan to apply. A
few hours later, a nixie (a
torpedo decoy) hit is observed
at one of the members of the MainBody, which means that a torpedo was fired in the
direction of that ship and implies re-planning as well. Finally, an hour after that, the
ship that was suffering from a total steam failure gets back up to speed again.

Submarine Threat
Another scenario which has been under investigation is that of a submarine threat.
The initial fleet configuration is almost identical to the configuration shown in Figure
3, except that H6 is missing. The mission remains the same, which is to sail to
Peterselie island. After a certain time-point however, frigate F1 detects sonar contact
with a high probability that it is a submarine. The OTC now has to plan the actions to
be performed to deal with such an event.

4.2.2 Case Specific Local Properties
This section presents some example properties that have been formalized to enable
the simulation of the different case studies.

Total Steam Failure
First, two properties for the total steam failure case study is the following: In case a
total steam failure is communicated to the OTC, then the new current plan is to form a
screen around this ship. Formal:

RP(OTC): Handle total steam failure
input(OTC|Fleet)|communication_from_to(R:ROLE|MainBody1,

OTC|Fleet, inform, total_steam_failure)
→→0,0,1,1 internal(OTC|Fleet)|belief(current_plan(form_screen_around_ship(

R:ROLE|MainBody1)), pos)

Fig. 3. Initial Fleet configuration

153

Furthermore, if the plan is indeed set to forming a screen around the ship, then the
ship playing the role of FrontLeftProtector within the current screen will be allocated
to the role of LeftProtector2 in the newly formed screen. Formally:

RP(OTC): Perform plan to form screen
∀A:AGENT, R:ROLE, G:GROUP
[internal(ChangeManager|ChangeGroup)|current_plan(

form_screen_around_ship(R:ROLE|MainBody1)), pos) &
 internal(ChangeManager|ChangeGroup)|belief(allocated_to(A:AGENT,

FrontLeftProtector1, G:GROUP), pos)]
→→0,0,1,1

[internal(ChangeManager|ChangeGroup)|belief(delete(allocated_to(
A:AGENT, FrontLeftProtector1, G:GROUP)), pos) &

internal(ChangeManager|ChangeGroup)|belief(add(exists_group(Screen2)), pos) &
internal(ChangeManager|ChangeGroup)|belief(add(exists_role(LeftProtector2)), pos) &
internal(ChangeManager|ChangeGroup)|belief(add(allocated_to(A:AGENT, LeftProtector2,
 Screen2)), pos)]

Submarine Threat
Regarding the submarine threat case study, if a role informs the OTC that sonar
contact with a submarine has been made, he forms a search and attack unit:

RP(OTC): Handle sonar contact
input(OTC|Fleet)|communication_from_to(R:ROLE|Screen1, OTC|Fleet,

inform, sonarcontact_sub)
→→0,0,1,1 internal(OTC|Fleet)|belief(current_plan(eliminate_submarine_threat), pos)

The plan to eliminate such a submarine threat involves forming a search and attack
unit. In case such a unit if formed, a new group is created called SAU. Furthermore,
the role of commander within the SAU, the SAUC is performed by the agent
previously allocated to LeftProtector1. Formally:

RP(OTC): Perform plan to form SAU
∀A:AGENT, R:ROLE, G:GROUP
[internal(ChangeManager|ChangeGroup)|current_plan(eliminate_submarine_threat), pos) &
 internal(ChangeManager|ChangeGroup)|belief(allocated_to(A:AGENT,

LeftProtector1, G:GROUP), pos)]
→→0,0,1,1

internal(ChangeManager|ChangeGroup)|belief(delete(allocated_to(
A:AGENT, FrontLeftProtector1, G:GROUP)), pos) &

internal(ChangeManager|ChangeGroup)|belief(add(exists_group(SAU)), pos) &
internal(ChangeManager|ChangeGroup)|belief(add(exists_role(SAUC)), pos) &
internal(ChangeManager|ChangeGroup)|belief(add(allocated_to(A:AGENT, SAUC, SAU)), pos)]

4.2.3 Simulation Trace
The results of the case studies that have been performed are presented here. First, the
results of the total steam failure case study are presented after which the results of the
submarine threat case study are addressed.

154

Total Steam Failure
The simulation results of the total steam failure case study are shown in Figure 4. The
left side of the Figure shows a selection of the atoms that occur during the simulation.
The right side shows a time-line where a black box indicates when an atom is true and
a grey box when an atoms is false. This subset of the trace focuses on the OTC within
the fleet, as he is the commander, he is the most interesting role to show. More

specifically, the trace shows that during all time points the current mission is to sail to
Peterselie island:
 internal(OTC|Fleet)|belief(current_mission(sail_to_peterselie_island), pos)
After the mission has been received, the initial organization is set-up according to the
approach presented in Section 3.1. After the organization change process has ended
the OTC has beliefs on the structure and allocations within the fleet, such as:
 internal(OTC|Fleet)|belief(exists_role(FrontLeftProtector1), pos)
 internal(OTC|Fleet)|belief(allocated_to(F1,LeftProtector1, Screen1), pos)

Suddenly, the OTC receives a communication from the role BodyMember1 within the
MainBody1 group stating that the role has a total steam failure:
 input(OTC|Fleet)|communication_from_to(BodyMember1|MainBody1, OTC|Fleet, inform,
 total_steam_failure)
Based on this communication, the OTC decides to form a screen around the ship,
which means that the current fleet configuration as presented in the case-study
changes drastically. As organizational change comes into play, the ChangeManager
becomes active again, who forms a new group Screen2 (denoting the additional
screen) and an additional main body (MainBody2). Several agents that were at first

internal(('OTC'|'Fleet'))|belief(current_mission(sail_to_peterselie_island), pos)
internal(('OTC'|'Fleet'))|belief(exists_role('FrontLeftProtector1'), pos)

internal(('OTC'|'Fleet'))|belief(exists_group('Screen1'), pos)
internal(('OTC'|'Fleet'))|belief(role_belongs_to_group('FrontLeftProtector1', 'Screen1'), pos)

internal(('OTC'|'Fleet'))|belief(allocated_to('F2', 'FrontLeftProtector1', 'Screen1'), pos)
input(('OTC'|'Fleet'))|observation_result(speed('MainBody1', normal), pos)

internal(('OTC'|'Fleet'))|belief(allocated_to('JDW', 'BodyMember1', 'MainBody1'), pos)
input(('OTC'|'Fleet'))|communication_from_to(('BodyMember1'|'MainBody1'), ('OTC'|'Fleet'), inform, total_steam_failure)

internal(('OTC'|'Fleet'))|belief(current_plan(form_screen_around_ship(('BodyMember1'|'MainBody1'))), pos)
input(('OTC'|'Fleet'))|observation_result(speed('MainBody2', dead), pos)

internal(('OTC'|'Fleet'))|belief(allocated_to('F2', 'LeftProtector2', 'Screen2'), pos)
internal(('OTC'|'Fleet'))|belief(allocated_to('JDW', 'Body2Member1', 'MainBody2'), pos)

internal(('OTC'|'Fleet'))|belief(allocated_to('F2', 'ASWC2', 'Screen2'), pos)
internal(('OTC'|'Fleet'))|belief(allocated_to('F2', 'ScreenCommander2', 'Screen2'), pos)

internal(('OTC'|'Fleet'))|belief(plan_executed, pos)
input(('OTC'|'Fleet'))|communication_from_to(('LeftProtector2'|'Screen2'), ('OTC'|'Fleet'), inform, able_to_fulfill_role)

input(('OTC'|'Fleet'))|observation_result(almost_outside_bounds('MainBody1', 'MainBody2'), pos)
output(('OTC'|'Fleet'))|communication_from_to(('OTC'|'Fleet'), ('BodyMember2'|'MainBody1'), inform, slow_down)

input(('OTC'|'Fleet'))|communication_from_to(('BodyMember2'|'MainBody1'), ('OTC'|'Fleet'), inform, slowed_down)
input(('OTC'|'Fleet'))|observation_result(speed('MainBody1', slow), pos)

input(('OTC'|'Fleet'))|observation_result(nixie_hit('BodyMember2', 'MainBody1'), pos)
internal(('OTC'|'Fleet'))|belief(current_plan(form_search_and_attack_unit(('BodyMember2'|'MainBody1'))), pos)

internal(('OTC'|'Fleet'))|belief(allocated_to('H1', 'SAUC', 'SAU'), pos)
output(('OTC'|'Fleet'))|communication_from_to(('OTC'|'Fleet'), ('BodyMember2'|'MainBody1'), inform, accelerate_to_max_speed)
input(('OTC'|'Fleet'))|communication_from_to(('BodyMember2'|'MainBody1'), ('OTC'|'Fleet'), inform, accelerated_to_max_speed)

input(('OTC'|'Fleet'))|observation_result(speed('MainBody1', fast), pos)
output(('OTC'|'Fleet'))|communication_from_to(('OTC'|'Fleet'), ('BodyMember2'|'MainBody1'), inform, slow_down_to_regular_speed)

input(('OTC'|'Fleet'))|communication_from_to(('BodyMember2'|'MainBody1'), ('OTC'|'Fleet'), inform, slowed_down_to_regular_speed)
input(('OTC'|'Fleet'))|communication_from_to(('Body2Member1'|'MainBody2'), ('OTC'|'Fleet'), inform, steam)

internal(('OTC'|'Fleet'))|belief(current_plan(restore_old_screen_configuration), pos)
output(('OTC'|'Fleet'))|communication_from_to(('OTC'|'Fleet'), ('Body2Member1'|'MainBody2'), inform, accelerate_to_max_speed)
input(('OTC'|'Fleet'))|communication_from_to(('Body2Member1'|'MainBody2'), ('OTC'|'Fleet'), inform, accelerated_to_max_speed)

input(('OTC'|'Fleet'))|observation_result(speed('MainBody2', fast), pos)
input(('OTC'|'Fleet'))|communication_from_to(('Body2Member1'|'MainBody2'), ('OTC'|'Fleet'), inform, arrived_at_mainbody1)

input(('OTC'|'Fleet'))|communication_from_to(('BodyMember1'|'MainBody1'), ('OTC'|'Fleet'), inform, able_to_fulfill_role)
time 0 50 100 150 200 250 300 350 400 450

Fig. 4. Simulation result of the Total Steam Failure scenario

155

allocated to the screen around MainBody1 are now re-allocated to roles in Screen2
around the newly formed MainBody2. To determine which agents to re-allocate,
specific properties are present in the simulator that define a preference for which
agent to take. Once the agents are in their new positions, they communicate this in
their new role:
 input(OTC|Fleet)|communication_from_to(LeftProtector2|Screen2, OTC|Fleet,
 inform, able_to_fulfill_role)
After these communications have been received, the OTC believes that the plan is
executed successfully. A few time-points later however, the OTC observes that the
distance between MainBody1 and MainBody2 is almost out of the bounds that have
been set. As a response, the OTC commands the member of MainBody1 to slow
down. Just after that command has been executed, an unexpected event occurs: A
nixie hit is observed. This trigger causes the OTC to choose a new plan to be
executed, because there is a severe danger of being attacked. The plan chosen is to
form a search and attack unit, which will try to pinpoint the ship that fired the
torpedo. Therefore, another organizational change is observed, creating the roles for
the search and attack unit and re-allocating agents to these roles. In the trace this
organization change involves a dynamic property being communicated, stating what
the search and attack unit should perform:
 internal((SAUC|SAU))|belief(leadsto(internal((SAUC|SAU))|belief(able_to_fulfill_role, pos),
 output((SAUC|SAU))|communication_from_to((SAUC|SAU),
 (OTC|Fleet), inform, started_plan_spencer), efgh(0, 0, 1, 1)), pos)
This states that once the role is fulfilled, the role will execute plan spencer and inform
the OTC about this. Due to the reflective capabilities of the agent, they are able to
reason about these dynamic properties and adopt them. After the OTC has observed
that plan spencer is indeed being executed, he orders the remainder of MainBody1 to
accelerate to maximum speed. After a while, the search and attack unit has fully
executed plan spencer, resulting in the OTC deleting the group and re-allocating the
agents to their old role. The final event that changes the organization is the
communication from MainBody2 that it has steam again which is a trigger for a new
plan, to restore the old fleet configuration. This is established by having MainBody2
and Screen2 accelerate to maximum speed and when it arrives at the MainBody1
allocated all the ships and helicopters to their old position again.

Submarine Threat
Figure 5 shows the trace regarding the simulation of the “submarine threat” case
study. Briefly, the trace shows the following elements: First of all, OTC is informed
by the LeftProtector1 within Screen1 about a sonar contact with a sub. At that same
time-point the OTC derives a new plan:
 internal(OTC|Fleet)|belief(current_plan(eliminate_submarine_threat, pos)
As a result, a search and attack unit (SAU) is formed again, and the submarine is
located. After the location is known, the OTC orders the rest of the fleet to turn away.
The command is confirmed by the ships within the MainBody1 and they eventually
communicate to have turned away:
 input(OTC|Fleet)|communication_from_to(BodyMember1|MainBody1, OTC|Fleet, inform,
 turned_away)
Following the observation that the ships must be outside of range for the torpedo’s,
the ships are told to turn back to their old direction again. All confirm and execute the

156

order. The OTC commands the helicopters to replace the frigates that take part in the
SAU because the helicopters are much faster and the distance between the SAU and
the rest of the Fleet is increasing.

 output(OTC|Fleet)|communication_from_to(OTC|Fleet,LeftDetector|Screen1,
 inform, replace_sau)
Due to the open position in Screen1 that is left, helicopter F3 is allocated to two roles
within the Screen. After a certain time, the OTC believes the submarine in no threat
anymore and orders the roles within the SAU group to return to their mother ship:
 output(OTC|Fleet)|communication_from_to(OTC|Fleet, SAUC|SAU, inform,
 return_to_mothership)
This denotes that at a later point in time, the helicopter is allocated to the role of
FrontLeftProtector1 within Screen1, which is already allocated to frigate F2:
 internal(OTC|Fleet)|belief(allocated_to(H1, FronLeftProtector, Screen1)
The commands to refuel and change the crew of the helicopter are therefore sent to
the role to which F1 and H2 are allocated. After the refuel is done, the old fleet
configuration is restored.

5 Visualization

For the simulator a visualization tool has also been developed. Figure 6 shows a
screenshot of the tool. On the left side of the figure the fleet is shown in a visual
manner as previously shown in Figure 3 whereas on the right side the trace (of which
parts were explained already in Section 4.2), that acts as a basis for the visualization,
is shown. A bar in the trace shows the accompanying time-point for which this
visualization holds. For Navy domain experts such a visualization tool is easily

internal((OTC|Fleet))|belief(allocated_to(H1, LeftDetector1, Screen1), pos)
input((OTC|Fleet))|observation_result(speed(MainBody1, normal), pos)

internal((OTC|Fleet))|belief(current_plan(eliminate_submarine_threat), pos)
input((OTC|Fleet))|communication_from_to((LeftProtector1|Screen1), (OTC|Fleet), inform, sonarcontact_sub)

input((OTC|Fleet))|communication_from_to((SAUC|SAU), (OTC|Fleet), inform, sub_at_position_p)
output((OTC|Fleet))|communication_from_to((OTC|Fleet), (BodyMember1|MainBody1), inform, turn_away)

input((OTC|Fleet))|communication_from_to((BodyMember1|MainBody1), (OTC|Fleet), inform, turning_away)
input((OTC|Fleet))|communication_from_to((BodyMember1|MainBody1), (OTC|Fleet), inform, turned_away)

input((OTC|Fleet))|observation_result(outside_of_sub_range(MainBody1), pos)
output((OTC|Fleet))|communication_from_to((OTC|Fleet), (BodyMember1|MainBody1), inform, turn_back_to_old_direction)

input((OTC|Fleet))|communication_from_to((BodyMember1|MainBody1), (OTC|Fleet), inform, turning_back_to_old_direction)
input((OTC|Fleet))|communication_from_to((BodyMember1|MainBody1), (OTC|Fleet), inform, turned_back_to_old_direction)

output((OTC|Fleet))|communication_from_to((OTC|Fleet), (LeftDetector1|Screen1), inform, replace_sau)
input((OTC|Fleet))|communication_from_to((LeftDetector1|Screen1), (OTC|Fleet), inform, heading_to_sau)

input((OTC|Fleet))|communication_from_to((LeftDetector1|Screen1), (OTC|Fleet), inform, ready_to_replace_sau)
output((OTC|Fleet))|communication_from_to((OTC|Fleet), (RightProtector1|Screen1), inform, return_to_regular_position)

internal((OTC|Fleet))|belief(allocated_to(H1, SAUC, SAU), pos)
internal((OTC|Fleet))|belief(allocated_to(H3, LeftDetector1, Screen1), pos)

internal((OTC|Fleet))|belief(allocated_to(H3, FrontLeftDetector1, Screen1), pos)
output((OTC|Fleet))|communication_from_to((OTC|Fleet), (SAUC|SAU), inform, return_to_mothership)

internal((OTC|Fleet))|belief(plan_executed, pos)
output((OTC|Fleet))|communication_from_to((OTC|Fleet), (FrontLeftProtector1|Screen1), inform, change_crew)

output((OTC|Fleet))|communication_from_to((OTC|Fleet), (FrontLeftProtector1|Screen1), inform, refuel)
internal((OTC|Fleet))|belief(allocated_to(H1, FrontLeftProtector1, Screen1), pos)

internal((OTC|Fleet))|belief(current_plan(restore_fleet_configuration), pos)
internal((OTC|Fleet))|belief(allocated_to(H1, FrontLeftDetector1, Screen1), pos)

time 0 100 200 300

Fig. 5. Simulation result of Submarine Threat Scenario

157

interpretable whereas a trace as shown on the right side of Figure 6 is hard to interpret
especially due to the fact that one needs to be familiar with such kind of formalisms.

6 Non-Local Properties and Validation

When a formalized trace has been obtained either by a formalization of an empirical
trace or by means of simulation it is useful to verify certain essential properties in the
trace. Below the properties that have been checked against the traces presented in
Section 4 are shown. The properties are independent from the specific scenario and
should hold for every trace. The properties are formalized using the Temporal Trace
Language as described in Section 3.

P1: Reflective Behavior
This property states that in case a role has a belief about an executable property that
should be used when the role is being performed, the role should actually show this
behavior. Formally:

∀γ:TRACES, t:TIME,
 [∃A:ANTECEDENT, C:CONSEQUENT, R:ROLE, G:GROUP

state(γ, t, internal(R|G)) |= belief(leadsto(A, C, efgh(_,_,_,_)), pos)

Fig. 6. Screenshot of the visualization tool

158

 � ∀t2 � t [state(γ, t2) |= A � ∃t3 � t2 state(γ, t3) |= C]]

This property is indeed satisfied for the presented traces.

P2: Ship always allocated to a role
The fact that a ship should always be allocated to a role (after the initial fleet setup) is
specified using this property. In formal form the property is formulated as follows:

∀γ:TRACES, t:TIME > 20, A:AGENT
 [∃R:ROLE, G:GROUP
 state(γ, t, internal(OTC|Fleet)) |= belief(allocated_to(A, R, G), pos)]

This property is also satisfied for the given traces.

P3: Communication that an agent is able to fulfill its role
This property expresses that when an agent is re-allocated to another role, it should
always communicate when it is able to fulfill the role. There can be a time-delay
between the re-allocation because the ship might have to sail to a particular place to
execute the newly assigned role. Formally the property can be specified in the
following way:

∀γ:TRACES, t:TIME > 20, A:AGENT, R:ROLE, G:GROUP
 [∃R2:ROLE state(γ, t, input(ChangeManager|ChangeGroup)) |=

communication_from_to(R2|ChangeGroup, ChangeManager|ChangeGroup, inform,
belief(add(allocated_to(A, R, G)), pos))

 � [∃t2:TIME 	 t1 state(γ, t2, output(R|G)) |= communication_from_to(R|G, OTC|Fleet, inform,
able_to_fulfil_fole)]]

This property is satisfied as well for the given traces.

P4: Determine a plan to handle exceptions
When an exception occurs the OTC within the fleet always has a belief about a
current plan that handles the exception:

∀γ:TRACES, t:TIME
 [∃E:EXCEPTION state(γ, t, input(OTC|Fleet)) |= E �
 ∃t2:TIME 	 t, P:PLAN [state(γ, t2, internal(OTC|Fleet)) |= belief(current_plan(P), pos)]]

This property is satisfied for the trace presented in Section 4.

7 Discussion

This paper introduces an integrative modeling approach for simulation and analysis of
adaptive behavior of multi-agent organizations. The approach is integrative in two
ways. First, it combines both qualitative, logical and quantitative, numerical aspects
in one modeling framework. Second, it allows to model dynamics at different
aggregation levels from local to more global levels.

The organizational processes during naval missions have been formalized by
identifying executable local dynamic properties for the basic dynamics. On the basis
of these local properties simulations have been made. Moreover, dynamic properties
describing the behavior at a global level have been identified. These properties have
been checked automatically on the simulation traces. To this end a system has been

159

introduced that consists of four components: (1) A planning component; (2) a
simulation engine; (3) a visualization tool, and (4) a component which enables formal
validation. The planning component has been equiped with typical plans for the naval
domain from the so called ‘doctrine’ . The simulation engine has as a basis an
organizational model which is specified by means of dynamics in the form of formal
executable properties. Organizational change and change of plans are visualized in an
understandable manner for naval experts by means of the visualization tool. Finally,
the validation component enables formal validation of traces.

The approach taken in this paper has a number of advantages over other
approaches. When comparing with planning achitictures such as [4] and [1], the
approach presented in this paper provides validation functionalities for the simulation
results, which is not the case in the other architectures. The models of these
architectures can be formally proven to be correct, however for the complex naval
domain it might be too diffult to prove such a thing. Furthemore the approach in this
paper also has the ability to validate and visualize empirical traces who can for
example be obtained from logbooks. These advantages could be used to monitor a
current mission, and constantly check whether the properties that should hold for the
mission are satisfied. In case a property is not satisfied, a warning could for example
be given.

Other simulation engines have been developed specifically for the naval domain,
such as for example presented in [10]. For a matter of validation of the model
however, navy experts were asked what they considered to be the optimal solution. In
the approach used in this paper, this process is automated due to the formal
specification of properties provided to us by naval domain experts.

Acknowledgements

CAMS-Force Vision, the software development department associated with the Royal
Netherlands Navy, has provided funding and domain knowledge to enable the
scenarios and simulations presented in this paper. The authors especially want to
thank Jaap de Boer (CAMS-ForceVision) for his expert knowledge.

References

[1] d'Inverno, M., Luck, M. Georgeff, M., Kinny, D. and Wooldridge, M., The dMARS
Architechure: A Specification of the Distributed Multi-Agent Reasoning System. Journal
of Autonomous Agents and Multi-Agent Systems, 9(1-2):5-53, 2004.

[2] Ferber, J. and Gutknecht, O., A meta-model for the analysis and design of organisations in
multi-agent systems. In: Proceedings of the Third International Conference on Multi-
Agent Systems (ICMAS’98), IEEE Computer Society Press, pp. 128-135.

[3] Ferber, J., Gutknecht, O., Jonker, C.M., Müller, J.P., and Treur, J., Organization Models
and Behavioural Requirements Specification for Multi-Agent Systems. In: Y. Demazeau,
F. Garijo (eds.), Multi-Agent System Organisations. Proc. of the 10th European Workshop
on Modelling Autonomous Agents in a Multi-Agent World, MAAMAW'01.

160

[4] Georgeff, M. P., and Ingrand, F. F., Decision-making in an embedded reasoning system.
In Proceedings of the Eleventh International Joint Conference on Artificial Intelligence
(IJCAI-89), pages 972-978, Detroit, MI, 1989.

[5] Goodwin, R., Meta-Level Control for Decision-Theoretic Planners. PhD thesis, School of
Computer Science, Carnegie Mellon University, Pittsburgh, PA, 1996.

[6] Hoogendoorn, M., Jonker, C.M., Schut, M.C., and Treur, J., Modelling the Organisation of
Organisational Change. In: Proc. of the Sixth International Workshop on Agent-Oriented
Information Systems, AOIS'04.

[7] Jonker, C.M., Treur, J. Compositional verification of multi-agent systems: a formal
analysis of pro-activeness and reactiveness. International. Journal of Cooperative
Information Systems, vol. 11, 2002, pp. 51-92.

[8] Jonker, C.M., Treur, J., and Wijngaards, W.C.A., A Temporal Modelling Environment for
Internally Grounded Beliefs, Desires and Intentions. Cognitive Systems Research Journal,
vol. 4, 2003, pp. 191-210.

[9] Law A.M. and Kelton D.W., Simulation, Modeling and Analysis. McGraw Hill, 2000.
Third edition.

[10] Sokolowski, J., Enhanced Military Decision Modeling Using a MultiAgent System
Approach, In Proceedings of the Twelfth Conference on Behavior Representation in
Modeling and Simulation, Scottsdale, AZ., May 12-15, 2003, pp. 179-186.

161

Chapter 8

A Formal Organizational Modeling Approach
to Support Change Processes:

A Case Study in Dutch Municipalities

This chapter appeared as: Bruin, B. de, and Hoogendoorn, M., A Formal
Organizational Modeling Approach to Support Change Processes: A Case Study in
Dutch Municipalities. In: Dignum, V., Dignum, F., Matson, E., and Edmonds, B.
(eds.), Proceedings of the Workshop on Agent Organizations: Models, and Simulation
(AOMS @ IJCAI 2007), 2007, pp. 13-25.

162

163

A Formal Organizational Modeling Approach
to Support Change Processes:

A Case Study in Dutch Municipalities

Bas de Bruin and Mark Hoogendoorn

Vrije Universiteit Amsterdam, Department of Artificial Intelligence
De Boelelaan 1081a, 1081 HV Amsterdam, The Netherlands

{sbdbruin, mhoogen}@cs.vu.nl

Abstract. Change processes within organizations are cumbersome, over 70% of
such processes does not achieve the intended goal. This paper presents an
multi-agent organizational modeling approach which can support such change
processes. The approach consists of three parts: (1) analysis of an existing
organization by means of simulation and verification; (2) the possibility to
simulate and analyze possible new organizations, and (3) the analysis of the
process of moving from the one organization to another. The approach is based
on formal modeling and simulation techniques, enabling an analysis using
formal verification techniques. The approach has been evaluated by means of
an extensive case study within several municipalities within the Netherlands.

1 Introduction

As the development of the field of multi-agent systems continues, the systems that are
being developed within this field are becoming increasingly complex. Due to this
increase in complexity, the need arises for an abstraction level higher than the concept
agent to support the design and analysis of such systems. As a result, organization
modeling is becoming a practiced stage within the development of multi-agent
systems (see e.g. [5, 7, 11, 16]). Typically, approaches for multi-agent organizational
modeling draw inspiration from the fields of social sciences and economics and apply
such approaches to artificial or computational organizations. Some approaches
however also claim that they can be used for modeling and analysis of human
organizations as well (e.g. AGR extended with dynamic properties [6]).

In human organizations, change has nowadays become part of everyday life, some
organizations are continuously undergoing such change. In the fields of social
sciences, economics, and psychology recent research has focused on the analysis of
such change process, see for example [2, 13]. Still, the effectiveness of change is low:
research has shown that over 70% of all change processes does not achieve the
intended goal [1, 9]. Three types of organizational change have been distinguished in
the literature [2]. Firstly, planned organizational change is distinguished, in which the
problems and solutions are known. Another type of change is organizational
development in which the direction of change is approximately known and there exist

164

some ideas, but they are not entirely unambiguous. Finally, transformational change
is the emergence of a new organization.

The goal of this paper is to present an approach which supports practitioners in
decision making regarding organizational change based upon an existing multi-agent
organization modeling approach, namely [6]. The system offers support in three
phases of the change process. First of all, it allows for the investigation of the current
way of functioning of an organization. Such an investigation takes place on the basis
of formal simulation and verification techniques. In order to guide this formalization
process, a three step formalization method is introduced. Second, a possible new
organization can be simulated and analyzed to see whether improvements are indeed
accomplished and whether the organization functions according to the expectations.
Finally, the approach can be used for the change process itself, to investigate possible
bottlenecks within the process (e.g. resistance of employees) and solutions for such
bottlenecks. The approach is both suitable for planned organizational change and
organizational development. For the former, it can be investigated whether the ideas
that exist indeed show the expected result, whereas for the latter different alternatives
can be weighed to determine the most promising change of organization. Since the
approach is meant as a way to support practitioners and there is hardly any knowledge
whether the multi-agent organizational modeling approach is suitable for human
organizations, this paper presents the approach by means of an extensive case study
which has taken place in several municipalities within The Netherlands.

The paper is organized as follows: Section 2 introduces the organizational
modeling approach that has been adopted. In Section 3 it is shown how the approach
can be used for modeling an existing organization whereas Section 4 shows this for a
potential new organization after change has occurred. Analysis and modeling of the
change process itself is addressed in Section 5, and finally, Section 6 is a discussion.

2 Organization Modeling Approach

This Section presents the organizational modeling approach which has been used
throughout the paper; cf. [6]. Two parts can be distinguished within this approach,
namely the structural description of an organization, and the behavioral description.

2.1 Structural Model of an Organization

For the structural description of actual multi-agent organizations, the AGR (for
agent/group/role) model has been adopted [7]. Within AGR organization models three
aggregation levels are distinguished: (1) the organization as a whole; the highest
aggregation level; (2) the level of a group, and (3) the level of a role within a group.
In addition, transfer between roles within a group can be specified as well as inter-
group interactions.

165

2.2 Behavioral Model of an Organization

To enable formal specification of dynamic properties at the different aggregation
levels that are essential in an organization, an expressive language is needed. To this
end the Temporal Trace Language is used as a tool; cf. [12]. For the properties
occurring in the paper informal, semi-formal or formal representations are given. The
formal representations are based on the Temporal Trace Language (TTL), which is
briefly described as follows;

A state ontology Ont is a specification (in order-sorted logic) of a vocabulary. A
state for ontology Ont is defined as an indication of which state properties expressed
in ontology Ont hold in the state and which do not hold. The set of all states is
modeled by the sort STATE. A fixed time frame T is assumed which is linearly
ordered. A trace or trajectory γ over a state ontology Ont and time frame T is an
indication of which state occurs at which time point, for example if a discrete time
frame based on natural numbers is taken, a trace is a sequence of states γt (t ∈ T). The
set of all traces over state ontology Ont is modeled by the sort TRACE. Depending on
the application, the time frame T may be dense (e.g., the real numbers), or discrete
(e.g., the set of integers or natural numbers), or any other form, as long as it has a
linear ordering. A dynamic property over state ontology Ont is a temporal statement
that can be formulated with respect to traces based on the state ontology. Such
temporal statements can express, for example, a temporal relationship between the
fact that in a given trace a certain state property holds at a certain time point and
another state property holds at some other time point.

The Temporal Trace language can be used to specify behavioral properties at
different aggregation levels, according to the organizational structure. These
aggregation levels follow those identified in the AGR approach. At the lowest level
role properties describe the behavior of an individual role whereas transfer properties
describe the dynamics of (intra-group) transfer between roles. For the roles within a
given group, such role properties, together with the transfer properties, entail the
group properties that characterize the behavior of the group as a whole. The group
properties for the different groups, together with the inter-group relationship
properties (for transfer between groups), entail the overall organization properties.

The lower level properties can often be modeled in simpler formats than the higher
level properties. In particular, it is often possible to model the properties at the leaves
of the tree in the form of directly executable properties, i.e., by direct temporal
dependencies between state properties in two successive states. To model direct
temporal dependencies between two state properties, not the expressive language TTL
(which can express very complex dependencies which are hard if not impossible to
execute), but the simpler leads to format is used. This is an executable format that can
be used to obtain a specification of a simulation model in terms of local dynamic
properties. The format is defined as follows. Let α and β be conjunctions of
elementary state properties, and e, f, g, h non-negative real numbers. In the leads to
language α →→e, f, g, h β, means:

 if state property α holds for a certain time interval with duration g,
 then after some delay (between e and f) state property β will hold for a certain time interval of length h.

166

For a precise definition of the leads to format in terms of the language TTL, see [3]. A
specification of dynamic properties in leads to format has as advantages that it is
executable and that simulation results can be depicted graphically.

3 Analysis of an Existing Organization

A first step in the support for organizational change processes is the analysis of the
existing organization. As a result of this analysis possible points for improvements or
points of failure can be identified. Such an analysis can be performed in two ways: (1)
logs of the functioning of an organization can be obtained; (2) simulation runs can be
performed, using the current organization as a basis, resulting in a log as well.
Thereafter, either one of these types of logs can be automatically analyzed by means
of formal verification techniques. This Section first of all shows how an existing
organization can be simulated and thereafter presents an analysis of the results.

3.1 Simulation of an Existing Organization

Getting to a model which enables simulation consists of two phases: (1) specifying
the structural description of the organization; (2) creating a behavioral description of
the organization. Both phases are explained by means of a case study which has taken
place at several Dutch municipalities.

3.1.1 Structural Description of an Organization
There are several steps that have to be taken in order to simulate an existing
organization The first step taken is to determine the structure of the current
organization. Since AGR is used for the representation of such a structure, the roles,
groups, and interaction between those elements for the organization are determined.
Typically, organizations have their structure described in diagrams, so this process
denotes the translation to AGR.

For the case of one of the municipalities, the organization structure is shown in
Figure 1. Note that for the sake of brevity this
Figure only represents a part of the total
organization. In the Figure, the big ovals
denote groups, whereas the small ovals denote
roles. Furthermore, a solid arrow indicates an
interaction between two roles within a group,
and a dashed arrow indicates an interaction
between two roles in different groups.

As can be seen in the Figure, two groups are
present, namely the Civilian Contact Group,
and the Permits Department. The former group
is present to interact with civilians whereas the
latter concerns the procedure of handling
requests from civilians, in this case concerning

Fig. 1. AGR representation of part
of a municipality organization

167

permits that have been requested. Within the Civilian Contact Group, three roles are
present. First of all, the Civilian which has a particular request. Furthermore, the Desk
Clerk role is the only role which interacts with the Civilian and processes its request,
after which the request is forwarded to the Administrator, which is the third role. The
Administrator has an inter group interaction with a role Administrator in the Permits
Department. In the Permits Department it is the central role overseeing the whole
process and passing information between the roles. In addition, four other roles are
present. First of all, the Department Head, who needs to approve particular decisions.
Furthermore, two Advisor roles are present, namely the Advisor for Building Matters,
and the Advisor for Environmental Matters. Both are experts in their specific domain
and on the permit procedures. Finally, the Coordinator makes sure all procedures are
executed properly and keeps track of the time restrictions on the process.

3.1.2 Behavioral Description of an Organization
Given that the structure of an organization has been represented, the behavior of such
structural elements needs to be specified next. Specifying such behavior is not a
trivial matter, often procedures can be used as a basis for such a behavioral
description. However, such a specification typically lacks sufficient detail to obtain a
complete behavioral description. Therefore, interviews with experts are usually
unavoidable. After sufficient information has been obtained, this informal information
needs to be formalized to enable logical simulation such as described in Section 2.2.
The formalization can be performed in a three step process.

First of all, informal behavior descriptions are translated into a semi-formal format.
This is a necessary step as typically this information comes from various sources that
are difficult to oversee all at once. For the case of the municipality for example, the
following informal behavioral property has been acquired:

“once a desk clerk has received a request for a permit from a civilian, the desk clerk forwards this request to
the appropriate administrator”

When looking at the informal rule, it can be seen that such a rule can easily be
translated into a semi formal format of the if-then form:

if a desk clerk D has received a request R for a permit from civilian C
 and desk clerk D believes that administrator A should handle request R
then desk clerk D forwards the request R to administrator A

As can be seen, variables have now been introduced into the rules. Actually, a belief
has been introduced into the rule as well which specifies a part of the knowledge the
Desk Clerk must have in order to be able to perform its task properly.

Second step in the formalization process is to define an ontology suitable for this
particular organization which is based upon the semi-formal rules that have been
distinguished, and the terms that occur in such rules. For example from the rule as
presented above the ontology presented in Table 1 and Table 2 can be extracted.

Table 1. Sort definition
Sort Explanation
DESK_CLERK A desk clerk role
CIVILIAN A civilian role
ADMINISTRATOR An administrator role
ROLE DESK_CLERK ∪ CIVILIAN ∪ ADMINISTRATOR
REQUEST A request from a civilian
BELIEF_ELEMENT This specifies what can be believed by a role

168

Table 2. Predicate definition

Predicate Explanation
communication_from_to: ROLE x ROLE x
REQUEST

A communication can take place from one role
to another concerning a request

belief: BELIEF_ELEMENT A certain role believes something
should_handle_request: ROLE x REQUEST →
BELIEF_ELEMENT

One example BELIEF_ELEMENT which
concerns knowledge on what ROLE should
handle a particular REQUEST

The final step in the process is to translate the semi-formal rules into formal ones

using the ontology which has been created. Take for example the semi-formal rule
which was specified previously. In formal format using TTL this rule can be
expressed as follows:

∀t:TIME, C:CIVILIAN, D:DESK_CLERK, R:REQUEST, A:ADMINISTRATOR
[state(γ, t, input(D)) |= communication_from_to(C, D, R) &
 state(γ, t, internal(D)) |= belief(should_handle_request(A, R))
 � ∃t’ > t [state(γ, t’, output(D)) |= communication_from_to(D, A, R)]]

Note that the state(γ, t, input(D)) |= communication_from_to(C, D, R) specifies that within trace γ at
time point t on the input state of D a communication from C concerning request R is
present. To enable simulation using such formal rules, the lowest level behavioral
properties should be expressed in the executable LEADSTO format. A translation
from the formalized rules into the LEADSTO format is often straightforward. For
example, for the rule specified above the translation is specified as follows:

∀ C:CIVILIAN, D:DESK_CLERK, R:REQUEST, A:ADMINISTRATOR
[input(D)|communication_from_to(C, D, R) ∧ internal(D)|belief(should_handle_request(A, R))

 →→0,0,1,1 [output(D)|communication_from_to(D, A, R)]]

which expresses that if the antecedent holds for a duration of 1 time point, then the
consequent will hold for a duration of 1 time point as well with a delay of 0. Note that
the parts such as state(γ, t, input(D)) |= as specified in the TTL formula are now
abbreviated to input(D)| for the sake of clarity and simplicity.

3.1.3 Simulation of an Organizational Model
Based upon the LEADSTO properties obtained as a result of the process described in
Sections 3.1.1 and 3.1.2 simulation runs can be performed using the LEADSTO
simulation environment [3]. Output of such a simulator is a trace. A small portion of
the trace resulting from the organizational model specified for the municipality is
shown in Figure 2. This part precisely concerns the part in which the rule used as a
running example in this Section applies, this trace shows one particular application of
the rule. In the Figure, the left side shows the atoms that occur during the simulation
whereas the right side shows a timeline where a dark box indicates an atom is true at
that particular time point and a grey box indicates the atoms is false.

As can be seen in the Figure, the Desk Clerk receives a communication from a

input(desk_clerk)|communication_from_to(civilian, desk_clerk, building_permit_house)
internal(desk_clerk)|belief(should_handle_request(administrator, building_permit_house))

output(desk_clerk)|communication_from_to(desk_clerk, administrator, building_permit_house)
time 0 1 2 3 4

Fig. 2. Partial trace of the municipality organization

169

civilian who requests a permit to build a house:
input(desk_clerk)|communication_from_to(civilian, desk_clerk, building_permit_house)

Furthermore, in the simulation the desk_clerk has a belief that administrator is the one that
should handle the request of the civilian:

internal(desk_clerk)|belief(should_handle_request(administrator, building_permit_house))
Note that such a fact is inserted into the simulation and can be varied, possibly
resulting in different simulation results. Finally, as a result of the two previous atoms
a rule fires which causes an output of the desk_clerk:

output(desk_clerk)|communication_from_to(desk_clerk, administrator, building_permit_house)

Of course the actual simulation of the organization is much more extensive and has a
variety of possible outcomes due to the possibility of varying certain facts in the form
of beliefs. To give an idea of the complexity of such a simulation model: The
specification of one single process in the municipality comprises of over 60 role,
transfer and group interaction properties and the resulting trace consists of 125 atoms.

3.2 Verification of Simulation Runs

Given that either an empirical formalized trace exists, or that a trace has been
obtained using simulations (such as presented in Section 3.1), such a trace can be
analyzed. In order to be able to analyze such a trace, a formal checker called the TTL
Checker [12] is used to determine whether certain logical properties indeed hold for a
given trace. Such logical properties are precisely those properties within the property
hierarchy that are not in an executable format (i.e. the organization and group
properties). The logical properties that are checked upon such a trace are again
obtained from experts within the organization. In the case of the municipalities that
have been investigated, the municipality needs to follow the law in order to have a
successful organization. Several properties are specified within such a law.

P1: Communicate decision. In case the municipality has decided to either approve or
reject a request submitted by a civilian, then the civilian will eventually be informed
about this decision. In formal form this property is specified as follows:

∀t,t2:TIME, R:REQUEST, C:CIVILIAN, D:DESK_CLERK, CO:COORDINATOR, S:SIGN
[[state(γ, t, output(C)) |= communication_from_to(C, D, R) &
 state(γ, t2, internal(CO)) |= decision(R, S) & t2 ≥ t]
 � ∃t3:TIME > t2:TIME, R2:ROLE [state(γ, t3, input(C)) |= communication_from_to(R2, C, decision(R, S))]

The sort SIGN consists of both pos and neg indicating whether an acceptance or rejection
was the result of the decision process. This property has been checked against a
number of simulation traces that were based upon scenarios given by the
organizational experts and were shown to hold for these traces.

P2: Check decision. If an Administrator passes a decision about a request to the
Department Head then eventually the Department Head will pass back a decision.
This property is also satisfied for all traces that have been generated.

P3: Timely entering of requests. If a request for a permit is communicated by a
civilian, then within 5 time points such a request should be entered into an
administrative software system. This property is satisfied for the traces belonging to
one municipality, however is not satisfied in the other. This is due to a difference in
insight in how to interpret the law in this matter.

170

4 Analysis of a Possible New Organization

This Section shows how, by means of simulations, a potential new organization can
be evaluated in order to investigate how well the structure would function in practice.

4.1 Simulation of a Possible New Organization

In principle, the same techniques as presented in Section 3.1 can be used for
simulation of such an organization. One difference is however that the future
organization is often not so well described as the current organization. Hence, a new
organization might need to be designed first before being able to perform this stage.

Within the case study of the Dutch municipalities, a possible merger between two
municipalities has been a subject of discussions for a number of years due to the
increasing complexity of tasks carried out by Dutch municipalities and the expected
cost benefit. Interviews with key players within both municipalities have been
conducted, resulting in a list of demands from each of the municipalities. Based upon
these results, processes within the municipalities have been merged as well as the
structure. The new organization is not simply a union of two separate structures such
as shown in the Section concerning the analysis of the current organization. First of
all, only one Desk Clerk is present in the combined new organization, whereas
previously there existed two (one in every municipality). Furthermore, two
Administrator roles are present within the Civilian Contact Group, taking the
Administrator from both municipalities. This choice has been made because the role
is a central player within the processes and must not become a bottleneck. In the
Permits Department, two roles for Administrator (Administrator One and
Administrator Two), a Department Head and a Coordinator role are present. For the
Advisor roles, each of these roles are now present in twofold. This choice has been
made due to the increasing complexity and the increasing number of the tasks that
will be performed. Since two Advisors together know more than one (principle of
synergy), such a combination is able to handle this higher complexity. A result of this
new organizational structure is that fewer role instances are needed within the
organization (i.e. cost benefit), whereas more expertise is present within the
organization (i.e. the handling capability for more complex tasks is improved).

To see whether the new organization indeed behaves according to plan, the
procedures currently in use are modified to match the organizational structure. These
modifications are made using organizational experts. Thereafter, these modified
processes are translated using the proposed method in Section 3. As a result, a formal
specification of the new organization, including its behavior, is created. A
combination of the scenarios used for the analysis of the individual municipalities is
now used to analyze the newly designed organization.

4.2 Verification of a Possible New Organization

For the verification of the possible new organization, the same properties can be
checked as expressed in Section 3, however, other properties can also be specified. In

171

this case study for example, it could be verified whether the new organization is able
to handle the more complex tasks. Results of checking the properties specified in
Section 3.2 show that all properties are satisfied by the proposed new organization.

5 Analysis of the Process of Organizational Change

Final element which can be used to support change within organizations is the
simulation of the change process itself. Typically, such change processes are a painful
process in which many people for example object to particular structural or behavioral
changes within the organization, a new allocation, etc. Simulation can aid in finding
the bottleneck within such a process.

5.1 Modeling of an Organizational Change Process

In order to model such a change process, the approach presented in [10] is adopted.
The approach uses a well known theory in Organizational Change Theory, namely the
unfreezing – movement – refreezing theory by Kurt Lewin [13]. He states that there
are two opposing forces at work when changing an organization: forces that resist the
change, and forces that drive towards the newly desired organization. The unfreezing
phase begins at the moment that change becomes necessary and consists of the
process of changing the resisting and driving forces in such a way that change
becomes possible (i.e., the driving forces outweigh the resisting forces). The actual
change of the organization is contained in the movement phase in which the
organization is moved from the current state to the desired stated. The refreezing
phase involves freezing the newly formed organization so that there is no possibility
to return to the former status quo or to continue changing in another unwanted
direction. The whole re-organization process is completed when all phases have been
completed. The unfreezing can be performed by increasing the driving forces and/or
by decreasing the resisting forces. In MOISE+ [11] such phases that occur in human
organizational change are not represented in the model, making it less suitable for
analysis of such change processes.

In order to model such a change process, [10] proposes two types of roles within an
organization, namely the regular roles within the organization and roles placed within
a so called Change Group. The roles within the Change Group include Member roles,
and the Change Manager. The Member roles have the ability to reason about change
within an organization and have a meta-view upon the organization. Furthermore, a
Change Manager is present who directs the change. Properties for such Members and
the Change Manager can be specified for each particular phase within the change
process. As a result, possible options for resistance of Members to an organizational
change can be investigated, the response of the Change Manager based upon that, and
the effect of that resistance upon the change process can be determined. The
advantage of the approach is that it handles organizational change in a fashion which
abstracts from the specific agents allocated to the roles within the organization.

For the case study, a number of executable properties have been specified
concerning the behavior of the Members and the Change Manager within the Change

172

Group for the Municipality when changing from the old to the new organization.
These properties have been separately specified for each phase identified by Lewin.

5.1.1 Unfreezing Phase
First of all, properties have been specified for the unfreezing phase. For instance, the
following property specifies the behavior of a Member who is currently playing the
role of Department Head within one of the municipalities:

if Member M has a shared allocation with the role Department Head within Municipality MU
and Member M receives a communication about a new organization O including only one Department

Head
and Member M receives a communication that another Member M2 is appointed Department Head

within the new organization O
then Member M communicates to the Change Manager that he opposes to the new organization O giving

the reason that he wants to be Department Head

In order to successfully unfreeze both municipalities, such resistance of a Member
must be reduced. A property which might convince the Member is by stating that the
other Member has more experience:

if The Change Manager has sent a communication to Member M about a new organization O
including only one Department Head

 and The Change Manager has sent a communication to Member M that another Member M2 is
appointed Department Head within the new organization O

 and The Change Manager has received a communication from Member M in which he opposes to the
new organization O giving the reason that he wants to be Department Head

 then The Change Manager informs Member M that he is less experienced than Member M2.

In case this indeed considered to be a valid and convincing argument by the Member,
the Member communicates the acceptance of the new organization. Many more of
such properties have been specified for the municipality change process. The
unfreezing phase ends when all Members within the organization have acknowledged
the new organization.

5.1.2 Movement Phase
The movement phase is a rather straightforward phase in which the new organization
is simply put into place. New shared allocations are created to new roles, new
behavioral description are put into place, new groups are formed, and the agents that
no longer have a shared allocation leave the organization. The movement of an
organization is completed after all Member roles have acknowledged the movement
to the new organization, meaning that agents no longer playing a role in the
organization acknowledge that they leave the organization, and do so immediately.

5.1.3 Refreezing Phase
In the refreezing phase, the organization is already functioning in its new form. Due
to the fact that the behavior is not routine behavior yet, it could be the case that the
wrong behavior is sometimes shown. In the case of the municipality, it might occur
that the new Coordinator suddenly starts to approve decisions, which is not allowed.
Therefore, properties that correct such behavior are specified as well (causing the role
R2 to show the correct behavior again):

if a role R within the Permit Department observes that a role R2 within the Permit Department is
performing property P

 and role R2 is not allowed to perform property P
then role R warns role R2 that he is not allowed to perform property P

173

5.2 Simulation and Analysis of an Organizational Change Process

In order to see whether the change process such as for example specified as presented
in Section 5.1 indeed shows the desired behavior, again simulation runs can be
performed. Such simulation could show behavior which was not predicted at first
sight. After such a simulation has taken place, properties specifying the
successfulness of such a change process can be identified to verify whether the
change process indeed went according to plan. Properties that have been verified
based on the simulation runs include the following: successful unfreezing (everybody
has accepted the new organization); successful movement (all new roles and
behaviors are known in the organization), and finally, successful refreezing
(eventually everybody shows the correct behavior or is corrected otherwise). All of
these properties indeed hold for the given traces.

6 Discussion

This paper presented an approach to aid practitioners in organizational change
processes. Therefore, a three step support methodology was presented. The first step
allows for the analysis of the current organization, enabling the pinpointing of
bottlenecks. Such an analysis can be performed based upon empirical logs of the
organization or logs resulting from simulations of the current organization. A second
step consists of the simulation of a potential solution to the bottlenecks, i.e. simulation
of a possible new organization. Again, such results can be analyzed to see whether the
improvements are indeed met by such a new organization. Finally, in the last step the
change process itself can be analyzed by means of simulations to help predict and
overcome typical point of failure within such processes.

To enable the simulation and analysis of such organizational models, formal
modeling and simulation techniques were used. In order to guide the specification of
such models, a three step process has been identified to create a model from an
informal organizational description. Using such formal techniques enables an
automated evaluation of simulation results using formal verification techniques.
Furthermore, model checking techniques can be used to formally prove that certain
properties hold within a particular organization model. The latter approach is future
work.

Using these techniques, an extensive case study was performed in several Dutch
municipalities. Organizational experts were consulted to create simulation models,
and specify properties for the analysis of the simulation results. It was shown that the
approach indeed has the ability to handle the complexity of such a municipality
organization. In an evaluation session, the organizational experts found the results
very insightful and a good basis for discussing future cooperation.

Other organizational simulation approaches in the domain of artificial intelligence
or computer science typically focus on the simulation of organizations using agents,
see e.g. [15, 4]. Although such approaches are very useful, it prevents the analysis of
the organizational model itself without looking at the details of the agents allocated to
the roles within the organization. The approach presented in this paper does provide

174

an approach for such an analysis, fully abstracting from the agents, only looking at the
expected behavior of the agents once allocated to their role. Other well known
methods to perform social simulations use approaches such as differential equations
and cellular automata (see e.g. [8]) which differ completely from the approach
presented in this paper.

Acknowledgements
The authors would like to thank the Dutch municipalities of Aalsmeer and Uithoorn
for participating in this research, and Jan Treur for the fruitful discussions.

References

[1] Bashein, M.L., Marcus, M.L., and Riley, P., Business Process Reengineering:
preconditions for success and failure, Inf. Systems Management 9, 1994, pp. 24-31.

[2] Boonstra, J.J. (editior), Dynamics of Organizational Change and Learning, Wiley, 2004.
[3] Bosse, T., Jonker, C.M., Meij, L. van der, and Treur, J., LEADSTO: a Language and

Environment for Analysis of Dynamics by SimulaTiOn. In: Eymann, T., Kluegl, F.,
Lamersdorf, W., Klusch, M., and Huhns, M.N. (eds.), Proc. of MATES'05. LNAI, vol.
3550. Springer Verlag, 2005, pp. 165-178.

[4] Conte, R., Esmonds, B., Moss, S., and Sawyer, R.K., Sociology and Social Theory in
Agent Based Social Simulation: A Symposium, Computational and Mathematical
Organization Theory, vol. 7, 2004, pp. 183-205.

[5] Dignum, V., Sonenberg, L., Dignum, F., Dynamic Reorganization of Agent Societies, In:
Proceedings of CEAS: Workshop on Coordination in Emergent Agent Societies, 2004.

[6] Ferber, J., Gutknecht, O., Jonker, C.M., Müller, J.P., and Treur, J., ”Organization Models
and Behavioural Requirements Specification for Multi-Agent Systems,“ in Y. Demazeau,
F. Garijo (Eds.), Multi-Agent System Organizations. Proceedings of MAAMAW'01, 2001.

[7] Ferber, J. and Gutknecht, O., “A meta-model for the analysis and design of organizations
in multi-agent systems,“ Proc. of ICMAS ‘98, IEEE Comp. Soc. Press, 1998, pp. 128-135.

[8] Gilbert, N., and Troitzsch, K.G., Simulation for the Social Scientist, Open U. Press, 1999
[9] Hall, G., Rosenthal, T., and Wade, J. How to make reengineering really work, Harvard

Business Review, 71(6), 1993, pp. 119-131.
[10] Hoogendoorn, M., Jonker, C.M., Schut, M.C., and Treur, J., Modeling Centralized

Organization of Organizational Change, Computational and Mathematical Organization
Theory, in press 2006.

[11] Hübner, J.F. and Sichman, J.S., Using the MOISE+ model for a cooperative framework of
MAS reorganization, In: Proc. 17th Brazilian Symposium on Artificial Intelligence
(SBIA'04), São Luís, Brasil, 2004. A. Bazzan and S. Labidi eds. Advances in Artificial
Intelligence, vol. 3171 of LNAI series, Springer Verlag, 2004, pp. 506-515.

[12] Jonker, C.M., and Treur, J., “Compositional Verification of Multi-Agent Systems: a
Formal Analysis of Pro-activeness and Reactiveness,” International Journal of
Cooperative Information Systems, 11, 2002, pp. 51-92.

[13] Lewin, K., Field Theory in Social Science, Harper & Row, New York, 1951.
[14] Robbins, S.P., Organizational Behaviour, Prentice Hall, New Jersey, 1998.
[15] Terna, P., Simulation Tools for Social Scientists: Building Agent Based Models with

SWARM, Journal of Artificial Societies and Social Simulation, vol. 1, 1998.
[16] Zambonelli, F., Jennings, N., Wooldridge, M., Organizational Rules as an Abstraction for

the Analysis and Design of Multi-agent Systems, Journal of Software and Knowledge
Engineering, Vol. 11, 2003, pp. 303-328.

175

Part IV:
Organizational Change Process:
Decentralized Change Processses

176

177

Chapter 9

Modeling Decentralized Organizational Change
in Honeybee Societies

This chapter appeared as: Hoogendoorn, M., Schut, M.C., and Treur, J., Modeling
Decentralized Organizational Change in Honeybee Societies. In: Minai, A., Braha, D.,
and Bar-Yam, Y., Proceedings of the Sixth International Conference on Complex
Systems, NECSI, 2006.

178

179

Modeling Decentralized Organizational Change
in Honeybee Societies

Mark Hoogendoorn, Martijn C. Schut, and Jan Treur

Vrije Universiteit Amsterdam, Department of Artificial Intelligence
De Boelelaan 1081a, 1081 HV Amsterdam, The Netherlands

{mhoogen, schut, treur}@cs.vu.nl

1 Introduction

The concept of organization has been studied in sciences such as social science and
economics, but recently also in artificial intelligence [3; 4; 7]. With the desire to
analyze and design more complex systems consisting of larger numbers of agents
(e.g., in nature, society, or software), the need arises for a concept of higher
abstraction than the concept agent. To this end, organizational modeling is becoming
a practiced stage in the analysis and design of multi-agent systems. Hereby, the
environment in which the multi-agent organization participates has to be taken into
consideration. An environment can have a high degree of variability which might
require organizations that change to adapt to the environment’s dynamics, to ensure a
continuous proper functioning of the organization. Hence, such change processes are
a crucial function of the organization and should be part of the organizational model.

An organizational model incorporating organizational change can be specified in
two ways: from a centralized perspective, in which there is a central authority that
determines the changes to be performed within the organization, taking into account
the current goals and environment, see e.g. [5]. A second possibility is to create a
model for organizational change from a decentralized perspective, in which each
agent decides for himself if and how to change its own role allocations. In the latter
approach, it is much more difficult for the organization as a whole to change in a
coherent way, still satisfying the goals set for the organization, as there is no overall
view of the organizational change. The approach might however be the only
possibility for an organization to perform change as a central authority for performing
change could be non existing or infeasible due to the nature of the organization. In the
domain of social insects, such as honeybees and wasps, organizations are known to
adapt in a decentralized fashion to environmental changes. This paper presents a
generic model for decentralized organization change appropriate for such phenomena
as occur in Nature. Such a model can aid developers of multi-agent systems in
creating and analyzing such an organization. The description of the model is done
from a generic perspective, abstracting from the actual tasks being performed by the
organization. The scope of the model is broader than simply being able to model
social insects: the mechanisms incorporated in the model facilitating decentralized
organizational change may work in other types of organizations as well. In [1] for
example, a comparable approach is used for finding an optimal allocation of cars to
paint booths.

180

To evaluate the generic model being proposed, as a case study the honeybee (Apis
Mellifera) has been investigated. For this domain the generic model has been
instantiated. The instantiated model has been validated against properties as acquired
from biological experts. A number of different roles have been identified in the
literature (see e.g., [8;11]). For the sake of brevity only five will be addressed here:
(1) a brood carer takes care of feeding the larvae within the bee hive; (2) a patroller
guards the hive by killing enemies entering the hive; (3) a forager harvests food to be
stored in the hive; (4) an undertaker cleans the hive of corpses, and (5) a resting
worker simply does nothing.

Switching between roles is triggered by changes in the environment observed by
the bees. Such observations differ per bee. Each role has a specific trigger, for which
a bee has a certain threshold that determines whether this is the role it should play.
The bee always plays the role for which it is most triggered. For example, bees are
triggered to start playing the brood carer role when they observe the larvae emitting a
too high level of hunger pheromones. Once they are allocated to the role, they start
getting food from the combs and feed the larvae that are emitting the pheromones. A
trigger for the patroller role is the amount of enemies observed around the hive.
Foragers that have returned from their hunt for food, communicate the location where
they found the food by means of the honeybee dance (see [2]). For other bees
currently not playing the forager role, such a dance is a trigger to start playing the
forager role. The more corpses there are, the more bees are being triggered to switch
from their current role to being undertaker. Bees perform the resting worker role in
case they are not sufficiently triggered for any other role.

Section 2 presents the methodological approach used. The generic model for
decentralized organizational change is described in Sections 3 (properties at
organization level) and 4 (role properties). Results of a simulation of the generic
organizational model instantiated with domain-specific knowledge of the bee colony
are shown in Section 5, and finally Section 6 concludes the paper.

2 Modeling Organizational Dynamics

To enable modeling an organization, an expressive language is needed that has the
ability to describe the dynamics of such an organization. For this purpose TTL
(Temporal Trace Language) has been adopted cf. [6]. TTL allows for the formal
specification of dynamic properties on multiple levels of aggregation. The bottom
level addresses role properties, describing the required behavior for each of the roles
within the organization. On the top level organization properties are defined,
expressing the overall goals or requirements for the organization. An advantage of
using TTL is that an executable subset has been defined called leadsto which is of the
form α →→e,f,g,hβ that states that if α holds for duration g then β will holds for duration
h with a delay between e and f. In case role properties are expressed in this
executable format, the organizational model can be simulated by putting certain (e.g.,
environmental) events in the model (without including agents in the model), resulting
in a trace of the organizational behavior. The top level organization properties can
thereafter be checked against the trace by means of an automated tool called TTL

181

checker to see whether the organizational model indeed satisfies the goals or
requirements set for it, given the events that have been put into the model. Using the
results of these checks, statements can be made about the behavior of the
organization, when the agents comply to the role properties that have been defined.
More details and the semantics for TTL can be found in [9]. Examples and
explanation of properties expressed in TTL are shown in Appendix A, which shows
the formal form of all properties expressed in informal or semi-formal form below.

3 Organizational Properties

The model for decentralized organizational change presented here takes the form of a
hierarchy of dynamic properties at two aggregation levels: that of the organization,
and that of the roles within the organization. This section describes a number of such
properties as well as the relationships between them.

The highest level requirement for the organization as a whole as inspired by the
biological domain experts, is survival of the population given a fluctuating
environment, in other words, population size needs to stay above a certain threshold
M.

OP1(M) Surviving Population
For any time t, a time point t'≥t exists such that at t' the population size is at least M.

Such a high-level requirement is refined by means of a property hierarchy, depicted as
a tree in Figure 1. At the highest level OP1 is depicted which can be refined into a
number of properties (in Figure 1 n properties) each expressing that for a certain
aspect the society is in good condition, characterized by a certain value for a variable
(the aspect variable) that is to be maintained. The property template for an aspect X is
as follows:

OP2(X, P1, P2) Organization Aspect Maintenance
For all time points t
If v is the value of aspect variable X at t, then v is between P1 and P2

Sometimes one of the two bounds is omitted, and it is only required that value v is at
least P1 (resp., at most P2). For the example bee society the aspects considered are
wellfed brood, safety, food storage, and cleanness (addressed, respectively, by Brood
Care, Patroller, Forager, and Undertaker roles). For each of these aspects a variable
was defined to indicate the state of the society for that aspect. For example, for
wellfed brood, this variable concerns relative larvae hunger, indicated by the larvae
pheromone rate.

In order to maintain the value of an aspect variable X, a certain effort is needed all
the time. To specify this, a property that expresses the effort made by the organization
on the aspect, is introduced. Notice that the notion of provided effort at a time point t
can be taken in an absolute sense (for example, effort as the amount of feeding work
per time unit), but it can also be useful to take it in a relative sense with respect to a
certain overall amount, which itself can vary over time (for example, effort as the
fraction of the amount of feeding work per time unit divided by the overall number of
larvae). Below the latter, relative form will be taken. The general template property
for aspect effort is as follows:

182

OP3(X, W1, W2) Sufficient Aspect Effort
For all time points t the effort for aspect X provided by the organization is at least W1 and at most W2.

For the bee colony, for instance, the brood care workers take care that the larvae are
well-fed. The effort to maintain the hunger of larvae at a certain low level is feeding
the larvae. Here provided effort for brood care is defined as the brood care work per
time unit divided by the larvae population size. Brood care work is taken as the
amount of the (average)
brood care work for one
individual brood carer
times the number of
brood carers.

Whether the refined
properties given above
will always hold,
depends on the
flexibility of the
organization. For
example, in the bee
colony case, if the
number of larvae or
enemies increases, also
the number of brood
care workers,
respectively patrollers should increase. If the adaptation to the new situation takes too
much time, the property Brood Care Effort will not hold for a certain time. In
principle, such circumstances will damage the success of the organization. Therefore,
an adaptation mechanism is needed that is sufficiently flexible to guarantee the
properties such as Brood Care Effort. For this reason, the adaptation flexibility
property is introduced, which expresses that when the effort for a certain organization
aspect that is to be maintained is below a certain value, then within a certain time
duration d it will increase to become at least this value. The smaller this parameter d
is, the more flexible is the adaptation; for example, if d is very large, the organization
is practically not adapting. The generic property is expressed as follows:

OP4(X, B, d) Adaptation Flexibility
At any point in time t, if at t the effort for aspect X provided by the organization is lower than B, then
within time duration d the effort will become at least B.

An assumption underlying this property is that not all aspects in the initial situation
are critical, otherwise the adaptation mechanism will not work. OP3 expressing that
sufficient effort being provided directly depends on this adaptation mechanism as
shown in Figure 1. OP4 depends on role properties at the lowest level of the
hierarchy, which are addressed in the next Section.

Fig. 1. Property hierarchy for decentralized organizational
change

183

4 Role Properties

Roles are the engines for an organization model: they are the elements in an
organization model where the work that is done is specified. The properties described
in Section 3 in an hierarchical manner have to be grounded in role behavior properties
as the lowest level properties of the hierarchy. In other words, specifications of role
properties are needed that entail the properties at the organizational level described in
Section 3. In the behavioral model two types of roles are distinguished: Worker roles
which provide the effort needed to maintain the different aspects throughout the
organization, and Member roles which have the function to change Worker roles.
Each Member role has exactly one shared allocation with a Worker role. The role
behavior for the Worker roles within the organization is shown in Section 4.1,
whereas Section 4.2 specifies the behavior for the Member roles.

4.1 Worker Role Behavior

Once a certain Worker role exists as an active role, it performs the corresponding
work. What this work exactly is, depends on the application: it is not part of the
generic organization model. The property directly relates to OP4 which specifies the
overall effort provided, as shown in Figure 1. Note that Figure 1 only shows the
generic form of the role property (depicted as RP(w(ai),di,Wi) where ai is the specific
aspect and w(ai) the Worker role belonging to that aspect) whereas in an instantiated
model a role property is present for each instance of the Worker role providing the
effort for the specific aspect. In a generic form this is specified by:

RP(R, d, W) Worker Contribution
For all t there is a t' with t ≤ t' ≤ t + d such that at t' the Worker role R delivers a work contribution of at
least W.

4.2 Member Role Behavior

By a Member role M decisions about taking up or switching between Worker roles
are made. As input of this decision process, information is used about the well-being
of the organization, in particular about the different aspects distinguished as to be
maintained; these are input state properties indicating the value of an aspect variable
X: has_value(X, v). Based on this input the Member role M generates an intermediate
state property representing an indication of the aspect that is most urgent in the
current situation. In the generic model the decision mechanism is indicated by a
priority relation priority_relation(X1, v1, w1, …, Xn, vn, wn, X) indicating that aspect X has
priority in the context of values vi, respectively norms wi for aspects X1, .., Xn. This
priority relation can be specialized to a particular form, as shown below by an
example specialization in the last paragraph of this section.

RP1(M) Aspect Urgency
At any t, if at t Member role M has norms w1 to wn for aspects X1 to Xn
and receives values v1 to vn for X1 to Xn at its input,

184

and has a priority relation that indicates X as the most urgent aspect for the
 combination of these norms and values,

then at some t' ≥t it will generate that X is the most urgent aspect.

Based on this, the appropriate role for the aspect indicated as most urgent is
determined. If it is not the current role sharing an allocation with M, then another
intermediate state property is generated expressing that the current Worker role
sharing an allocation with M should be changed to the role supporting the most urgent
aspect. In other words, the shared allocation of Member role M in the Change Group
should change from one (the current) Worker role R1 in Worker Group WG1 to
another one, Worker role R2 in Working Group WG2:

RP2(M) Role Change Determination
At any t, if at t Member role M generated that X is the most urgent aspect,
 and Worker role R2 is responsible for this aspect,
 and R1 is the current Worker role sharing an allocation with M, and R1 ≠ R2,
then at some t' ≥t it will generate that role R2 has to become the Worker role sharing an allocation
 with M, instead of R1.

Based on this intermediate state property the Member role M generates output
indicating which role should become a shared allocation and which not anymore:

RP3(M) Role Reallocation
At any t, if at t Member role M generated that Worker role R2 has to become sharing an allocation
 with M, instead of Worker role R1,
then at some t' ≥t it will generate the output that role R1 will not share an allocation with M and R2
will share an allocation with M.

All three role properties for the Member roles are depicted in Figure 1. The adaptation
step property OP4 for all organizational aspects dependent upon it, so each of the OP4
branches depends upon RP1, RP2, and RP3 which have therefore been depicted two
times in the Figure.

The generic description for the Member role behavior can be specialized one step
further by incorporating a specific decision mechanism. This gives a specific
definition of the priority relation priority_relation(X1, v1, w1, …, Xn, vn, wn, X) as has been done
for the following decision mechanism based on norms used as thresholds (see e.g.
[10]).
1. For each aspect X to be maintained a norm w(X) is present. For the Worker role R1 for X

sharing an allocation with Member role M, each time unit the norm has a decay described
by fraction r.

2. For each X, it is determined in how far the current value is unsatisfactory, expressed in a
degree of urgency u(X) for that aspect.

3. For each aspect with urgency above the norm, i.e., with u(X) > w(X), the relative
urgency is determined: u(X)/ w(X)

4. The most urgent aspect X is the one with highest relative urgency.

5 Simulation Results

This section discusses some of the results of simulations that have been performed
based on the generic organizational model, in particular the role properties presented
in Section 4 have been put in an executable format and have been instantiated with
domain-specific information for bee colonies.

185

To validate the instantiated simulation model, the high-level dynamic properties
from Section 3 were used (in accordance with biological experts). Proper functioning
of such an organization in Nature is not self-evident, therefore two simulation runs are
compared: one using the adaptation mechanism, and one without. Note that the results
presented here are the results of a simulation of the instantiated organizational model,
abstracting from allocated agents. Performing such high-level simulations of an
executable organizational model enables the verification of properties against these
simulation runs. Hence, it can be checked whether or not the model satisfies the
properties or goals considered important. When such properties are indeed satisfied,
by allocating agents to the roles that comply to the role properties, the multi-agent
system delivers the desired results as well. In the two simulations, several parameters
have been set to certain values, where the circumstances are kept identical for both
simulations. See appendix B for the details on the settings used.

Figure 2 shows results on the performance of the two settings of the organizational

model. Figure 2a shows the overall population size over time. The population size of
the simulation with adaptation remains relatively stable, whereas without adaptation it
drops to a colony of size 3, which is equal to the amount of larvae living without
being fed. Figures 2b and 2c show information regarding brood care: Firstly, the
average pheromone level, the trigger to activate the allocation to brood carer.
Furthermore, the number of active brood carers in the colony is shown. In the case
with adaptation their number increases significantly in the beginning of the
simulation, as the amount of pheromones observed is relatively high. Therefore, a lot

0 200 400 600 800 1000
0

5

10

15

20

25

30

time

po
pu

la
tio

n
si

ze

0 200 400 600 800 1000
0

0.5

1

1.5

time

re
la

tiv
e

la
rv

ae
 p

he
r.

 le
ve

l

0 200 400 600 800 1000
0

5

10

15

20

25

30

time

#b
ro

od
 c

ar
er

s

200 400 600 800 1000
0

5

10

15

20

25

30

time

#w
or

ke
rs

With adaptation
Without adaptation

undertakers
patrollers
foragers
brood carers
larvae

(A) (B)

(C) (D)

Fig. 2. Results of simulating the bee colony with and without adaptation. Note that (D)
only shows the worker types for the adaptive case

186

of the brood carer roles are allocated. For example, at time point 300, 15 out of a
population of 28 are brood carers.

Despite the fact that the overall pheromone level is not decreasing rapidly, the
amount of brood carer roles drops significantly after time point 300. This is due the
fact that Member roles can only share an allocation with one Worker role at a time.
When another role receives a higher urgency (e.g., there is a huge attack, demanding
many patrollers) a switch of worker role takes place. Figure 2d shows the amount of
worker roles of the different types (except the resting workers) within the bee colony
for the setting with adaptation. The amount of brood carers decreases after time point
300 due to an increase in the amount of shared allocations to the undertaker and
forager roles. This results in an increase in pheromone level again, causing a higher
delta for brood care again, resulting in more brood carers, etc. The pheromone level
finally stabilizes around 0.5 in the organizational model with adaptation. For the
setting without adaptation, the brood carers simply cease to exist due to the fact that
none of the larvae are growing up. The pheromone level stabilizes at a higher level.
The properties from Section 3 have been checked by the automated TTL checker.
With the following parameter settings, the properties were validated and confirmed
for the organizational model with adaptation and falsified for the one without
adaptation: OP1(20), OP2(broodcare,0,0.9), OP3(broodcare,0.15,10000),
OP4(broodcare, 0.3, 200).

6 Discussion

The generic organizational model for decentralized organizational change has been
formally specified by means of a methodology which describes the behavior of an
organization on multiple aggregation levels; cf. [6]. The model is inspired by
mechanism observed in Nature. As a first evaluation, the model was validated for a
honeybee colony case study. The scope of the model is not limited to being a model
for social insects: in [1] the effectiveness of such approaches is shown for other
domains as well. The model can therefore support organizational modelers and
analysts working with multi-agent organizations in highly dynamic environments,
without a central authority directing change, in general in designing and analyzing
such an organization. The formal specification of the behavior of the organization is
described by dynamic properties at different aggregation levels. Once the lowest level
properties within the organization are specified in an executable form, the
organizational model can be used for simulation abstracting from agents (to be)
allocated. Such low level properties can be indicative for the behavior of the agent
allocated to that particular role. The possibility also exists to specify the role
properties at the lowest aggregation level in a more abstract manner, in a non-
executable format. Hierarchical relations between the properties can be identified to
show that fulfillment of properties at a lower level entails the fulfillment of the higher
level properties. Simulations using agents can be performed and checked for
fulfillment of these properties. Properties for the behavior of roles regarding
decentralized organizational change have been specified on an executable level to be
able to perform simulation, and higher-level properties have been identified as well.

187

The case study of the honeybee colony was used as a first evaluation of the model.
Simulation of this instantiated model showed that given the external circumstances, it
was effective, given overall properties put forward by biological experts. For a
comparison of the work presented in this paper with related multi-agent organization
research, see Appendix C.

References

[1] Bonebeau, E. and Theraulaz, G., 2000, Swarm Smarts, Scientific American, 282 (3): 72-
79.

[2] Camazine, S., Deneubourg, J.L., Franks, N.R., Sneyd, J., Theraulaz, G., Bonabeau, E.,
2001, Self-Organization in Biological Systems, Princeton University Press, Princeton,
USA.

[3] Furtado, V., Melo, A., Dignum, V., Dignum, F., Sonenberg, L., 2005, Exploring
congruence between organizational structure and task performance: a simulation approach.
In: Boissier, O., Dignum, V., Matson, E., Sichman, J. (eds.), Proc. of the 1st OOOP
Workshop.

[4] Giorgini, P., Müller, J., Odell, J. (eds.), 2004, Agent-Oriented Software Engineering IV,
LNCS, vol. 2935, Springer-Verlag, Berlin.

[5] Hoogendoorn, M., Jonker, C.M., Schut, M., and Treur, J, 2004, Modelling the
Organisation of Organisational Change. In: Giorgini, P., and Winikoff, M., (eds.),
Proceedings of the 6th International Workshop on Agent-Oriented Information Systems
(AOIS'04), pp. 29-46.

[6] Jonker, C.M., Treur, J. 2002, Compositional verification of multi-agent systems: a formal
analysis of pro-activeness and reactiveness. Int. Journal of Cooperative Information
Systems,vol.11, pp.51-92.

[7] McCallum, M., Vasconcelos, W.W., and Norman, T.J., 2005, Verification and Analysis of
Organisational Change. In: Boissier, O., Dignum, V., Matson, E., Sichman, J. (eds.), Proc.
1st OOOP Workshop.

[8] Schultz, D.J., Barron, A.B., Robinson, G.E., 2002, A Role for Octopamine in Honey Bee
Division of Labor, Brain, Behavior and Evolution, vol. 60, pp. 350-359.

[9] Sharpanskykh, A., Treur, J., 2005, Temporal Trace Language: Syntax and Semantics,
Technical Report, Vrije Universiteit Amsterdam, Department of Artificial Intelligence,
Amsterdam.

[10] Theraulaz, G., Bonabeau, E., and Deneubourg, J.L., 1998, Response thresholds
reinforcement and division of labor in insect societies. Proceedings of the Royal Society of
London Series B-Biological Sciences, 265: 327-332.

[11] Winston, M.L. and Punnet, E.N., 1982, Factors determining temporal division of labor in
honeybees, Canadian Journal of Zoology, vol. 60, pp. 2947-2952.

188

Appendix A: Properties Formalized in TTL

This Appendix presents the formal form for each of the properties presented
throughout the paper.

OP1(M) Surviving Population
∀t ∃t' ≥ t, v : state(γ, t') |= total_living_population_count(v) & v ≥ M

Here state(γ, t') |= total_living_population_count(v) denotes that within the state state(γ, t') at time
point t' in trace γ the state property total_living_population_count(v) holds, denoted by the
(infix) predicate |= for the satisfaction relation.

OP2(X, P1, P2) Organization Aspect Maintenance
∀t, v : state(γ, t) |= has_value(X, v) � P1 ≤ v ≤ P2

OP3(X, W1, W2) Sufficient Aspect Effort
∀t, v : state(γ, t) |= provided_effort(X, v) � W1 ≤ v ≤ W2

OP4(X, B, d) Adaptation Flexibility
∀t, v1 [[state(γ, t) |= provided_effort(X, v1) & v1 < B] �
∃t' ≥ t, v2 : [t' ≤ t+d & state(γ, t') |= provided_effort(X, v2) & v2 ≥ B]]

RP(R, d, W) Worker Contribution
∀t ∃t' ≥ t, v : [t' ≤ t+d & state(γ, t') |= work_contribution(R, v) & v ≥ W]]

Here work_contribution is part of the state ontology for the output of the role. For each of
the specific roles it can be specified what the work contribution is in terms of the
domain specific state ontology (e.g., the number of larvae to be fed for the brood carer
role).

RP1(M) Aspect Urgency
∀t, v1, .., vn, w1, .., wn, X
state(γ, t) |= has_value(X1, v1) & … & has_value(Xn, vn) &
 has_norm(X1, w1) & … & has_norm(Xn, wn) &

priority_relation(X1, v1, w1, …, Xn, vn, wn, X)
� ∃t'≥t state(γ, t') |= most_urgent_aspect(X)

RP2(M) Role Change Determination
∀t, X, R1, R2 state(γ, t) |= most_urgent_aspect(X) &

role_responsible_for(R2, X) & role_reserved_for(R2, M) &
 state(γ, t) |= has_shared_allocation(M, R1) & R1≠R2
� ∃t'≥t state(γ, t') |= shared_allocation_change(M, R1, R2)

RP3(M) Role Reallocation
∀t, R1, R2
state(γ, t) |= shared_allocation_change(M, R1, R2)
� ∃t'≥t state(γ, t') |= not has_shared_allocation(M, R1) &

has_shared_allocation(M, R2)

189

Appendix B: Setting Used for the Simulation

This appendix addresses the settings that have been used for the simulation as
presented in the paper.

External world. Initially, 15 larvae and 10 workers are present for which the initial
type of the latter is randomly assigned. The natural mortality age is set to 500 time
steps, whereas a larva is grown up after 250 time steps. Every 20 time steps, a new
larva is added to the population. The initial food stock is set to 40 units of food. Once
every 100 time points an attack of 40 enemies occurs, who stay there until a patroller
defeats them. In case over 200 enemies are present in the hive, each individual in the
organization is removed with a probability of 0.05 per time step. In case more than 20
dead bodies are present in the hive, individuals are removed with the same
probability. Food used by larvae is 0.5 per feed, for workers 1 unit of food per time
step.
Larvae. Larvae have an initial pheromone level of 0.5, increasing 0.006 per time step.
In case pheromone emissions exceed 0.95, the larva dies. After being fed, the
emission level is set to 0.1.
Foragers. Foragers each collect 1 food unit per 3 time steps.
Brood carers. Feed 1 larvae per 8 time steps, and only feed the larvae with a
pheromone level above 0.55.
Undertaker. Carry 1 body per 12 time steps.
Patroller. Defeat 1 enemy per time step.
In the adaptation simulation, the Member thresholds are randomly generated, being
somewhat above or below the average observed value of the various triggers.

190

Appendix C: Discussion of Related Multi-Agent Organization Research

Describing multi-agent organizations from a normative perspective is a popular
viewpoint nowadays (see e.g. [2]). In such approaches, the behavior of agents is
restricted via the norms specified for the role they are playing within the organization.
In this paper, role properties can be used to formulate such restrictions. The following
norm, for example (from [6]) “Students are prohibited from sitting the exam if they
have not completed the assignment” can easily be formulated in terms of a dynamic
property for the student role. In this way, the approach in this paper is suitable for
modeling organizations in terms of norms. In case simulations using agents are
performed, the role properties specifying such norms can be checked to see whether
the behavior of the agents violates the norms or not.

A number of approaches have been introduced that enable an analysis of
organizations in combination with organizational change. In [6] a framework is
introduced which enables verification and analysis of organizational change. In the
framework, changes in the organizational structure are allowed, however the process
of organizational change itself is not addressed nor modeled, contrasting it from this
paper. Their framework enables verification on the static organizational model to
check whether the organizational model is workable. Furthermore, analysis is
performed on simulations of possible outcomes of the organizational model, which is
meant to see how the organization will act when populated by different societies of
agents. In this paper, a simulation framework by means of executable role properties
is used which abstracts from agents, and enables an analysis of the model for
decentralized organizational change both from a static and dynamic viewpoint. It also
allows the identification of hierarchical (interlevel) relations between dynamic
properties at different aggregation levels. Verification is used to show that compliance
of all agents to their role properties constitutes the satisfaction of the overall
organizational properties that have been set. The relationship between the agents and
the role specification was not addressed here as this is beyond the scope of this paper.
[3] emphasize the necessity for multi-agent organizations to have the ability to
reorganize, and state that additional requirements are needed for agents that have the
ability to change. This paper makes such requirements more specific for decentralized
organizational change in terms of role properties, and aggregates these to
organizational properties, such as shown in Section 3. In [4] the performance of
different organizational structures is compared by using agent simulations. The
emphasis is again on finding an effective model to change towards, not on modeling
the change process itself which this paper does address.

Organizational modeling approaches initially designed to model nonchanging
organizations have been extended to include reorganization as well. The
reorganization process in MOISE+ is addressed in [5], in which four phases in a
reorganization are identified for controlled organizational change: (1) monitoring
phase; (2) design phase; (3) selection phase, and (4) implementation. The
reorganization is being controlled by an organization manager within a reorganization
group. This makes the change centrally directed, based on certain organizational goals
that have been set and demand a reorganization. In the decentralized organizational

191

change description in this paper however, the fulfillment of the organizational goals is
reached by the trigger based behavior of the members roles within the change group,
which is in fact the other way around. In GAIA [7] organizational modeling is
addressed from a perspective in which firstly the requirements are identified after
which the appropriate organization satisfying these particular requirements is
selected. The methodology is however not intended to specify organizational models
that include organizational change as being part of the model. The same can be said
for Agent UML [1].

References

[1] Bauer, B., Muller, J.P., Odell, J., 2001, Agent UML: A formalism for specifying
multiagent interaction, In: Ciancarini, P, and Wooldridge, M. (eds.), Proc. AOSE’01,
Spinger-Verlag, pp. 91-103.

[2] Castelfranchi, C., 1998, Modelling Social Action for AI Agents. Artificial Intelligence,
103: pp.157 - 182.

[3] Dignum, V., Sonenberg, L., Dignum, F., 2004, Dynamic Reorganization of Agent
Societies, In: Proceedings of CEAS: Workshop on Coordination in Emergent Agent
Societies at ECAI 2004.

[4] Furtado, V., Melo, A., Dignum, V., Dignum, F., Sonenberg, L., 2005, Exploring
congruence between organizational structure and task performance: a simulation approach.
In: Boissier, O., Dignum, V., Matson, E., Sichman, J. (eds.), Proc. of the 1st OOOP
Workshop.

[5] Hübner, J.F. and Sichman, J.S., 2003, Using the MOISE+ model for a cooperative
framework of MAS reorganization, Boletim Técnico BT/PCS/0314, Escola Politécnica da
USP, São Paulo.

[6] McCallum, M., Vasconcelos, W.W., and Norman, T.J., 2005, Verification and Analysis of
Organisational Change. In: Boissier, O., Dignum, V., Matson, E., Sichman, J. (eds.), Proc.
1st OOOP Workshop.

[7] Zambonelli, F., Jennings, N., Wooldridge, M., 2001, Organizational Rules as an
Abstraction for the Analysis and Design of Multi-agent Systems, Journal of Software and
Knowledge Engineering, Vol. 11, pp. 303-328.

192

193

Chapter 10

An Adaptive Multi-Agent Organization Model
Based on Dynamic Role Allocation

Part of this chapter appeared as: Hoogendoorn, M., and Treur, J., An Adaptive Multi-
Agent Organization Model Based on Dynamic Role Allocation. In: Nishida, T.,
Klusch, M., Sycara, K., Yokoo, M., Liu, J., Wah, B., Cheung, W., and Cheung, Y.-M.
(eds.), Proceedings of the 2006 IEEE/WIC/ACM International Conference on
Intelligent Agent Technology (IAT 2006), IEEE Computer Society Press, 2006,
pp.474-481.

194

195

An Adaptive Multi-Agent Organization Model
Based on Dynamic Role Allocation

Mark Hoogendoorn and Jan Treur

Vrije Universiteit Amsterdam, Department of Artificial Intelligence
De Boelelaan 1081a, 1081 HV Amsterdam, The Netherlands

{mhoogen, treur}@cs.vu.nl

Abstract. Organizations involving multiple agents require adaptation
mechanisms to guarantee robustness, especially in critical domains. This paper
presents an organizational template to aid analysis and design of organizations
with adaptation mechanisms based on dynamic role reallocation. The adaptive
organization model can be used both for qualitative and quantitative domains,
as is shown in two application cases made to evaluate the applicability of the
model.

1 Introduction

Robustness of a multi-agent organization functioning in critical domains is essential.
Unpredictability can both be in the internal functioning of the system itself (e.g., an
incorrect functioning agent), or external to the system (e.g., a sudden increase in
environmental pressure). To enable a multi-agent organization to be robust,
capabilities are required that allow the organization to adapt in order to continue
functioning adequately.

An approach could be to model a multi-agent system in which each of the agents
have those specific capabilities, and show the effectiveness of the system as a whole
in this domain. However, it is hard to generalize results obtained beyond the specific
domain and the specific agents occurring in this domain. Recently, an abstraction
level higher than the concept agent has become in use: the organizational level (see
e.g. [3], [12]). On this level, templates can be specified to aid analysts in modeling
appropriate multi-agent organization models. These templates, for example, include
specification of roles, possibly in the form of required behavior. In a given
application, agents can be allocated to such roles. The templates can be reused each
time a new domain is analyzed for which the characteristics comply to the ones
specified for the template. Once the correctness of the template is proven (given
certain domain assumptions) for a desired property, each model which complies to the
specified template will satisfy that property as well, making the approach reusable. Of
course, for each new case in which the template is used, an instantiation with domain-
specific knowledge is still required.

This paper presents such an organizational model or template for the analysis of
multi-agent organizations with the ability to adapt to unpredictable circumstances,

196

maintaining the robustness of the system. The essential part of the organizational
model is the specification of roles, since those can be seen as the engines of the
organization. The approach taken distinguishes a number of aggregation levels,
starting with the highest level dynamic property desired (i.e., robustness) and refining
this property in a number of steps until the level of role behavior has been reached.
Interlevel relations between dynamic properties at the different aggregation levels
have been specified and verified using the model checker SMV [21]. The applicability
of the model has been evaluated by using it to analyze two application case studies in
different domains, one qualitative, and one quantitative.

The remainder of this paper is organized as follows. Section 2 introduces the
modeling approach used to specify the organization model, which includes both a
structural and a behavioral specification of the organization. The structural model
within the template is specified in Section 3, whereas Section 4 presents the
behavioral model, without taking into account adaptation. The adaptation model is
presented in Section 5. Section 6 presents a qualitative application of the template in
the domain of incident management and presents simulation results. In Section 7 a
quantitative specialization of the model is specified which is applied in the domain of
social insects in Section 8. Section 9 is a discussion.

2 Modeling Approach

This Section presents the modeling approach used to specify the adaptive multi-agent
organization model. First, the framework used to model organization structure will be
explained, and thereafter the method for describing the behavior of such an
organization. For describing the structural part of the model for adaptive multi-agent
organizations, the AGR (Agent-Group-Role) modeling approach introduced in [7] is
used. Here three basic concepts are used to model a multi-agent organization: agent,
group, and role. An agent is an active communicating entity which plays roles within
groups. Groups are sets of roles; a role is an abstract representation of an agent
function or service.

The approach presented in [8] which is partly based on AGR is used to specify
behavioral or dynamic properties on multiple aggregation levels: following AGR, the
functioning of the particular roles, the functioning of groups, and of the organization
as a whole. In general, behavioral properties are expressed in terms of temporal
relations over input states and output states of roles over time. Properties at the
different levels can be structured by means of interlevel relations in a hierarchy. At
the lowest level role properties describe the behavior of an individual role whereas
transfer properties describe the dynamics of (intragroup) transfer between roles. For
the roles within a given group, such role properties, together with the transfer
properties, entail the group properties that characterize the behavior of the group as a
whole. The group properties for the different groups, together with the inter-group
relationship properties (for transfer between groups), entail the overall organization
properties. Properties about the environment are treated the same way as groups and
roles.

197

Specification of dynamic properties is done in the Temporal Trace Language (TTL)
[16]. This language can be classified as a reified predicate-logic-based temporal logic
(see, e.g., [10], [11]), in contrast to, for example, modal-logic-based temporal logics
as the ones discussed in, e.g., [9]. The language is briefly introduced here. For more
details, see [4].

2.1 States and Traces

In TTL, ontologies for world states are formalized as sets of symbols in sorted
predicate logic. For any STATE ontology Ont, the ground atoms form the set of basic
state properties BSTATPROP(Ont). Basic state properties can be defined by nullary
predicates (or proposition symbols) such as n-ary predicates (with n>0) like
has_temperature(environment, 7). The state properties based on a certain ontology Ont
are formalized by the propositions (using conjunction, negation, disjunction,
implication) made from the basic state properties; they constitute the set
STATPROP(Ont).

In order to express dynamics in TTL, in addition to state properties, important
concepts are states, time points, and traces. A state S is an indication of which basic
state properties are true and which are false, i.e., a mapping S: BSTATPROP(Ont) →
{true, false}. The set of all possible states for ontology Ont is denoted by STATES(Ont).
Moreover, a fixed time frame T is assumed which is linearly ordered. Then, a trace γ
over a state ontology Ont and time frame T is a mapping γ : T → STATES(Ont), i.e., a
sequence of states γt (t ∈ T) in STATES(Ont). The set of all traces over ontology Ont is
denoted by TRACES(Ont), i.e., TRACES(Ont) = STATES(Ont)T.

2.2 Dynamic Properties

Patterns in world dynamics are described by dynamic properties. The set of dynamic
properties DYNPROP(Ont) is the set of temporal statements that can be formulated with
respect to traces based on the state ontology Ont in the following manner. Given a

Fig. 1. Overview of interlevel relations between dynamic properties

 transfer properties role properties

group properties intergroup interaction properties

organization properties

198

trace γ over state ontology Ont, a certain state of the world at time point t is denoted by
state(γ, t). These states can be related to state properties via the formally defined
satisfaction relation denoted by the infix predicate |=, comparable to the Holds-
predicate in event calculus [17] or situation calculus [23]. Thus, state(γ, t) |= p denotes
that state property p holds in trace γ at time t. Here state properties are considered
objects and denoted by term expressions in the TTL language. Likewise, state(γ, t) |≠ p
denotes that state property p does not hold in trace γ at time t. Based on these
statements, dynamic properties can be formulated in a formal manner in a sorted
predicate logic, using the usual logical connectives such as ¬, &, ∨, �, and the
quantifiers ∀, ∃ (e.g., over traces, time and state properties). For example, consider
the following dynamic property for a pattern concerning belief creation based on
observation:

 if at any point in time t1 the agent A observes that it is wet outside,

 then there exists a time point t2 after t1 such that at t2 in the trace the agent A believes that

 it is wet outside

This property can be expressed as a dynamic property in TTL form (with free variable
for trace γ) as follows:
 ∀t:T [state(γ, t) |= observes(itswet) � ∃t' ≥ t state(γ, t') |= belief(itswet)]

To model direct temporal dependencies between two state properties, the simpler
leads to format is used. This is an executable format defined as follows. Let α and β
be state properties of the form ‘conjunction of literals’ (where a literal is an atom or
the negation of an atom), and e, f, g, h non-negative real numbers. In the leads to
language α →→e, f, g, h β, means:

 if state property � holds for a certain time interval with duration g,

 then after some delay (between e and f) state property
�
 will hold for a certain time interval of

 length h.

3 Adaptive Organization Model: Organizational Structure

This Section presents the structural model within the adaptive organization model; see
Figure 2. Here, small ovals denote roles, bigger ovals denote groups, solid arrows
denote transfers between roles, and dashed lines denote inter-group interaction. The
model can be composed from two parts, of which the structure of one (the lower layer
in Figure 2) is dependent upon the specific domain of application, and the other
structure (top layer, depicted in gray), consisting of the Change Group, by which
adaptation of the organization takes place, is generic for any type of application. All
the agents participating in the organization are assumed to have an Adaptor role in
this group. This role has the ability to monitor the existing agent-role allocations, and
role, group and organization properties (hence, the group has a meta-view on the
organization). In case it is observed that a property is not satisfied, an Adaptor role
makes decisions about change, thereby possibly requesting other Adaptor roles to
perform a role for which errors have been observed. The exact specification of the
Adaptor role is addressed in Section 5.

199

Fig. 2. Adaptive Organizational Model

In the lower part of Figure 2, Worker Groups are shown of which each one addresses
a particular part of the tasks needed to be performed within an organization. In
incident management there would, for example, be a fire fighting group, medical
group, and a police group. Notice that names in small ovals such as Worker1, ..,
Worker4, used here denote the roles in these groups, not the agents allocated to these
roles. The adaptativity in the model is in the flexibility of allocations of agents to
these roles, not in the change of the roles themselves. Such an allocation change may
involve, for example, that for an agent A that was allocated to role Worker1 within
Worker Group 1, its allocation is changed to an allocation to role Worker4 in
Working Group 2.

4 Adaptive Organization Model: Organizational Behavior

The behavioral model within the adaptive organization model takes the form of a
hierarchy of dynamic properties at the different aggregation levels of the organization
(see Figure 1 and 3). The relationships between the different levels within the
hierarchy have been verified using the SMV model checker; cf. [21]. The highest
organizational properties express what one wants a particular organization (as a
whole) to establish, e.g., based on performance indicators of an organization. This
section shows how such organizational properties are refined into more specific
properties for particular aspects or parts of an organization (Section 4.1). These are
further refined to the aggregation level of the particular groups within the
organization (Section 4.2).

200

4.1 Organization-Level Properties

The highest level organization properties, expressing the well-being or satisfactory
functioning of the organization, can take various forms; e.g., see the specific
applications presented in Sections 6 and 8. In the adaptive organization model
presented here the assumption is that robustness of the organization is a main
organization property to be achieved. An organization is said to be robust in case all
relevant aspects of the organization are well maintained, despite environmental or
internal fluctuations. Therefore, to achieve the goals of the organization a number of
aspects X1, …, Xn can be distinguished that have to be maintained; e.g., [1] p. 58, 83.
Examples of such aspects in the context of incident management are fire fighting,
health care, and traffic care. Thus, a main property for the whole organization is that
the organization functions well for the combination of these aspects X1, …, Xn. The
organization property OP expresses that at all points in time proper maintenance of
the combination of aspects is satisfied:

OP = ∀t:TIME state(γ, t, O) |= satisfied(combination(X1, … Xn)).

Here
state(γ, t, O) |= satisfied(combination(X1, … Xn))

denotes that within the state state(γ, t, O) at time point t of the organization O in trace γ
the state property satisfied(combination(X1, … Xn)) holds, with the infix predicate |=
denoting the satisfaction relation between a state and a state property. Notice that such
a state property can have different truth values at different points in time.

Other relevant organization properties (e.g., survival) are assumed to be entailed by
this primary organization property OP. The organization property OP is refined using
properties for different aspects of the organization: For any of the aspects X, the
property OAP(X), expresses that at all points in time aspect X is maintained in a
satisfactory manner:

OAP(X) = ∀t:TIME state(γ, t, O) |= satisfied(X).

These properties are assumed to relate to the overall organization property by
∀X OAP(X) ⇔ OPl

In other words, as long as all aspect properties are satisfied, the organization as a
whole functions in a satisfactory manner. To this end it is assumed that:

satisfied(combination(X1, … Xn)) ↔ ∀X satisfied(X).
Then the bi-implication above can be rephrased as

∀X state(γ, t, O) |= satisfied(X) ⇔ state(γ, t, O) |= ∀X satisfied(X)
which is one of the axioms for the predicate |= within the logical language TTL.

4.2 Group-Level Properties

In order to achieve the robustness of the organization, depending on circumstances,
the organization needs to spend a certain effort on each of the distinguished aspects.
As circumstances may change, it is here that adaptive control is possible and needed;
such control can be insufficient, leading to one or more not well-maintained aspects,
or sufficient, leading to all aspects well-maintained. In the organizational structure

201

within the model, for each of the aspects a Worker Group is included to provide
sufficient effort at each point in time as required to maintain this aspect, given the
circumstances at that point in time.

GP1(X, G) : group provides required effort
For all time points t the effort provided by group G for aspect X is sufficient for the aspect.

∀t:TIME, E:EFFORT

[state(γ, t, G) |= group_relates_to(G, X) ∧

 provides_group_effort_for(G, E, X)

 � state(γ, t, O) |= satisfies_required_effort_for(E, X)]

Here the antecedent denotes that within the state state(γ, t, G) at time point t of group G
in trace γ the state property

group_relates_to(G, X) ∧ provides_group_effort_for(G, E, X)

holds, expressing that group G relates to aspect X and provides effort E. Moreover,
state(γ, t, O) |= satisfies_required_effort_for(E, X)

expresses that at time t in trace γ the effort E is the effort required to satisfy aspect X.
It is assumed as part of the organization model that when the effort provided by group
G relating to X satisfies the required effort for aspect X, then X is considered
satisfied:

group_relates_to(G, X) ∧
provides_group_effort_for(G, E, X) ∧
satisfies_required_effort_for(E, X) → satisfied(X)

Therefore, group effort property GP1(G, X) relates to the corresponding aspect
property OAP(X) as follows:

GP1(X, G) � OAP(X).
The current roles within the group G are the ones that actually provide the effort for
X. Each role has a particular effort it can provide, based on the role specification. In
order to provide the required effort, sufficient effort of specific roles within a group is
needed that together deliver enough combined effort; this is expressed in GP2. Here
the sorts ROLECOMBINATION and EFFORTCOMBINATION denote sorts for combinations
of (a finite number of) roles and of efforts, respectively. The latter sort is a subsort of
EFFORT.

GP2(X, G) : roles provide required effort
For all time points t the total effort E1,...,En provided by the roles R1,...,Rn within group G

addressing aspect X provides a combined effort satisfying the effort required for X.

∀t:TIME, RC:ROLECOMBINATION, EC:EFFORTCOMBINATION:

[state(γ, t, O) |= group_relates_to(G, X) ∧

 group_has_roles(G, RC) ∧

 provides_effort_combination(RC, EC)

� state(γ, t, G) |= provides_group_effort_for(G, EC, X) &

 state(γ, t, O) |= satisfies_required_effort_for(EC, X)]

This property relates to the previous one as follows:

202

GP2(X, G) � GP1(X, G)

4.3 Role-Level Properties

One role property is present on the lowest level not devoted to adaptation: Each of the
active worker roles performs a certain amount of work. This is expressed as follows:

RP1(R) Worker Contribution

For all t the Worker role R delivers an effort E.
∀t :TIME ∃E :EFFORT

state(γ, t, R) |= provides_role_effort(R, E)

5 Adaptive Organization Model: Organizational Adaptation

This Section presents the adaptation properties for the organization model. First, the
adaptation properties expressing how the organization can achieve or maintain its
goals under changing circumstances are introduced. Thereafter, the Adaptor role
properties are presented which form the engines of the adaptation process.

5.1 Adaptation Properties

Within the organization the aspects distinguished are monitored all the time, in the
sense that it is verified whether the provided effort is expected to stay sufficient for
the required effort. To this end a signaling property is specified, based on desired
effort. The property indicates those cases and time points that the effort observed for a
certain aspect is close to becoming insufficient to satisfy the effort required for that
aspect. The margin between the time point of signaling not satisfying the desired
effort and the time point that the required effort is at risk of not being satisfied, is
assumed large enough to have time to adapt. The adaptation mechanism within the
organization has to guarantee that the effort will satisfy the desired effort again within
a certain duration, without dissatisfying the required effort in the meantime; this to
prevent property GP1 not being satisfied. This adaptation is expressed by the group
adaptation property AP1.

AP1(X, G, d): Group adaptation for desired effort
For all time points t, in case the current effort E provided by group G for aspect X is not

satisfying the desired effort, then at a later point in time t2 (where t2 > t and t2 < t+d) the

organization has changed such that the effort provided satisfies the desired effort and in

between will still satisfy the required effort.

∀t:TIME, G:GROUP, E1, E2:EFFORT:

[[state(γ, t, O) |= group_relates_to(G, X) &

 state(γ, t, G) |= provides_group_effort_for(G, E1, X) &

 state(γ, t, O) |= satisfies_required_effort_for(E1, X) &

203

 state(γ, t, O |= not satisfies_desired_effort_for(E1, X)]

 � ∃ E2:EFFORT, t2 > t [t2 < t+d &

 state(γ, t2, G) |= provides_group_effort_for(G, E2, X) &

 state(γ, t2, O) |= satisfies_desired_effort_for(E2, X) &

 ∀t1 [t � t1 � t2 � state(γ, t1, O) |= satisfies_required_effort_for(E2, X)]]

]

This property relates to the previous properties as follows:
AP1(X, G, d) � GP1(X, G)

The group property for adaptation can be related to adaptation properties of individual
roles taken as follows.

AP2(X, G, d) : Role adaptation for desired effort
For all time points t, in case the current effort combined from role efforts E1,…,En

provided by the roles R1,….,Rn in G is not satisfying the desired effort, then at a later point

in time t2 (where t2 > t and t2 < t+d) the organization has changed such that the effort

combined from efforts provided by the roles within G satisfies the desired effort and in

between will still satisfy the required effort.

∀t:TIME, RC1:ROLECOMBINATION, EC1:EFFORTCOMBINATION

[[state(γ, t, G) |= group_relates_to(G, X) ∧

 group_has_roles(G, RC1) ∧

 provides_effort_combination(RC1, EC1) &

 state(γ, t, O) |= satisfies_required_effort_for(EC1, X) &

 state(γ, t, O) |= not satisfies_desired_effort_for(EC1, X)]

 �

 ∃ t2 > t, RC2:ROLECOMBINATION, EC2:EFFORTCOMBINATION

 [t2 < t+d & state(γ, t2, O) |= group_relates_to(G, X) ∧

 group_has_roles(G, RC2) ∧

 provides_effort_combination(RC2, EC2) &

 state(γ, t2, O) |= satisfies_desired_effort_for(EC2, X) &

 [∀t’� t2 [t’> t �

 ∃RC3:ROLECOMBINATION, EC3:EFFORTCOMBINATION

state(γ, t’, O) |= group_relates_to(G, X) ∧

 group_has_roles(G, RC3) ∧

 provides_effort_combination(RC3, EC3) &

 state(γ, t’, O) |= satisfies_required_effort_for(EC3, X)]]

This property relates to the others as follows:
AP2(X, G, d) � AP1(X, G, d)

AP2(X, G, d) � GP2(X, G)

The next Section presents role properties which enable the adaptation.

204

5.2 Adaptor Role Properties

By an Adaptor role M, decisions about taking up or switching between Worker roles
are made. As input information is used about the effort E currently being delivered by
the different Worker groups G for a certain aspect X as expressed in

provides_group_effort_for(G, E, X).
In the model the decision mechanism is indicated by a relation expressing that an
aspect has urgency:

has_urgency(X1, E1, …, Xn, En, X)

indicating that aspect X needs to be addressed in the context of efforts Ei, for aspects
Xi. This relation can be specified as only deriving one aspect to be addressed (i.e., the
most important aspect) or multiple aspects (e.g., all aspects currently not being
addressed properly). The relation takes into account which effort E suffices for the
required effort to be delivered for aspect X:

satisfies_required_effort_for(E, X)
and which effort E suffices for the desired effort for aspect X:

satisfies_desired_effort(E, X).

A simple form of an urgency relation that is taken by default is:
has_urgency(X1, E1, … Xn, En, Xi) ↔ not satisfies_desired_effort(Ei, Xi).

This expresses that all aspects for which the desired effort is not satisfied are urgent.
Based on the input on urgency, the Adaptor role M generates in an intermediate state
an indication of the aspect that needs to be addressed in the current situation.

RP1(M) Aspect Urgency

At any t, if at t Adaptor role M observes the group efforts for each of the aspects,

and has a urgency relation that indicates X an urgent aspect at that time,

then at some t' ≥t it will generate that X needs to be addressed.

∀t, X1, .., Xn, E1, .., En, X, M

 state(γ, t, G1) |= provides_group_effort_for(G1, E1, X1) & … &

 state(γ, t, Gn) |= provides_group_effort_for(Gn, En, Xn) &

 state(γ, t, M) |= has_urgency(X1, E1, …, Xn, En, X)

� ∃t'≥t state(γ, t', M) |= to_be_addressed(X)

Based on this, the appropriate role(s) R within the Worker Group(s) WG for the
aspect(s) is/are determined, and that a candidate is to be found for the role:

RP2(M) Role Change Determination
At any t, if at t Adaptor role M generated that X is an urgent aspect,

and role R in WG is responsible for this aspect,

then at some t' ≥t it will generate that a candidate for role R in WG has to be found.

∀t, X, R, WG, M [state(γ, t, M) |= to_be_addressed(X) &

 state(γ, t, M) |= role_responsible_for(R, WG, X)

 � ∃t'≥t state(γ, t', M) |= to_be_found_candidate(M, ChangeGroup, R, WG)]

205

Finding the right Adaptor to be allocated to the role is the next step in the process.
Assumed is that there exists shared knowledge of the capabilities of the Adaptors of
the organization. An Adaptor may only have a partial view on this, and simply choose
a local optimum. The decision mechanism states that the Adaptor will perform the
role itself in case it has the capabilities or otherwise appoints another Adaptor which
does have the capabilities and is preferred.

RP3(M) Candidate Selection: Own Selection
∀t:TIME, M,R:ROLE, WG:GROUP, C1,C2:CAPABILTIES

[state(γ, t, M) |= to_be_found_candidate(M, ChangeGroup, R, WG) &

 state(γ, t, M) |= required_capabilities(R, WG, C1) &

 state(γ, t, M) |= has_capabilities(M, ChangeGroup, C2) &

 state(γ, t, M) |= capabilities_match(C1, C2)

 � ∃t2>t [state(γ, t2, M) |= shared_allocation(M, ChangeGroup, R, WG)]]

RP4(M) Candidate Selection: Request
∀t:TIME, M1,M2,R:ROLE, WG:GROUP, C1,C2,C3:CAPABILTIES

[state(γ, t, M1) |= to_be_found_candidate(M1, ChangeGroup, R, WG) &

 state(γ, t, M1) |= required_capabilities(R, WG, C1) &

 state(γ, t, M1) |= has_capabilities(M1, ChangeGroup, C2) &

 state(γ, t, M1) |= not capabilities_match(C1, C2) &

 state(γ, t, M1) |= has_capabilities(M2, ChangeGroup, C3) &

 state(γ, t, M1) |= preferred_candidate(M2, ChangeGroup) &
 state(γ, t, M1) |= capabilities_match(C1, C3)]

 � ∃t2>t [state(γ, t2, M1) |= request_shared_allocation(M2 ,ChangeGroup, R, WG)]

Furthermore, once a shared allocation is requested, the shared allocation will be in
place:

RP5(M) Candidate Selection: Response
∀t:TIME, M, R:ROLE, WG:GROUP

[state(γ, t, M1) |= request_shared_allocation(M1,ChangeGroup, R, WG)]

 � ∃t2>t, M2 :ADAPTOR [state(γ, t2, M2) |= shared_allocation(M2, ChangeGroup, R, WG)]]

Finally, the following relationship is assumed to hold, given that roles R1..Rn are
devoted to Group G addressing aspect X:

RP1(M) & RP2(M) & RP3(M) & RP4(M) & RP5(M) &

RP1(R1) & .. & RP1(Rn) � AP2(X,G,d)

This logical relationship is an assumption imposed on the domain of application. It is
assumed that by adding more roles to the group involved, the effort for an aspect X
can be strengthened so that the required effort is kept satisfied, and the desired effort
will become satisfied again within duration d. In many qualitative and quantitative
domains this assumption is fulfilled, for example, in the two domains addressed in
Sections 6 and 8 in this paper. In quantitative cases it gets the form of the assumption
that by adding role efforts for X, the total sum of efforts can be increased until a

206

certain value is reached, which has some relationship to the Archimedean principle in
the real numbers:

∀a,b>0∃n∈ n*a > b

In qualitative cases the assumption can be related to an assumption on the availability
of the right capabilities within the organization, as is shown in Section 6.

6 The Interlevel Relations and Their Verification

In this section an overview of the interlevel relations between the dynamic properties
at different levels of aggregation is given, as occurred at various places in Sections 4
and 5. They can be summarized and classified as shown in Table 1.

Table 1 Overview of the logical interlevel relations

From aspect properties to organization properties ∀X OAP(X) � OPl

From global group properties to aspect properties
GP1(X, G) � OAP(X)

From aggregated group properties to global group
properties

GP2(X, G) � GP1(X, G)

From group adaptivity properties to global group
properties

AP1(X, G, d) � GP1(X, G)

From role adaptivity properties to group
adaptivity properties

AP2(X, G, d) � AP1(X, G, d)

From role adaptivity properties to aggregated
group properties

AP2(X, G, d) � GP2(X, G)

From role properties to role adaptivity properties RP1(M) & … & RP5(M) &

RP1(R1) & .. .& RP1(Rn)

� AP2(X,G,d)

A graphical representation of the property hierarchy is shown in the AND/OR tree in
Figure 3.

All relationships for the generic model as expressed within the tree have been
verified using the SMV model checker under the assumptions as stated before. This
has been done for every implication A � B by rewriting property A in the transition
system format that can be used by SMV as a description of a system. Moreover, B has
been rewritten in CTL format, as required for the properties to be checked in SMV.
As an example, this is shown for the relation between the role properties at the lowest
level and the adaptivity property AP2. Here the antecedent A is a conjunction of a
number of role properties for the adaptor role and for the worker roles. In SMV RP1
for the Member role has been specified as follows:

next(urgency) := case
 aspect = desired: 0;
 1: 1;
 esac;

207

Fig. 3. Property hierarchy presented in graphical form as an AND/OR tree

This specifies the default urgency function, namely that in case the desired effort is
not provided the aspect is considered to be urgent. This is expressed in the SMV
transition system as follows: The next state for urgency is false (i.e., 0) in case the
effort provided for the aspect is as desired, whereas urgency for the aspect is true in
any other case. Furthermore, RP2 concerns the search of a candidate, which is true in
the next state in case the aspect is considered urgent, and otherwise false.

next(search_candidate) := case
 urgency : 1;
 1:0;
 esac;

The search of such a candidate is expressed in RP3 – RP5 and has been simplified for
the sake of clarity. It is simply specified that a search for a candidate results in a
candidate which has been found (which is also the case for the role properties
specified).

208

next(found_candidate) := case
 search_candidate : 1;
 1:0;
 esac;

Furthermore, the role property for the role which now has an agent allocated it is
specified as follows:

next(effort_added) := case
 found_candidate : 1;
 1:0;
 esac;

This specifies the effort added being by the newly found candidate. The added effort
is set to true in case a candidate has been found, whereas it is false in case no
candidate has been found. Final element of the transition system is to specify the
effect of the added effort. Note that the addition of effort is not quantified, effort is
simply added. This choice has been made for the sake of simplicity but has no
consequences for the proof of the model. Adding effort has the following effect on the
maintenance of the aspects within the organization:

next(aspect) := case
 aspect = failure & effort_added: required;
 aspect = required & effort_added: desired;
 aspect = desired & effort_added: desired;
 1 : aspect;
 esac;

This specifies that the next value for an aspect in case of effort being added is
required in case the effort was previously failure; desired in case the previous aspect
value was required, and desired remains desired upon additional effort. The
consequent B is here property AP2. This is expressed in SMV’s format based on CTL
as follows.

 AG ((!(aspect = desired) & (aspect = required))
 -> AF (aspect = desired) &
 A [(aspect = required|aspect=desired) U
aspect=desired])

This expresses that when the considered aspect is required and not desired, then
eventually the aspect will be desired again while in the meantime the value for the
aspect will be either required or desired. This CTL property indeed holds for the
specified model.

209

7 A Qualitative Application of the Organizational Model

This Section presents one of the two case studies undertaken to evaluate the
applicability of the adaptive organization model presented in Sections 3, 4 and 5. This
case study provides an analysis of the functioning of incident management
organizations, in which adaptation of the organization by dynamic role reallocation is
often observed. The analysis is based on a qualitative model for this domain made on
the basis of extensive documentation of one of the disasters taking place in the
Netherlands in the recent past [22]. First, domain specific variants of properties are
introduced, after which simulation results are presented.

7.1 Domain Specific Properties

On the highest level of this qualitative incident management model, the property OP
is defined as each aspect of the organization being satisfied. In the case of incident
management, the aspects considered are fire fighting, health care, and traffic care:

OP(disaster)
For all time points t each aspect for incident management in the organization is satisfied.

∀t:TIME [state(γ, t, O) |= satisfied(fire_fighting) ∧ satisfied(health_care) ∧

satisfied(traffic_care)]

On a lower level each individual aspect X is satisfied within the organization, for
example, for the traffic care aspect of the organization:

OAP(traffic_care)
For all time points t aspect traffic care is satisfied in the organization.

∀t:TIME [state(γ, t, O) |= satisfied(traffic_care)]

One group is responsible for the aspect traffic care: the police department. An
instance of property GP1 requires a definition of satisfaction of the required effort.
The effort of a group is defined as an abstract name; the required effort is always
satisfied in case a route plan for ambulances is created which passes all wounded
people within duration d from the start of the incident:

satisfies_required_effort_for(police_effort, traffic_care) ↔
∀t,t0:TIME [present_time(t) ∧ memory(t0, incident_started) ∧ t0+d < t] →

∃t2 ∃R:ROUTE_PLAN [t2 < t0+d ∧

memory(t2, proposed_route_plan(R)) ∧

∀W :WOUNDED memory(t2, passes_wounded(R, W))]

Here it is assumed that there are memory states. The desired effort is defined by:

satisfies_desired_effort_for(police_effort, traffic_care) ↔
∀t,t0:TIME [present_time(t) ∧ memory(t0, incident_started) → t0 + rd > t] ∨

210

∃t2 ∃R:ROUTE_PLAN [memory(t2, proposed_route_plan(R)) ∧

∀W :WOUNDED memory(t2, passes_wounded(R, W))]

Here 0 < r < 1. In other words, the desired effort states that the correct route plan
should be present before the required deadline already. The desired effort is always
satisfied in the time interval from the start of the incident until rd after this start. It is
not satisfied in the time interval starting rd after the start of the incident where no
route plan was proposed yet. In view of property AP1 this means that after a correct
route plan has not been generated by the police department within rd from the start of
the incident, adaptation will be initiated at this time point, in order that the required
effort will still be guaranteed before d after the start of the incident. As soon as indeed
a route plan is proposed, the required effort remains satisfied and the desired effort
becomes satisfied again.

Failure of the satisfaction of desired effort means that there is no role within the
police department which has generated the correct route plan. By property AP2, this
ultimately results in an adapted police department with roles which do perform the
desired effort. To enable this change, the Adaptor within the Change Group uses the
standard default definition of the urgency relation, in this case specifically for the
police:

has_urgency(fire_fighting, fire_brigade_effort, health_care, health_effort, traffic_care,

police_effort, traffic_care) ↔ not satisfies_desired_effort_for(police_effort, traffic_care)

expressing that the traffic care aspect has urgency in case no route plan is generated
within the desired duration.

7.2 Simulation Results

In order to show how a multi-agent organization functions using the organizational
model as presented above, simulation runs have been performed based on
observations at the Volendam bar fire as described in [22]. In order to be able to
simulate these adaptation processes, the lowest level properties (i.e. role properties) as
presented in the Sections above have been translated into the executable subset of

wounded_location(wounded_1, zuideinde)
wounded_location(wounded_2, pellersplein)

wounded_location(wounded_3, zeestraat)
internal((adaptor_role_1|ChangeGroup))|satisfies_desired_effort(police_effort, traffic_care)

internal((adaptor_role_1|ChangeGroup))|satisfies_required_effort(police_effort, traffic_care)

incident_started(bar_fire_volendam)
internal((adaptor_role_1|ChangeGroup))|memory(time(0), incident_started(bar_fire_volendam))

output((route_planner|police))|proposed_route_plan(zuideinde)

passes_wounded(zuideinde, wounded_1)
internal((adaptor_role_1|ChangeGroup))|memory(time(2), proposed_route_plan(zuideinde))

internal((adaptor_role_1|ChangeGroup))|has_urgency(fire_fighting, fire_brigade_effort, health_care, health_care_effort, traffic_care, police_effort, traffic_care)
internal((adaptor_role_1|ChangeGroup))|to_be_addressed(traffic_care)

internal((adaptor_role_1|ChangeGroup))|role_responsible_for(route_planner, police, traffic_care)

internal((adaptor_role_1|ChangeGroup))|to_be_found_cadidate(adaptor_role_1, ChangeGroup, route_planner, police)
internal((adaptor_role_1|ChangeGroup))|has_capabilities(adaptor_role_1, ChangeGroup, navigation)

internal((adaptor_role_1|ChangeGroup))|required_capabilities(route_planner, police, navigation)

shared_allocation(adaptor_role_1, ChangeGroup, route_planner, police)
output((route_planner|police))|proposed_route_plan(circle_scene)

internal((adaptor_role_1|ChangeGroup))|memory(time(4), proposed_route_plan(circle_scene))

passes_wounded(circle_scene, wounded_1)
passes_wounded(circle_scene, wounded_2)
passes_wounded(circle_scene, wounded_3)

time 0 2 4 6 8 10

Fig. 4. Simulation results using the adaptive organization model

211

TTL called leadsto [5] which is used as an input for a simulation tool as described in
[5]. Figure 4 shows the result of the simulation using this tool. In the Figure the left
side shows the atoms that occur during the simulation run whereas the right side
shows a timeline where a dark gray box indicates an atom being true whereas a light
gray box indicates false.

As can be seen in the trace, at time point 0 the bar fire starts:
incident_started(bar_fire_volendam). Three wounded people are present at the scene, at
different locations, namely “zuideinde”, “pellersplein”, and “zeestraat”:

wounded_location(wounded_1, zuideinde)

wounded_location(wounded_2, pellersplein)

wounded_location(wounded_3, zeestraat)

Note that in reality much more wounded are present. Based on these circumstances an
Adaptor role observing the current state of affairs at the scene derives that both the
desired and required effort concerning traffic care are being delivered by the police,
since they have until time point 4 to come up with a correct plan:

internal(adaptor_role_1|ChangeGroup)|satisfies_desired_effort(police_effort, trafic_care)

internal(adaptor_role_1|ChangeGroup)|satisfies_required_effort(police_effort, trafic_care)

Underlying this derivation is the following leadsto property:

 ∀I1,I2:INTEGER, RO:ROLE, IN:INCIDENT
[internal(RO|ChangeGroup)|memory(time(I), incident_started(IN)) ∧

 present_time(I2) ∧ (I2 � I+R*D)]

→→0,0,0.1,0.1

internal(RO|ChangeGroup)|satisfies_desired_effort(police_effort, traffic_care)

The constants for R and D have been set to 0.5 and 6 respectively. Besides this
property for desired effort a similar property exists for required effort. The only
difference between these two properties is the multiplication with the factor R in the
condition, which is not performed in the required effort property. In order for this rule
to fire, the Adaptor roles have a memory state. For example, at time point 1 the
Adaptor role stores the previously observed start of the incident:

internal(adaptor_role_1|ChangeGroup)|memory(time(0),
incident_started(bar_fire_volendam))

At time point 2 the route planner within the police group proposes a route plan which
consists of merely one drive up route which is the location “zuideinde”:

output(route_planner|police)|proposed_route_plan(zuideinde)

This plan however only passes the wounded person at the location “zuideinde” and
not the other wounded:

passes_wounded(zuideinde, wounded_1)

Since the requirement is that the route plan should pass all wounded, the current
proposed plan does not satisfy the requirements. However, due to the fact that the
police has 4 time points before the desired effort needs to be provided, it takes until
time point 4 before this failure is addressed (they could also have thought out a new,

212

correct, route plan before the fourth time point). At that time point, an Adaptor role is
unable to derive that the desired effort for traffic care is satisfied. Such a desired
effort can be derived by means of two rules, the first rule being the leadsto property
presented above (i.e., there is still remaining time to come up with a good solution)
whereas the second rule specifies that a correct traffic plan has been generated which
passes all wounded:

∀I1,I2:INTEGER, RO:ROLE, IN:INCIDENT, RP:ROUTE_PLAN
[[internal(RO|ChangeGroup)|memory(time(I), incident_started(IN)) ∧

 internal(RO|ChangeGroup)|memory(time(I2), proposed_route_plan(RP)) ∧

 ∀W:WOUNDED [passes_wounded(RP, W)]]

 →→0,0,0.1,0.1

 [internal(RO|ChangeGroup)|satisfies_desired_effort(police_effort, traffic_care) ∧

 internal(RO|ChangeGroup)|satisfies_required_effort(police_effort, traffic_care)]]

Since not all wounded are being passed, this rule cannot fire either. As a result, the
Adaptor role derives that the police effort does not satisfy the desired effort regarding
traffic care by means of a closed world assumption (i.e., everything which cannot be
derived is assumed false). The required effort is however still satisfied because this
can still be derived by means of the first variant presented in this Section. The fact
that the desired effort is not longer satisfied causes an urgency for the traffic care task:

internal(adaptor_role_1|ChangeGroup)|has_urgency(fire_fighting,.., traffic_care)

As a result, the role immediately derives that traffic care needs to be addressed:

internal(adaptor_role_1|ChangeGroup)|to_be_addressed(traffic_care)

Since the route planner is the role responsible within the police department for this
task, a candidate must be found to take over the role:

 internal(adaptor_role_1|ChangeGroup)|to_be_found_candidate(adaptor_role_1,

ChangeGroup, route_planner, police)

The capabilities required for the role are navigation skills, a skill present at the
particular Adaptor role, which therefore starts a shared allocation with the role itself
(following the properties specified in Section 5.2) according the following leadsto
property:

∀R1,R2:ROLE, G:GROUP, C:CAPABILITIES
[[internal(R1|ChangeGroup)|to_be_found_candidate(R1, ChangeGroup, R2, G) ∧

 internal(R1|ChangeGroup)|required_capabilities(R2, G, C) ∧

 internal(R1|ChangeGroup)|has_capacbilities(R1, ChangeGroup, C)

 →→0,0,0.1,0.1

 internal(R1|ChangeGroup)|shared_allocation(R1, ChangeGroup, R2, G)]

As a result, the shared allocation occurs in the trace:

shared_allocation(adaptor_role_1, ChangeGroup, route_planner, police)

213

Resulting from this new shared allocation, the role outputs a new route plan which
described a route that circles the scene and therefore passes all the wounded:

output(route_planner|police)|proposed_route_plan(circle_scene)

Thereafter, the desired effort is satisfied again. Note that during the entire adaptation
process the required effort was always fulfilled since the requirement stated by the
guidelines says that a route plan that passes all wounded should be present within 6
time points, which is the case within the simulation. Would there however not have
been any adaptation, the required effort would not have been satisfied after time point
6.

8 Quantitative Specialization of the Adaptive Organization
Model

For domains that can be quantified, the adaptive organization model can be
specialized. As a starting point each aspect X can be quantified by some value V (real
or integer number), indicated by

has_value(X, V).

For each aspect a lower bound V1 and upper bound V2 is specified, indicated by

lower_bound(X, V1) and upper_bound(X, V2)).

The aspect is satisfied whenever its value is between these values:

satisfied(X) ↔↔↔↔

 ∀V1,V2, V:VALUE [[has_value(X, V) ∧ lower_bound(X, V1) ∧ upper_bound(X, V2)] →

V1 ≤ V ∧ V � V2]

Each of these aspects has a particular type of role attached to it, in which work is
performed which contributes to that particular aspect. On the highest level, each
aspect simply needs to be satisfied, expressed by the property OP in the following
manner:

OPquantitative
For all time points t each aspect X has a value V which is below the upper bound V2 and

above the lower bound V1.

∀t:TIME state(γ, t) |= ∀X:ASPECT, V1,V2, V:VALUE
 [has_value(X, V) ∧ upper_bound (X, V2) ∧ lower_bound (X, V1)] → V1 ≤ V ∧ V � V2]]

On the lower level of OAP(X), the same is expressed per aspect X. The effort
required to maintain each of the aspects throughout the organization can change over
time. A value to be maintained might for example express that a certain percentage of
environmental pressure needs to be dealt with, which means more effort in case of
more environmental pressure. The group properties which express the effort being

214

delivered by the groups addressing the aspects can again be reused from the model.
However, the definitions for required effort and desired effort can be tailored towards
the quantitative perspective. Here the assumption is made that V depends on E in a
monotonic manner (when E is increasing, either V is increasing or decreasing). First
of all, the required effort for each group is satisfied in case the current effort is
between the minimum effort required (based either on the upper or lower bound of the
aspect value) and the maximum effort (again from either the upper of lower bound of
the aspect value).

satisfies_required_effort_for(E,X) ↔↔↔↔

∀V1,V2:VALUE, E1,E2:EFFORT

[[upper_bound(X, V1) ∧ lower_bound(X, V2) ∧

required_effort_for_value(E1, V1) ∧ required_effort_for_value(E2, V2)∧

is_max_of(Emax, E1, E2) ∧ is_min_of(Emin, E1, E2)]] → Emin ≤ E2 ∧ E ≤ Emax]

Regarding the desired effort, the effort should be farther away from the bounds set. In
other words, a parameter for a value ε with 0 < ε < 0.5 is added, as follows:

satisfies_desired_effort_for(E,X) ↔↔↔↔
∀V1,V2:VALUE, E1,E2:EFFORT

[[upper_bound(X, V1) ∧ lower_bound(X, V2) ∧ required_effort_for_value(E1, V1) ∧

required_effort_for_value(E2, V2) ∧ is_max_of(Emax, E1, E2) ∧ is_min_of(Emin, E1, E2)]

→ Emin + ε (Emax – Emin) ≤ E ∧ E ≤ Emax - ε (Emax – Emin)]

The decision properties for the Adaptor role again are reused from the generic
properties as specified in Section 5, and also the default urgency relation:

has_urgency(X1, E1, …, Xn, En, Xi) ↔ not satisfies_desired_effort_for(E,X)

In other words, an aspect is considered to be urgent in case the effort is outside the
bounds of the desired effort.

9 A Quantitative Application of the Organizational Model

As a further evaluation of the applicability, the quantitative specialization of the
organizational model has been applied in the domain of social insects and, more
specifically, to analyze the functioning of honeybee colonies. In honeybee colonies
several aspects need to be maintained in order for the population to be robust enough
to be successful (in this case to survive), which include foraging, brood care, and
undertaking. For the aspect brood care for example, the larvae need to have sufficient
food, which requires more effort in case more larvae are present. If the larvae are
insufficiently fed, the population size will eventually drop, endangering population
survival. For each of these aspects, a specific Worker Group is present within the
honeybee colony, i.e. all brood carer roles are part of the brood care group, etc.
Furthermore, it is known from the biological domain that all honeybees within the
organization have the capabilities to play each of the roles (see [6]).

215

Application of the quantitative specialization of the model is for the highest levels
straightforward as these can simply be reused. On the lowest level however, the
urgency of an aspect is defined by a threshold and trigger mechanism in each of the
Adaptor roles, as described in biological literature; e.g., [6]. The mechanism
informally works as follows. Each bee has a specific threshold for each of the aspects
to be maintained in the organization. For the aspect the Adaptor is triggered most,
relative to the threshold value it has, it will start a shared allocation with a role within
a worker group devoted to that aspect. Following what is known in biological
literature [6], for this case such a mechanism can be specified as follows:

has_urgency(X1, E1, …, Xn, En, Xi) ↔↔↔↔

∀V1,…, Vi,, …, Vn:VALUE, T1,…, Ti,, …, Tn:VALUE,

[has_value(X1, V1) ∧ … ∧ has_value(Xn, Vn) ∧

has_threshold(X1, T1)∧.. ∧ has_ threshold (Xn, Tn) ∧

is_max_of(Vi/ Ti, V1/ T1, …, Vn/ Tn)]

As can be seen, the effort provided is not used for the decision process within the
Adaptor roles, only the triggers (the value of the aspect) and the thresholds are used to
determine which aspect is most important. Note that the thresholds are defined for
each individual Adaptor within the ChangeGroup. For simulations, see [14].

10 Discussion

This paper presented a organizational model for the analysis and design of multi-
agent organizations that are able to adapt to unpredictable events. The organization
model was specified distinguishing a number of aggregation levels. At the highest
level the goal for the organization as a whole is expressed and this is refined to lower
aggregation levels until role properties are reached that have to be fulfilled by agents
allocated to the role. The model has been formally specified and verified using the
model checker SMV. Besides a generic template, also specific variants have been
presented, addressing both quantitative and qualitative models. Applicability of the
model was evaluated positively, using it to analyze two cases: social insects and
incident management. For both cases simulations have been performed, based on
translating the lowest level properties to an executable format.

Research as described in [2], [18], [19], [20] has some similarity to the approach
presented in this paper: when only looking at the agents, they adapt their behavior
based on an event. The difference is however that in this paper, the adaptation of the
behavior of the agents over time is described using the roles they play. As a result, it
abstracts from the specifics of the agent that describe this change behavior, but simply
poses a requirement upon the adaptation behavior of the agent in the form of a role.

In the domain of organizational modeling for multi-agent systems several
frameworks have been extended with capabilities to model organizational change as
well. [13] for example introduces an approach where a Change Manager is present,
deciding what to change within the organization, and following a model from a well
known social scientist. Such a model is however concerned with centrally directed
organizational change whereas this paper concentrates on adaptation brought about by

216

individuals within the organization detecting unsatisfactory occurrences in the
organization. In an extension of MOISE, namely MOISE+ [15] a central director for
change is present as well; decision rules as detailed as presented in this paper are not
presented.

In order to incorporate new behavior which is not pre-specified, the approach
presented in this paper can be enriched with adaptation of role properties or addition
of roles. Such adaptations could for example include a new specification of role
behavior. This is however future work and is not addressed in this paper.

References

[1] Ashby, W. R., Design for a Brain – The origin of adaptive behaviour, John Wiley and
Sons, 1960.

[2] Barber, S.K., Goel, A., and Martin, C.E., Dynamic adaptive autonomy in multi-agent
systems, Journal of Experimental and Theoretical Artificial Intelligence, 12:129-147,
2000.

[3] Boissier, O., Padget, J., Dignum, V., Lindemann, G., Matson, E., Ossowski, S., Sichmann,
J., and V � zquez-Salceda, J. (eds.), Coordination, Organizations, Institutions, and Norms in
Multi-Agent Systems, Proc. of the First International Workshop From Organizations to
Organization-Oriented Programming, OOOP'05. Lecture Notes in AI, vol. 3913. Springer
Verlag, 2006

[4] Bosse, T., Jonker, C.M., Meij, L. van der, Sharpanskykh, A., and Treur, J., Specification
and Verification of Dynamics in Cognitive Agent Models. In: Proceedings of the Sixth
International Conference on Intelligent Agent Technology, IAT'06. IEEE Computer
Society Press, 2006, to appear.

[5] Bosse, T., Jonker, C.M., Meij, L. van der, and Treur, J., LEADSTO: a Language and
Environment for Analysis of Dynamics by SimulaTiOn. In: Proceedings of MATES'05.
LNAI 3550. Springer Verlag, 2005, pp. 165-178.

[6] Camazine, S., Deneubourg, J.L., Franks, N.R., Sneyd, J., Theraulaz, G., Bonabeau, E.,
Self-Organization in Biological Systems, Princeton University Press, Princeton, USA,
2001.

[7] Ferber, J. and Gutknecht, O., A meta-model for the analysis and design of organizations in
multi-agent systems, Proceedings of ICMAS’98, IEEE Computer Society Press, pp. 128-
135, 1998.

[8] Ferber, J., Gutknecht, O., Jonker, C.M., Müller, J.P., and Treur, J., Organization Models
and Behavioural Requirements Specification for Multi-Agent Systems, in Y. Demazeau,
F. Garijo (Eds.), Multi-Agent System Organizations. Proceedings of MAAMAW'01, 2001

[9] Fisher, M. (2005). Temporal Development Methods for Agent-Based Systems, Journal of
Autonomous Agents and Multi-Agent Systems, vol. 10, pp. 41-66.

[10] Galton, A. (2003). Temporal Logic. Stanford Encyclopedia of Philosophy, URL:
http://plato.stanford.edu/entries/logic-temporal/#2.

[11] Galton, A. (2006). Operators vs Arguments: The Ins and Outs of Reification. Synthese,
vol. 150, 2006, pp. 415-441.

[12] Giorgini, P., Müller, J., Odell, J. (eds.), Agent-Oriented Software Engineering IV, LNCS,
vol. 2935, Springer-Verlag, Berlin, 2004.

[13] Hoogendoorn, M., Jonker, C.M., Schut, M.C., and Treur, J., Modeling Centralized
Organisation of Organizational Change. Jounal of Computational and Mathematical
Organisation Theory. In press, 2006.

217

[14] Hoogendoorn, M., Schut, M.C., and Treur, J., Modeling Decentralized Organization
Change in Honeybee Colonies, Technical Report (see
http://www.cs.vu.nl/~mhoogen/report/tr-asr-06-01.pdf), Vrije Universiteit Amsterdam,
2006.

[15] Hübner, J.F. and Sichman, J.S., Using the MOISE+ model for a cooperative framework of
MAS reorganization, Boletim Técnico BT/PCS/0314, Escola Politécnica da USP, São
Paulo, 2003.

[16] Jonker, C.M., and Treur, J., Relating Structure and Dynamics in an Organization Model,
In J.S. Sichman, F. Bousquet, and P. Davidson (eds.), Multi-Agent-Based Simulation II,
Proc. of the 3rd Int. Workshop on Multi-Agent Based Simulation, MABS'02. Lecture Notes
in AI, vol. 2581, Springer Verlag, pp. 50-69, 2003.

[17] Kowalski, R., and Sergot, M. (1986). A Logic-Based Calculus of Events. New Generation
Computing, 4:67--95, 1986.

[18] Krieger, M. J. B. and Billeter, J.-B. (2000) The call of duty: Self-organised task allocation
in a population of up to twelve mobile robots. Robotics and Autonomous Systems, vol. 30,
pp. 65-84.

[19] Kube, C.R., and Zhang, H., (1994). Stagnation recovery behaviours for collective robotics.
In Proceedings of the 1994 IEEE/RSJ/GI International Conference on Intelligent Robots
and Systems (IROS'94), pp. 1883-1890.

[20] Maes, P., Modeling adaptive autonomous agents, Artificial Life, 1:1-37, 1994.
[21] McMillan, K., Symbolic Model Checking: An approach to the state explosion

problem, Kluwer Academic Publishers, 1993.
[22] Ministry of the Interior, Investigation Bar Fire New Years Night 2001 (in Dutch), SDU,

The Hague, 2001
[23] Reiter, R. (2001). Knowledge in Action: Logical Foundations for Specifying and

Implementing Dynamical Systems. MIT Press, 2001.

218

Appendix A Example SMV Specifications

From role properties to adaptivity property AP1

MODULE main

VAR
 aspect:{desired, required, failure};
 urgency: boolean;
 search_candidate: boolean;
 found_candidate: boolean;
 effort_added: boolean;

ASSIGN
 init(aspect) := required;
 next(urgency) := case
 aspect = desired: 0;
 1: 1;
 esac;
 next(search_candidate) := case
 urgency : 1;
 1:0;
 esac;
 next(found_candidate) := case
 search_candidate : 1;
 1:0;
 esac;
 next(effort_added) := case
 found_candidate : 1;
 1:0;
 esac;
 next(aspect) := case
 aspect = failure & effort_added: required;
 aspect = required & effort_added: desired;
 aspect = desired & effort_added: desired;
 1 : aspect;
 esac;

SPEC
 AG ((!(aspect = desired) & (aspect = required))
 -> AF (aspect = desired) &
 A [(aspect = required|aspect=desired) U aspect=desired])
&
 AG (aspect=desired | aspect = required)

From adaptivity property AP1 to group property GP1

MODULE main

VAR
 aspect:{desired, required, failure};

219

ASSIGN
 init(aspect) := required;
 next(aspect) := case
 aspect = desired: desired;
 aspect = required: desired;
 1: aspect;
 esac;

SPEC
 AG (aspect=desired|aspect=required)

220

221

Chapter 11

Formation of Virtual Organizations
through Negotiation

This chapter appeared as: Hoogendoorn, M, and Jonker, C.M., Formation of Virtual
Organizations through Negotiation. In: Fisher, K., Timm, I.J., Andre, E., and Zhong,
N. (eds.), Multiagent System Technologies: Proceedings of the 4th German
Conference on Multi-Agent Systems and Technology (MATES 2006), LNAI 4196,
Springer Verlag, 2006, pp. 135-146. The original publication is available at
www.springerlink.com.

222

223

Formation of Virtual Organizations
through Negotiation

Mark Hoogendoorn1 and Catholijn M. Jonker2

1Vrije Universiteit Amsterdam, Department of Artificial Intelligence
De Boelelaan 1081a, 1081 HV Amsterdam, The Netherlands

mhoogen@cs.vu.nl
2Radboud University Nijmegen, Nijmegen Institute of Cognition and Information

Montessorilaan 3, 6525 HR Nijmegen, The Netherlands
C.Jonker@nici.ru.nl

Abstract. In this paper negotiation is presented as a solution to the formation of
virtual organization in domains with many parties having (partially) unknown
constraints and profiles and in which the environment is dynamic by nature.
The solution presented is based on the MAGNET negotiation system, for which
an extension is presented, that allows for last minute changes and failure
management. An efficient algorithm is presented for supplier agents,
incorporating preferences, and other constraints related to existing individual
plans). Combining the algorithms for supplier agents, with a simple customer
agent specification, and the ability to iterate the bidding, MAGNET is extended
to deal with domains as described above. A case study in logistics using real
data from a logistics company shows the validity of the approach.

1 Introduction

Virtual organizations have been defined as organizations where “complementary
resources existing in a number of cooperating companies are left in place, but are
integrated to support a particular product effort for as long as it is viable to do so” [7].
Nowadays, companies tend to outsource many non-core operations to upstream and
downstream partner firms whose capabilities complement their own [9]. The
relationship between such firms precisely complies to the definition of a virtual
organization, making it an interesting type of organization to investigate given the
current trends in organization theory.

Existence of a virtual organization can be long term or short term, where in the
latter case the organization might only be formed to perform a few tasks. Especially
for the cases where only a small number of tasks is involved in formation of a virtual
organization, the overhead of the formation itself might be relatively large, possibly
even causing more time than the task itself. One crucial aspect that for instance needs
to be addressed in the formation process is what agents to allocate to what tasks. In
order to cope with this problem, techniques from AI are being used to reduce the
effort accompanying formation of a virtual organization.

224

This paper presents the application of one AI technique, namely automated
negotiation between agents, to formation of virtual organizations. More in particular,
the paper presents a system which enables automated allocation of agents to particular
tasks that need to be performed within the virtual organization. The system tries to
find a suitable allocation of tasks from two perspectives: (1) that of the agent looking
for an agent to perform the task, and (2) that of the agent who can perform the task.
Since both can have different, possibly partially conflicting interests, negotiation is
most suitable to get to a solution for both parties. Besides the initial formation, the
system also has facilities to cope with failure of agents to perform their allotted tasks
and to redistribute tasks.

Section 2 presents MAGNET as the negotiation platform the supplier and
consumer agents can use to find a solution to their needs. The techniques and
extensions needed to be able to use the MAGNET for the dynamic formation of
virtual organizations are presented in Section 3. Special attention is paid to obtain
robustness with respect to failures in task performance and changes in the
environment warranting the change of existing virtual organizations and the formation
of new virtual organizations capable to cope with the situation at hand. The system
was tested using real data from a logistic company. The test results are presented in
Section 4. Section 5 discusses alternative approaches in literature and presents the
conclusions.

2 The MAGNET System

This Section describes the negotiation system used as a basis for the development of
the system supporting the formation of virtual organizations. The negotiation system
used is the MAGNET (for Multi-AGent NEgotiation Testbed) system [4]. In [1] the
MAGNET system is described as follows: the MAGNET architecture provides a
framework for secure and reliable commerce among self-interested agents. What
makes MAGNET particularly suitable is its ability to support negotiation of contracts
for tasks that have temporal and precedence constraints [4]. MAGNET shifts much of
the burden of market exploration, auction handling, and preliminary decision analysis
from human decision-makers to a network of heterogeneous agents. Two types of
agent are distinguished within such a network: The supplier agent and the customer
agent. The main interactions between the two agent types are as follows:

• A customer agent issues a Request for Quotes (RFQ) which specifies tasks,
their precedence relations, and a time line for the bidding process. For each
task, a time window is specified giving the earliest time the task can start and
the latest time the task can end.

• Supplier agents submit bids. A bid includes a set of tasks, a price, a portion of
the price to be paid as a non-refundable deposit, and estimated duration and
time window data that reflect supplier resource availability and constrain the
customer's scheduling process.

• The customer agent decides which bids to accept. Each task needs to be
mapped to exactly one bid (i.e. no free disposal [11]), and the constraints of all
awarded bids must be satisfied in the final work schedule. In MAGNET the

225

customer can chose from a collection of winner-determination algorithms (A*,
IDA*, simulated annealing, and integer programming).

The customer agent awards bids and specifies the work schedule.

3 Formation of a Virtual Organization

An overview of the activities accompanying the formation of a virtual organization
supported by the system introduced in this paper is presented in this Section. Note that
for evaluation and communication concerning the negotiation the MAGNET system
can be used whereas more specific implementations for the customer and supplier
agent are needed for specific domains such as the formation of virtual organizations.

3.1 High-Level System Overview

A high-level activity diagram of the system is shown in Figure 1. At the starting point
the tasks to be fulfilled by the virtual organization come in, which are bundled in an
RFQ and sent via the MAGNET system. The RFQ is sent to all supplier agents that
might want to participate in the virtual organization. These supplier agents bid on the
tasks they are able to perform and prefer and send a bid including these tasks back via
the MAGNET system. After receiving all the bids, the MAGNET system evaluates
these and selects the best set of bids possible. In case this set does not fully cover the
tasks, an RFQ is sent again. For the bids that are in the set of optimal bids, an award is
sent. The supplier agent that receives such a reward takes place in the virtual
organization and starts executing the tasks, possibly reporting trouble requiring
sending another RFQ for the task. Finally, after all tasks have been performed, the
virtual organization is terminated.

3.2 Customer Agent

The customer part of the system mainly includes the formation of Request for Quotes
(RFQs), the sending of awards for bids, and reassignment of tasks which are not
properly performed. Tasks in the system include the following elements: intake time,
early start time, late start time, deadline, and a task description, including details on
the task and constraints. After an RFQ is sent, the customer eventually gets a set of
bids to be awarded from the MAGNET system. In case there is no bid for a particular
task, a new RFQ is sent concerning the particular task. After a task is assigned by
means of awarding a bid, the supplier agent is placed in the virtual organization and
starts to perform the task, which can result in an error report. In case such a report is
received, a new RFQ with the task is sent to ensure that the task is eventually
performed.

226

�����	
���
����������

������������
���������
������������
���������

�������������
��������� �������������
���������

������ �����
��
����������

����! ��� ��������������
�

����
�����"���

#����!������� �
$
%

����!� ������
�
���! ��� �

���� ����������&� ���

#!������� �
$
%

�������"� '� �
$
%

#��� �������"� '� �
$
%

#��� ����������&� ���� �
$
%

Fig. 1. UML Activity Diagram for the System

3.3 Supplier Agent

The supplier agents in the system are assumed to have one particular resource
available during a certain time interval. Furthermore, a supplier is attributed with a
certain preference for particular tasks, for example using the resource for a short time
or using it in the beginning of the availability interval. In order to be able to derive

227

which tasks a supplier is to bid on, this Section presents an algorithm which derives
which tasks are included in the bid, determines the cost, and finally, determines the
time windows to be inserted. The notation used for the algorithm is shown in Table 1.

Table 1. Language used in the pseudo code

Function Explanation
first_task: RFQ → TASK The function application provides the

task with the earliest early start time in
the RFQ.

next_task: RFQ x TASK → TASK Results in the task with the first earliest
start time in the RFQ later than the
earliest start time of the specified task.

number_of_tasks: RFQ → INTEGER The number of tasks in the RFQ.
earliest_start: TASK → TIME Denoting the earliest start time for

executing the task.
latest_start: TASK → TIME The latest possible start time for

executing the task.
expected_duration: TASK → DURATION The expected duration of executing the

task.
latest_finish: TASK → TIME Denoting the latest possible finish time of

the execution of the task.
preference: TASK → REAL The preference value for the task, a value

between 0 and 1.
last_task_before: SCHEDULE x TIME →
TASK

The last task in the schedule with a latest
finish before the specified time.

next_task: SCHEDULE x TASK → TASK Specifying the next task in the schedule.
switch_time: TASK x TASK → DURATION The time needed to switch from one task

to another.
determine_risk: REAL → REAL The risk factor taken, based on the

preference for the task.

The algorithm is specified in pseudo code below, a current schedule s from the
supplier’s perspective with tasks already scheduled is assumed to be present in
advance.

t = first_task(RFQ)
do{
 before = last_task_before(s, earliest_start(t))
 after = next_task(s, before)
 chi = determine_risk(preference(t))
 duration = chi * (expected_duration(t) + switch_time(before, t) + switch_time(t, after))
 if (earliest_start(t) + duration ≤ latest_start(after))
 if (preference(t) > phi ||
 number_of_tasks(RFQ) == 1)){

 // Add the task to the bid and schedule, set the cost using a particular cost function
 }else{
 // Do not include the task
 }

}while(t = next_task(RFQ,t) && t != NULL)

228

As can be seen, the first task to be performed is taken out of the RFQ. Given the
current schedule, the task just ending before the early start time of the current RFQ
task is obtained as well as the task after that. Furthermore, based on the preference (a
value between 0 and 1) for the current RFQ task, the amount of risk to be taken is
determined (e.g. I like this task so much, I will be able to perform it faster than
average) represented by χ. Now calculate the expected duration for performing the
task, which includes switching from the previous task, performing the task itself, and
switching to the next task in the schedule. The assumed duration to be used in the
calculation is obtained by multiplying this with the χ factor. In case the duration
added to the earliest start time for task t is before the latest start time of the next task,
then the task can in principle fit within the schedule. There is however still the
preference of the supplier, which is specified by means of φ. φ is the threshold for the
preference value above which a task is preferred. In case a task is preferred and fits
within the current schedule, add the task to the bid. Do the same in case the RFQ
contains one single task. This reflects the understanding by the supplier that this is a
task that really needs to be performed and for which it is hard to get somebody. The
global result is that unpopular tasks also will be performed. Once a task is added to
the bid, the cost for performing the task are added by means of a cost function. Two
cost functions are used in this paper, where the first is simply the assumed duration
for the task. The second cost function used is the assumed duration divided by the
preference value, which means a higher price for less preferred tasks. One element not
addressed in the algorithm is determination of time windows to be included in the bid,
which is specified in pseudo code below.

if (chi ≤ 1){
 earliest_start = latest_finish(before) + chi * switch_time(before, t)
 if (earliest_start < earliest_start(t)){
 earliest_start = earliest_start(t)
 }
 latest_start = latest_finish(before) + switch_time(before, t)
 if (latest_start < earliest_start(t)){
 latest_start = earliest_start(t)
 }
}else{
 earliest_start = latest_finish(before) + switch_time(before, t)
 if (earliest_start < earliest_start(t)){
 earliest_start = earliest_start(t)
 }
 latest_start = latest_finish(before) + chi * switch_time(before, t)
 if (latest_start < earliest_start(t)){
 latest_start = earliest_start(t)
 }
}
duration = expected_duration(t) * chi

In case the χ value is less than or equal to 1 (i.e. the task is assumed to go faster than
expected), then set the earliest start time to either the earliest start time specified for
the task or, in case this is not feasible, to the latest finish time of the task before in the

229

schedule plus the assumed switching time. The latest start is set to the latest finish
time of the task before plus the expected switch time or, in case before the specified
earliest start time, the earliest start time specified in the RFQ. If the value of χ is
greater than 1, the earliest and latest start times are calculated just opposite from less
than or equal to 1. Finally, the duration is set to the assumed duration.

After having sent a bid, a bid award is possibly received, resulting in the task
actually being executed. The schedule is therefore replaced by a schedule including
the tasks that have been awarded.
In the execution phase, incidents can occur that require replanning by the customer
agent (or in similar domains, leading to the supplier agent becoming a customer agent
that is seeking another supplier agent to solve his task). Three types of incidents are
distinguished: (1) A simple task delay, that requires no replanning; (2) A task failure,
the task needs to be performed by another supplier; (3) A day failure, all tasks for the
day need to be re-planned.

4 Case Study

This section presents the results of a case study performed in order to validate the
virtual organization formation approach presented in this paper. First, the domain in
which the case study has been performed is described, thereafter the results regarding
system performance are presented.

4.1 Case Study Description

In order to obtain experimental results, a choice has been made to use real company
data instead of randomly generated data. Using company data has as the advantage
that it can be determined how well such a system would work in a real environment
instead of an artificially created one. The data has been obtained from a company
within the field of logistics. This area is particularly interesting for application of the
system due to the movement of several companies to so called Fourth Party Logistics
(4PL), see e.g., [2]. A 4PL logistics company is an intermediate link within the chain
of transporting goods, it closes contracts with large parties to arrange the logistics
across the entire supply chain of the organization. 4PL companies have a limit
amount, or possible even no trucks of their own (see e.g. [6]). They therefore have
contracts with a number of trucking companies which they can call in case they need
a truck for a particular order. The price for such a trip is negotiated over the phone. In
the case study, the 4PL does not negotiate with the trucking companies through a
scheduling officer, but directly with the truck drivers of that company. In this way the
truck drivers get a higher responsibility for creating a revenue for the company they
work for and they get the opportunity to guard their own preferences. Hence, the 4PL
company is the customer in the system described in the previous section, and the
trucks are the supplier agents, where a formation of a virtual organization for the
transportation of certain goods is the goal of the negotiations.

230

The data used for the experiments concerns transportation of containers, of which
only one can be carried at the same time by a truck. As a result, trucks can only
perform tasks in sequential order and not in parallel. Furthermore, there are different
types of containers: 20 feet and 40 feet containers, both of them can only be carried
by a truck suitable for that particular type. Each of the tasks contain an intake time
(around which the order to transport the container comes in, and thus the time at
which an RFQ can already be sent), an early start time (when the container becomes
available), a deadline (when the container needs to be delivered), and a start and end
location. Precedence constraints are present as well in case a container has to be
transported along several locations. The data obtained from the company mainly
concerns container transports from one of the container terminals at the port of
Rotterdam (there are several such terminals in the port) to a particular customer, after
which the container needs to be returned to a certain location. Typically, about 20
orders are received each day, most of which require a pickup early in the morning.
For the usage of the system presented in Sections 2 and 3, each truck is seen as a
separate supplier where the resource is in this case the ability to transport a particular
type of container. On average, about 10 trucks are available as suppliers per day.
Trucks have a start location at which they are located at the beginning of the day
(typically close to the port of Rotterdam), and have a start and end time (e.g. the
trucks starts at 9 am and stops at 5 pm). Preferences of trucks are found in the
different pickup and destination locations, the length of the trip required to perform
the task, and the start and end times of the tasks. As a result of interviews with
personnel from the data providing company, these preferences have been determined
for each truck, based on the driver assigned to it. The real cost for performing a task is
set to the travel time in minutes to perform the task (i.e. driving to the pickup location,
performing the task, and returning from the destination location). Note that this can
differ from the price actually put in the bid for the task.

4.2 Case study Results

In order to evaluate the effectiveness of the system, simulation runs have been
performed using the real life data from the trucking domain as described before. For
this purpose, the logs of the order system of one representative week has been used.
Using this data, the system is evaluated from two perspectives. First, the time needed
to evaluate the bids is measured, to see whether this evaluation process itself is not a
bottleneck within the virtual organization formation process. The algorithm for the
supplier agents can be run in parallel, which is not the case for the customer agent.
Another perspective from which the system is evaluated is to see how different cost
functions and preference thresholds influence the overall satisfaction of the supplier
agents within the system.

231

Algorithm Performance. First, the performance of the evaluation algorithm during
the simulation runs is presented. Note that these results are specific results for the
characteristics of the data. For more generic results on algorithm performance and a
comparison between different algorithms, see [3]. The experiments have been run on
a Sun UltraSPARC IIIi 1062 MHz CPU with 2 GB memory. Figure 2 shows the
results of the IDA* algorithm used for the case study for RFQs with varying amount
of tasks.

2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7
10

0

10
1

Number of tasks

S
ea

rc
h

tim
e

(m
se

c)

Fig. 2. IDA* search time for different number of tasks

Furthermore, Table 2 shows more detailed characteristics for the evaluation process.

Table 2. Evaluation characteristics

Number of tasks Average number
of bids

Average number
of tasks in bid

Search time IDA*
(msec)

2 3.59 1.00 1.35
3 6.05 1.07 1.98
4 6.00 1.00 2.00
5 7.25 1.08 2.50
6 8.00 1.25 3.54
7 7.63 1.01 10.69

As can be seen in the table, the average amount of tasks per bid is always close to
one, which is due to the fact that an RFQ in the trucking domain typically specifies
several tasks which need to be performed in parallel and, as already stated in the
introduction of the case study, the trucks cannot execute tasks in parallel. Since only
full bids can be awarded, they therefore often only bid for one task. As the graph
shows, also for the RFQ’s with the largest amount of tasks observed in the data (i.e.
seven tasks in one RFQ) the evaluation algorithm generates a solution in just over 10

232

milliseconds. For a more extensive discussion on the scalability of the IDA*
algorithm within the MAGNET system, see [3].

Supplier Satisfaction. Besides the evaluation time, the satisfaction of suppliers is
another element which has been investigated. The satisfaction of the suppliers is
measured in the average preference for the tasks they get awarded. Two parameters
can be varied regarding this satisfaction, namely the threshold value φ and the
function for cost to be included in the bid (i.e. assumed duration or assumed duration
divided by the preference). Figure 2 shows the satisfaction of the different agents for
both cost functions for varying φ values. Note that despite the threshold for bidding
on tasks, tasks can still be bid upon in case only one task is included in the RFQ. As a
result, the satisfaction can be below the threshold value set.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

φ

S
up

pl
ie

r
sa

tis
fa

ct
io

n

Regular Cost Function
Increased Cost Function

Fig. 3. Driver satisfaction for varying φ values

As can be seen in Figure 3, the increase of the price in case a task is not preferred is
shown to be effective in the simulation runs of the case study. Having such a
preference requires a less strict setting of the preference threshold φ for bidding on a
task still obtaining a reasonable satisfaction rate. When looking at the regular price
option, satisfaction is much lower once the value for φ decreases. An additional
performance measure is of course the efficiency of the solution found, which in the
trucking domain can be measured by means of the amount of effective driving (the
amount of driving for a task divided by the total amount of driving). In the simulation
runs, no correlation was found between the setting for the preference and the
effectiveness of driving. On average, 62% of all driving was effective.

233

5 Discussion

This paper presents an approach for the formation of virtual organizations in highly
dynamic environments which require a low overhead for the formation process of the
organization. The approach allows for the formation of such an organization without
the different parties needing to have knowledge about each others constraints and
profiles. The approach is based upon an existing negotiation system called the
MAGNET system which is extended with specific implementations for the supplier
and customer agents for the formation of virtual organizations. The implementation of
the supplier agent incorporates preferences for tasks as well as schedules specifying
the tasks to be performed. In a case study in the trucking domain, the paper shows that
the evaluation algorithms incorporated in the MAGNET system scale well, requiring
a minimal time for the evaluation process. Furthermore, reflecting the preference of a
task in the price bid for that task in the algorithm increases the overall satisfaction of
the supplier agents.

In the field of virtual organizations, negotiation systems have been introduced and
used as well. In [8] a virtual office system is mentioned called SmartProcurement
which is said to initiate the formation of a virtual organization by means of an
electronic or human request for quotation (RFQ). Thereafter, a purchasing agent
acquires a list of agents which are known vendors of the requested item and sends the
RFQ to the vendors. Subsequently, the bids are evaluated and a bid is selected,
informing the vendor agent upon acceptance. The approach is however more meant as
a framework to support such negotiation, similar to the MAGNET system, not as a
specific implementation of the agents themselves.

Besides the MAGNET system, more negotiation systems have been developed.
The advantage of the MAGNET system is the market infrastructure in between the
supplier and the customer agent whereas most other negotiation systems focus on
direct agent to agent negotiation [12, 5] (from [1]). Based on the MAGNET system
more extensive supplier agents have been developed [1], however these agents have
not been tested with real life data. Furthermore, [1] does not focus on the formation of
virtual organizations.

Team or coalition formation is another related field. Different protocols for the
formation of coalitions are compared in [13]. Variations of such protocols go from
local to social utility based negotiation systems. The authors show that increased
social context can improve system performance. The agents are however required to
share meta-level information before they allocate resources. In the trucking domain,
however, agents do not want to share such meta-level information, as they might be
competitors. Therefore the approach presented in [13] is not feasible in domains in
which the agents represent competitors.

Different role-allocation and reallocation algorithms are compared in [10] The
comparison is based on for the framework developed for the Role-based Markov
Team Decision Problem. In the future the same framework could be applied to
compare the approach presented in this paper with other role-allocation algorithms
with respect to the corporate data for the trucking domain.

234

Acknowledgements

The authors would like to thank Maria Gini from the Department of Computer
Science and Engineering at the University of Minnesota for the fruitful discussions.
Furthermore, the authors wish to thank the anonymous reviewers for their useful
comments that helped to further improve the paper.

References

[1] Botman, S., Hoogendoorn, M., Bud, V., Jaiswal, A., Hawkins, S., Kryzhnyaya, Y., Pearce,
J., Schoolcraft, A., Sigvartsen, E., Collins, J., and Gini, M., Design of supplier agents for
an auction-based market. In: Giorgini, P., Giorgini, P. Lesperance, Y., Wagner, G., Yu, E.
(eds.), Proceedings of the Fourth International Bi-Conference Workshop on Agent-
Oriented Information Systems (AOIS 2002 @ AAMAS-02), July 2002.

[2] Briggs, P., The hand-off: the future of outsourced logistics may be found in the latest
buzzword [Fourth Party Logistics], Canadian Transportation Logistics 102(5), pp. 18,
1999.

[3] Collins, J., Solving Combinatorial Auctions with Temporal Constraints in Economic
Agents. PhD thesis, University of Minnesota, June 2002.

[4] Collins, J., Gini, M., and Mobasher, B., Multi-agent negotiation using combinatorial
auctions with precedence constraints. Technical Report 02-009, University of Minnesota,
Department of Computer Science and Engineering, Minneapolis, Minnesota, February
2002.

[5] Fatima, S.S. and Wooldridge, M.. Adaptive task resources allocation in multi-agent
systems. In Proc. of the Fifth Int'l Conf. on Autonomous Agents, pp. 537-544, 2001.

[6] Foster, T., 4PLs: The next generation of supply chain outsourcing? Logistics Management
and Distribution Report 38(4), pp. 35, 1999.

[7] Goldman, S., Nagel, R., Preiss, K., Agile Competitors and Virtual Organizations, Van
Nostrand Reinhold, New York, 1995.

[8] O’Leary, D.E., Kuokka, D., and Plant, R., Artificial Intelligence and Virtual
Organizations, Communications of the ACM 40(1), pp. 52-59, 1997.

[9] Miles, E.R., Snow, C.C., Mathews, J.A., Miles, G., and Coleman, H.J., Organizing in the
knowledge age: Anticipating the cellular form, Academy of Management Executive 11(4),
pp. 7-20, 1997.

[10] Nair, R., Tambe, M., Marsella, S., Role Allocation and Reallocation in Multiagent Teams :
Towards a Practical Analysis, In: Proceedings of the Second Conference on Autonomous
Agent and Multi-Agent Systems (AAMAS 2003), pp. 552-559, ACM Press, 2003.

[11] Nisan, N., Bidding and allocation in combinatorial auctions. In 1999 NWU
Microeconomics Workshop, 1999.

[12] Sandholm, T.W., Negotiation Among Self-Interested Computationally Limited Agents
PhD thesis, Department of Computer Science, University of Massachusetts at Amherst,
1996.

[13] Sims, M., Goldman, C.V., and Lesser, V., Self-Organization through Bottom-up Coalition
Formation, In: Proceedings of the Second Conference on Autonomous Agent and Multi-
Agent Systems (AAMAS 2003), pp. ACM Press, 2003.

235

Chapter 12

Decentralized Task Allocation using MAGNET:
An Empirical Evaluation in the Logistics Domain

236

237

Decentralized Task Allocation using MAGNET:
An Empirical Evaluation in the Logistics Domain

Mark Hoogendoorn1, Maria L. Gini2, and Catholijn M. Jonker3†

1Vrije Universiteit Amsterdam, Department of Artificial Intelligence
De Boelelaan 1081a, 1081 HV Amsterdam, The Netherlands

mhoogen@cs.vu.nl
2University of Minnesota, Department of Computer Science and Engineering

200 Union Street SE, Minneapolis, United States
gini@cs.umn.edu

3Delft University of Technology, Department of Man-Machine Interaction
Mekelweg 4, 2628CD Delft, The Netherlands

catholijn@mmi.tudelft.nl

Abstract. This paper presents a decentralized task allocation method that can
handle allocation of tasks with time and precedence constraints in a multi-agent
setting where not all information needed for a centralized approach is shared.

In our MAGNET-based approach agents distribute tasks via first-price reverse
combinatorial auctions, where the auctioneer is whatever agent has tasks to be
allocated. The choice of MAGNET is based on its uniqueness to handle
auctions for allocation of tasks which include time windows and precedence
constraints.

Empirical evaluations based on real data obtained from a logistics company
show that the system performs well. The costs of the allocations obtained by
our approach are within 5% from the optimal allocation. The computation time
is linear in the number of tasks, while computing the optimal allocation is an
NP-hard problem.

1 Introduction

There are many real-world problems in which agents need to plan in advance and
schedule multiple tasks, think of logistics, hospital schedules that have to be changed
with new patients coming in, manufacturing on demand, and design of complex
systems. We are interested in situations where an agent recruits other agents to carry
out tasks for which precedence and time constraints are a common phenomenon, such
as in logistics, hospitals, and manufacturing on demand.

The field of planning has contributed several centralized heuristic algorithms for
optimal task allocation. For example, algorithms have been created for the Vehicle
Routing Problem and its instances (see e.g. [9]), and the Dial-a-Ride problem [17].
The main disadvantage of such algorithms is their centralized nature, since a

† The ordering of the authors is based on the effort put into the article.

238

centralized allocation of tasks to multiple agents is not always possible. It may be
computational unfeasible to find an optimal allocation or agents unwilling to share
complete information about their resources and commitments may invalidate the
algorithm.

Decentralized task allocation has been a topic of research for quite some time
already, see e.g. [28], [29], and [24]. However, so far, the decentralized task
allocation literature has not addressed the problem of task precedence relations and
time constraints between the tasks. This paper presents a decentralized way of
allocating tasks that does deal with precedence and time constraints. The method
exploits the unique feature of the MAGNET [6] system that allows autonomous
agents to negotiate over complex coordinated tasks, with precedence and time
constraints, in an auction-based market environment [4].

In our method MAGNET agents participate in market-mediated first-price reverse
combinatorial auctions, where the agent which allocates the tasks to other agents is
the auctioneer. Any agent can be an auctioneer, so any agent can, at any moment in
time, attempt to allocate its tasks to other agents via auctions.

The method has been thoroughly evaluated by means of empirical analysis using
data obtained from a logistical company. This choice of domain allowed us to test
specifically the effectiveness of the method to deal with precedence relations and time
constraints, while delivering solutions that are near to an optimum.

In logistics, the tasks that require allocation are time based from different
perspectives. The transportation devices (ships, trucks, plains, trains) are not cost
effective while they are being used as storage room. Furthermore, devices are often
not allowed to stay at the same place for long. For example, in the harbor of
Rotterdam, ships are assigned specific slots for off loading their goods. Due to the
nature of ships and harbors, last minute rescheduling of slots and ships is impossible.
Ships and harbor have to know the schedule much longer in advance, see e.g. [27].
The industry and/or companies that need the goods are ever operating from a produce
on demand principle instead of keeping a large stock. This implies that the logistics
process starts no sooner than when an order comes in, while the customer still expects
a speedy delivery.

Furthermore, the goods themselves can put time constraints on the logistics. For
example, perishable goods like flowers have to cross the world in hours to be still of
value at the point of delivery.

Finally, the logistics process itself can cause precedence constraints; a good cannot
be transported from a particular location before it has arrived at that particular
location. Similar precedence constraints can be caused by production on demand
process requiring different raw materials or half-fabricates.

As a result, transportation tasks typically have time windows specified, stating
when particular goods can be picked up, and when they need to be delivered. Other
aspects relevant for logistics are the locations (from, to), and some indication of what
type of load is to be transported (e.g., the type of container), so that an appropriate
transportation device can be selected and scheduled.

This paper is organized as follows. Section 2 presents the MAGNET system itself
whereas the application of the MAGNET system in the field of logistics is presented
in Section 3. Results of the empirical evaluation using a dataset obtained from a

239

logistics company are presented in Section 4. Section 5 discusses related work, and
finally, Section 6 presents our conclusions and gives directions for future work.

2 The MAGNET System

The MAGNET architecture provides a framework for secure and reliable commerce
among self-interested agents. MAGNET shifts the burden of market exploration,
auction handling, and preliminary decision analysis from human decision-makers to a
network of heterogeneous agents.

Fig. 1. MAGNET Architecture

The MAGNET system architecture, shown in Figure 1, consists of: (1) a customer

agent, which allocates tasks to other agents. The tasks have time constraints and other
restrictions; (2) suppliers agents, which bid on the tasks and execute them when
awarded; and (3) the MAGNET market server, which keeps track of the activities of
the agents and of the auctions.

The main interactions between agents in the MAGNET system are as follows:
• A customer agent issues a Request for Quotes (RFQ) which specifies the tasks,

their precedence relations, and a time line for the bidding process. For each task,
a time window is specified giving the earliest time the task can start and the latest
time the task can end.

• Supplier agents submit bids. A bid includes one or more tasks, a price, the
portion of the price to be paid as a non-refundable deposit, and the estimated
duration and time window for task execution. Supplier data reflect supplier
resource availability and constrain the customer’s scheduling process.

• The customer agent decides which bids to accept. Each task needs to be mapped
to one bid and the constraints of all awarded bids must be satisfied in the final
work schedule. In MAGNET the customer can chose from a collection of winner-

240

determination algorithms (A*, IDA* ‡ [5], simulated annealing, and integer
programming [4]).

• The customer agent awards bids and specifies the work schedule.

3 MAGNET and Logistics

A domain in which task allocation is part of the core operations is the field of logistics
[18]. Orders that arrive demand a set of specific transportation tasks to take place.
These transportation tasks need to be assigned to a particular resource (e.g. a truck or
a ship).

The logistic domain has been a topic of research in classical planning for quite
some time (see e.g. [21]), mainly focusing on calculating optimal solutions or
approximating them from a centralized perspective. For instance, in [11] the problem
addressed is to find optimal routes for transportation orders of a large set of users.
Orders have to be picked up and delivered at specific locations, within a given time
window, and using a limited number of trucks. The solution proposed is centralized,
and it is used to support a human dispatcher.

Distributed planning has been popular in distributed AI applications(see, for
instance, [12]), where agents are assumed to be cooperative, but coordinating the
plans of individual agents is still a challenging task [8]. When the agents are not
cooperative, auction based approaches to allocation of tasks are more commonly used
(for instance, [13;10]).

A trend has now emerged in the field of logistics which requires a more distributed
setting: Fourth party logistics (4PL) [1]. In fourth party logistics companies arise that
sign contracts with large companies to arrange their entire transportation demand.
These companies however do not have sufficient resources on their own to arrange all
these transports and therefore distribute many of those tasks to other(partner)
companies. A rapid assignment of tasks to particular resources is essential for these
4PL companies. Orders typically arrive at the company by phone, and being able to
immediately inform the customer on when the task will be performed gives a
competitive advantage.

Given this setting, centralized calculation of the optimal solution might no longer
be feasible due to the lack of complete information (availability of resources which is
too sensitive for a company to communicate) as well as the complexity of calculating
this optimal solution within a short period (time is crucial in the business). The latter
especially holds due to the fact that constraints such as time windows and precedence
constraints are also specified for these tasks, making calculation of the optimum even
harder.

The MAGNET system can help overcome these problems since it allows for task
allocation in a distributed way where companies can maintain their own schedule.
Furthermore, the strength of the MAGNET system is that it is also able to handle time

‡ Iterative Deepening A* (IDA*) [19] is a variant of A* which uses the same heuristic function

in a depth-first search, and which keeps in memory only the current path from the root to a
particular node. In each iteration of IDA*, search depth is limited by a threshold on the value
of the heuristic function.

241

windows as well as precedence constraints which is essential in this domain. Other
task allocation methods based on auctions assign only the tasks needed for the
immediate time period [10]. Because of this, they do not produce optimal allocations.
MAGNET avoids this problem by soliciting bids for tasks spanning over time, and
accepting the optimal combination of bids that fits the overall schedule.

Given the scenario of 4PL companies presented above, task allocation can be
performed as follows: The 4PL company (i.e. the customer) issues an RFQ, sends it to
a partner company (i.e. the supplier) who can bid on one or more tasks included in the
RFQ. The price they bid equals the amount of driving required to perform the task
(the prices per kilometer of driving for each partner firm is fixed).

Based upon this viewpoint, implementations of both supplier and customer agents
have been created.

3.1 Supplier Agent

The supplier agent maintains a schedule for its resources and generates bids based
upon that schedule. The schedule specifies when resources are available as well as a
start location when the resource becomes available and an end location when the
availability slot ends. During that availability time, the schedule consists of entries
that specify when tasks are scheduled to be performed (i.e. start and end time), and
furthermore what the start and end location of that particular task is.

Fig. 2. UML Activity Diagram of Supplier Algorithm

When an RFQ arrives, the supplier agent determines what tasks it is able to

perform with the resources it controls. Furthermore, it calculates whether it can
perform the task in the time window specified given the current schedule of the
resources (including the tasks that have been bid upon or included in the bid but have
not been awarded nor rejected). Given that a task indeed satisfies these constrains,
two possible algorithms have been implemented:

242

• Random bidding, which includes a task in the bid with a certain probability. Time
windows that are feasible according to the current schedule are included in the
bid.

• Closeby bidding, which includes only those tasks that are close (given a certain
distance measure) to the start or end location of the tasks that are already part of
the schedule. In case of an empty schedule, the task is included. Again, time
windows that are feasible according to the current schedule are included in the
bid.

As a cost, we use the sum of the distance of getting to the start location of the task,
performing the transport, and returning from the end location is included. Figure 2
shows the algorithm in the form of a UML activity diagram.

Note that preferences of suppliers can also be taken into consideration, which is
however not the focus of this paper. In [15] for example, bidding strategies are
specified that do take such preference into account.

3.2 Customer Agent

The customer agent simply creates RFQ’s for tasks matching the orders that have
been received, and evaluates the bids that have been received based upon the
evaluation algorithms part of the MAGNET system. Since it could happen that certain
tasks are not bid upon, dummy bids for each task are added to the bid set for this
evaluation process with an extremely high price. In case such a dummy bid gets
awarded the task needs to be sent again, possibly attracting some suppliers that did
not get their bid awarded. Each RFQ which is sent the same day is later referred to as
a cycle.

4 Empirical Evaluation

To see how the setup within the field of logistics described in the previous Section
would work in a real life setting, data has been obtained from a 4PL company. The
characteristics of the data are described first. Thereafter, results of using the data as an
input for the system are presented as well as comparisons between the solutions found
and the optimal solution. In this case, the optimal solution could be calculated as all
information is centrally available in one dataset, which is not necessary for the
MAGNET algorithm. This does enable us to compare the distributed with the
centralized approach, giving us insight in the quality of the distributed solution.
Furthermore, the time required for the computations is compared as well.

4.1 Dataset Description

The dataset has been obtained from a company within the field of logistics. It
concerns a mid-size company that focuses on transport of various types of goods,
including perishable goods, and containers. Transportation of containers has been a

243

growing global market over the last decades [25], and 4PL companies need to
transport many containers as part of the contracts they have with their customers.

The dataset we have obtained from the company concerns these container
transports. Each morning the company receives a set of tasks concerning
transportation of a containers at that specific day from a specific pickup location (for
instance a container terminal), to a specific destination location where the container is
either unloaded or loaded, thereafter transporting the container to a third location
where it is left behind. Besides these locations, time points are also specified,
indicating after which time point the container becomes available at the pickup
location and when the container needs to be returned to the third location. The amount
of orders received upon a day is on average just above 20 of such transportation tasks.
The size of the dataset concerns 100 such days, totaling to approximately 2000 tasks
that need allocation.

Note that the complexity of this scheduling for this company is clearly not in the
amount of tasks to be scheduled. The main problem here is speed and incompleteness
of information. As described above 4PL companies do not have the trucks
themselves, they have to negotiate with the companies that do have trucks. In fact the
situation is that different 4PLs have to compete with each other for work. They can
only be effective if their interaction with truck owning companies is time effective.
Similarly, the truck owning companies have to compete with each other for work,
and, again, time is of the essence.

Besides tasks that need to be performed, the company of course also has particular
resources to which these tasks can be allocated. The dataset also includes the trucks
that can be used as a resource on a particular day. For each of these trucks, an
availability slot is given, including a start time when the resource is available, and an
end time after which the truck is no longer available. The capacity of such a truck is
that it can carry one container at the same time. Each truck starts at the headquarters
of the company at the beginning of the availability slot, and needs to end at the
headquarters at the end of the slot. In the dataset on average half the amount of trucks
are available compared to the number of tasks that need to be performed. This is more
than sufficient to perform all transports while still meeting the requirements that have
been set for these orders.

Given this dataset, both types of companies are represented, namely the truck
owning companies (the trucks in the dataset) and the 4PL company (the orders in the
dataset). Each truck is represented by exactly one supplier agent within the MAGNET
system. Furthermore, a distance measure is included in the suppliers that is able to
calculate the distance between different locations. For each supplier, this distance
function is the same. Finally, each supplier uses the same definition of locations
considered to be close to each other (in case of the Closeby algorithm), which is based
upon a definition given by planners within the company.

4.2 Results

The results reported in this Section concern usage of the full dataset(i.e. 100 days of
operations with on average 20 orders, meaning approximately 2000 orders). Since we
are interested in how well our algorithms scale up, we want to vary the amount of

244

tasks that require allocation upon a day. This means that we perform runs over the full
100 days and for each of such runs the number of tasks that require allocation upon
one day is kept the same (e.g. 5 tasks per day). Therefore, each day selections are
made of the total number of orders that are available from the dataset, where the size
of the selection equals the number of tasks we want to investigate. We’ve performed
runs using 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 15, and 20 tasks. Also, selections of resources
have been made to make the runs as realistic as possible. As has already been
mentioned, on average half the amount of resources are available compared to the
number of tasks that require allocation. This means that the number of resources
available upon a day during such a run is set to 1, 1, 2, 2, 3, 3, 4, 4, 5, 6, 7, and 10
respectively. The experiments have been conducted on a Sun UltraSPARC-IIIi 1062
MHz CPU with 8 GB of memory. Calculation of the optimal result is performed by
means of a brute force algorithm which does not scale up well with the number of
tasks that require allocation upon a day. Theoretical results show that the type of
problem, called the capacitated dial-a-ride problem is NP-hard to solve [2]. As a result
of this, such calculations could only be performed up till 10 tasks per day. Regarding
the MAGNET system, the IDA* algorithm has been used for evaluation of the bids
that have been submitted by the trucks. IDA* is an optimal, memory-bounded,
heuristic search algorithm. Its time complexity is hard to characterize, since it
depends on how good the heuristic used is [19]. Its space complexity is linear in the
depth of the solution. This makes IDA* a good choice when an optimal solution is
needed in a large state-space where A* would run out of memory.

4.2.1 Comparison to optimal solution
Figure 3 shows the average deviation over running the algorithm on the full 100 days
of the solution found by the distributed MAGNET algorithm using the Closeby
bidding versus calculation of the optimal result from a centralized perspective. A
result of 1 means that the average solution found is equal to the optimum (which is
the lowest cost for performing the tasks) whereas 1.05 for instance means the average

0 1 2 3 4 5 6 7 8 9 10
1

1.01

1.02

1.03

1.04

1.05

1.06

1.07

1.08

1.09

1.1

Number of Tasks

D
is

ta
nc

e
fr

om
 O

pt
im

um

Closeby
Closeby Approximation

Fig. 3. Closeness of the MAGNET algorithm to the optimal result

245

result found is 5% above optimal. The results are presented for varying number of
tasks that require allocation upon a day. As can be seen, the deviation of the solution
found compared to the optimum initially increases with the number of tasks.
However, the steepness of this increase in deviation from the optimal result decreases
as the number of tasks that need allocation increase. This decrease is due the fact that
more tasks increase the probability of the trucks finding a task which nicely fits
within their schedule, avoiding large driving distances from one task to another. The
Random bidding algorithm simulation runs have also been performed but for the sake
of clarity these are not shown in the Figure. The results are significantly worse
compared to the Closeby bidding algorithm. For 5 tasks for example, the deviation
from the optimum is 1.17 and increasing.

Besides comparing the quality of the solution found, the difference in search time
is also a crucial element within the field of logistics. As already mentioned before,
being able to immediately inform customers over the phone gives a competitive
advantage. In Figure 4 the average total evaluation time(i.e. the sum of the evaluation
time for all cycles upon a day in the case of the MAGNET algorithm) over 100 days
for varying number of tasks is shown. Again, only the Closeby bidding algorithm is
shown as the Random algorithm scales in a similar fashion. As can be seen, the
algorithm for optimal performance does not scale well, whereas the MAGNET
algorithm scales very well, it can even be approximated by a linear function. Note
again that IDA* has been used here. When considering a maximum waiting time of
approximately 1 minute on the phone, no more than 8 orders can be placed in case of
the centralized algorithm. For the decentralized MAGNET algorithm however, 20
orders can certainly be handled which is currently the maximum number of orders
received by the company.

4.2.2 MAGNET Bidding Strategy Characteristics
Besides comparing the quality and search time of the solution found by the MAGNET
based system with the centralized approach, the characteristics of the two different

0 2 4 6 8 10 12 14 16 18 20
10

−5

10
0

10
5

10
10

10
15

10
20

10
25

10
30

Number of Tasks

S
ea

rc
h

T
im

e
(m

se
c)

Closeby
Closeby Approximation
Optimal
Optimal Approximation

Fig. 4. Total evaluation time needed for optimum and MAGNET algorithm (i.e.
sum of evaluation time of all cycles needed). Note the logarithmic scale

246

bidding algorithms (i.e. Closeby and Random) have been compared as well. As already
mentioned, the Closeby algorithm finds solutions of a much higher quality than the
Random algorithm. Furthermore, the search times scale approximately the same for
both bidding strategies. A third measure for comparison is the number of cycles
needed (i.e. how many times an RFQ with tasks needs to be sent to have a fully
covered task allocation for a day).

The number of cycles needed, averaged over the 100 days within a run, is shown in
Figure 5 for a varying number of tasks that require allocation upon a day. As can be
seen, the Closeby algorithm needs fewer cycles for the lower amount of tasks whereas
the Random algorithm needs fewer for the higher amount of tasks. This can be
explained by the amount of trucks being present: The more trucks, the higher the
probability that a task will be bid upon. Furthermore, since the initial location of the
trucks is the same, the Closeby bidding strategy initially results in trucks bidding upon
the same tasks, causing more cycles.

0 2 4 6 8 10 12 14 16 18 20
0

1

2

3

4

5

6

7

8

Number of Tasks

N
um

be
r

of
 C

yc
le

s

Closeby
Closeby Approximation
Random
Random Approximation

Fig. 5. Cycles needed by Closeby and Random bidding strategy

4.2.3` MAGNET Evaluation Algor ithm Character istics
Finally, results are shown on the average performance of the MAGNET evaluation
algorithm (IDA* in this case) within one cycle. Figure 6 shows the performance for
varying number of tasks in the RFQ. The algorithm scales very well and can be
approximated by a linear function.

The characteristics of the bids that are evaluated are shown in Table 1, including
detailed average evaluation times. The table shows that as the number of tasks
increases, so does the average number of bids that have been received. This is logical
because more tasks are presented, and therefore the probability of trucks being able to
perform at least one of the tasks increases. Note that the average number of bids for a
certain number of tasks can exceed half the amount of tasks (i.e. the number of trucks
available when starting with that task size) as this concerns averages over all cycles
and all amount of tasks that need to be scheduled upon a day (i.e. 2 to 20 tasks). It
might for instance be the case that for a run with 20 tasks, multiple cycles are needed

247

in which the last cycle only concerns 2 tasks whereas 10 trucks can still bid.
Furthermore, the average number of tasks per bid increase with the number of tasks as
well, which is due to the fact that tasks can more easily be combined.

Table 1. MAGNET evaluation characteristics

Number of
Tasks

Avg. number of
Bids

Avg. Tasks per
Bid

Avg. Search
Time

2 4.15 1.30 1.47
3 5.20 1.43 1.35
4 7.11 1.79 2.10
5 7.81 1.97 2.06
6 9.68 2.26 2.44
7 10.98 2.45 2.57
8 12.88 2.71 3.47
9 13.53 2.69 3.83
10 14.65 2.65 4.22
15 22.11 3.33 4.93
20 30.00 3.99 5.85

5 Related Work

Work done in centralized task allocation or planning involves finding efficient
algorithms for solving (or approximating a solution for) specific problems. One
specific family of problems is that of vehicle routing problems (VRP). A variant of

0 2 4 6 8 10 12 14 16 18 20
1

2

3

4

5

6

7

8

9

10

Number of Tasks

S
ea

rc
h

T
im

e

IDA*
IDA* Approximation

Fig. 6. Individual evaluation time needed by MAGNET

248

the VRP that is close to the task allocation problem used as an empirical evaluation in
this paper include the capacitated VRP with pick-up and deliveries and time windows
(CVRPPDTW). Furthermore, the dial-a-ride problem (DARP) generalizes a number
of such vehicle routing problems [7] and when including capacities maps to the
problem addressed in this paper. This problem is known to be an NP-hard problem to
solve [2]. See for example [2], [17], and [11] for algorithms that solve such problems
from a centralized perspective. Solving the vehicle routing problem from a centralized
perspective might however not always be feasible, resulting in research focusing on
decentralized task allocation as well.

Distributed constraint optimization algorithms have been proposed for task
allocation (see, for instance, ADOPT [23] and OptAPO [22]). These algorithms are
appropriate in domains where optimality is essential, but have high communication
costs. [26] proposes an approximate algorithm for distributed task allocation which
trades off optimality for reduced communication costs and which is specially suited
for large teams in simulated search and rescue.

Auctions [20] have been suggested for allocation of computational resources since
the 60’s. The Contract Net [28] is perhaps the most well known and widely used
bidding protocol for distributed problem solving. Many multi-agent and distributed
systems use some form of auction to allocate resources. Auction-based methods for
allocation of tasks are becoming popular as an alternative to other allocation methods,
such as centralized scheduling [3], distributed planning [12;8], or application-specific
methods, which do not easily generalize. An advantage of auctions is they are a
distributed mechanism and draw on a large body of analytical results from economics.
In addition, one-shot auctions are efficient in the case of low bandwidth and
unreliable communications.

Scheduling plays an important role in task allocation, since before accepting a task
an agent has to find how to fit it into its existing schedule. In [16] combinatorial
auctions are used for the initial commitment decision problem, which is the problem
an agent has to solve to decide whether to accept or refuse a new task. In [14]
scheduling decisions are made not by the agents, but instead by a central authority,
which has insight into the states and schedules of the agents. In MAGNET, there is no
central authority; the market is used only as a repository of statistical information.

Despite the abundance of work in auctions, limited attention has been devoted to
auctions over tasks with complex time constraints and interdependencies, as in
MAGNET. Auctions for decentralized scheduling have been studied extensively by
Wellman. The emphasis of their work is in the supply-chain construction, more than
dealing with time, and in analyzing strategies using game-theoretic techniques. A
protocol for combinatorial auctions for supply chain formation is proposed in [29].
Complex task networks are allowed, but they do not include time constraints. A
protocol for decentralized scheduling is proposed in [31]. The study is limited to
scheduling a single resource, while we are interested in multiple resources. In [30]
agents bid for individual time slots on separate, simultaneous markets.

249

6 Conclusions and Future Work

In this paper, we present an approach to perform decentralized task allocation using
the MAGNET system. There is already a vast amount of literature on performing such
task allocation using negotiation, see e.g. [28] and [29], however, the unique feature
of the system presented here concerns the negotiation about complex tasks including
time window and precedence constraints. In a variety of domain such constraints are
vital for task allocation, such as for the field of logistics. Implementations are created
for both the supplier and customer agent where for the former two different bidding
strategies are implemented, namely one which takes the distance to tasks into account
(i.e. only bidding on tasks that are close to a task you already perform) called Closeby,
and a Random bidding algorithm

To evaluate the proposed approach, a comparison is made to a central task
allocation scheme which is able to calculate the optimal solution. Such an evaluation
could be performed on a randomly generated dataset, in this paper however, the
choice is made to use empirical data. This choice results in a dataset with
characteristics that indeed occur in the real world, giving more insight in the usability
of the approach in real life.

The evaluations show that the approach using Closeby bidding comes very close to
the optimal result. The maximum deviation found is just over 4% of the optimal
result, whereas the trend is that this deviation from the optimum is not (or hardly)
increasing for greater amount of tasks. The Random bidding does not perform that
well, showing that taking distances into account when bidding is very effective for the
quality of the solution found. When looking at the computation time needed to come
to the solution found, the MAGNET algorithm scales very well (linear), whereas
calculation of the optimal solution does not (NP-hard). For 20 tasks, the maximum
observed in the dataset, the MAGNET algorithm took a total of just under 12 msec.

For future work, we want to investigate what would be the influence of giving the
supplier agents a preference for tasks would be upon the distance of the optimal
solution. In the logistical domain for example, drivers of trucks tend to have particular
preferences for tasks which is often taken into consideration by human planners.
Furthermore, we want to investigate the scaling of the algorithms for very large
datasets, consisting of for instance thousands of tasks that need to be allocated.

Acknowledgements

The authors would like to thank the logistics company for providing the data set.

References

[1] Briggs, P., The hand-off: the future of outsourced logistics may be found in the latest
buzzword [fourth party logistics]. Canadian Transportation Logistics, 102(5):18, 1999.

250

[2] Charikar, M. and Raghavachari, B. The finite capacity dial-a-ride problem. In 39th
Annual Symposium on Foundations of Computer Science} , page 458, Los Alamitos, CA,
USA, 1998. IEEE Computer Society.

[3] Chien,S., Barrett, A., Estlin, T., and Rabideau, G. A comparison of coordinated planning
methods for cooperating rovers. In Proc. of the Fourth Int’ l Conf. on Autonomous Agents,
pages 100--101. ACM Press, 2000.

[4] Collins, J. Solving Combinatorial Auctions with Temporal Constraints in Economic
Agents, PhD thesis, University of Minnesota, June 2002.

[5] Collins, J., Demir, G., and Gini, M. Bidtree ordering in IDA* combinatorial auction
winner-determination with side constraints, In J. Padget, O. Shehory, D. Parkes, N. Sadeh,
and W. Walsh, editors, Agent Mediated Electronic Commerce IV, volume LNAI2531,
pages 17—33, Springer-Verlag, 2002.

[6] Collins, J., Ketter, W. and Gini, M., A multi-agent negotiation testbed for contracting tasks
with temporal and precedence constraints. Int’ l Journal of Electronic Commerce, 7(1):35--
57, 2002.

[7] Cordeau, J. and Laporte, G., The dial-a-ride problem (darp): Variants, modeling issues and
algorithms, 4OR, 1, 2003.

[8] Cox, J.S., Durfee, E.H., and Bartold, T., A distributed framework for solving the
multiagent plan coordination Problem, In Autonomous Agents and Multi-Agent Systems,
pages 821--827, 2005.

[9] Desrochers, M., Desrosiers, J., and Solomon, M., A new optimization algorithm for the
vehicle routing problem with time windows, Operations Research, 40(2):342--354, 1992.

[10] Dias,M.B., Zlot, R.M., Kalra, N., and Stentz, A.T., Market-based multirobot coordination:
A survey and analysis, Technical Report CMU-RI-TR-05-13, Robotics Institute, Carnegie
Mellon University, Pittsburgh, PA, April 2005.

[11] Dorer, K. and Calisti, M., An adaptive solution to dynamic transport optimization, Proc. of
AAMAS05, pages 45--51, 2005.

[12] Durfee, E.H., Scaling up agent coordination strategies, IEEE Computer, 34(7):39--46, July
2001.

[13] Gerkey, B.P. and Mataric, M.J., Sold!: Auction methods for multi-robot coordination,
IEEE Trans. Robotics and Automation, 18(5):758--786, October 2002.

[14] Glass, A. and Grosz, B.J., Socially conscious decision-making, In Proc. of the Fourth Int’ l
Conf. on Autonomous Agents, pages 217--224, June 2000.

[15] Hoogendoorn, M. and Jonker, C.M., Formation of virtual organizations through
negotiation, In Proceedings of the Fourth German Conference on Multiagent
Technologies (MATES 2006), pages 135--146. Springer, 2006.

[16] Hunsberger, L., and Grosz, B.J., A combinatorial auction for collaborative planning, In
Proc. of 4th Int’ l Conf on Multi-Agent Systems, pages 151--158, Boston, MA, 2000, IEEE
Computer Society Press.

[17] Jaw, J.J, Odoni, A., Psaraftis, H., and Wilson, N., Heuristic algorithm for the multi-vehicle
advance request dial-a-ride problem with time windows, Transportation Research Part B,
20B:243--257, 1986.

[18] Kasilingam, R., Logistics and Transportation: Design and Planning} , Springer, 1999.
[19] Korf, R. E., Depth-first iterative deepening: An optimal admissible tree search, Artificial

Intelligence, 27:97--109, 1985.
[20] Krishna, V., Auction Theory, Academic Press, London, UK, 2002.
[21] Magnanti, T., Combinatorial optimization and vehicle fleet planning: Perspectives and

prospects, Networks, 11:179--214, 1981.
[22] Mailler, R. and Lesser, V., Solving distributed constraint optimization problems using

cooperative mediation, In Proc. of AAMAS04, 2004.
[23] Modi, P.J, Shen, W.-M., Tambe, M., and Yokoo, M., An asynchronous complete method

for distributed constraint optimization, In Proc. of AAMAS03, 2003.

251

[24] Moehlman, T.A., Lesser, V.R., and Buteau, B.L., Decentralized negotiation: An approach
to the distributed planning problem, Group Decision and Negotiation, 1:161--191, 1992.

[25] Notteboom, T., Container shipping and ports: An overview. Review of Network
Economics, 3(2):86--106, 2004.

[26] Scerri, P., Farinelli, A., Okamoto, S., and Tambe, M., Allocating tasks in extreme teams,
In Proc. of AAMAS05, pages 727--734, 2005.

[27] Schut, M.C., Kentrop, M., Leenaarts, M., Melis, M. and Miller, I., Approach:
Decentralised rotation planning for container barges., In Proceedings of the 16th European
Conference on Artificial Intelligence, pages 755--759, 2004.

[28] Smith, R.G., The contract net protocol: High level communication and control in a
distributed problem solver, IEEE Trans. Computers, 29(12):1104--1113, December 1980.

[29] Walsh, W.E., Wellman, M., and Ygge, F., Combinatorial auctions for supply chain
formation, In Proc. of ACM Conf on Electronic Commerce (EC'00), pages 260--269,
October 2000.

[30] Wellman, M., MacKie-Mason, J., Reeves, D., and Swaminathan, S., Exploring bidding
strategies for market-based scheduling, In Proc. of Fourth ACM Conf on Electronic
Commerce, 2003.

[31] Wellman, M.P., Walsh, W.E., Wurman, W.R. and MacKie-Mason, J.K., Auction protocols
for decentralized scheduling. Games and Economic Behavior, 35:271--303, 2001.

252

253

Part V:
Organizational Change Process:

Mixed Change Processes

254

255

Chapter 13

Automated Evaluation of Coordination Approaches
for Component-based Software Systems

Part of this chapter appeared as: Bosse, T., Hoogendoorn, M., and Treur, J.,
Automated Evaluation of Coordination Approaches. In: Ciancarini, P. and H.
Wiklicky, H. (eds.), Coordination Models and Languages: Proceedings of
COORDINATION 2006, LNCS 4038, Springer Verlag, 2006, pp. 44-62. The original
publication is available at www.springerlink.com.

256

257

Automated Evaluation of Coordination Approaches
for Component-based Software Systems

Tibor Bosse, Mark Hoogendoorn, and Jan Treur

Vrije Universiteit Amsterdam, Department of Artificial Intelligence
 De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands

{tbosse, mhoogen, treur}@cs.vu.nl, http://www.cs.vu.nl/~{tbosse, mhoogen, treur}

Abstract. How to coordinate the processes in a complex component-based
software system is a nontrivial issue. Many different coordination approaches
exist, each with its own specific advantages and drawbacks. To support their
mutual comparison, this paper proposes a formal methodology to automatically
evaluate the performance of coordination approaches. This methodology
comprises (1) creation of simulation models of coordination approaches, (2)
execution of simulation experiments of these models applied to test examples,
and (3) automated evaluation of the models against specified requirements.
Moreover, in a specific case study, the methodology is used to evaluate some
coordination approaches that originate from various disciplines.

1 Introduction

Coordinating the processes in a complex software system is a nontrivial issue. In a
nutshell, the problem of coordination comes down to deciding when the different
processes involved can be performed. For more precise definitions, see, e.g., [9, 21].
By a component-based approach to software systems, a divide and conquer strategy
can be used to address the various aspects involved. This may lead to a possibly large
number of components, which each can be analyzed and designed independently.
However, a designer may still be left with the problem how all these fragments can be
combined into a coherent system. To solve such a problem, many different
coordination approaches have been proposed, each having its advantages and
drawbacks. Important questions when choosing such a coordination approach are the
suitability, correct functioning, and efficiency of the approach for the particular
component-based system.

This paper presents a methodology to enable a comparison of such factors for the
different coordination approaches in a series of test examples. First of all, this
methodology allows for the creation of simulation models for each of the coordination
approaches. Secondly, it comprises an engine which simulates the different
coordination approaches for a variety of test examples. Finally, the methodology
consists of an automatic evaluation of the outcome of the simulations against
specified requirements (e.g. successfulness and efficiency).

The problem of coordination of component-based software systems has crucial
aspects in common with the problem of coordination in natural (biological), cognitive

258

(human and animal mind) or societal systems (organizational structures). Evolution
processes over long time periods have generated solutions for the coordination
problem in these areas. Therefore, it may make sense to analyze in more detail how
these solutions work. Some literature is available that describes theories for
coordination in these areas. This literature can be used as a source of inspiration to
obtain new approaches to coordination of complex component-based software
systems. As a first step, this paper evaluates a number of such approaches in a specific
case study, to see to what extent they provide satisfactory solutions.

First, in Section 2 the methodology and supporting software tools are described. In
Section 3 a number of coordination approaches obtained from the literature in various
disciplines are briefly introduced. Section 4 describes a set of test examples that can
be used as input for the evaluation of the coordination approaches. In Section 5 the
simulations that were undertaken to evaluate the usefulness of the coordination
approaches for the test examples are briefly discussed. Section 6 presents the results,
and Section 7 is a final discussion.

2 Evaluation Method

To explore possibilities to address the coordination problem, an evaluation
methodology, supported by a software environment, has been created, which consists
of the following steps: (a) a number of coordination approaches are selected, (b) a
number of test examples representing specific software component configurations are
chosen, (c) based on each of these coordination approaches a simulation model is
formally specified, (d) related to the test examples, relevant requirements are formally
specified in the form of relevant dynamic properties, (e) simulations are performed
where selected coordination approaches are applied to the chosen test examples,
resulting in a number of simulation traces, and (f) the simulation traces are evaluated
(automatically) for the specified requirements. Figure 1 gives a graphical overview of
the evaluation methodology.

To evaluate a given coordination approach, adequate test examples of component-
based software configurations are needed (step b). One may be tempted to use a real-
life component-based software system as a test example, e.g., consisting of hundreds
of components. However, such type of testing for one case would take a lot of effort,
and to get a reasonable idea it should be repeated for a representative number of
software systems at least. For this stage of the exploration this would not be
appropriate. Instead, a number of smaller but representative test examples have been
identified. As a source, the library of workflow patterns described in [1] has been
used. The examples given there have been extended with input and output data and
information flow channels.

259

Fig. 1. General research methodology

To test the selected coordination approaches on the chosen examples,
implementations have to be made. One way to do this would be to create specific
implementations for each of the (abstract) test examples, by explicitly defining the
internal functioning of the components involved. Next, one would add to these
implementations - one by one - implementations of the coordination approaches, and
then run each of these implementations. The resulting log data, which should include
a registration of the processing time, for example, in terms of processor time or
number of computation steps, can then be evaluated. Such an evaluation at an
implementation level, however, has some drawbacks: the specific implementations
chosen may affect the results, and the specific underlying software/hardware
combination may affect the processing times measured; e.g., think of aspects of
concurrency that within a software/hardware environment may have to be mapped
onto a form of interleaving of processes. Therefore a different approach is chosen: all
the testing is done within one given simulation environment. Within this environment,
one by one the processing of a software system based on one test example and one
coordination approach is simulated. In that case, the examples are defined at an
abstract level (i.e., only in terms of input-output relations, ignoring the internal
functioning). The measured time then is simulated time, not processing time. In
simulated time, processes can easily be active in parallel. The simulation environment
chosen is logic-based, so that the simulation models and the resulting simulation
traces can be logically analyzed, supported by another software environment.

To evaluate the resulting simulation traces, in the first place it is needed to identify
the relevant properties, serving as requirements, on which such an evaluation should
be based. A number of aspects can be covered in such requirements. A first aspect is
effectiveness or successfulness to provide the desired output for the example system.

Test Examples

Simulation
Model

Simulation
Traces

Automated
Checker

Dynamic
Properties

Evaluation:
YES/NO

Coordination
Approaches

260

When a coordination approach does not involve the right components at the right
times, and therefore is not able to generate the desired output, then it is not effective.
A second aspect to evaluate is efficiency: to what extent time is wasted in the process
to obtain the eventual goals. A third aspect is to what extent the coordination
approach is able to generate the possible activation traces one has in mind for the
given example. Such properties can be formally specified and automatically checked
for the simulation traces.

To support the evaluation method described, a software environment is used. By
means of this software environment, one can logically specify simulation models,
execute these models in order to get simulation traces, specify relevant dynamic
properties, and check such properties against simulation traces. For the simulation
part, the language LEADSTO is used [6], based on a variant of Executable Temporal
Logic [4]. The basic building blocks of this language are causal relations of the format
α →→e, f, g, h β, which means:

 if state property α holds for a certain time interval with duration g,
 then after some delay (between e and f) state property β will hold

for a certain time interval of length h.

where α and β are state properties of the form ‘conjunction of literals’ (where a literal
is an atom or the negation of an atom), and e, f, g, h non-negative real numbers. For the
analysis part, the language TTL is used [7]. This predicate logical language supports
formal specification and analysis of dynamic properties, covering both qualitative and
quantitative aspects. TTL is built on atoms referring to states, time points and traces.
A state of a process for (state) ontology Ont is an assignment of truth values to the set
of ground atoms in the ontology. The set of all possible states for ontology Ont is
denoted by STATES(Ont). To describe sequences of states, a fixed time frame T is
assumed which is linearly ordered. A trace γ over state ontology Ont and time frame T

is a mapping γ : T → STATES(Ont), i.e., a sequence of states γt (t ∈ T) in STATES(Ont).
The set of dynamic properties DYNPROP(Ont) is the set of temporal statements that can
be formulated with respect to traces based on the state ontology Ont in the following
manner. Given a trace γ over state ontology Ont, the state in γ at time point t is denoted
by state(γ, t). These states can be related to state properties via the formally defined
satisfaction relation |=, comparable to the Holds-predicate in the Situation Calculus:
state(γ, t) |= p denotes that state property p holds in trace γ at time t. Based on these
statements, dynamic properties can be formulated in a formal manner in a sorted first-
order predicate logic, using quantifiers over time and traces and the usual first-order
logical connectives such as ¬, ∧, ∨, �, ∀, ∃. A special software environment has
been developed for TTL, featuring both a Property Editor for building and editing
TTL properties and a Checking Tool that enables formal verification of such
properties against a set of (simulated or empirical) traces.

3 Coordination Approaches

As mentioned earlier, the coordination problem in software systems has crucial
aspects in common with the problem of coordination in natural (biological), cognitive

261

(human and animal mind) or societal systems (organizational structures). Therefore, a
large body of literature is available that describes coordination approaches in these
areas. In this section, some of the most well-known approaches are discussed. Section
3.1 focuses on the behavior networks approach by Pattie Maes [19]. Section 3.2
describes Selfridge’s pandemonium model [25], and Section 3.3 addresses the
decision-making techniques known as voting methods [20]. These approaches were
chosen for two reasons. First, because they are well-known approaches in the (wider)
literature in various disciplines on coordination. Second, because together they more
or less cover the area of different coordination approaches: the behavior networks use
a rather global and sequential strategy (i.e., the approach determines which
component is activated based on global information concerning all components),
whereas voting methods and (especially) the pandemonium model use a local and
possibly nonsequential strategy (i.e., the components involved only use information
about themselves or their direct neighbors to determine which component is
activated).

3.1 Behavior Networks

Behavior networks have been introduced by Pattie Maes in 1989. She distinguishes
competence modules within a system, where each module is specified by a tuple
containing four elements: (1) a list of preconditions to be fulfilled before a
competence module can become active; (2) the competence module’s action in terms
of an add list; (3) the competence module’s actions in terms of a delete list; (4) a level
of activation. A competence module is said to be executable in case the list of
preconditions is fulfilled. A network of competence modules is created via three types
of links: successor links (a link from x to y for every element on the add list of x
which is on the preconditions list of y), predecessor links (a link from x to y for every
element on the precondition list of x which is on y’s add list), and conflictor links (a
link from x to y for every element on the precondition list of y which is on x’s delete
list). Through these links the competence modules activate and inhibit each other, so
that “after some time the activation energy accumulates in the modules that represent
the ‘best’ actions to take given the current situation and goals” [19]. The patterns of
these spreading activations among modules, as well as the input of new activation
energy into the network, is determined by the state of the environment and goals via
three ways: activation by state (add activation to modules that (partially) match the
current state), activation by goals (add activation to modules which (partially) achieve
the goals), and inhibition by protected goals (remove activation from modules that
(partially) remove the protected goals). Thereafter, activation spreads through the
network via activation of successors, activation of predecessors, and inhibition of
conflictors. After having spread the activation, a decay phase makes sure the overall
activation remains constant within the network. Once performed, a competence
module fires in case it is executable, the activation is over the threshold that has been
set, and it is the competence module with the highest activation. In case the module
indeed fires, its activation goes to 0, and all thresholds return to their normal value. In
case no module fires, the threshold is reduced by 10%. For more mathematical details,
see [19].

262

3.2 The Pandemonium Model

In 1958, Selfridge proposes an approach he calls pandemonium, to enable pattern
recognition [25]. This is a system composed of primitive constructs called demons,
each representing a possible pattern. Once an image is presented, each of the demons
computes the similarity of the image with the pattern it represents, and gives an output
depending monotonically on that similarity. Finally, a decision demon selects the
pattern belonging to the demon whose output is largest.

Jackson [16] extends this idea to a theory of mind. Besides demons involved in
perception, he also identifies demons that cause external actions and demons that act
internally on other demons. Jackson pictures the demons as living in a stadium.
Almost all of them are the crowd, cheering on the performers. The remainder of the
demons are down on the playing field, exciting the crowd in the stands. Demons in
the stands respond selectively to these attempts to excite them. Some are more excited
than others; some shout louder. The demon in the stands that shouts loudest replaces
one of the currently performing demons, which is sent back to the stands. The
loudness of the shouting of a demon is dependent upon being linked with the demon
that must excite. Stronger links produce louder responses. The system starts off with
initial built-in links between the demons. New links are made between demons, and
existing links are strengthened in proportion to the time they have been together on
the field, plus the gain of the system (i.e., when all is going well, the gain is higher).

3.3 Voting Methods

The concept of voting refers to a wide collection of techniques that are used to
describe decision-making processes involving multiple agents. Although originating
from political science, voting methods are currently used within a number of domains,
including game theory (where they are used as methods for conflict resolution) and
pattern recognition (where they are used to combine classifier outputs).

The general idea of voting methods is rather intuitive, and is comparable to the
techniques used in elections. Consider a set of agents N, and a set of possible
outcomes S of an election. Each agent i ∈ N has preferences over the outcomes: ≤i ⊆
S x S. The voting approach uses a function F that selects a candidate outcome S,
given the preferences of the voters. A simple instance of F would be to count all
votes, and to select the outcome with the highest amount of votes. However, a large
number of (more complex) voting approaches exist. These can roughly be divided
into three classes: unweighed voting methods in which each vote carries equal weight,
confidence voting methods in which voters can express a degree of preference for a
candidate, and ranked voting methods in which the voters are asked for a preference
ranking over the candidates. See [20] for an overview of different voting methods.

As mentioned above, voting methods are currently used in many different domains,
such as game theory and pattern recognition. In this paper it will be explored whether
they are of any use to solve coordination problems in complex (component-based)
software systems. To this end, the electorate will be filled in by certain components,
and the candidates by the possible activations of components.

263

4 Test Examples

Test examples have been identified to test the different coordination approaches. The
examples were inspired by the workflow patterns defined by van der Aalst et al. [1].
These patterns can be seen as building blocks for more complex patterns occurring in
real-life component-based systems. In total, seven test examples have been described,
which are discussed below. A test example consists of a number of components,
called {C1, C2,..}, and several types of data, called {d1, d2,..}. Different components
need different data as input, and create different data as output.

Pattern 1 - Sequence

The first workflow pattern defined by [1] is straightforward: it involves three
components. After completion of the first component, the second component is
activated, and after completion of the second, the third component is activated.

On the basis of this pattern, a next step was to create a corresponding test example.
In principle, this means defining an example (in terms of components and data) in
such a way that, if provided as input to a coordination approach, pattern 1 will come
out. A visualization of such an example is given in Figure 2. In this case component
C1 needs data d1 as input, and creates data d2 as output. Moreover, as indicated in the
box on the right, the input data (the data that is initially available to the system) is d1,
and the goal data (the data that the system needs to create in order to be successful) is
d4. Given this situation, the expectation is that if any coordination approach is applied
to the example, the result will be a trace in which the components are activated in
sequence (i.e., first C1, then C2, and then C3). Note that it is assumed that data is
shared, i.e., whenever a component generates output data, this data is immediately
available to all other components in the system. This could be implemented, for
example, by incorporating a shared repository, where all components store their
output data and read their input data from. Another assumption is that data cannot be
removed. Thus, once data is written to the shared repository, it will stay there. Other
approaches such as explicit communication channels can however easily be
incorporated into the methodology.

Fig. 2. Test example 1 – Sequence

Pattern 2 – Parallel Split

The second example, the parallel split, is depicted in Figure 3. In order to translate the
actual pattern to the test example in the figure, the same approach as described for the

Input data: d1

Goal data: d4

C1
 d2 d1

C2
 d3 d2

C3
 d4 d3

264

first pattern has been used. Here, the components C2 and C3 can be executed either
simultaneously or in any order.

Fig. 3. Test example 2 - Parallel Split

Note that in this case the ∧ stands for the conjunction of two data types. For example,
the output data of component C1 is d2 and d3. Likewise, the goal data is d4 and d5.

Pattern 3 - Synchronization

The synchronization pattern is depicted in Figure 4. Here, C1 and C2 can be executed
either simultaneously or in any order.

Fig. 4. Test example 3 – Synchronization

Note that in this case it is assumed that a component cannot reason with “partial” data
(this would be the case when, e.g., component C3 starts reasoning with d2 only,
whilst its input data is d2 and d3).

C1

d2∧d
3

 d1

C2

 d4 d2

C3

 d5 d3

Input data: d1

Goal data: d4∧d5

C1

d2 d1

C2

d3 d1

C3

d4 d2∧d
3

Input data: d1

Goal data: d4

265

Pattern 4 – Exclusive Choice

The exclusive choice pattern, is depicted in Figure 5. Here, either component C2 or
component C3 may be activated, but not both.

Fig. 5. Test example 4 - Exclusive Choice

Note that in this case the XOR stands for the exclusive disjunction of two data types.
For example, the output data of component C1 is either d2 or d3, but not both. The
specific output generated by the component may differ in different simulation runs.

Pattern 5 – Simple Merge

The simple merge is depicted in Figure 6. Here, either component C1 or component
C2 may be activated, but not both.

Fig. 6. Test example 5 - Simple Merge

Note that in this case the input data is the exclusive disjunction of d1 and d2, i.e., in
some simulation runs it is d1, and in others it is d2.

C1

 XOR(d2,d3) d1

C2

d4 d2

C3

d4 d3

Input data: d1

Goal data: d4

C1

d3 d1

C2

d3 d2

C3

d4 d3

Input data:
XOR(d1,d2)

Goal data: d4

266

Pattern 6 – Multi-Choice

The sixth pattern, the multi choice, is depicted in Figure 7. Here, either component
C2, or component C3, or both components may be activated.

Fig. 7. Test example 6 - Multi Choice

Note that in this case the ∨ stands for the standard disjunction of two data types. Thus,
in this case the goal data of the system is d4 or d5 or both.

Pattern 7 - Synchronizing Merge

Pattern 7 involves four components. After completion of the first component, there is
a choice between the second and third component: either one of them can be
activated, or both. In case one of them is activated, the fourth component is activated
after this component has completed. In case both of them are activated, the fourth
component is activated after both have completed.

The test example that was created on the basis of this pattern is shown in Figure 8.
As can be seen in the figure, in this example both a conjunction in a component’s
output data and a disjunction in a component’s input data occur. Furthermore, note
that, when formalizing this example in LEADSTO, the disjunction on the input side
of C4 is modeled by defining three separate variants of C4: one variant (called C4)
with d4 as input, one variant (called C5) with d5 as input, and one variant (called C6)
with d4 and d5 as input.

Fig. 8. Test example 7 - Synchronizing Merge

Input data: d1

Goal data: d6

C1
d2∧d3 d1

C2
 d4 d2

C3
 d5 d3

C4
 d6 d4∨d5

C1

d2∧d
3

d1

C2

d4 d2

C3

d5 d3

Input data: d1

Goal data: d4∨d5

267

In the next section, these seven test examples will be used as a basis for simulation
experiments. For more details about the original workflow patterns, the user is
referred to [1]. For an explanation of how these workflow patterns can be related to
the area of business process modeling, see [10].

5 Simulation

To compare the coordination approaches described in Section 3 against the test
examples shown in Section 4, a number of simulation experiments have been
performed. First, the three selected coordination approaches have been implemented
in the LEADSTO simulation language (see [5] for implementation details). Next, the
implemented simulation models have been applied to the test examples. The
simulation models for the behavior networks, the pandemonium, and the voting
method, are addressed, respectively, in Section 5.1, 5.2, and 5.3. For each simulation
model, two example simulation traces (resulting from applying the model to test
example 1 and 7) are provided. The complete set of simulation traces can be found in
[5].

5.1 Behavior Networks Simulation

The simulation model for Maes’ behavior networks is created on the basis of the
mathematical model as presented in [19]. There is one difference: within the
simulation model, the lowering of the threshold is not performed, as the available data
does not change due to external influences (i.e., the highest executable component
will remain the highest until a component has been activated). Therefore, the highest
executable component is simply selected, avoiding unnecessary computation. The
LEADSTO specification for the approach roughly corresponds to the description in
Section 3.1. Table 1 shows the ontology used in the simulation model.

Table 1. Ontology used within the behavior networks simulation model

Relation Description
input_from_state: TIME x COMPONENT x
VALUE

At the time point the component gets the
value for activation through the state at that
time point.

input_from_goals: TIME x COMPONENT x
VALUE

At the time point the component gets the
value for activation through the goals that
have been set.

spreads_fw: COMPONENT x COMPONENT
x TIME x VALUE

At the specified time point the specified
activation spreads forwards from the first
component to the second

spreads_bw: COMPONENT x COMPONENT
x TIME x VALUE

At the specified time point the specified
activation spreads backwards from the first
component to the second

executable: TIME x COMPONENT This specifies that the component is
executable at the particular time point.

decay: TIME x COMPONENT x VALUE The component has the specified decay value
at the particular time point.

268

alpha: TIME x COMPONENT x VALUE The component has the specified alpha value
at the particular time point.

active: TIME x COMPONENT x VALUE This relationship specifies whether or not a
component was active at a particular time
point. In case VALUE is 1 this is the case, in
case of a 0 this is not the case.

activated: COMPONENT The component is activated.

Pattern 1
Figure 9 shows the simulation trace that resulted from applying the behavior networks
approach to the first test example. The left side of the figure shows the state properties
that occur during the simulation, whereas the right side shows a time line where a
dark box indicates the state property being true and a light box the state property
being false.

Initially, the data present is set to d1: data(d|1). Furthermore, the goal is set to d4 for
this particular scenario: goal(d|4). Before executing the model several initial values are
set to enable a proper functioning. First of all, the activation values (referred to as the
alpha values) of the components currently present in the system are set to 0 for the
time point before the current time point (i.e. time point 0): alpha(0, c|1, 0), alpha(0, c|2, 0),
and alpha(0, c|3, 0). Furthermore, the components’ activity at time point 0 is set to 0 as
well: active(0, c|1, 0), active(0, c|2, 0), and active(0, c|3, 0). Now the model is executed. First of
all, it is determined that only component C1 is executable given the current data
available: executable(1, c|1). Then, calculations are performed to determine the activity
within the different component. To enable these calculations, several intermediate
steps are taken. First of all, the input from the current state is calculated (i.e. given the
current data available what is the activation caused for the different components).
Since component C1 is the only component that has its preconditions fulfilled, it is the
only component to have activation from this source: input_from_state(1, c|1, 0.1). Another
intermediate step is to calculate the input from the goals. Since only C3 has a goal as
an output, this component is the only one to receive activation through this source:
input_from_goals(1, c|3, 0.3). Due to the fact that the previous alpha value is 0, no activation
is spread around the network, so the decay can be calculated for the three components
present in the system by simply summing up the input from the goals and state per
component: decay(1, c|1, 0.1), decay(1, c|2, 0), and decay(1, c|3, 0.3). Calculating the alpha
value entails normalizing these numbers. The maximum activation is set to 1 in this
example, resulting in the following alpha values: alpha(1, c|1, 0.25), alpha(1, c|2, 0), and
alpha(1, c|3, 0.75). As a result, component C1 is activated as this is the executable
component with the highest alpha value: active(1, c|1, 1), active(1, c|2, 0), and active(1, c|3, 0).
Due to the activity of component C1 its output data is generated, which shows in the
trace by means of the presence of data d2: data(d|2).

After that, a new round of the model is performed; both components C1 and C2
are now derived to be executable, since the data is assumed to remain present
permanently. The input from the goals remains the same as these have not changed.
The input from the current state however changes due to the additional data d2 being
present, resulting in an input from state for component C2 as well: input_from_state(2, c|2,

0.1). Since C3 was not active at the previous time point, its activation spreads back
through the network, resulting in a backwards spread from C3 to C2: spreads_bw(c|3, c|2,

269

2, 0.75). Calculation of the decay can now be performed: decay(2, c|1, 0.1), decay(2, c|2, 0.85),
and decay(2, c|3, 1.05). Normalization takes place and eventually C2 is selected, resulting
in data d3 being present. In the last cycle, C3 is selected with by far the highest alpha
value, resulting in the overall goal being reached: data(d|4).

current_time(1)
data((d|1))
goal((d|4))

alpha(0, (c|1), 0)
alpha(0, (c|2), 0)
alpha(0, (c|3), 0)
active(0, (c|1), 0)
active(0, (c|2), 0)
active(0, (c|3), 0)

executable(1, (c|1))
input_from_state(1, (c|2), 0)
input_from_state(1, (c|3), 0)
input_from_goals(1, (c|1), 0)
input_from_goals(1, (c|2), 0)

input_from_goals(1, (c|3), 0.3)
input_from_state(1, (c|1), 0.1)

decay(1, (c|3), 0.3)
decay(1, (c|1), 0.1)

decay(1, (c|2), 0)
alpha(1, (c|1), 0.25)

alpha(1, (c|2), 0)
alpha(1, (c|3), 0.75)

active(1, (c|1), 1)
active(1, (c|2), 0)
active(1, (c|3), 0)

data((d|2))
current_time(2)

executable(2, (c|1))
executable(2, (c|2))

input_from_state(2, (c|3), 0)
input_from_goals(2, (c|1), 0)
input_from_goals(2, (c|2), 0)

input_from_goals(2, (c|3), 0.3)
input_from_state(2, (c|2), 0.1)

spreads_bw((c|3), (c|2), 2, 0.75)
input_from_state(2, (c|1), 0.1)

decay(2, (c|1), 0.1)
decay(2, (c|2), 0.85)
decay(2, (c|3), 1.05)
alpha(2, (c|1), 0.05)

alpha(2, (c|2), 0.425)
alpha(2, (c|3), 0.525)

active(2, (c|1), 0)
time 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Fig. 9. Simulation Trace - Behavior Networks against Test Example 1
 (continued on next page)

270

active(2, (c|2), 1)
active(2, (c|3), 0)

data((d|3))
current_time(3)

executable(3, (c|1))
executable(3, (c|2))
executable(3, (c|3))

input_from_goals(3, (c|1), 0)
input_from_goals(3, (c|2), 0)

input_from_goals(3, (c|3), 0.3)
input_from_state(3, (c|3), 0.1)
input_from_state(3, (c|2), 0.1)
input_from_state(3, (c|1), 0.1)

decay(3, (c|1), 0.15)
decay(3, (c|2), 0.1)

decay(3, (c|3), 0.925)
alpha(3, (c|1), 0.12766)

alpha(3, (c|2), 0.0851064)
alpha(3, (c|3), 0.787234)

active(3, (c|1), 0)
active(3, (c|2), 0)
active(3, (c|3), 1)

data((d|4))
time 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Fig. 9(contd). Simulation Trace - Behavior Networks against Test Example 1

Pattern 7
Figure 10 presents a simulation trace that has resulted from executing the approach on
test example 7. Initially, the data present is set to d1: data(d|1). Furthermore, the goal is
set to d6 for this particular scenario: goal(d|6). Before starting, the alpha values are set
to 0 for the time point before the current time point (i.e. time point 0): alpha(0, c|1, 0),
alpha(0, c|2, 0), alpha(0, c|3, 0), alpha(0, c|4, 0), alpha(0, c|5, 0), and alpha(0, c|6, 0). Thereafter
calculations are performed to determine the activity within the different components:
The input from the current state is calculated (i.e. given the current data available,
calculate the activation caused for the different components) as well as the input from
the goals. Since only C4, C5, and C6 have a goal as an output, these components are
the only ones to receive activation through this source. Due to the fact that the
previous alpha value is 0, no activation is spread around the network. The next alpha
value for the six components present in the system is therefore obtained by simply
summing up the input from the goals and state per component, and normalizing it to
1: alpha(1, c|1, 0.25), alpha(1, c|2, 0), alpha(1, c|3, 0), alpha(1, c|4, 0.25), alpha(1, c|5, 0.25), and alpha(1,

c|6, 0.25). As a result, component C1 is activated, as this is the executable component
with the highest alpha value: activated(c|1). Due to the activity of component C1, its
output data is generated, which is shown in the trace: the presence of data d2 and d3:
data(d|2) and data(d|3).

After that, a new round of computation is performed; the input from the goals
remains the same, as these have not changed. However, the input from the current
state changes, due to the additional data d2 and d3 being present. Furthermore,

271

data((d|1))
goal((d|6))

alpha(0, (c|1), 0)
alpha(0, (c|2), 0)
alpha(0, (c|3), 0)
alpha(0, (c|4), 0)
alpha(0, (c|5), 0)
alpha(0, (c|6), 0)

alpha(1, (c|1), 0.25)
alpha(1, (c|2), 0)
alpha(1, (c|3), 0)

alpha(1, (c|4), 0.25)
alpha(1, (c|5), 0.25)
alpha(1, (c|6), 0.25)

activated((c|1))
data((d|2))
data((d|3))

alpha(2, (c|1), 0.0425532)
alpha(2, (c|2), 0.255319)
alpha(2, (c|3), 0.255319)
alpha(2, (c|4), 0.148936)
alpha(2, (c|5), 0.148936)
alpha(2, (c|6), 0.148936)

activated((c|2))
data((d|4))

alpha(3, (c|1), 0.0800239)
alpha(3, (c|2), 0.0561362)

alpha(3, (c|3), 0.366677)
alpha(3, (c|4), 0.167811)
alpha(3, (c|5), 0.163631)
alpha(3, (c|6), 0.165721)

activated((c|3))
data((d|5))

alpha(4, (c|1), 0.130139)
alpha(4, (c|2), 0.11287)

alpha(4, (c|3), 0.0722897)
alpha(4, (c|4), 0.229745)
alpha(4, (c|5), 0.226723)
alpha(4, (c|6), 0.228234)

activated((c|4))
data((d|6))

time 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Fig. 10. Simulation Trace - Behavior Networks against Test Example 7

activation is now spread through the network, since the previous alpha values are non-
zero. After calculation and normalization the following alpha values are the result:
alpha(1, c|1, 0.0425532), alpha(1, c|2, 0.255319), alpha(1, c|3, 0.255319), alpha(1, c|4, 0.148936), alpha(1,

c|5, 0.148936), and alpha(1, c|6, 0.148936). Since both C2 and C3 are executable and have the
highest alpha value, one of them is randomly selected; in Figure 10 this is component
C2.

As can be seen in the figure, after activation of C2, component C3 is activated.
Finally, C4 is activated, outputting the goal data, which results in termination.

272

5.2 Pandemonium Simulation

The pandemonium is used as described in Section 3.2, but modified with some
simplifying assumptions. In particular, the following procedure is assumed: at the
beginning of the process, only the initial data is placed at the shared repository.
Whenever new data has been added to the repository, a new round starts in which all
components can shout. The idea is that, the more urgent a component thinks it is for
him to be activated, the louder it will shout. The component that shouts loudest will
be allowed to start processing. In case two components shout with exactly the same
strength, then either the first component, or the second component, or both are
activated (this decision is made randomly, with equal probabilities). When a
component is activated, this results in the component adding its output data to the
shared repository (see Section 4), and the start of a new round.

To determine how loud they will shout, the components make use of a shout
function. For different variants of the pandemonium model, different shout functions
may be used. In the current model, each component uses the following types of
information in its shout function at time point t:

• the amount of data it needs as input (represented by i1)
• the amount of its input data that is available at t (represented by i2)
• the amount of data it produces as output (represented by o1)
• the amount of its output data that is already present at t (represented by o2)
• the highest i1 for the set of components (represented by max_i)
• the highest o1 for the set of components (represented by max_o)

Given these elements, the shout value (i.e., the strength with which a component
shouts, represented by sv) is modeled as follows:

sv = (i2/i1)β1 * (1 - o2/o1)β2 * (i1/max_i)β3 * (o1/max_o)β4

Here, β1, β2, β3, and β4 are real numbers between 1 and 1.5, indicating the importance
of the corresponding factor. Several settings have been tested for these parameters. In
the examples shown here, β1=1.4, β2=1.3, β3=1.1, and β4=1.2. Since the factors can
never exceed 1, the shout value sv will be a value between 0 and 1. The ontology used
in the pandemonium simulation is shown in Table 2.

Table 2. Ontology used within the pandemonium simulation model

Relation Explanation
data: DATA This specifies that a certain type of data is

present in the repository.
shout: COMPONENT x VALUE A component shouts with a certain (real)

value.
active_component: COMPONENT A component is activated.

Pattern 1
Figure 11 shows the simulation trace of the pandemonium approach for pattern 1.

273

data((d|1))
data((d|2))
data((d|3))
data((d|4))

shout((c|1), 0.0)
shout((c|1), 1.0)
shout((c|2), 0.0)
shout((c|2), 1.0)
shout((c|3), 0.0)
shout((c|3), 1.0)

active_component((c|1))
active_component((c|2))
active_component((c|3))

time 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40

Fig. 11. Simulation Trace - Pandemonium against Test Example 1

As can be seen in Figure 11, initially the only data that is present is d1: data(d|1). Based
on these data, every component starts shouting. Component C1 shouts loudest (with
strength 1.0, whilst the others shout with strength 0.0): shout(c|1, 1.0), shout(c|2, 0.0), and
shout(c|3, 0.0). Thus, component C1 is selected to become active: active_component(c|1). As
a result, component C1 creates data d2, which is stored at the repository as well:
data(d|2). Again, every component starts shouting. Component C2 shouts loudest (with
strength 1.0, whilst the others shout with strength 0.0): shout(c|1, 0.0), shout(c|2, 1.0), and
shout(c|3, 0.0). Next, component C2 is selected to become active: active_component(c|2).
Next, component C2 creates data d3, which is stored at the repository as well: data(d|3).
Again, every component starts shouting. Component C3 shouts loudest (with strength
1.0, whilst the others shout with strength 0.0): shout(c|1, 0.0), shout(c|2, 0.0), and shout(c|3,

1.0). Next, component C3 is selected to become active: active_component(c|3). Eventually,
component C3 creates data d4, which is stored at the repository as well: data(d|4). Since
d4 is the goal data, at this point the process terminates.

Pattern 7
Figure 12 depicts the simulation trace that has resulted from applying the
pandemonium approach to test example 7. As the figure shows, initially the only data
that is present is d1: data(d|1). Based on these data, every component starts shouting.
Component C1 shouts loudest (with strength 0.47, whilst the others shout with
strength 0.0): shout(c|1, 0.466516), shout(c|2, 0.0), ..., shout(c|6, 0.0). Thus, component C1 is
selected to become active: active_component(c|1). As a result, C1 creates data d2 and d3,
which are stored at the repository as well: data(d|2), data(d|3). Then again, every
component starts shouting. This time, both component C2 and C3 shout loudest (with
strength 0.20, whilst the others shout with strength 0.0): shout(c|1, 0.0), shout(c|2, 0.203063),

shout(c|6, 0.0). As a result, both component C2 and C3 are selected to become active:
active_component(c|2), active_component(c|3). Note that this selection is based on the
assumption that multiple components may be activated at the same time. If this is not
allowed, the approach would select one of the components at random. Next,
component C2 creates data d4, and component C3 creates data d5. These data are
stored at the repository: data(d|4), data(d|5). Again, every component starts shouting.

274

data((d|1))
data((d|2))
data((d|3))
data((d|4))
data((d|5))
data((d|6))

shout((c|1), 0.0)
shout((c|1), 0.466516)

shout((c|2), 0.0)
shout((c|2), 0.203063)

shout((c|3), 0.0)
shout((c|3), 0.203063)

shout((c|4), 0.0)
shout((c|4), 0.203063)

shout((c|5), 0.0)
shout((c|5), 0.203063)

shout((c|6), 0.0)
shout((c|6), 0.435275)

active_component((c|1))
active_component((c|2))
active_component((c|3))
active_component((c|6))

time 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40

Fig. 12. Simulation Trace - Pandemonium against Test Example 7

Component C6 (which is a specific variant of C4, see the description of the example)
shouts loudest (with strength 0.44): shout(c|1, 0.0), shout(c|2, 0.0), shout(c|6, 0.435275). Thus,
component C6 is selected to become active: active_component(c|6). Eventually,
component C6 creates data d6, which is stored at the repository: data(d|6). Since d6 is
the goal data, at this point the process terminates.

5.3 Voting Simulation

The simulation of the voting method uses the same assumptions as the pandemonium
method, with one difference: instead of shouting, all components can vote. The idea is
that each component can vote on only one component (possibly on itself). After all
components have voted, the votes are counted, and the component with most votes
will be allowed to start processing. To determine on whom they will vote, the
components make use of a voting procedure. For different variants of the voting
method, different voting procedures may be used. In the current model, each
component follows the following procedure:

1. if my input is present, and my output is not, then I vote for myself
2. if my input is not present, and this input is generated by one other component, vote for that component
3. if my input is not present, and this input is generated by n>1 other components, vote for one of those

components (at random)
4. if my output is present, and this output is used by one other component, vote for that component
5. if my output is present, and this output is used by n>1 other components, vote for one of those

components (at random)

275

6. if my output is present, and this output is used by no other components (i.e., it is part of the goal data),
do not vote

Note that this approach assumes a local perspective of the components. This means
that each component only has knowledge about itself and its direct neighbors. For
example, each component knows which other components need the data that it
produces as input, but does not know which data these other components produce as
output. The ontology used in the simulations is shown in Table 3.

Table 3. Ontology used within the voting simulation model

Relation Explanation
data: DATA This specifies that a certain type of data is

present in the repository.
vote_for: COMPONENT x COMPONENT A component votes for a certain (other)

component.
active_component: COMPONENT A component is activated.

Pattern 1
As can be seen in the simulation trace of the first pattern, shown in Figure 13, initially
the only data that is present is d1: data(d|1). Based on these data, every component
starts voting: vote_for(c|1, c|1), vote_for(c|2, c|1), and vote_for(c|3, c|2). Component C1 receives
2 votes, component C2 receives one vote, and component C3 receives no votes. Thus,
component C1 is selected to become active: active_component(c|1). As a result,
component C1 creates data d2, which is stored at the repository as well: data(d|2).

data((d|1))
data((d|2))
data((d|3))
data((d|4))

vote_for((c|1), (c|1))
vote_for((c|1), (c|2))
vote_for((c|2), (c|1))
vote_for((c|2), (c|2))
vote_for((c|2), (c|3))
vote_for((c|3), (c|2))
vote_for((c|3), (c|3))

active_component((c|1))
active_component((c|2))
active_component((c|3))

time 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70

Fig. 13. Simulation Trace - Voting against Test Example 1

Again, every component starts voting: vote_for(c|1, c|2), vote_for(c|2, c|2), and vote_for(c|3, c|2).
Component C2 receives all 3 votes and is thus selected to become active:
active_component(c|2). Next, component C2 creates data d3, which is stored at the
repository as well: data(d|3). Again, every component starts voting: vote_for(c|1, c|2),
vote_for(c|2, c|3), and vote_for(c|3, c|3). Component C3 receives 2 votes, component C2
receives one vote, and component C1 receives no votes. Thus, component C3 is
selected to become active: active_component(c|3). Eventually, component C3 creates data

276

d4, which is stored at the repository as well: data(d|4). Since d4 is the goal data, at this
point the process terminates.

Pattern 7
Figure 14 depicts the simulation trace that has resulted from applying the voting
approach to test example 7. Initially the only data that is present is d1: data(d|1). Based
on these data, every component starts voting: vote_for(c|1, c|1), vote_for(c|2, c|1), vote_for(c|3,

c|1), vote_for(c|4, c|2). Component C1 receives 3 votes, component C2 receives one vote,
and the other components receive no votes. Thus, component C1 is selected to
become active: active_component(c|1). As a result, C1 creates data d2 and d3, which are
stored at the repository as well: data(d|2), data(d|3). Then again, every component starts
voting: vote_for(c|1, c|3), vote_for(c|2, c|2), vote_for(c|3, c|3), vote_for(c|4, c|3). Component C3
receives 3 votes, component C2 receives one vote, and the other components receive
no votes. Thus, component C3 is selected to become active: active_component(c|3). Next,
component C3 creates data d5, which is stored at the repository: data(d|5). Voting starts
again: vote_for(c|1, c|2), vote_for(c|2, c|2), vote_for(c|3, c|5), vote_for(c|4, c|2). Component C2
receives 3 votes, component C5 (which is a specific variant of C4) receives one vote,
and the others receive no votes. Thus, component C2 is now selected to become
active: active_component(c|2). Component C2 creates data d4, which is stored at the
repository: data(d|4). In the next round, the components vote as follows: vote_for(c|1, c|2),

vote_for(c|2, c|6), vote_for(c|3, c|6), vote_for(c|4, c|6). Component C6 (which is a specific variant
of C4) receives 3 votes, component C2 receives one vote, and the others receive no
votes. Consequently, component C6 is selected to become active: active_component(c|6).
Eventually, component C6 creates data d6, which is stored at the repository: data(d|6).
Since d6 is the goal data, at this point the process terminates.

data((d|1))
data((d|2))
data((d|3))
data((d|4))
data((d|5))
data((d|6))

vote_for((c|1), (c|1))
vote_for((c|1), (c|2))
vote_for((c|1), (c|3))
vote_for((c|2), (c|1))
vote_for((c|2), (c|2))
vote_for((c|2), (c|6))
vote_for((c|3), (c|1))
vote_for((c|3), (c|3))
vote_for((c|3), (c|5))
vote_for((c|3), (c|6))
vote_for((c|4), (c|2))
vote_for((c|4), (c|3))
vote_for((c|4), (c|6))

active_component((c|1))
active_component((c|2))
active_component((c|3))
active_component((c|6))

time 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70

Fig. 14. Simulation Trace - Voting against Test Example 7

277

6 Evaluation

This section addresses the evaluation of the performance for the different approaches
that have been simulated as described above. This evaluation can be performed from
multiple perspectives. First of all, the achievement of the goals that have been set for
the system are an important evaluation criterion. This criterion is worked out in
Section 6.1. Secondly, an element in the evaluation is the efficiency of the approach
(see Section 6.2). Finally, patterns can be specified which are (allowed) to occur in
the component configurations used as test examples, and it can be checked whether a
coordination approach indeed identifies these patterns (see Section 6.3). To enable
automated checking of the results of the approaches, a formal specification of these
three different types of properties is required. For this purpose, the language TTL
introduced in Section 2 is used. After a formal description has been obtained, the
automated TTL-checker [7] can be used to see how well the approach performs.

6.1 Successfulness

The first property to be checked is called successfulness. Informally, this property states
that in the trace γ all goal data d will eventually be derived. Formally:

successfulness(γ:TRACE) ≡
∀t:TIME, d:DATA [state(γ, t) = goal(d) �
∃t2:TIME [t2 ≥ t ∧ state(γ, t2) |= data(d)]]

The results of automatically checking this property against the traces that were
generated in the simulation show that all approaches eventually find the solution for
the examples that have been used. Prerequisite is that there must exist at least one
path to the solution.

6.2 Efficiency

Efficiency can be viewed from multiple perspectives. First, one can look at the
efficiency of the solution path found by the approach. For now, it is assumed that each
component takes an equal amount of time to obtain its output. Therefore, the most
efficient solution is simply the solution in which the least amount of components have
been activated. Another way to describe efficiency is the efficiency of the approach
itself, i.e., the amount of computation time the approach needs to generate a solution.
The approach taken in this section is to check whether the shortest activation path is
used to reach the goals that are set. For the formalization of this property, it is
assumed that the length of the shortest path is known for the particular example being
checked:

efficiency(γ:TRACE, shortest_path:INTEGER) ≡≡≡≡
successfulness(γ) ∧ component_activations(γ, shortest_path)

To enable a definition of the amount of activations of a component, first the activation
of one component is defined, including its interval:

has_activation_interval(γ:TRACE, c:COMPONENT, tb:TIME, te:TIME) ≡

278

tb < te ∧ state(γ,te) |≠ activated(c) ∧
[∀t tb≤t<te � state(γ,t) |= activated(c)] ∧
∃t1<tb [∀t2 t1≤t2<tb � state(γ,t2) |≠ activated(c)]

An example of a definition for a trace with one component activation is shown below.

component_activations(γ:TRACE, 1) ≡
∃c:COMPONENT, tb:TIME, te:TIME
has_activation_interval(γ, c:COMPONENT, tb:TIME, te:TIME) ∧
[∀c2:COMPONENT, tb2:TIME, te2:TIME
[has_activation_interval(γ, c2:COMPONENT, tb2:TIME, te2:TIME) � c = c2 ∧ tb = tb2 ∧ te = te2]]

Table 4 shows the outcome of checking the property efficiency in the TTL Checker
for the generated traces. A plus indicates that in all generated traces the efficient
solution was found; a minus indicates that no efficient solution is found in at least one
of the generated traces.

Table 4. Efficiency of the different approaches on the examples

Example Behavior Networks Pandemonium Voting
Sequence + + +
Parallel Split + + -
Synchronization + + +
Exclusive choice + + +
Simple Merge + + +
Multi Choice - - +
Synchronizing merge - - -

For the first five examples, both the behavior networks and the pandemonium

always find the optimal path to the solution. For voting, the optimal solution for the
parallel split is not always found: apparently, there are situations when this approach
is not efficient. This is mainly due to the fact that the voting components have only
local information. As a result, their voting behavior is not always fully rational. This
problem could be solved by allowing a more global perspective for the components.

For the synchronizing merge and the multi-choice (which can be described as the
synchronizing merge without component C4), the behavior networks approach fails to
find the optimal solution in some cases. For the first, it activates both C2 and C3
whereas only one of the components is required to obtain the goal data. Adapting the
parameters of the approach could probably prevent this from occurring. Furthermore,
in the synchronizing merge case, both C2 and C3 are activated whereas C4 only needs
one input to generate output.

Also the pandemonium model is not always efficient for the multi-choice and
synchronizing merge. For the multi-choice, this is the case because the model
sometimes generates traces where first C1 is activated, and then C2 and C3 are
activated simultaneously. Although this solution is efficient in terms of activation
rounds (i.e., only two rounds), it is not efficient in terms of component activations:
three components are activated in total, where two activations would have been
sufficient (i.e., C1 followed by C2, or C1 followed by C3). For the synchronizing
merge, in some cases the same situation occurs as with the behavior networks:
sometimes both C2 and C3 are activated simultaneously, whilst only one of them is
required.

The voting method however succeeds in always finding the efficient solution for
the multi-choice. Here, the aforementioned situation that both C2 and C3 are activated

279

never occurs, because there is always one component that receives more votes than
the others. However, like the other approaches, the voting method is sometimes
inefficient with respect to the synchronizing merge. Here, again the same situation
occurs as with the behavior networks and the pandemonium: sometimes both C2 and
C3 are activated, where only one of them is necessary.

6.3 Specifying and Checking Patterns.

As has been mentioned, certain expected patterns can be specified for component
configuration examples, and it can be checked whether these patterns are indeed
found by the different approaches. For the test examples used in this document, the
component configuration specifications originate from workflow patterns. Therefore,
the patterns taken for the test examples are precisely the workflow patterns from
which these examples have been derived. Specification of patterns can be done from
two perspectives: (1) exhaustively summing up all possible outcomes; (2) specifying
the constraints between activation intervals of different components. For the second
approach, the interval relations as identified by Allen [2] were used and specified in
TTL:

before(b1:TIME, e1:TIME, b2:TIME, e2:TIME) ≡ e1 < b2
meets(b1:TIME, e1:TIME, b2:TIME, e2:TIME) ≡ e1 = b2
overlaps(b1:TIME, e1:TIME, b2:TIME, e2:TIME) ≡ b1 < b2 < e1 < e2
equals(b1:TIME, e1:TIME, b2:TIME, e2:TIME) ≡ b1 = b2 ∧ e1 = e2
starts(b1:TIME, e1:TIME, b2:TIME, e2:TIME) ≡ b1 = b2 ∧ e1 < e2
finished_by(b1:TIME, e1:TIME, b2:TIME, e2:TIME) ≡ b1 < b2 ∧ e1 = e2
contains(b1:TIME, e1:TIME, b2:TIME, e2:TIME) ≡ b1 < b2 ∧ e1 > e2

Below, the selected workflow patterns (pattern 1-7) are specified using TTL
expressions. For all patterns, all traces are first summed up in an informal fashion
(according to perspective 1 above). After that, the formal TTL expressions specifying
the constraints between the activation intervals of the different components are shown
(according to perspective 2).

Pattern 1 - Sequence

Possible traces: ABC.

Activation interval constraints in TTL:
∃bA,eA,bB,eB,bC,eC:TIME
has_activation_interval(trace1, A, bA, eA) ∧
has_activation_interval(trace1, B, bB, eB) ∧
has_activation_interval(trace1, C, bC, eC) ∧
before(bA, eA, bB, eB) ∧
before(bB, eB, bC, eC)

Pattern 2 - Parallel Split

Possible traces: A[BC].

Note: [BC] means either simultaneously or in any order (= in theory, any of the
possibilities before, meets, overlaps, equals, starts, finished_by, contains. However, in our

280

current specifications (both Maes and Pandemonium) we do not handle parallelism.
Thus, in the case of [BC] we will only generate the traces BC and CB).

Activation interval constraints in TTL:
∃bA,eA,bB,eB,bC,eC:TIME
has_activation_interval(trace1, A, bA, eA) ∧
has_activation_interval(trace1, B, bB, eB) ∧
has_activation_interval(trace1, C, bC, eC) ∧
before(bA, eA, bB, eB) ∧
before(bA, eA, bC, eC)

Pattern 3 – Synchronization

Possible traces: [AB]C.

Activation interval constraints in TTL:
∃bA,eA,bB,eB,bC,eC:TIME
has_activation_interval(trace1, A, bA, eA) ∧
has_activation_interval(trace1, B, bB, eB) ∧
has_activation_interval(trace1, C, bC, eC) ∧
before(bA, eA, bC, eC) ∧
before(bB, eB, bC, eC)

Pattern 4 - Exclusive Choice

Possible traces: AB, AC.

Activation interval constraints in TTL:
[∃bA,eA,bB,eB:TIME
has_activation_interval(trace1, A, bA, eA) ∧
has_activation_interval(trace1, B, bB, eB) ∧
before(bA, eA, bB, eB)]
∨
[∃bA,eA,bC,eC:TIME
has_activation_interval(trace1, A, bA, eA) ∧
has_activation_interval(trace1, C, bC, eC) ∧
before(bA, eA, bC, eC)]

Pattern 5 - Simple Merge

Possible traces: AC, BC.

Activation interval constraints in TTL:
[∃bA,eA,bC,eC:TIME
has_activation_interval(trace1, A, bA, eA) ∧
has_activation_interval(trace1, C, bC, eC) ∧
before(bA, eA, bC, eC)]
∨
[∃bB,eB,bC,eC:TIME
has_activation_interval(trace1, B, bB, eB) ∧
has_activation_interval(trace1, C, bC, eC) ∧
before(bB, eB, bC, eC)]

Pattern 6 - Multi Choice

Possible traces: AB, AC, A[BC].

Activation interval constraints in TTL:
parallel_split ∨ exclusive_choice

281

Pattern 7 - Synchronizing Merge

Possible traces: ABD, ACD, ABCD, ABCD, A B|C D.
Here, “B|C” indicates that B and C are activated simultaneously.

Activation interval constraints in TTL:
 [∃bA,eA,bB,eB,bD,eD:TIME
has_activation_interval(trace1, A, bA, eA) ∧
has_activation_interval(trace1, B, bB, eB) ∧
has_activation_interval(trace1, D, bD, eD) ∧
before(bA, eA, bB, eB) ∧
before(bB, eB, bD, eD)]
∨
[∃bA,eA,bC,eC,bD,eD:TIME
has_activation_interval(trace1, A, bA, eA) ∧
has_activation_interval(trace1, C, bC, eC) ∧
has_activation_interval(trace1, D, bD, eD) ∧
before(bA, eA, bC, eC) ∧
before(bC, eC, bD, eD)]
∨
[∃bA,eA,bB,eB,bC,eC,bD,eD:TIME
has_activation_interval(trace1, A, bA, eA) ∧
has_activation_interval(trace1, B, bB, eB) ∧
has_activation_interval(trace1, C, bC, eC) ∧
has_activation_interval(trace1, D, bD, eD) ∧
before(bA, eA, bB, eB) ∧
before(bA, eA, bC, eC) ∧
before(bB, eB, bD, eD) ∧
before(bC, eC, bD, eD)]

Table 5 shows whether the algorithms have indeed found the patterns (+) or whether
there exists a trace in which the patterns was not found (-).

Table 5. Patterns found by the different approaches

Example Behavior Networks Pandemonium Voting
Sequence + + +
Parallel Split + + +/-
Synchronization + + +
Exclusive choice + + +
Simple Merge + + +
Multi Choice + + +
Synchronizing Merge + + +

As indicated in the table, the behavior networks, pandemonium, and voting
approaches always find the patterns that have been identified. In the parallel split
case, the success of the voting approach however is debatable. The reason for this is
that besides the expected patterns (A[BC]) also patterns such as A-B-B-C appear.
According to personal communication with van der Aalst this is however not a
violation of the pattern. Following his perspective, a trace satisfies a pattern when the
components as prescribed by the patterns occur being active in the trace in the
specified sequence. It is however allowed for other components (either a different
component or activation of the same component at another time point) to be active
within the same trace. For checking the more strict version (i.e. exactly the prescribed
sequence without other activations) a closed world assumption version of the property
has been specified as well.

282

7 Discussion

To conclude, this paper presented a formal methodology to evaluate and compare the
performance of different coordination approaches. The methodology comprises the
creation of simulation models for the coordination approaches, the execution of
simulation experiments of these models applied to test examples, and their automated
evaluation against specified requirements. In a specific case study, the methodology
was used to evaluate three well-known coordination approaches from the literature.
During this case study, the simulation approach turned out quite beneficial. Within a
reasonable time, a nontrivial number of approaches have been tested against a
nontrivial number of cases: 3 x 7 = 21 combinations have been explored.
Furthermore, the automated checks of dynamic properties against generated traces
have turned out useful to evaluate the simulations for the different approaches against
requirements. Finally, an existing library of workflow patterns [1] turned out an
appropriate source for cases to be explored, although their specification also needs to
cover data flow aspects. It was not too difficult to add such data flow aspects.

Concerning the specific case study performed, the voting, pandemonium and
behavior networks approach have been thoroughly evaluated with respect to a number
of relevant performance indicators, namely successfulness, efficiency, and pattern
checks. All approaches turned out effective in finding the solution in all cases.
However, none of the approaches is always efficient for all patterns. The behavior
networks and pandemonium approaches perform equally well; they succeed for the
“simple” cases and sometimes fail to be efficient for the two complicated cases (i.e.
multi-choice and synchronizing merge). Surprisingly, the voting approach always
finds the most efficient solution for one of the complicated cases, namely the multi-
choice. It does however fail in the rather trivial case of the parallel split. All
approaches also find the patterns specified for each of the component configuration
examples.

All in all, when comparing the different coordination approaches, the performance
based on the criteria specified above is almost similar. The way in which they find the
component activation sequences is however completely different. The behavior
networks approach needs a global overview of the system: it needs to know for each
component what data it requires as input and what data it generates as output. Such a
global view might not always be available or might be inconvenient. On the other
hand, for the pandemonium a completely local view is sufficient: each component
only needs information about its own input and output data. In between is the voting
approach, which needs information about itself and its direct neighbors. When
comparing the approaches on required computation time, the behavior networks
approach takes far more computation time than the other approaches. This has two
causes: first, due to the fact that all global information is used within the approach, it
has a lot more information to take into consideration. Second, both for the voting and
pandemonium approach the calculations per component can be performed in parallel,
which can not be done in the behavior networks approach.

Work related to the approach presented in this paper can, first of all, be found in
the field of action selection mechanisms (also called behavior coordination
mechanisms) in robotics. Pirjanian [22] presents an overview of several mechanisms
used in that particular field, including a classification of these mechanisms. He

283

identifies two main streams: arbitration and command fusion. In the arbitration
approach, one behavior is arbitrarily selected from a group of competing ones, giving
it the ultimate control. For command fusion mechanisms however, recommendations
are combined from multiple behaviors to form a control action that represents their
consensus. The behavior networks approach as presented by Maes [19] is an example
of an arbitration mechanism, whereas both voting and the pandemonium model can be
placed in the command fusion category. Tyrrell [26] presents a comparison between
several mechanisms for action selection, using a simulator of an animal world. The
comparison approach is however not formal like the approach presented in this paper.
Furthermore, the framework for comparison is not generic, but developed for a
specific case study, making it hard to generalize the results obtained. Another related
field can be found within multi-agent systems, where coordination models play an
essential role to ensure a proper functioning of the system as a whole. These
coordination models address types of interactions and agreements between the
different agents that were not considered in this paper. For a comparison between
different coordination models in agent systems, see for example [8]. Concerning other
related work, coordination models and languages for interfacing between components
often focus on how different components within a software system can interact, see
for example [3]. Due to the assumption of data being available and interpretable for
all components, these component interaction models have not been considered in this
paper, but can easily be incorporated in the methodology.

The methodology presented in this paper is supported by two software
environments: the LEADSTO environment for simulation [6], and the TTL
environment for verification of properties [7]. For simulation, various other
approaches exist, such as the Dynamical Systems Theory [23], Executable Temporal
Logic [4], PLC automata [11], qualitative reasoning (see, e.g., [12]), and stochastic pi-
calculus (as used in [14]). For verification of properties, alternative approaches are
standard temporal languages such as LTL and CTL [15], and calculi like the situation
calculus [24] and the event calculus [17]. See, respectively, [6] and [7] for an
extensive comparison of LEADSTO and TTL with these approaches.

Finally, the work as reported has led to a number of ideas for further research.
While the specific coordination approaches borrowed from other disciplines were
found to have value, no attempts have been made yet to come up with refinements,
extensions or improvements of these approaches, or, inspired by these approaches, to
design completely new (and possibly better) approaches. Some possible future
extensions are allowing preference for certain components, allowing a dynamic
environment, and enabling the components to process partial data.

Acknowledgements

This work has been performed as part of a project funded by Force Vision, the
software development department for the Royal Netherlands Navy. Moreover, the
authors are grateful to Egon van den Broek, Rob Duell, Andy van der Mee, and Bas
Vermeulen for various fruitful discussions.

284

References

[1] Aalst, W.M.P. van der, Hofstede, A.H.M. ter, Kiepuszewski, B., and Barros, A.P.
Workflow Patterns. QUT Technical report FIT-TR-2002-02, Queensland University of
Technology, Brisbane, 2002.

[2] Allen, J. F. Maintaining knowledge about temporal intervals. In: Communications of the
ACM, 26, 1983, pp. 832-843.

[3] Arbab, F. Reo: A Channel-based Coordination Model for Component Composition,
Mathematical Structures in Computer Science, Cambridge University Press, Vol. 14, No.
3, pp. 329-366, 2004.

[4] Barringer, H., Fisher, M., Gabbay, D., Owens, R., and Reynolds, M. The Imperative
Future: Principles of Executable Temporal Logic, John Wiley & Sons, 1996.

[5] Bosse, T., Hoogendoorn, M., and Treur, J. Coordination Approaches for Complex
Software Systems. Technical report 06-04ASRAI, Vrije Universiteit Amsterdam,
Amsterdam, 2006. URL: http://hdl.handle.net/1871/9195.

[6] Bosse, T., Jonker, C.M., Meij, L. van der, and Treur, J. LEADSTO: a Language and
Environment for Analysis of Dynamics by SimulaTiOn. In: Eymann, T., et al. (eds.), Proc.
of the Third German Conference on Multi-Agent System Technologies, MATES'05.
Lecture Notes in Artificial Intelligence, vol. 3550. Springer Verlag, 2005, pp. 165-178.

[7] Bosse, T., Jonker, C.M., Meij, L. van der, Sharpanskykh, A, and Treur, J. A Temporal
Trace Language for the Formal Analysis of Dynamic Properties. Technical Report, Vrije
Universiteit Amsterdam, Department of Artificial Intelligence, 2006.

[8] Bourne, R., Shoop, K., and Jennings, N. Dynamic evaluation of coordination mechanisms
for autonomous agents. In P. Brazdil and A. Jorge, editors, Progress in Artificial
Intelligence, Lecture Notes in Artificial Intelligence, pages 155-168. Springer, 2001.

[9] Ciancarini, P. and Wiklicky, H. Proceedings of the Eighth International Conference on
Coordination Models and Languages, Coordination'06. Lecture Notes in Computer
Science, vol. 4038. Springer Verlag, 2006.

[10] Dehnert, J. and Aalst, W.M.P. van der. Bridging the Gap Between Business Models and
Workflow Specifications. International Journal of Cooperative Information Systems, vol.
13, issue 3, 2004, pp. 289–332.

[11] Dierks, H. PLC-automata: A new class of implementable real-time automata. In M.
Bertran and T. Rus, editors, Transformation-Based Reactive Systems Development
(ARTS'97), volume 1231 of Lecture Notes in Computer Science, pages 111-125. Springer-
Verlag, 1997.

[12] Forbus, K.D. Qualitative process theory. Artificial Intelligence, vol. 24, no. 1-3, 1984, pp.
85-168.

[13] Franklin, S. Artificial Minds, MIT Press, Cambridge Massachusetts, 1997.
[14] Gardelli, L., Viroli, M., Omicini, A.: On the Role of Simulations in Engineering Self-

Organizing MAS: the Case of an Intrusion Detection System in TuCSoN. In: 3rd
International Workshop “Engineering Self-Organising Applications” (ESOA), 2005, pp.
161-175.

[15] Goldblatt, R. Logics of Time and Computation, 2nd edition, CSLI Lecture Notes 7, 1992.
[16] Jackson, J.V. Idea for a Mind, SIGGART Newsletter, no 181, pp. 23-26, 1987.
[17] Kowalski, R. and Sergot, M.A. A logic-based calculus of events, New Generation

Computing, 4, 1986, pp. 67-95.
[18] Lindsay, P. H., and Norman, D. A. Human Information Processing: An Introduction to

Psychology. Academic Press, Inc., New York, 1977.
[19] Maes, P. How to do the right thing. Connection Science, 1989. 1(3): pp. 291-323.
[20] Ordeshook, P. Game theory and political theory: An Introduction. Cambridge: Cambridge

University Press, 1986.

285

[21] Papadopoulos, G. and Arbab, F. Coordination Models and Languages. Advances in
Computers, vol. 46: The Engineering of Large Systems. Academic Press, New York,
1998.

[22] Pirjanian, P. Behavior coordination mechanisms -- state-of-the-art. Technical Report
IRIS-99-375, Institute of Robotics and Intelligent Systems, School of Engineering,
University of Southern California, October 1999.

[23] Port, R.F. and Gelder, T. van (eds.) Mind as Motion: Explorations in the Dynamics of
Cognition. MIT Press, Cambridge, Mass, 1995.

[24] Reiter, R. Knowledge in Action: Logical Foundations for Specifying and Implementing
Dynamical Systems, Cambridge MA: MIT Press, 2001.

[25] Selfridge, O. G. Pandemonium: a paradigm for learning in mechanization of thought
processes. In Proceedings of a Symposium Held at the National Physical Laboratory,
pages 513-526, London, November 1958.

[26] Tyrrell, T. Computational Mechanisms for Action Selection, PhD thesis, University of
Edinburgh, 1993.

286

287

Chapter 14

A Specification Language for Coordination
in Component-based Software Systems

288

289

A Specification Language for Coordination
in Component-based Software Systems

Tibor Bosse, Mark Hoogendoorn, and Jan Treur

Vrije Universiteit Amsterdam, Department of Artificial Intelligence
De Boelelaan 1018a, 1081 HV Amsterdam, The Netherlands

{tbosse, mhoogen, treur}@cs.vu.nl

Abstract. This paper introduces a coordination specification language which is
able to handle both pre-specified ways of expressing coordination in
component-based software systems, as well as novel more flexible and generic
ways of specifying coordination. An iterative process consisting of several steps
was taken to define this language and create simulations of such coordination
approaches. First of all, useful language elements were defined, after which
example coordination approaches were specified using this language. In cases
where more language elements were needed to enable specification of such a
coordination approach, these have been added to the language. After that, the
coordination approaches were simulated using an executable temporal logic and
tested using particular test cases. Finally, an evaluation of the coordination
approaches was performed by means of formal verification.

1 Introduction

As component-based software systems become increasingly complex, so does the
specification of coordination for such a system. In addition, software systems can be
dynamic, in the sense that components dynamically enter or leave the system. As a
result, for such complex dynamic systems, exhaustively specifying the activation
sequences of components, for example in a centralized manner, which is the approach
usually taken in more traditional approaches, is no longer an option. This is due to the
fact that the components that are available for computation (and their ideal activation
sequence) are not known in advance. Furthermore, it is not always desirable to have
coordination information available in a global or centralized manner.

As a consequence, more generic and flexible coordination approaches have been
proposed, including pandemonium models [13], behavior networks [11], and voting
models [12]. In contrast to the more traditional approaches, which are based on
qualitative, logical specifications, such alternative methods usually involve
quantitative, numerical calculation methods, and often work in a more decentralized
manner. In [3] a methodology for the evaluation and comparison of such coordination
approaches has been proposed, and a number of such approaches have been
evaluated.

The transition of a traditional way of specifying coordination by pre-defined
coordination sequences to such more generic and flexible coordination strategies is

290

not a trivial matter. Current coordination specification languages as, for example,
described in [5; 8] are typically unable to specify such coordination approaches. This
implies that the transition not only entails moving towards a new approach for
coordination specification, but also towards a more expressive coordination language,
allowing, for example, more generic types of expressions with variables and
quantifiers, and numerical relationships. To address this problem, this paper proposes
a coordination language that can express both pre-defined coordination sequences, as
well as generic, flexible coordination approaches.

In order to come to such a language, several steps have been performed iteratively.
In particular, useful language elements have been identified, example coordination
approaches (including the pre-specified, central approaches) have been specified in
terms of this language, and the language has been extended in case more elements
were found necessary to specify the coordination approach. The example coordination
approaches have thereafter been simulated using a temporal logic, and tested using
specific test cases that have been identified. Finally, the different coordination
approaches have been evaluated by formal verification.

This paper is organized as follows. Section 2 introduces the viewpoint taken in this
paper towards coordination in component-based systems. The specification of the
language makes a distinction between the coordination level of a system, and the data
level at which the actual processing is being done. In Section 3 a reified temporal
order-sorted predicate logic language is introduced which allows for the specification
of such coordination. In Section 4 this language is shown to be a specialization of a
language called TTL, for which both simulation and verification tools are available.
Furthermore, Section 4 shown how simulation and verification properties can be
specified using the coordination language. Section 5 presents a test example to be
used to test such coordination approaches. Section 6 presents several coordination
approaches that have been specified using the coordination language and Section 7
shows simulation results based upon these approaches. A formal evaluation of the
approaches is presented in Section 8, and finally, Section 9 is a discussion.

2 Viewpoint on Coordination in Component-Based Systems

In Figure 1 the viewpoint taken in this paper on coordination in a component based
system is shown. It is shown how from a conceptual perspective the processing done
by a component for coordination purposes can be distinguished from the actual
processing of data to fulfill a coordination-independent computation. On the top level,
above the dashed line, the coordination part of the entire software system is shown.
On the coordination level, reasoning takes place about the coordination within the
component-based system. This process can be either a centralized or a distributed
process. In the latter case, the distribution can for example follow the distribution of
the components of the system. Input for this coordination process is coordination
information received from the various components and links, whereas the output of
this coordination level is coordination information for the components and links
within the component-based system. On the data level, the components and links
themselves are shown. Each component has two input layers: One for coordination

291

information (the upper square at the left side of the component), and one for data
information (the lower square). Furthermore, output is generated on both levels as
well, depicted by the squares at the right side of a component. Each link on the data
level connects the data output of a component to the data input of another component.
Furthermore, each link can receive coordination information, and generate it. Note
that this is a conceptual picture at an abstract level. There is no commitment in how
far the coordination reasoning process itself is centralized or also distributed over the
components. The degree to which it is central or decentralized is a parameter that is
left open in this conceptual picture.

3 Coordination Language

Given the viewpoint presented in Section 2, this section presents the actual
coordination specification language. The language is a reified temporal order-sorted
predicate logic language; cf. [6;7] This means that state ontologies are defined to
express state terms, and on top of that a time ontology is used so that by full predicate
logic expressivity temporal statements can be specified. Figure 2 provides an
overview of the time and state ontologies included in this language.

The main distinction made is in state ontologies for characteristics (static) and for
states (dynamic). Moreover, ontologies are distinguished by whether they address
coordination information or data information. Furthermore, ontologies are related to
their use within input, output or internal states. Finally, in addition to the state
ontologies, a generic time ontology is used, to specify temporal relations, and a
generic (support) ontology is included for elementary relations and functions such as
ordering and calculations for numbers.

Fig. 1. Different levels of coordination within a component based system

292

3.1 Time Ontology

The temporal aspect is important in component coordination, because it sometimes is
necessary to express at which time point a particular coordination action was
undertaken, how many times in a given interval a specific event has occurred, and
whether the reaction of a component has been given in due time in relation to the
current time, et cetera. The sorts used in this time ontology are specified in Table 1.

Table 1. Sorts used for time ontology

Sort Description
TIME Sort indicating time.
REAL Sort for real numbers.
STATPROP A sort for terms indicating state properties
STATE A sort for states
TRACE A trace indicates a time ordered sequences of states.

Fig. 2. Partitioned coordination ontology

293

The relations specified within the time ontology using the sorts described in Table

1 are shown in Table 2.

Table 2. Relations of the time ontology for component coordination

3.2 Ontology of Static Coordination Characteristics

The static relations between components/links, which characterize the immutable
relationships between them (for instance, the architectural connections at the data
level) or coordination-relevant properties derived from a set coordination states, are
grouped in the so-called ontology of static coordination characteristics. First of all,
Table 3 shows the sorts that have been used in addition to the sorts specified in Table
1.

Relation Description
current_time: TIME Indicates the current time point.
< (precedes): TIME x TIME The time point associated with the first argument

is mapped to a real value smaller than the one
associated with the second argument.

+ : TIME x REAL x TIME The time point associated with the first argument
plus the real value specified in the second
argument is the time point specified in the last
element.

state: TRACE x TIME → STATE This function indicates the state of a trace at a
specific time point

held_once_since:
STATPROP x TIME x TIME x TRACE

PROP has been at least once true in the interval
between the first TIME point and the second TIME
point in the specified trace.

holds_at:STATPROP x TIME x TRACE PROP holds at the specified time point within the
specified trace.

holds_during: STATPROP x TIME x
TIME x TRACE

PROP holds during the time period specified
within the specified trace.

holds_just_before: STATPROP x TIME
x TRACE

PROP holds just before the time point specified
within the specified trace.

holds_just_at: STATPROP x TIME x
TRACE

PROP just holds at the time point specified within
the specified trace whereas before it was false.

294

Table 3. Sorts used in the static coordination characteristics ontology

Sort Description
COMPONENT A component within the component-based

system.
LINK A link between two components within the

component-based system.
ARCHITECTURAL_OBJECT COMPONENT ∪ LINK

INFO_TYPE A type of information, which can possibly be
a grouping of multiple other information
types. Furthermore, it can contain
information elements that specify a specific
value of an element within this information
type. An example of an information type
could be ‘temperature’, containing
information elements that specify a
temperature of 20oC, etc.

INFO_ELEMENT A specific element of information, such as
explained under INFO_TYPE

Using these sorts, Table 4 presents the static coordination level characteristics. These
relations can be used on the coordination level to decide upon a component to be used
for a particular task. For instance, in case accuracy is required, a very accurate
components needs to be chosen. Note that such characteristics can themselves also be
dynamic, for instance an average accuracy over time. For now however it is assumed
that these are static. Finally, this is by no means an exhaustive list of characteristics, it
can be extended with particular characteristics of importance within particular
domains.

Table 4. Static coordination-level characteristics

Relation Description
responsiveness: REAL Indicates the REAL value (in the interval [0,1])

representing the probability that a component
successfully activates.

accuracy: REAL Indicates the (expected) accuracy of a
component (value in the interval [0,1]), i.e. the
distance between the computed outputs of the
component and the ideal outputs. Is a measure
of the correctness of the output produced by a
component.

estimated_processing_time: REAL Indicates the estimated (maximum) processing
time required by a component in order to
produce outputs from available inputs.

estimated_flops: REAL Indicates the amount of flops a component
needs for its computations (which is a measure
per time unit).

estimated_memory_usage: REAL Indicates the estimated critical resource
(memory) usage of the component.

295

Besides coordination-level characteristics, an ontology for expressing data-level
characteristics has been defined as well, and is shown in Table 5. Note that these
relations can be applied to components as well as links, unless specifically mentioned
otherwise.

Table 5. Static data-level characteristics

3.3 Ontology of Dynamic Coordination States

Besides an ontology for static coordination states, a dynamic coordination ontology
has been defined as well, that changes as the system functions. Again, the division is
made between the coordination and data level ontology. In addition, in the tables it is
shown of what type the relation is: input, output, or internal for the component. Table
6 presents the additional sorts that have been used within the relations.

Table 6. Sort used for dynamic coordination state ontology

Sort Description
SIGN A SIGN indicates whether an

INFO_ELEMENT holds (indicated by ‘pos’),
or whether it does not hold (‘neg’).

SIGNED_INFO_ELEMENT An INFO_ELEMENT grouped with a SIGN.
SIGNED_INFO_ELEMENT_CONJUNCTION A conjunction of SIGNED_INFO_ELEMENTs
TARGET_QUALIFIER An identifier for a target.
TARGET_EXPRESSION A target qualifier specifies a target that has

been set for an ARCHITECTURAL_OBJECT.
For instance to derive all possible
information, see Section 3.3.1 for more
information.

FOCUS An identifier of a focus that has been set for
a particular architectural object.

Relation Description
includes: INFO_TYPE x
INFO_TYPE

The INFO_TYPE specified includes the INFO_TYPE
specified as the second argument.

input_output_type_relation:
INFO_TYPE x INFO_TYPE

The information type on the input specified in the first
parameter INFO_TYPE is used to generate the output of
the type specified in the second parameter INFO_TYPE.

link_type_relation: INFO_TYPE
x COMPONENT x INFO_TYPE x
COMPONENT

There exists a communication link from the first
INFO_TYPE of the output of the first COMPONENT, to
the input of the second INFO_TYPE of the second
COMPONENT.

input_information_type:
INFO_TYPE

The INFO_TYPE is an input information type.

output_information_type:
INFO_TYPE

The INFO_TYPE is an output information type.

has_type: INFO_ELEMENT x
INFO_TYPE

The information element specified has the information
type specified as second argument.

296

The relations that have been specified based upon these sorts are specified in Table
7 and Table 8, where the former gives the coordination-level relations whereas the
latter presents the data-level relations. The right column in the Table indicates
whether this concerns an input(i), output(o), or internal (int) type of relation.

Table 7. Coordination-level relations for dynamic coordination states

Relation Description Type

awake Information can be processed I/O

asleep Information cannot be processed. I/O

is_input_focus: FOCUS The input focus set defined by FOCUS is
currently in use.

I/O

is_included_in_focus:
INFO_TYPE x FOCUS

The specified INFO_TYPE is part of the focus set
defined by FOCUS.

I/O

is_output_focus: FOCUS The output focus set defined by FOCUS is
currently in use.

I/O

info_type_in_focus_has_
qualifier:
INFO_TYPE x FOCUS x
TARGET_QUALIFIER xTIME

A target identified by TARGET_QUALIFIER has
been set for the information type within the focus
specified, and this needs to be achieved by the
deadline indicated by time point TIME.

I/O/Int

info_type_in_focus_has_
qualifier:
INFO_TYPE x FOCUS x
TARGET_QUALIFIER x REAL

A target identified by TARGET_QUALIFIER has
been set for the information type within the focus
specified, and this needs to be achieved within a
duration specified by REAL.

I/O/Int

has_expression:
TARGET_QUALIFIER x
TQ_EXPRESSION

The target qualifier identified by
TARGET_QUALIFIER has a particular expression,
specified in TQ_EXPRESSION.

I/O/Int

open_to_input_update:
INFO_TYPE

Listening to data updates of the types specified in
INFO_TYPE.

I/O

busy The component is currently busy with processing O

non_busy The component is not busy with processing. O

succeeded_with_output_
given_input:
SIGNED_INFO_ELEMENT_
CONJUNCTION x
SIGNED_INFO_ELEMENT_
CONJUNCTION

The component has succeeded generating all
output of the specified
SIGNED_INFO_ELEMENT_CONJUNCTION
given the input specified in
SIGNED_INFO_ELEMENT_CONJUNCTION.

O

failed_with_output_given_
input:
SIGNED_INFO_ELEMENT_
CONJUNCTION x
SIGNED_INFO_ELEMENT_
CONJUNCTION

The component could not generate all output of
the specified
SIGNED_INFO_ELEMENT_CONJUNCTION
given the input specified in
SIGNED_INFO_ELEMENT_CONJUNCTION.

O

available Indicates whether an
ARCHITECTURAL_OBJECT is present in the
scenario, and can accept inputs.

O/Int

297

Table 8. Data-level relations for dynamic coordination states

The expression of targets for particular components, or the system as a whole is
presented below.

3.3.1 Target Qualifier Specification
Target qualifier specifications are statements that can be used for assessment of
output states. Simple examples of such (output) state properties are:
• at least one signed information element related to a given information type is

available
• if a signed information element SIE1 is available at the output, then also signed

information element SIE2 is available
• of all non-refinable information types at least one info element with a positive

sign needs to be derived.
The language to express target qualifiers is a sublanguage of the state language, based
on order-sorted logic.

Atoms used
Within target qualifiers atoms are used that indicate that a certain signed information
element is available at the output, expressed using the predicate information_at_output.
Moreover, atoms can be used based on predicates has_info_element, has_type, includes,
has_sign to express relations between signed information elements, information types,
information elements and signs. Furthermore, the predicate is_information_type_in to
express relations to a given output focus can be used.

Relation Description Type
currently_needed_input_
for_output:
INFO_TYPE x INFO_TYPE

The set of input types in INFO_TYPE is still
expected in order to produce an output element
of the type INFO_TYPE

Int

accuracy_of_information:
SIGNED_INFO_ELEMENT x
REAL

The accuracy by which the specified
SIGNED_INFO_ELEMENT outputted by
COMPONENT is given by the REAL value.

Int

input_provides_output:SIGNE
D_INFO_ELEMENT_
CONJUNCTION x
SIGNED_INFO_ELEMENT_
CONJUNCTION

The first argument
SIGNED_INFO_ELEMENT_CONJUNCTION,
corresponding to a set of inputs, is used to
produce the output indicated by the second
SIGNED_INFO_ELEMENT_CONJUNCTION.

I/O

entails:
SIGNED_INFO_ELEMENT_
CONJUCTION x
TQ_EXPRESSION

The
SIGNED_INFO_ELEMENT_CONJUCTION
entails that the target specified by
TQ_EXPRESSION has been reached.

I/O

information_at_input:
SIGNED_INFO_ELEMENT

The SIGNED_INFO_ELEMENT is available at
the input.

I

information_at_output:
SIGNED_INFO_ELEMENT

The SIGNED_INFO_ELEMENT is available at
the output.

O

298

Connectives used
On top of such atoms target qualifier expressions can be built using connectives such
as conjunctions (∧, AND), implication (→, IMPLIES), negation (¬, NOT),
disjunction (∨, OR) and quantifiers (∀, FORALL; ∃, EXISTS) can be used.

Successfulness with respect to a target qualifier has a simple definition, just
expressing that the output state satisfies the target qualifier expression:

is_satisfied(t :TIME, γγγγ:TRACE, T:TQ_EXPRESSION) � state(γ, t) |= T

Sometimes it may be useful to have separate names for target qualifier expressions.
These names can be related to the expressions by a predicate has_expression:
TARGET_QUALIFIER x TQ_EXPRESSION. The relation

state(γ, t) |= T ⇔ ∃TQE:TQ_EXPRESSION [has_expression(T, TQE) & state(γ, t) |= TQE]

can be used to determine for such a name when the target qualifier is satisfied.

Examples of specific target qualifiers
As an example, the target qualifier ‘any’ for a particular information type is expressed
as follows:

At least for one information element in this information type, output information is
available for a signed information element related to the information element.

This can be formally expressed as follows:

any(I: INFO_TYPE) �
∃IE:INFO_ELEMENT, SIE:SIGNED_INFO_ELEMENT
 [has_type(IE, I) ∧ has_info_element(SIE, IE) ∧ information_at_output(SIE)]]

3.4 Generic Support Ontology

This ontology is not explicitly shown, but contains elements that eases the
specification of particular constructs.

Note that all predicates mentioned in this section are represented as relations. As
such, they can be used at the object level of components (i.e., both at the object level
of the coordination layer of components, and at the object level of the data layer of
components). However, the language should also allow to make statements about
these relations, which can be used at the meta level of components (i.e., both at the
meta level of the coordination layer of components, and at the meta level of the data
layer of components), and at the coordination level. To this end, a mechanism is
needed to translate the relations mentioned in this section to functions, which have the
same arguments as the corresponding relations, but that also have a destination sort
that can be used in meta-statements. For this purpose, the following construct is
proposed:

299

meta_description

relations : DYN_OBJECT_ELEMENT

Here, relations is an information type containing all relations as specified in Table 1 -
8. Furthermore, elements of the sort DYN_OBJECT_ELEMENT can be used in meta-
statements. To make this possible, the following meta-predicates are proposed:

selected_control_aspect_for : DYN_OBJECT_ELEMENT x COMPONENT
monitored_control_aspect_for : DYN_OBJECT_ELEMENT x COMPONENT
control_aspect : DYN_OBJECT_ELEMENT
data_aspect : DYN_OBJECT_ELEMENT

Some examples of meta-statements that can be constructed using these meta-
predicates are the following:

selected_control_aspect_for(awake, C1)
monitored_control_aspect_for(accuracy(0.8), C1)
control_aspect(awake)
control_aspect(accuracy(0.8))
data_aspect(input_information_type(d1))

The idea is that selected_control_aspect_for can be used at the output interface of the
coordination level, and monitored_control_aspect_for can be used at the input interface of
the coordination level. Moreover, control_aspect can be used at the meta level of the
coordination input interface of components and at the at the meta level of the
coordination output interface of components, and data_aspect can be used at the meta
level of the data input interface of components and at the at the meta level of the data
output interface of components. To translate statements of the form control_aspect and
data_aspect to (and from) object-statements that can be used within the components,
upward and downward reflection is used.

4 Expressing Dynamic Properties in the Coordination Language

The coordination language that has been defined in Section 3 can be used both to
specify executable simulation models of coordination approaches and to specify
properties for verification of traces of systems, for example, simulation results. In
this section it is briefly discussed how this can be done (Section 4.2), and how the
coordination language relates to the more general languages TTL and LEADSTO
(Section 4.1), thus enabling the use of software tools for simulation and verification
that have been developed for these languages.

4.1 Relating the Coordination Language to TTL and LEADSTO

In this subsection it is shown how the coordination language can be considered a
specialization of the Temporal Trace Language (TTL) [9] by adding certain state
ontologies and definable temporal predicates. For the language TTL, verification tools
are available that can as a result be used for the coordination language as well.

300

Moreover, it is shown how an executable sublanguage of the coordination language
can be considered a specialization of the language LEADSTO by adding pre-specified
state ontologies. As a result, the simulation tools available for the LEADSTO
language can be used as well.

In TTL, ontologies for states are formalized as sets of symbols in sorted predicate
logic. For any state ontology Ont, the ground atoms form the set of basic state
properties BSTATPROP(Ont). Basic state properties can be defined by nullary
predicates (or proposition symbols) such as incident, or by using n-ary predicates (with
n>0) like observes(amount_of_casualties, 7). The state properties based on a certain ontology
Ont are formalized by the propositions (using conjunction, negation, disjunction,
implication, and quantification) made from the basic state properties and constitute
the set STATPROP(Ont). For the coordination language the pre-specified state
ontologies as presented in Section 3 are available.

In order to express dynamics in TTL, important concepts are states, time points,
and traces. A state S is an indication of which basic state properties are true and
which are false, i.e., a mapping S: BSTATPROP(Ont) → {true, false}. The set of all
possible states for ontology Ont is denoted by STATES(Ont). Moreover, a fixed time
frame T is assumed which is linearly ordered. Then, a trace γ over a state ontology Ont
and time frame T is a mapping γ : T → STATES(Ont), i.e., a sequence of states γt (t ∈ T) in
STATES(Ont). The set of all traces over ontology Ont is denoted by TRACES(Ont).

The set of dynamic properties DYNPROP(Ont) is the set of temporal statements that
can be formulated with respect to traces based on the state ontology Ont in the
following manner. Given a trace γ over state ontology Ont, a certain state at time point
t is denoted by state(γ, t). These states can be related to state properties via the formally
defined satisfaction relation, indicated by the infix predicate |=, comparable to the
Holds-predicate in the Situation Calculus. Thus, state(γ, t) |= p denotes that state property
p holds in trace γ at time t. Likewise, state(γ, t) |≠ p denotes that state property p does not
hold in trace γ at time t. Based on these statements, dynamic properties can be
formulated in a formal manner in a sorted predicate logic, using the usual logical
connectives such as ¬, ∧, ∨, �, and the quantifiers ∀, ∃ (e.g., over traces, time and
state properties). The set DYNPROP(Ont, γ) is the subset of DYNPROP(Ont) consisting
of formulae with γ occurring in which is either a constant or a variable without being
bound by a quantifier. Note that the predicates of the time ontology introduced in
Section 3 can be defined in terms of atoms of the form state(γ, t) |= p. For example,

holds_at(p, t, γ) ≡ state(γ, t) |= p

holds_during(p, t1, t2, γ) ≡ ∀t [t1≤t<t2 � holds_at(p, t, γ)]

To model direct temporal dependencies between two state properties, not the

expressive language TTL, but the simpler leads to format is used. This is an
executable format that can be used to obtain a specification of a simulation model in
terms of dynamic properties. The format is defined as follows. Let α and β be state
properties of the form ‘conjunction of literals’ (where a literal is an atom or the
negation of an atom), and e, f, g, h non-negative real numbers. In the leads to
language α →→e, f, g, h β, means:

301

 if state property α holds for a certain time interval with duration g,
 then after some delay (between e and f) state property β will hold
 for a certain time interval of length h.

For a precise definition of the leads to format in terms of the language TTL, see [9]. A
specification of dynamic properties in leads to format has as advantages that it is
executable and that it can often easily be depicted graphically in a causal graph like
style.

4.2 Specification of Dynamic Properties

The coordination language is defined as a reified temporal order-sorted predicate
logic language built on top of an order-sorted predicate logic language for state
properties. This means that dynamic properties are expressed as temporal order-sorted
predicate logic expressions for temporal patterns based on temporal atoms using
relations from the time ontology. Within such temporal atoms, terms are used to
indicate relevant state properties. As an example, consider the following expression:

∀t1, t2

[t2 ≥ t1 + d & holds_during(monitored_control_aspect_for(accuracy(0.2), c1) , t1, t2, γ)]

� ∃t3 [t2≤ t3 ≤ t2 + 3 & holds_at(selected_control_aspect_for(awake, c2), t3, γ)]

This statement expresses that if during any time interval with duration d the accuracy
of component c1 is 0.2, then an alternative component c2 should become awake
within 3 time units. Note that the temporal structure of this formula is:

∀t1, t2

[t2 ≥ t1 + d & TA1(t1, t2, γ)

� ∃t3 [t2≤ t3 ≤ t2 + 3 & TA2(t3, γ)]

with temporal atoms

 TA1(t1, t2, γ) ≡ holds_during(p1, t1, t2, γ)

 TA2(t3, γ) ≡ holds_at(p2, t3, γ)

within these temporal atoms, the following terms indicating state properties:

 p1 ≡ monitored_control_aspect_for(accuracy(0.2), c1)

 p2 ≡ selected_control_aspect_for(awake, c2)

This shows how temporal atoms are built on top of the state ontologies, and how a
dynamic property can be obtained by substituting such temporal atoms in a temporal
template representing a (generic) temporal pattern.

The dynamic property can also be expressed in the executable LEADSTO format
in the following manner:

302

monitored_control_aspect_for(accuracy(0.2), c1)

→→3, 3, d, 1 selected_control_aspect_for(awake, c2)

More extensive examples of dynamic properties expressed in the coordination
language can be found in subsequent sections.

5 Test Example

In order to investigate for particular coordination approaches whether they can be
expressed using the coordination language introduced in this paper, a number of test
examples are used. Based upon such a test example, these coordination approaches
can be shown to work by means of simulations using this given test example.

As an illustrative test example used in this paper, the setting specified in Figure 3 is
used. Three regular components C1, C2, and C3 are present within the system. The
specific function which is performed by the specific component is shown inside the
box of the component. As can be seen, component C1 can actually perform two
operations, namely calculate the value of information type d2 based upon the value of
d1 and furthermore, and the value of d4 based upon the value of d1 and d3. The
components themselves have characteristics as well (as also identified in the
coordination language). C1 has an estimated processing time of 4 whereas C2 requires
10. C3 has an estimated processing time of 1. Besides components, links are present
between the components, indicated by arrows, and an environment is present as well,
which outputs the information type d1. The overall goal of the system is set to
outputting an element of the information type d4 which needs to be achieved within
12 time steps after data has been received from the environment.

Fig. 3. Test example (note that the distinction between object and meta-level
has been omitted in the Figure)

303

6 Case Studies

To verify whether the language presented above can indeed be used to specify a wide
variety of coordination approaches (varying from pre-specified to more generic,
flexible approaches), a number of such coordination approaches have been specified
using the language. This section presents three of these approaches and shows how
they can be specified in the coordination language. Note that in these specifications it
is assumed that all links continuously forward the data they receive, and furthermore,
that all foci of the components are set to a particular default value, such as “derive all
possible information”.

6.1 Pre-Specified Coordination

This section shows how a pre-specified coordination sequence for the test example
can be expressed in terms of the coordination language introduced in Section 3. The
different steps that constitute the coordination approach are described both in an
informal notation and in a formal notation, using the LEADSTO format [4]:

PSC1
In case the target set for the system as a whole is to derive one element of information type d4,
and no element is present of information type d2, d3, and d4, whereas there is of type d1, then
component C1 is selected to become awake and the input update for information types d1 and
d3 is to be closed.

∀R:REAL
[[monitored_control_aspect_for(is_output_focus(f1), SYSTEM) &
 monitored_control_aspect_for(info_type_in_focus_has_qualifier(d4, f1, one_element, R),
 SYSTEM) &
 ¬signed_info_element_present_of(d4) &
 ¬signed_info_element_present_of(d3) &
 ¬signed_info_element_present_of(d2) &
 signed_info_element_present_of(d1)]

 →→0,0,1,1
 [selected_control_aspect_for(awake, C1) &
 selected_control_aspect_for(¬open_to_input_update(d1), C1) &
 selected_control_aspect_for(¬open_to_input_update(d3), C1)]]

Note that the signed_info_element_present_of can easily be defined in terms of the
coordination language proposed in Section 3. It is meant to improve the readability of
the specification.

PSC2
If any component C is awake, and is non-busy, then component C is selected to become asleep.

∀C:COMPONENT

[[monitored_control_aspect_for(awake, C) & monitored_control_aspect_for(nonbusy, C)]

 →→0,0,1,1
 [selected_control_aspect_for(asleep, C) & selected_control_aspect_for(¬awake, C)]]

304

PSC3
In case at least one element of information types d2 and d1 is present, and no element of
information type d3 is present, then component C3 is selected to become active.

∀F:FOCUS, R:REAL
[[monitored_control_aspect_for(is_output_focus(F), SYSTEM) &
 monitored_control_aspect_for(info_type_in_focus_has_qualifier(d4, F, one_element, R),
 SYSTEM) &
 ¬signed_info_element_present_of(d4) & ¬signed_info_element_present_of(d3) &
 signed_info_element_present_of(d2) & signed_info_element_present_of(d1)]

 →→0,0,1,1
 [selected_control_aspect_for(awake, C3) &
 selected_control_aspect_for(¬open_to_input_update(d2), C3)]]

Obviously, putting asleep component C3 is performed in a similar fashion as
presented for component C1.

PSC4
In case for both information type d3 and d1 at least one element is present, then component C1
is selected to become active.

∀F:FOCUS, R:REAL
[[monitored_control_aspect_for(is_output_focus(F), SYSTEM) &
 monitored_control_aspect_for(info_type_in_focus_has_qualifier(d4, F, one_element, R),
 SYSTEM) &

¬signed_info_element_present_of(d4) &
signed_info_element_present_of(d3) &
signed_info_element_present_of(d2) &
signed_info_element_present_of(d1)]

 →→0,0,1,1
 [selected_control_aspect_for(awake, C1) &
 selected_control_aspect_for(¬open_to_input_update(d1), C1) &
 selected_control_aspect_for(¬open_to_input_update(d3), C1)]]

6.2 Backward Goal Propagation

A more generic, flexible way of specifying coordination can for instance be done via
the principle of backwards goal propagation. This approach works in a centralized
fashion, having knowledge about the entire system. Backward goal propagation starts
to reason from the goal to be achieved, looks which components can achieve this goal
(if the goal is not already achieved), and what specific input they need for that. Next,
it is determined whether the input of these components is present, and in case it is not,
other components that generate that specific information are derived. This process
continues until a component is reached that can be activated (because its inputs are
already present).

Note that the approach described below assumes that, for each information type,
the preferred component to derive that information is known. This particular
information can for instance be based upon the time used by the various components
that can produce the information. A strategy would be to select the one which requires
the least processing time. In LEADSTO the approach is specified as follows (note

305

that, for the sake of conciseness, some rules are not shown, such as rules addressing
input and output foci of the components themselves, when an awake component
becomes non-busy, when it is set to asleep, et cetera):

BGP1
If for an information type at least one element of a particular information type needs to be
derived according to the goal, then this is a required information type for the system to derive.

∀F:FOCUS, R:REAL, IT:INFO_TYPE
[[monitored_control_aspect_for(is_output_focus(F), SYSTEM) &
 monitored_control_aspect_for(info_type_in_focus_has_qualifier(IT, F, one_element, R), SYSTEM)
]

 →→0,0,1,1
 required_information_type(IT)]

BGP2
In case a certain information type is a required type, and a component C is preferred to be used
to derive such information, then this component can potentially become active.

∀IT:INFO_TYPE, C:COMPONENT
[[required_information_type(IT) & preferred_component_for(C, IT)]

 →→0,0,1,1
 potential_activation(C, IT)]

BGP3
In case a component has the potential to become active, and is not missing any information to
derive the required output for which it is potentially active, then the component is selected to
become awake.

∀C:COMPONENT, IT1:INFO_TYPE
[[potential_activation(C, IT1) &
 ∀IT2:INFO_TYPE [¬currently_needed_input_for_output(IT2, IT1]]

 →→0,0,1,1
 selected_control_aspect_for(awake, C)]

Note that the component also needs to be closed to input updates for all information
types.

BGP4
In case a component has the potential to become active for information type IT1, and needs
information type IT2 as input to derive IT1, then IT2 is required as well.

∀C:COMPONENT, IT1, IT2:INFO_TYPE
[[potential_activation(C, IT1) & currently_needed_input_for_output(IT2, IT1)]

 →→0,0,1,1
 required_information_type(IT2)]

6.3 Pandemonium

Besides generic flexible approaches that require central knowledge of the system,
decentralized approaches exist as well. An example of such a decentralized approach
is the pandemonium approach, introduced by Selfridge [13]. The approach was

306

initially meant for pattern recognition. The approach proposed is based on a system
composed of primitive constructs called demons, each representing a possible pattern.
Once an image is presented, each of the demons computes the similarity of the image
with the pattern it represents, and gives an output depending monotonically on that
similarity. Finally, a decision demon selects the pattern belonging to the demon
whose output is largest.

In the context of the component-based software systems proposed in this paper, a
variant of the pandemonium approach is used. According to this approach, a new
round starts after the initial setup of the system or after the components set to awake
have performed their task. In such a round, all components can shout. The idea is that,
the more urgent a component thinks it is for him to be activated, the louder it will
shout. The component that shouts loudest will be set to awake. In case multiple
components shout with exactly the same strength, then all are set to awake in parallel
and as a processing time the maximum of the processing time of each of these
components is used. When a component is set to awake, and sufficient input data is
present to generate output, this output is indeed generated.

To determine how loud they will shout, the components make use of a shout
function. For different variants of the pandemonium model, different shout functions
may be used. In the current model, each component uses the following types of
information in its shout function at time point t:

• the amount of data it needs as input (represented by i1)
• the amount of its input data that is available at t (represented by i2)
• the amount of data it produces as output (represented by o1)
• the amount of its output data that is already present at t (represented by o2)
• the highest i1 for the set of components (represented by max_i)
• the highest o1 for the set of components (represented by max_o)

Given these elements, the shout value (i.e., the strength with which a component
shouts, represented by sv) is modelled as follows:

sv = (i2/i1)β1 * (1 - o2/o1)β2 * (i1/max_i)β3 * (o1/max_o)β4

Here, β1, β2, β3, and β4 are real numbers between 1 and 1.5, indicating the importance
of the corresponding factor. Several settings have been tested for these parameters. In
the examples shown here, β1=1.4, β2=1.3, β3=1.1, and β4=1.2. Since the factors can
never exceed 1, the shout value sv will be a value between 0 and 1. In case the
component has been set to awake in the previous round, another shout function is
used which simply sets the shout value to 0, to avoid components from becoming
active multiple consecutive times without making progress.

Below, a brief overview of LEADSTO rules that specify such a pandemonium
strategy using the language presented in this paper is shown. Note that not all
constructs shown below are fully specified in this language, but are definable using
the language. The abbreviations are used to improve the readability of the
specification.

307

PM1
In case the component was not previously active, the shout function gets its value according to
the multiplication as specified above.

∀C:COMPONENT, I1,I2,O1,O2:INTEGER
[[component_input_number(C, I1) & component_input_present(C, I2) &
 component_output_number(C, O1) & component_output_present(C, O2) &
 ¬previously_active(C)]

 →→0,0,1,1
 shout(C, (I2/I1)^1.4 * (1-O2/O1)^1.3 * (I1/max_input)^2.2 * (O1/max_output)^1.2))]

PM2
In case the component was previously active, the shout function gets value 0.

∀C:COMPONENT

previously_active(C) →→0,0,1,1 shout(C, 0)

PM3
If the shout value of a component is at least as high as the shout value of another component,
then this component is better than (i.e., at least as loud as) the other component.

∀C1, C2:COMPONENT, I1, I2:INTEGER

[shout(C1, I1) & shout(C2, I2) & I1 ≥ I2] →→0,0,1,1 better_than(C1, C2)

PM4
If a component is better than all other components, and has sufficient information available to
derive output (represented by the component_allowed relation), then the component is selected
to become awake.

∀C:COMPONENT, I1,I2,O1,O2:INTEGER
[[∀C2:COMPONENT [better_than(C, C2)] & component_allowed(C1)]

 →→0,0,1,1 selected_control_aspect_for(awake, C)]

7 Simulation Results

In order to investigate how well the coordination approaches presented in Section 6
can be applied to a test example, simulation runs have been performed. The results of
these simulation runs for the pre-specified coordination approach, the backward goal
propagation approach, and the pandemonium approach are described, respectively, in
Section 7.1, 7.2 and 7.3.

7.1 Pre-Specified Coordination

Figure 4 shows a partial trace of the results of applying the pre-specified coordination
approach to the test example. In the Figure, the left side denotes the state properties
that occur during the simulation, whereas the right side indicates a time line, where a
black box indicates that a state property is true at that time point and a grey box
indicates that it is false.

308

monitored_control_aspect_for(is_output_focus(f1), SYSTEM)
monitored_control_aspect_for(info_type_in_focus_has_qualifier(d4, f1, one_element, 12), SYSTEM)

monitored_control_aspect_for(estimated_processing_time(4), C1)
monitored_control_aspect_for(estimated_processing_time(10), C2)

monitored_control_aspect_for(estimated_processing_time(1), C3)
signed_info_element_present_of(d1)

processing_time(0)
selected_control_aspect_for(awake, C1)

monitored_control_aspect_for(awake, C1)

processing_time(4)
signed_info_element_present_of(d2)

monitored_control_aspect_for(nonbusy, C1)
selected_control_aspect_for(awake, C3)
selected_control_aspect_for(asleep, C1)

monitored_control_aspect_for(asleep, C1)
monitored_control_aspect_for(awake, C3)

signed_info_element_present_of(d3)
monitored_control_aspect_for(nonbusy, C3)

processing_time(5)
selected_control_aspect_for(asleep, C3)

monitored_control_aspect_for(asleep, C3)
processing_time(9)

signed_info_element_present_of(d4)
time 0 5 10 15 20 25 30

Fig. 4. Partial trace resulting from pre-specified coordination

First of all, the initial goal of the system as a whole is specified:

monitored_control_aspect_for(is_output_foucs(f1), SYSTEM)
monitored_control_aspect_for(info_type_in_foucs_has_qualifier(d4, f1, one_element, 12),
 SYSTEM)

Furthermore, initially there is a signed info element of the information type d1 (which
has been provided by the environment):

signed_info_element_present_of(d1)

As a result, the pre-specified coordination approach starts to reason, which results in
the activation of component C1:

selected_control_aspect_for(awake, C1)

This coordination statement results in a monitored control aspect that specifies that
the component is indeed awake:

monitored_control_aspect_for(awake, C1)

After the component has indeed been set to awake, the component derives the
information it can derive. In this case, information type d2 is derived, which results in
an information element being present of that type:

signed_info_element_present_of(d2)

309

Meanwhile, the total processing time of the components used throughout the
simulation is specified. At the moment that component C1 has been activated, the
total processing time is 4:

processing_time(4)

After that, since component C1 has derived its output data d2, C1 becomes nonbusy,
which results in this component being set to asleep:

selected_control_aspect_for(asleep, C1)

The next component activations are performed in a similar fashion (C3 and C1
respectively, following from the pre-specified specification), eventually resulting in
the specified target being reached:

signed_info_element_present_of(d4)

Moreover, the total processing time finally adds up to 9 time steps:

processing_time(9)

7.2 Backward Goal Propagation

Figure 5 shows a partial trace of the behavior of the backward goal propagation
approach as presented in Section 6.2.

In the trace, it is initially derived that information type d4 is a required information
type:

required_information_type(d4)

Since component C1 is the only one capable of deriving d4, it is the preferred
component, and therefore it is derived that C1 can potentially become active:

potential_activation(C1, d4)

On the coordination level, it is monitored that C1 needs input of information type d3
in order to derive d4:

monitored_control_aspect_for(currently_needed_input_for_ouput(d3, d4), C1)

As a result, it is derived that d3 is also a required information type. Now there is a
choice: potential activation of C2 or C3, since both can deliver information of type
d3. On the system level however, a preference has been specified for component C3.
Consequently, C3 can potentially become active:

potential_activation(C1, d3)

310

monitored_control_aspect_for(is_output_focus(f1), SYSTEM)
monitored_control_aspect_for(info_type_in_focus_has_qualifier(d4, f1, one_element, 12), SYSTEM)

monitored_control_aspect_for(input_output_type_relation(d1, d2), C1)

monitored_control_aspect_for(input_output_type_relation(d1, d4), C1)
monitored_control_aspect_for(input_output_type_relation(d3, d4), C1)
monitored_control_aspect_for(input_output_type_relation(d2, d3), C2)
monitored_control_aspect_for(input_output_type_relation(d2, d3), C3)

processing_time(0)

required_information_type(d4)
monitored_control_aspect_for(currently_needed_input_for_output(d1, d2), C1)
monitored_control_aspect_for(currently_needed_input_for_output(d1, d4), C1)
monitored_control_aspect_for(currently_needed_input_for_output(d2, d3), C2)

monitored_control_aspect_for(currently_needed_input_for_output(d2, d3), C3)
monitored_control_aspect_for(currently_needed_input_for_output(d3, d4), C1)

potential_activation(C1, d4)
required_information_type(d3)

potential_activation(C3, d3)

required_information_type(d2)
potential_activation(C1, d2)

selected_control_aspect_for(awake, C1)
monitored_control_aspect_for(awake, C1)

processing_time(4)

monitored_control_aspect_for(info_type_at_output(d2), C1)
selected_control_aspect_for(awake, C3)

monitored_control_aspect_for(awake, C3)
processing_time(5)

monitored_control_aspect_for(info_type_at_output(d3), C3)
processing_time(9)

monitored_control_aspect_for(info_type_at_output(d4), C1)
time 0 20 40 60 80 100 120

Fig. 5. Partial trace resulting from backward goal propagation coordination

This reasoning continues until a component has been found for which all of its
necessary inputs are present. In this case this is component C1, which is therefore set
to awake. As a result, d2 is present, which causes component C3 to become awake.
Finally, after C3 has derived d3, C1 is activated again, deriving d4 and thereby
causing the goal to be achieved. Note that the computation time used by this
algorithm is again 9:

processing_time(9)

This is due to the preference that has been set for derivation of d3. Would this have
been C2, then the derivation would have been done in 18 time units.

7.3 Pandemonium

Figure 6 shows a partial trace that results from applying the pandemonium
coordination mechanism to the test example described before.

311

monitored_control_aspect_for(is_output_focus(f1), SYSTEM)
monitored_control_aspect_for(info_type_in_focus_has_qualifier(d4, f1, one_element, 12), SYSTEM)

processing_time(0)
shout(C3, 0)

shout(C2, 0)
shout(C1, 0.378929)

selected_control_aspect_for(awake, C1)
monitored_control_aspect_for(awake, C1)

monitored_control_aspect_for(info_type_at_output(d2), C1)

processing_time(4)
shout(C2, 0.0947323)
shout(C3, 0.0947323)

shout(C1, 0)
selected_control_aspect_for(awake, C2)

selected_control_aspect_for(awake, C3)
monitored_control_aspect_for(awake, C2)
monitored_control_aspect_for(awake, C3)

monitored_control_aspect_for(info_type_at_output(d3), C2)
monitored_control_aspect_for(info_type_at_output(d3), C3)

processing_time(14)

shout(C1, 0.406126)
monitored_control_aspect_for(info_type_at_output(d4), C1)

processing_time(18)
time 0 5 10 15 20 25 30 35

Fig. 6. Partial trace resulting from pandemonium coordination

In the trace, first the initial foci and processing time are set, and thereafter, the first
round of shouting is started. Since C2 and C3 do not have any input available which
they can use, their shout value is 0:

shout(C2, 0)
shout(C3, 0)

Furthermore, component C1 does have information available at the input, therefore its
shout value is greater than 0:

shout(C1, 0.378929)

As a consequence, C1 is the component with the highest shout value that is also
executable, and is therefore set to awake:

selected_control_aspect_for(awake, C1)

As a result of the activation of the component, information of the type d2 is derived
(not shown in the trace). The activation period of C1 ends, and a new shouting round
is started. In this case, component C1 has just been active, which disallows it to
become active again, thus its shout value is 0:

shout(C1, 0)

Component C2 and C3 however do shout with a value greater than 0, because the
information type d2 (which they need as their input) is now present. Since the
components each have the same input and output information type specification, they
have the same shout value:

312

shout(C2, 0.0947323)
shout(C3, 0.0947323)

In case multiple components are present with the same shout value, all of them are to
become active. Since C2 and C3 have different processing times, the maximum of the
processing times is taken (10 in this case) and is added to the overall processing time
(which was 4 before this round):

processing_time(14)

Finally, component C1 is ranked as the highest shouting component again. As a
consequence, it is activated, resulting in the overall goal being achieved. The eventual
processing time is 18:

processing_time(18)

8 Evaluation

In order to evaluate the performance of the coordination approaches, certain desired
properties can be verified against the generated simulation traces. Such properties can
be specified in TTL and automatically verified using the TTL checker [9]. In order to
express such properties in TTL, the ontology specified in Section 3 is used again.

A first check that can be performed is to investigate whether the goal that has been
set for the system as a whole has been reached. Two variants of this property can be
specified. First of all, a variant is formulated where a deadline has the form of a time-
point:

P1: Successfulness with deadline
For all time points t, if at t the system has a particular output focus and target qualifier, then a
conjunction of signed info elements exists at the output that entails this target qualifier and
furthermore, all of the signed info elements within the conjunction have been derived by a
component before the deadline set.

∀t1, t2:TIME, F:FOCUS, TQ:TARGET_QUALIFIER, TQE:TQ_EXPRESSION
 [[state(γ, t1) |= monitored_control_aspect_for(is_output_focus(F), SYSTEM) &
 state(γ, t1) |= monitored_control_aspect_for(focus_has_qualifier(F, TQ), SYSTEM) &
 state(γ, t1) |= monitored_control_aspect_for(has_expression(TQ, TQE), SYSTEM) &
 � ∃t3:TIME ≥ t1, SIEC :SIGNED_INFO_ELEMENT_CONJUCTION
 [t3 ≤ t2 & entails(SIEC, TQE) &
 ∀SIE:SIGNED_INFO_ELEMENT
 [state(γ, t3) |= is_conjunct_of(SIE, SIEC) �
 state(γ, t3) |= monitored_control_aspect_for(information_at_output(SIE), SYSTEM)]
]
]
]

A similar property can be specified for identified of goals that specify a maximum
duration for derivation:

313

P2: Successfulness with duration
∀t1:TIME, R :REAL, F:FOCUS, TQ:TARGET_QUALIFIER, TQE:TQ_EXPRESSION
 [[state(γ, t1) |= monitored_control_aspect_for(is_output_focus(F), SYSTEM) &
 state(γ, t1) |= monitored_control_aspect_for(focus_has_qualifier(F, TQ), SYSTEM) &
 state(γ, t1) |= monitored_control_aspect_for(has_expression(TQ, TQE), SYSTEM) &
 � ∃t2:TIME ≥ t1, SIEC :SIGNED_INFO_ELEMENT_CONJUCTION
 [t2 ≤ t1 + R & entails(SIEC, TQE) &
 ∀SIE:SIGNED_INFO_ELEMENT
 [state(γ, t2) |= is_conjunct_of(SIE, SIEC) �
 state(γ, t2) |= monitored_control_aspect_for(information_at_output(SIE), SYSTEM)]
]
]
]

This successfulness property has been verified against the traces that result from the
coordination approaches presented in Section 6. Since the goal for the test example
presented in Section 5 is specified by means of a maximum duration, variant P2 of the
property has been used. The checks pointed out that the pre-specified coordination
approach and the backward goal propagation approach satisfy this property. The
pandemonium strategy however does not satisfy this property since the deadline is set
to 12 time units whereas the pandemonium takes 18 time units to come to a solution.

Besides the successfulness of a system, the efficiency of the outcome can be
investigated as well. In order to determine whether the most efficient route has been
found, information is needed about what is this most efficient route in the particular
test example. In order to calculate this route, for instance, a critical path method can
be used. For the specification of this property it is assumed that the most efficient
way of derivation of a particular conjunction of signed info elements is known,
indicated by most_efficient_derivation_duration: SIGNED_INFO_ELEMENT_CONJUNCTION x
REAL. The property expressing that the most efficient derivation has indeed been
found can then be expressed as follows:

P3: Efficient derivation
The derivation is efficient in case all elements of a signed info element conjunction have been
derived in the most efficient manner, and there is no other signed info element conjunction
entailing the target that could have been derived faster.

∀t1:TIME, R1:REAL, F:FOCUS, IT:INFO_TYPE, TQ:TARGET_QUALIFIER,
TQE:TQ_EXPRESSION
[[state(γ, t1) |= monitored_control_aspect_for(is_output_focus(F), SYSTEM) &
 state(γ, t1) |= monitored_control_aspect_for(focus_has_qualifier(F, TQ), SYSTEM) &
 state(γ, t1) |= monitored_control_aspect_for(has_expression(TQ, TQE), SYSTEM)
 � ∃t2:TIME ≥ t1, SIEC :SIGNED_INFO_ELEMENT_CONJUCTION, R2:REAL
 [t2 ≤ t1 + R1 & entails(SIEC, TQE) &
 state(γ, t2) |= most_efficient_derivation_duration(SIEC, R2) & t2 ≤ t1 + R2
 ∀SIE:SIGNED_INFO_ELEMENT
 [state(γ, t2) |= is_conjunct_of(SIE, SIEC) �
 state(γ, t2) |= monitored_control_aspect_for(information_at_output(SIE), SYSTEM)]
]
 &
 ¬∃SIEC2:SIGNED_INFO_ELEMENT_CONJUCTION, R3:REAL
 [state(γ, t2) |= monitored_control_aspect_for(entails(SIEC2, TQE), SYSTEM) &
 state(γ, t2) |= most_efficient_derivation(SIEC, R3) & R3 < R2
]
]
]

314

This property is satisfied for the trace of the pre-specified and the backwards goal
propagation coordination approach. The property is not satisfied for the
pandemonium, since the path chosen using the approach was such that the duration
summed up to 18 time units of processing required whereas the most efficient solution
can be found in 9 time steps.

9 Discussion

This paper presents a coordination specification language that allows for the
specification of both pre-defined coordination approaches and more generic, flexible
approaches. Using this language, it has been shown how several of such coordination
approaches (including a pre-specified as well as several flexible approaches) can be
specified in an executable format. The approaches have been tested by applying them
to a specified test example, and have been evaluated using formal verification. The
pre-specified and backward goal propagation approach both were successful given the
goal set, whereas the pandemonium was not (before the deadline) due to an inefficient
derivation not limited to the focus set. Furthermore, the first two approaches found the
solution in an efficient manner as well.

Besides the approaches that have been analyzed in this paper, other flexible
coordination approaches exist, such as behavior networks [11] and voting [12]. It is
left for future work to determine whether these approaches can be specified in the
language presented in this paper as well.

Already in 1979, Kowalski [10] claimed that the coordination of a component
should be separated from the logic component (i.e. the knowledge used in solving
problems). In [2] a coordination language for multi-agent systems is proposed. It is
stated that one of the contributions of the work is “a conceptualization of the
coordination task of multi-agent systems that is able to express a wide range of
coordination behaviors”. The language presented there is however not a language
which can be used to represent the pre-specified coordination mechanisms such as
specified in Section 6 of this paper. In [5] an overview is presented for the usage of
coordination models and languages as software integrators. An often discussed
coordination model is said Linda [1], which can, according to [5] be seen as a sort of
assembly coordination language which can be used for implementing higher-level
coordination languages. To see whether the language presented in this paper can also
be implemented using Linda is part of future work.

In addition, for future work, a more elaborate evaluation of the coordination
approaches presented in Section 6 would be interesting. Such a more elaborate
evaluation could result in a characterization of the different approaches, identifying in
what situation which approach should be preferred. Furthermore, guidelines on how
to specify the coordination of a system will be created to aid the developer in the
specification thereof.

315

Acknowledgments

This work has been performed as part of a project funded by Force Vision, the
software development department for the Royal Netherlands Navy. Moreover, the
authors are grateful to Joost van den Boom, Rob Duell, Andy van der Mee, and Radu
Serban for various fruitful discussions.

References

[1] Ahuja, S., Carriero, N., and Gelernter, D., Linda and friends. IEEE Computer, 19(8):26–
34, 1986.

[2] Barbuceanu, M., and Fox, M.S., The Design of a Coordination Language for Multi-Agent
Systems, In: Proceedings of the Workshop on Intelligent Agents III, Agent Theories,
Architectures, and Languages, 1996, pp. 341-355.

[3] Bosse, T., Hoogendoorn, M., and Treur, J., Automated Evaluation of Coordination
Approaches, In: Ciancarini, P. and H. Wiklicky, H. (eds.), Proceedings of the 8th
International Conference on Coordination Models and Languages (Coordination 2006),
LNCS 4038, 2006, pp. 44-62.

[4] Bosse, T., Jonker, C.M., Meij, L. van der, and Treur, J., LEADSTO: a Language and
Environment for Analysis of Dynamics by SimulaTiOn. In: Eymann, T., Kluegl, F.,
Lamersdorf, W., Klusch, M., and Huhns, M.N. (eds.), Proc. of MATES'05. LNAI, vol.
3550. Springer Verlag, 2005, pp. 165-178.

[5] Ciancarini, P., Coordination Models and Languages as Software Integrators, ACM
Computing Surveys, Vol. 28, No.2, 1996, pp. 300-302.\

[6] Galton, A. (2003). Temporal Logic. Stanford Encyclopedia of Philosophy, URL:
http://plato.stanford.edu/entries/logic-temporal/#2

[7] Galton, A. (2006). Operators vs Arguments: The Ins and Outs of Reification. Synthese,
vol. 150 (2006), pp. 415-441.

[8] Gavrila, I.S., and Treur, J., A formal model for the dynamics of compositional reasoning
systems. In: A.G. Cohn (ed.), Proc. 11th European Conference on Artificial Intelligence,
ECAI'94, Wiley and Sons, 1994, pp. 307-311.

[9] Jonker, C.M., and Treur, J. (2002), “Compositional Verification of Multi-Agent Systems:
a Formal Analysis of Pro-activeness and Reactiveness,” International Journal of
Cooperative Information Systems, 11, pp. 51-92.

[10] Kowalski, R., Algorithm = Logic + Control, Communications of the ACM, Vol. 22, 1979,
pp. 424 – 436.

[11] Maes, P., (1989). How to do the right thing. Connection Science, 1989. 1(3): p. 291-323.
[12] Ordeshook, P. Game theory and political theory: An Introduction. Cambridge: Cambridge

University Press, 1986.
[13] Selfridge, O. G., (1958). Pandemonium: a paradigm for learning in mechanization of

thought processes. In Proceedings of a Symposium Held at the National Physical
Laboratory, pages 513-526, London, November 1958.

316

317

Part VI:
Organizational Change

Evaluation

318

319

Chapter 15

Formal Analysis of Empirical Traces
in Incident Management

Part of this chapter appeared as: Abbink, H., Dijk, R. van, Dobos, T., Hoogendoorn,
M., Jonker, C.M., Konur, S., Maanen, P.P. van, Popova, V., Sharpanskykh, A.,
Tooren, P. van, Treur, J., Valk, J., Xu, L., and Yolum, P., Automated Support for
Adaptive Incident Management. In: Walle, B. van de, and Carle, B. (eds.),
Proceedings of the First International Workshop on Information Systems for Crisis
Response and Management, ISCRAM'04, May 2004, pp. 69-74.

Furthermore, part of this chapter appeared as: Hoogendoorn, M., Jonker, C. M.,
Konur, S., Maanen, P.P. van, Popova, V., Sharpanskykh, A., Treur, J., Xu, L., Yolum,
P., Formal Analysis of Empirical Traces in Incident Management. In: Macintosh, A.,
Ellis, R., and Allen, T. (eds.), Applications and Innovations in Intelligent Systems XII,
Proceedings of AI-2004, the 24th SGAI International Conference on Innovative
Techniques and Applications of Artificial Intelligence. Springer Verlag, 2004, pp.
237-250.

320

321

Formal Analysis of Empirical Traces
in Incident Management

Mark Hoogendoorn1, Catholijn M. Jonker2,
Peter-Paul van Maanen1, and Alexei Sharpanskykh1

1Department of Artificial Intelligence, Vrije Universiteit Amsterdam

De Boelelaan 1081a, 1081 HV Amsterdam, The Netherlands
Email: {mhoogen, pp, sharp}@cs.vu.nl

URL: http://www.cs.vu.nl/~{mhoogen, pp, sharp}
2Nijmegen Institute for Cognition and Information

Radboud University Nijmegen
Montessorilaan 3, 6525 HR Nijmegen, The Netherlands

Email: C.Jonker@nici.ru.nl
URL: http://www.nici.ru.nl/~catholj

Abstract. Within the field of incident management decisions have to be made
in a split second, usually on the basis of incomplete and partially incorrect
information. As a result of these conditions, errors occur in such decisions
processes. In order to avoid repetition of such errors, historic cases, disaster
plans, and training logs need to be thoroughly analyzed. This paper presents a
formal approach for such an analysis, that pays special attention to spatial and
temporal aspects, to information exchange, and to organizational structure. The
formal nature of the approach enables automation of analysis, which is
illustrated by case studies of two disasters.

Keywords: incident management, formal analysis, automated evaluation

1 Introduction

Disasters are unforeseen events that cause great damage, destruction and human
suffering. The question that keeps rising is: “Could we have done anything to prevent
this?” The key element is the distinction between incidents and disasters. Incidents are
disturbances in a system that can lead to an uncontrollable chain of events, a disaster,
when not acted on properly.

Incidents cannot be avoided. People make mistakes and nature is unpredictable.
Incidents typically lead to chaotic situations and complex problems that have to be
solved within limited time. Examples of incidents that took on disastrous proportions
because of inadequate human intervention are the crash of a Boeing 747 in an urban
area in Amsterdam and the Hercules disaster in Eindhoven in the Netherlands.

Depending on the type of incident many people of various organizations have to
cooperate; fire brigade, police, ambulance services, alarm centers, hospitals, coast

322

guard, local government, national government, army, to name but the most common
organizations involved.

From the ICT perspective, research to improve incident management is mainly
focused on the design and development of information systems to support both multi-
party communication and decision making, thus addressing the multidisciplinary and
distributive character of incident management. Systems like IMI [13] and the GIS-
based information exchange system for nuclear emergencies in the Netherlands [14]
belong to this category.

However, some research projects address the major problem in incident
management of adaptively organizing multi-party cooperation in a dynamic context,
while minimizing the number of errors. For example, the COMBINED project [5]
tries to tackle the problem using adaptive multi-agent technology.

Finally, some projects focus on simulation tools and techniques to support analysis
of crisis response and to support the development of training systems. An example of
such an approach for simulations of strategic management is presented in [3].

Not addressed in the research mentioned above, is the ability to analyze the
progress of incident management after the fact or while the incident unfolds. Such an
analysis is useful for two reasons. First of all, it allows for the evaluation of historic
cases whereby errors can be detected and learned from in order to avoid them from
occurring again. Secondly, if such an analysis could actually be performed at runtime,
this would enable the detection of errors before they result in a catastrophe.

This paper shows how such an analysis can be performed using formal modeling
and verification techniques. The paper shows how domain specific properties can be
specified in a formal language, how a trace (a temporal description of chains of
events) can be formally specified, and finally how automated verification can be
performed upon such a trace. Properties that can be analyzed include spatial,
temporal, information exchange, as well as organization structure properties. These
properties can originate from a variety of sources, such as disaster plans, disaster
prevention plans, and laws. Two disasters that occurred in the Netherlands have been
analyzed in this way, of which the results are presented in this paper.

In Section 2 of this paper an informal analysis of traces of real life case studies is
presented. In Section 3 an outline is given of the adopted modeling approach. Section
4 shows a formalization of the trace of one of the case studies. The methodology for
validation of such a formalized trace is presented in Section 5. Section 6 discusses a
number of essential dynamic properties that have been formalized and automatically
checked for the formalized trace from Section 4 using the methodology presented in
Section 5. Section 7 is a final discussion.

2 Case Studies

In order to illustrate the functioning of the methodology, a number of cases have been
studied. In this paper, two of such studies are presented, namely the Hercules disaster
and the Dakota incident which both occurred in the Netherlands. These two examples
have been chosen due to the different nature of the plans that are applicable in the
particular cases. In the Hercules disaster very detailed plans were available in the

323

form of disaster prevention plans, whereas for the Dakota incident merely high level
disaster plans were applicable.

2.1 Hercules disaster

The informal analysis of the Hercules disaster presented here is based on [8]. A
formalization of the occurrences during this disaster can be found in Section 4.

On October 16th, 1996 at 6:03 p.m. a Hercules military airplane crashed at the
airport of Eindhoven, in the Netherlands. This disaster involves many examples of
miscommunications and lack of communication and is therefore a well known
example of a non optimal working disaster prevention organization. An informal
description of the events that took place during the rescue phase is presented below.

The Air-Traffic Control Leader on duty anticipated an accident and activated the
so-called crash bell at 6:03 p.m. and hereby initiated the alarm phase. Trough the
intercom installation he announced that a Hercules plane had landed with an accident
and pointed out the location of the plane. The Assistant Air-Traffic Control Leader at
the same time contacted the Emergency Centre of the Fire department at the Airbase
and reported the situation. The Fire department immediately took action.

The Airbase Fire department must, when reporting to external authority, report
which scenario is applicable. There are three different types of scenarios: Scenario 1:
A maximum of 2 people involved, Scenario 2: More than 3 and less than or equal to
10 people. Scenario 3: More than 10 people. This all can be found on a checklist and
also has consequences for the activities that should take place and the amount of
authorities that need to be informed.

The Air-Traffic Control Leader on duty knew that at least 25 people were on board
of the plane, this was due to a private source. He called the Emergency Centre of the
Fire department at the Airbase around 6:04 p.m. with the order to call 06-11 (the
national emergency number at that time).

The Chief of the Airbase Fire department (‘On Scene Commander’, OSC) asked
Air-Traffic Control for the number of people on board of the plane at 6:04 p.m.
According to this person, the answer was ‘nothing known about that’. Following from
this the OSC reported Scenario 2 through the walkie-talkie. The Emergency Centre
operator says not to have heard this but does not want to state that this has not been
said.

At 6:06 p.m. the Emergency Centre operator calls 06-11 and is connected to the
Central Post for Ambulances (CPA). From that point on, the Emergency Centre
operator got help from a fire fighter. Together they tried to inform several
governmental officials.

At 6:12 p.m. the Regional Emergency Centre of the Fire department (RAC)
Eindhoven phoned air-traffic control with the question whether backup was needed,
the response was ‘negative’. At 6:12 p.m. the Emergency Centre employee and the
aforementioned fire fighter decided to follow Scenario 2 of the disaster plan (there
were at least 4 people on board of the Hercules because that is the usual crew for this
type of plane). At 6:15 p.m. the first civil fire trucks pulled out.

Besides alarming and informing all parties, actions on the scene were taken during
that same period. Immediately after the announcement of the Air-Traffic Control

324

Leader the Airbase Fire department went to the scene with a Land Rover Command
vehicle (LARO) with the OSC and two Major Airport Crash Tenders (MAC’s) each
manned with a crew of 3 people. The OSC thought that only the crew was on board of
the plane and till the moment passengers had been found he handled accordingly.

At 6:05 p.m. the LARO arrived at the scene and directed the MAC’s to the plane.
At 6:07 p.m. the MAC’s took their position of attack, the plane was on fire across the
full length of the body. According to the procedures, the extinguishing was aimed at
making the body fire-free. At 6:09 p.m. this was the case and the rest of the fire did
not spread anymore. In this situation, the survivors could escape from the plane by
themselves.

Around 6:10 p.m. one of the MAC’s was empty and the other one only had a
quarter of the water-supply left. The OSC decided to have a fire fighter switch the
empty one for another one that was still full. After 6 minutes the fire fighter was back
with a full MAC.

At 6:19 p.m. there was complete control over the fire at the right wing and engine.
Thereafter, at 6:25 p.m. the first civil fire trucks arrived on the scene. After their
arrival the OSC contacted the chief of the first fire truck who was told that probably
four people were on board of the plane. After pumping water to the MAC’s at 6:38
p.m. they started extinguishing the left engine.

6:33 p.m. was the exact time point when the decision was made to go inside the
plane and use a high-pressure hose to extinguish some small fires inside the plane.
After that, at 6:37 p.m. the fire fighters were in the plane for the first time and shortly
thereafter the first casualty was discovered. Almost at the same time 20 to 30 other
casualties were discovered.

2.2 The Dakota Disaster

The informal analysis of the Dakota disaster presented here is based on [9].
The plane crash of a Dakota PH DDA in 1996 in The Netherlands is another

examined disaster. The plane had 6 crew members and 26 passengers on board and
crashed into the Wadden Sea.

In the Dakota disaster, other factors are involved in the emergency rescue process.
For instance, some officers are not familiar with emergency procedures/protocols for
the disaster. The wrong procedures/protocols are picked up. An inefficient rescue
procedures/protocols consequently is followed. Another example is that an overload
of some of the partners can potentially cause some mistakes during the rescue
process. However, miscommunications and inappropriate decisions are also involved
in the rescue process.

On September 25, 1996 a Dakota PH DDA of the Dutch Dakota Association
(DDA) left Texel International Airport Holland. The plane had 6 crewmembers and
26 passengers on board. Shortly after take off the crew reported engine trouble to
Texel International Airport Holland (TIA). Around 4:36 p.m. the crew contacted the
Navy airbase The Kooy (MVKK) and stated that it wanted to make an emergency
landing on The Kooy. After a short while, The MVKK observed the Dakota disappear
from the radar screen.

The MVKK immediately sent a helicopter, initiated a team of rescue helicopters
and alarmed the coast guard centre (KWC). At 4:46 p.m. the KWC passed the correct
information of the disaster to Regional Alarm Centre northern part of Noord-Holland

325

(RAC) and asked the RAC to alarm the relevant partners. Unfortunately, the RAC
only organised the rescue boats and vessels and did not alarm other parties, that
should be warned in the disaster.

At 4:55 p.m., the KWC reported the disaster to Noord Hollands Dagblad (a Dutch
newspaper) and RTL TV station. Consequently, the KWC got many requests for
information from the ANP (Dutch press office). The KWC is thus under a lot of
pressure.

Through the ANP, the National Centre for Coordination (LCC) got the message
that the Dakota had crashed. At 5:03 p.m. the LCC contacted the KWC, the KWC
asked the LCC to help by providing a trauma team.

Coincidentally, a big drill for ambulances was ready to start. The Drill leader asked
the president of the Dutch health service (GGD) whether the drill should still go on.
At 5:05 p.m. the president of the GGD called RAC to inquire if the accident is for
real. The RAC responded that neither the KWC nor the harbor office (HK) knew what
was going on. The GGD even agreed to start the drill.

At almost the same time, the KWC asked the MVKK to take care of the wounded
and told the LCC that the trauma team should be sent to MVKK. At 5:07 p.m. the
LCC made an appointment with the Ministry of Public Health, Wellbeing, and Sports
(VWS), VWS finally arranged the trauma team.

At 5:17 p.m. the first helicopter with casualties landed at Gemini Hospital
(Gemini), the Gemini called the RAC to ask what the purpose of this is. The RAC
replied that they only knew a plane had crashed and did not know anything more.

At 5:20 p.m. the RAC asked the KWC to get a trauma team from Gemini to
MVKK. Meanwhile the centre for ambulances (CPA) of Amsterdam, the mayors of
Den Helder and Wieringen, and the commander of the regional fire department are
notified. After a while the arrangements of a crisis centre finally set up at the Navy.
At 6:44 p.m. all bodies are found and transported. There is only one survivor of the
disaster.

3 Modeling Approach

To formally specify dynamic properties that are essential in incident management
processes, an expressive language is needed. To this end the Temporal Trace
Language is used as a tool; cf. [11]. In this paper for the properties occurring in
Section 6 both informal or semi-formal and formal representations are given. The
formal representations are based on the Temporal Trace Language (TTL), which is
briefly defined as follows.

A state ontology is a specification (in order-sorted logic) of a vocabulary. A state
for ontology Ont is an assignment of truth-values {true, false} to the set At(Ont) of
ground atoms expressed in terms of Ont. The set of all possible states for state
ontology Ont is denoted by STATES(Ont). The set of state properties STATPROP(Ont)
for state ontology Ont is the set of all propositions over ground atoms from At(Ont). A
fixed time frame T is assumed which is linearly ordered. A trace or trajectory γ over a
state ontology Ont and time frame T is a mapping γ : T → STATES(Ont), i.e., a
sequence of states γt (t ∈ T) in STATES(Ont). The set of all traces over state ontology

326

Ont is denoted by TRACES(Ont). Depending on the application, the time frame T may
be dense (e.g., the real numbers), or discrete (e.g., the set of integers or natural
numbers or a finite initial segment of the natural numbers), or any other form, as long
as it has a linear ordering. The set of dynamic properties DYNPROP(�) is the set of
temporal statements that can be formulated with respect to traces based on the state
ontology Ont in the following manner.

Given a trace γ over state ontology Ont, the input state of a role r within an incident
management process (e.g., mayor, or fire fighter) at time point t is denoted by

state(γ, t, input(r))

analogously

state(γ, t, output(r))
state (γ, t, internal(r))

denote the output state, internal state and external world state.
These states can be related to state properties via the formally defined satisfaction

relation |=, comparable to the Holds-predicate in the Situation Calculus: state(γ, t,

output(r)) |= p denotes that state property p holds in trace γ at time t in the output state
of role r. Based on these statements, dynamic properties can be formulated in a formal
manner in a sorted first-order predicate logic with sorts T for time points, Traces for
traces and F for state formulae, using quantifiers over time and the usual first-order
logical connectives such as ¬, ∧, ∨, �, ∀, ∃. In trace descriptions, notations such as

state(γ, t, output(r)) |= p

are shortened to

output(r) | p

To model direct temporal dependencies between two state properties, the simpler

leads to format is used. This is an executable format defined as follows. Let α and β
be state properties of the form ‘conjunction of literals’ (where a literal is an atom or
the negation of an atom), and e, f, g, h non-negative real numbers. In the leads to
language α →→e, f, g, h β, means:
 If state property α holds for a certain time interval with duration g,
 then after some delay (between e and f) state property β will hold for a certain time interval of
 length h.
For a precise definition of the leads to format in terms of the language TTL, see [12].
A specification of dynamic properties in leads to format has as advantages that it is
executable and that it can often easily be depicted graphically.

4 Formalization of an Empirical Trace

Informal traces of events, such as the trace presented in Section 2 of the Hercules
disaster, can be formalized using the formal language TTL as briefly described in
Section 5; see also [11]. The translation from an informal trace of events to a formal
trace is currently done by hand. However, for the future there are plans to develop a
methodology that supports non-expert users in making this translation. When

327

formalizing a trace four key elements need to be represented within such a trace: (1)
temporal aspects; (2) spatial aspects; (3) information exchanges, and (4) organization
structure.

Formalizing a trace has several benefits. First of all, specific properties which
should hold for a trace can be verified. An example of such a property in the case of
an airplane crash is that a fire truck should be at the disaster area within 3 minutes
according to the International Civil Aviation Organization (ICAO). Some properties
(like the example just mentioned) can often easily be checked by hand, but in more
complex cases, a mistake may have been caused by a wrong chain of events. These
types of causes are usually difficult to determine, and the formalization can help for
this purpose.

Another benefit of the formalization is in the case where the protocol for the
disaster prevention organization was incorrect. After the protocol has been rewritten it
can be formalized by means of executable properties and the scenario in which the
previous protocol failed can be used as an input. Resulting from this, a simulation can
be performed which in turn will result in a trace of the functioning of the disaster
prevention organization when using the new protocol. By means of this trace the
properties that failed with the previous protocol can again be verified to see whether
the new protocol has indeed improved the functioning. In case the properties are again
not satisfied the cause of this failure can be determined and the protocol can be
revised until the desired properties are all satisfied.

An example of a formalization of a trace is shown in Figure 1. It models the events
that occurred during the Hercules incident. Only a part of the trace is shown for the
sake of brevity. On the left side of the picture the atoms are shown that are present in
the trace. All atoms have the format

 output(‘role’)|communicated_from_to(‘src’, dst’, ‘type’, ‘information’)

The ‘role’ indicates the role that outputs this information, whereas the ‘src’ and
‘dst’ model the source and destination role (notice that ‘role’ = ‘src’ always holds). A
list of all the abbreviations used for the roles is shown in Table 1.

The types of communication are based on speech acts [1]. In the full trace also
atoms containing input are present. Behind the atom there is a time line, indicating
when the atom is true in the trace.

Table 1. A list of all abbreviations

Abbreviation Abbreviates
AFD Airbase Fire Department
ATC Air Traffic Control
CPA Central Post Ambulances
MAC Major Airport Crash tender
OSC On Scene Commander
OSO On Scene Operations
MHS Medical Health Servies
OvD Officer On Duty
CvD Commander on Duty
0611 The national emergency number

For example, the first atom
output(ew)|communication_from_to(ew, ’ATC’, observe, crash)

328

F
ig

. 1
. F

or
m

al
iz

ed
 e

m
pi

ri
ca

l t
ra

ce
 o

f t
he

 H
er

cu
le

s
di

sa
st

er

329

which states that the external world outputs a crash of a Hercules to air-traffic control,
is true during the first minute after the crash, as he observes the crashed plane during
that period.

A verification of properties that should hold for the disaster prevention
organization is presented in the next section.

5 Methodology for Validation of a Trace

After having obtained a formalized trace, either by formalization of an empirical trace
or by a simulated trace, it is useful to verify essential dynamic properties of an
incident management process for the trace. By means of this verification one can
determine what precisely went wrong in the example incident management process
described by the trace.

Such dynamic properties can be verified using a special software environment TTL
Checker that has been developed for the purpose of verifying dynamic properties
specified in the Temporal Trace Language TTL (cf. [11]) against traces.

The software environment takes a dynamic property and one or more (empirical or
simulated) traces as input, and checks whether the dynamic property holds for the
trace(s). Using this environment, the formal representation relations presented below
have been automatically checked against the trace depicted in Figure 1. Traces are
represented by sets of PROLOG facts of the form

holds(state(m1, t(2)), a, true).

where m1 is the trace name, t(2) time point 2, and a is a state formula in the ontology
of the component's input.

It is indicated that state formula a is true in the component’s input state at time
point 2. The program for temporal formula checking basically uses PROLOG rules
that reduce the satisfaction of the temporal formula finally to the satisfaction of
atomic state formulae at certain time points, which can be read from the trace
representation. Examples of such reduction rules are:

sat(and(F,G)) :- sat(F), sat(G).
sat(not(and(F,G))) :- sat(or(not(F), not(G))).
sat(or(F,G)) :- sat(F).
sat(or(F,G)) :- sat(G).
sat(not(or(F,G))) :- sat(and(not(F), not(G))).

6 Validation of Hercules Disaster Trace

Below a number of properties are expressed that in particular are relevant for the
Hercules case (Section 3.1), are represented in structured semi-formal format, and
finally have been formalized using TTL. Such properties are categorized into four
types, namely spatial properties, temporal properties, properties concerning the
information exchange, and finally, organization structure properties. Properties can
originate from disaster plans, disaster prevention plans, but for instance also from
laws.

330

6.1 Spatial Properties

Spatial properties include the movement and position of both people as well as
material involved in the disaster prevention process. An example of such a property
for the Hercules disaster is shown below.

P1: Fire Truck Moves to Scene
At any point in time t1,
if the AFD is informed about a plane crash on the runway
then at a later point in time t2 a fire truck T will be located on the runway.
Formalization of the property P1:

∀t1, R:ROLE
[state(γ, t1, input(‘AFD’)) |= communication_from_to (R, ‘AFD’, inform, crash) &
 � ∃t2 > t1, T:FIRE_TRUCK state(γ, t2)|= located_at(T, ‘runway’)]

This property is satisfied for the given trace.

6.2 Temporal Properties

Temporal properties include notions such as timely arrival of information and
resources. The essence of a property falling into this category is a restriction on the
amount of time something is allowed to take. Three properties related to the Hercules
disaster have been specified within this category:

P2: Timely Information Delivery
At any point in time t1,
if ATC generates information for AFD about the plane crash,
then at a later point in time t2, t2 ≤ t1+2 AFD will communicate this information to RFD.
Formalization of the property P2:

∀t1 [state(γ, t1, input(‘AFD’)) |= communication_from_to (‘ATC’,‘AFD’, inform, crash)
� ∃t2≤ t1+2 state(γ, t2, output(‘AFD’))|= communication_from_to(‘AFD’,‘RFD’, inform, crash)]

This property is not satisfied for the given trace.

P3: MAC Timely Arrival at the Disaster Area
At any point in time t1,
if AFD receives information from ATC about the plane crash,
then at a later point in time t2 MAC will join AFD, and at a still later point in time t3 will come to the
disaster area in less than 3 minutes upon the plane crash information reception.
Formalization of the property P3:

∀t1 [state(γ, t1, input(‘AFD’)) |= communication_from_to (‘ATC’,‘AFD’, inform, crash)
� ∃t2>t1 state(γ, t2) |= member_of(‘MAC’, ‘AFD’) &
∃t3≤ t1+3 & t3>t2 & state(γ, t3)|=member_of(‘MAC’, ‘OSO’)]

This property is satisfied for the given trace.

P4: Sufficient Number of Ambulances, Called Immediately
At some time point t1,
if CPA generates information about the number of ambulances, sent to the disaster area to RFD,
then at no later point in time t2 CPA will ask for additional ambulances.
Formalization of the property P4:

331

∀t1, x,y
[state(γ, t1, input(‘RFD’)) |= communication_from_to (‘CPA’, ‘RFD’, inform, amount(ambulance_sent, x))
� ¬∃t2>t1
state(γ, t2, output(‘CPA’))|= communication_from_to(‘CPA’, ‘CPA’, request, amount(ambulance_needed), y)]

This property is not satisfied for the given trace.
The property P5 is meant to verify if CPA sent a sufficient number of ambulances to
the scene immediately.

6.3 Information Exchange Properties

The information exchange properties express what information should be exchanged
between the various players in the organization, but also the correctness of this
information. An example of such a property is specified below for the Hercules
disaster.

P5: Information Correctness
At any point in time t1,
if AFD generates a request for ATC about the number of people on the plane,
then at a later point in time t2 ATC will communicate the correct answer to AFD
Formalization of the property P5:

∀t1 [state(γ, t1, input(‘ATC’)) |= communication_from_to (‘AFD’,‘ATC’, request, n_of_people_in_plane)
� ∃t2>t1 state(γ, t2, output(‘ATC’))|= communication_from_to(‘ATC’,‘AFD’, inform, amount(people, 40))]

Automated verification showed that this property is not satisfied in the given trace.

P6: Choice of Protocols
At any points in time t1 and t2, t2≥t1,
if ATC generates information to AFD about the plane crash at t1,
and that the number of passengers is more than 10 at t2,
then at a later point in time t3 AFD declares Scenario 3.
Formalization of the property P6:

∀t1, t2, x [t2≥t1 � [state(γ, t1, input(‘AFD’)) |= communication_from_to (‘ATC’,‘AFD’, inform, crash)
& x>10 & state(γ, t2, input(‘AFD’))|= communication_from_to(‘ATC, ‘AFD’, inform, amount(people, x))]
� ∃t3>t2 state(γ, t3, output(‘AFD’))|= communication_from_to(‘AFD’,‘AFD’, declare, scenario3)]

This property is not satisfied for the given trace.

6.4 Organization Structure Properties

Final property type is that of properties regarding the organization structure. Such a
structure usually defined based upon the severity of the incident. Properties that can
therefore be checked against the trace check for the correctness of the organization
given the current situation. Two example properties are presented below.

P7: Presence Officer On Duty
At any points in time t1 and t2, t2≥t1,
if ATC generates information to AFD about the plane crash at t1,
and that the number of passengers is more than 10 at t2,
then at a later point in time t3 the OVD role is part of the On Scene Operations
Formalization of the property P7:

332

∀t1, t2, x [t2≥t1 � [state(γ, t1, input(‘AFD’)) |= communication_from_to (‘ATC’,‘AFD’, inform, crash)
& x>10 & state(γ, t2, input(‘AFD’))|= communication_from_to(‘ATC, ‘AFD’, inform, amount(people, x))]
� ∃t3>t2 state(γ, t3)|= member_of(‘OvD’, ‘OnSceneOperations’)]

This property is satisfied for the given trace.

P8: Presence Police Units
At any points in time t1 and t2, t2≥t1,
if ATC generates information to AFD about the plane crash at t1,
and that the number of passengers is more than 10 at t2,
then at a later point in time t3 police units are part of the On Scene Operations
Formalization of the property P8:

∀t1, t2, x [t2≥t1 � [state(γ, t1, input(‘AFD’)) |= communication_from_to (‘ATC’,‘AFD’, inform, crash)
& x>10 & state(γ, t2, input(‘AFD’))|= communication_from_to(‘ATC, ‘AFD’, inform, amount(people, x))]
� ∃t3>t2, P:POLICE_UNIT state(γ, t3)|= member_of(P, ‘OnSceneOperations’)]

This property is satisfied for the given trace.

As can be seen from the results of properties verification, given above, 4 from 8
properties are not satisfied over the trace. By analyzing the obtained results one can
get insight in which types of errors occurred in the scenario and which points of the
disaster plan, disaster prevention plan, and the law were not fulfilled.

7 Discussion

This paper shows how empirical traces in incident management can be thoroughly
analyzed in an automated fashion, by means of formal verification techniques. The
approach has been illustrated by the analysis of two historic cases, namely the Dakota
incident and the Hercules disaster. Properties involving spatial, temporal, information
exchange and organizational structure that are of particular importance in incident
management have been specified and checked for these case studies. The result of the
analysis shows that certain errors occurred in these historic cases which can as a result
be avoided in future.

Research continues to make the approach applicable for the runtime analysis of
incident management, possibly intervening in the incident management process in
case severe errors are detected that could potentially have dramatic consequences.
Such interventions could for example be in the form of a personal agent for each
person involved in incident management which provides feedback to its user in the
form of advice.

To enable such an analysis, usually one can specify dynamic properties at different
aggregation levels, from global properties, to more local properties, and establish
hierarchical inter-level relations between the properties. If one of the global properties
does not hold, then verification of properties at intermediate levels can follow to
identify were the cause of the problem can be found. The verification process can be
continued up to the lowest level, consisting of the simplest local properties. See [10]
for more details of this diagnostic approach. The approach put forward in this paper
can be extended to include such a hierarchical diagnostic approach as well.

333

Acknowledgements

The authors would like to thank Hans Abbink, Roel van Dijk, Tamas Dobos, Savas
Konur, Viara Popova, Peet van Tooren, Jan Treur, Jeroen Valk, Lai Xu, and Pinar
Yolum for the fruitful discussions.

References

[1] Austin, J.L. How to do things with words. Oxford University Press, 2nd edition, 1976.
[2] Brazier, F.M.T., Treur, J. Compositional modelling of reflective agents. International

Journal of Human-Computer Studies, vol. 50, 1999, pp. 407-431.
[3] Breuer, K., Satish, U. Emergency Management Simulations-An approach to the

assessment of decision making processes in complex dynamic environments. In Jose J.
Gonzalez (eds), From modeling to managing security: A system dynamics approach,
HoyskoleForlaget, 2003, pp. 145-156.

[4] Brown, S. M., Santos Jr., E., Banks, S. B., Stytz, M. R. Intelligent interface agents for
intelligent environments. In: Proceedings of the 1998 AAAI Spring Symposium on
Intelligent Environments, 1998, pp. 145-147.

[5] Burghardt, P. Combined Systems: The combined systems point of view. In: Carlé, B.,
Walle, B. van der (eds.), Proceedings of the International Workshop on Information
Systems for Crisis Response and Management '04, Brussels, Belgium. 2004.

[6] Etzioni, O., Hanks, S., Weld, D., Draper, D., Lesh, N., Williamson, M., An approach to
planning with incomplete information. In: Proc. 3rd Int. Conf. on Principles of Knowledge
Representation and Reasoning, 1992, pp. 115-125.

[7] Fargier H., Lang J., Martin-Clouraire R., Schiex T. A constraint satisfaction framework for
decision under uncertainty. In: Proc. of the 11th Int. Conf. on Uncertainty in Artificial
Intelligence, 1995, pp. 167-174.

[8] Inspectie Brandweerzorg en Rampenbestrijding, Vliegtuigongeval Vliegbasis Eindhoven
15 juli 1996, SDU Grafische Bedrijf, The Hague, 1996.

[9] Inspectie Brandweerzorg en Rampenbestrijding, Dakota-incident Waddenzee 1996, SDU
Grafische Bedrijf, The Hague, 1997.

[10] Jonker, C.M., Letia, I.A., Treur, J. Diagnosis of the dynamics within an organisation by
trace checking of behavioural requirements. In: Wooldridge, M., Weiss, G., and
Ciancarini, P. (eds.), Agent-Oriented Software Engineering, Proc. of 2nd Int Workshop
AOSE'01. LNCS vol. 2222. Springer Verlag, 2002, pp. 17-32.

[11] Jonker, C.M., Treur, J. Compositional verification of multi-agent systems: a formal
analysis of pro-activeness and reactiveness. International. Journal of Cooperative
Information Systems, vol. 11, 2002, pp. 51-92.

[12] Jonker, C.M., Treur, J., and Wijngaards, W.C.A., A Temporal Modelling Environment for
Internally Grounded Beliefs, Desires and Intentions. Cognitive Systems Research Journal,
vol. 4, 2003, pp. 191-210.

[13] Lee, M.D.E. van der, Vugt, M. van. IMI – an information system for effective
multidisciplinary incident management. In: Carlé, B., Walle, B. van der (eds.),
Proceedings of the International Workshop on Information Systems for Crisis Response
and Management '04, Brussels, Belgium. 2004.

[14] Ridder, M. de, Twenhöfel, C. The design and implementation of a decision support and
information exchange system for nuclear emergency management in the Netherlands. In:
Carlé, B., Walle, B. van der (eds.), Proceedings of the International Workshop on
Information Systems for Crisis Response and Management '04, Brussels, Belgium. 2004.

334

335

Chapter 16

Agent-Based Analysis and Support
for Incident Management

Part of this chapter appeared as: Hoogendoorn, M., Jonker, C.M., Treur, J., and
Verhaegh, M., Agent-Based Analysis and support for Incident Management. In:
Klusch, M., Rovatsos, M., and Payne, T. (eds.), Cooperative Information Agents X:
Proceedings of the 10th International Workshop on Cooperative Information Agents
(CIA 2006), LNCS 4149, Springer Verlag, 2006, pp. 109-123. The original
publication is available at www.springerlink.com.

336

337

Agent-Based Analysis and Support
for Incident Management

Mark Hoogendoorn1 , Catholijn M. Jonker2, Jan Treur1, and Marian Verhaegh3

1Vrije Universiteit Amsterdam, Department of Artificial Intelligence
De Boelelaan 1081a, 1081 HV Amsterdam, The Netherlands,

tel. +31 20 598 7772, fax. +31 20 598 7653
{mhoogen, treur}@cs.vu.nl

2Radboud University Nijmegen, Nijmegen Institute of Cognition and Information
Montessorilaan 3, 6525 HR Nijmegen, The Netherlands

C.Jonker@nici.ru.nl
3Quartet Consult, Jaap Edenlaan 16, 2807 BR Gouda, The Netherlands

info@quartetconsult.nl

Abstract. This paper presents an agent-based approach for error detection in
incident management organizations. The approach consists of several parts.
First, a formal approach for the specification and hierarchical verification of
both traces and properties. Incomplete traces are enriched by enrichment rules.
Furthermore, a classification mechanism is presented for the different properties
in incident management that is based on psychological literature. Classification
of errors provides insight in the functioning of the agents involved with respect
to their roles. This insight enables the provision of dedicated training sessions
and allows software support to give appropriate warning messages during
incident management.

Keywords: Error detection, incident management, formal analysis, handling
incomplete information, agent-based support.

1 Introduction

The domain of incident management is characterized by sudden events which demand
immediate, effective and efficient response. Due to the nature of incident
management, those involved in such processes need to be able to cope with stress
situations and high work pressure. In addition to that, cooperation between these
people is crucial and is not trivial due to the involvement of multiple organizations
with different characteristics (e.g. police, health care, fire department). As a result of
these difficulties, often errors occur in an incident management process. If such errors
are not handled properly, this may have great impact on the successfulness of incident
management.

Research within the domain of computer science and artificial intelligence is being
performed to see whether automated systems can improve the current state of affairs
in incident management (see e.g. [10; 13]). One of the problems is that the
information available is incomplete and possibly contradictory and unreliable. As a

338

result, more advanced techniques are needed to enable automated systems to
contribute an improvement of the incident management process.

This paper presents an agent-based approach to monitor, analyze and support
incident management processes by detecting occurring errors and providing support
to avoid such errors or to limit their consequences. The approach is tailored towards
the characteristics of incident management. First of all, the approach includes a
method which deals with incomplete information. In addition, a diagnostic method
based on refinement within the approach can signal whether certain required
properties of the incident management organization are not satisfied, and pinpoint the
cause within the organization of this dissatisfaction. The approach is based on the
organizational paradigm nowadays in use in agent systems [1; 4] which allows the
abstraction from individual agents to the level of roles. Such an abstraction is useful
as typically specification of the requirements in this domain is done on the level of
roles (e.g. the police chief should communicate a strategy for crowd control). In case
errors are observed in role behavior, they are classified to have more insight in what
kind of errors are often made by a particular agent participating in the organization, in
order to propose a tailored training program for this agent. In the future the approach
as a whole can be incorporated in cooperating software agents for monitoring and
providing feedback in training sessions, and software agents which can even monitor
incident management organizations on the fly, giving a signal as soon as errors are
detected, and providing support to avoid their occurrence or to limit their
consequences.

Section 2 introduces the domain of incident management and, more specifically,
the situation in the Netherlands. Thereafter, Section 3 introduces the formal language
used to specify traces and behavior. Section 4 presents an approach for handling
incomplete information by means of enrichment rules whereas Section 5 presents a
simple example of a specification of properties in the form of a hierarchy. Section 6
presents such properties for incident management organizations. Furthermore, Section
7 presents the classification scheme for errors, including specific incident
management decision rules. Results of a case study are presented in Section 8 and
finally, Section 9 is a discussion.

2 The Domain of Incident Management

In this Section, a brief introduction to the domain of incident management in the
Netherlands is given. In the Netherlands four core organizations are present within
incident management: (1) the fire department; (2) the police department; (3) health
care, and (4) the municipalities involved. The first three parties mentioned each have
their own alarm center in which operators are present to handle tasks associated with
the specific organization.

A trigger for starting up an incident management organization is typically a call to
the national emergency number, which is redirected to the nearest regional alarm
center in which all three parties have their own alarm center. The call will be
redirected to the most appropriate alarm center of the three parties. In case the
operator of that alarm center considers the incident to be severe enough to start up the

339

full incident management organization, he informs the alarm centers of the other
organizations as well. Initially, the three alarm centers will send the manpower they
think is appropriate for the incident reported. After the manpower has arrived on the
scene, each part of the organization in principle acts on its own, each having a
different coordinator of actions. In the case of the fire department this is the
commander of the first truck to arrive, for health care it is the paramedic of the first
ambulance and for the police there is no such coordinator as they have a supporting
role. Each of the coordinators are in charge until the dedicated operational leaders of
the organization arrive at the scene. The responsibilities of the organizations are
briefly described as follows: the fire department takes care of the so called “cause and
effect prevention”, the health care organization is in charge of providing medical care,
and the police takes care of routing of the various vehicles and crowd control. After
the initial phase without structural coordination, an organization is formed in order to
coordinate all actions of the individual organizations in case this is still necessary.
The fire department is usually in charge of the operational side of this organization
and the mayor of the municipality is in charge of the policy part. The mayor is
responsible for the formation of the disaster staff for coordinating policy decisions,
and is therefore informed of the situation. The operational coordination structures are
formed after deliberation between the various parties on the scene has resulted in a
mutual demand for such a coordination structure. In case it is decided to form the
operational and/or disaster staff, the operators of the alarm centers start warning the
relevant people.

In case the full coordination structure is in place, the organization resembles the
structure shown in Figure 1. This is a partial picture, as the full picture would be too
complex to explain in a brief manner. For more details on the full coordination
structure, see [9].

 Fig. 1. Full coordination structure for incident management

• Police units
• Fire fighting units
• Health care units
• ……

Command
Disaster Area

Operational coordination

Mayor

Disaster staff

340

3 Modeling Method Used

This section describes the language TTL (for Temporal Trace Language) [6] used for
expressing dynamic properties as well as the expression of traces. Furthermore, the
language meta-TTL is introduced for second-order dynamic properties.

3.1 The Language TTL for Dynamic Properties

To formally specify dynamic properties that are essential in an incident management
organization, an expressive language is needed. To this end the Temporal Trace
Language is used as a tool; cf. [6]. For the properties occurring in the paper informal,
semi-formal or formal representations are given. The formal representations are based
on the Temporal Trace Language (TTL), which is briefly described as follows; for
more formal details, see Appendix A.

A state ontology Ont is a specification (in order-sorted logic) of a vocabulary. A
state for ontology Ont is defined as an indication of which state properties expressed
in ontology Ont hold in the state and which do not hold. The set of all states is
modeled by the sort STATE. A fixed time frame T is assumed which is linearly
ordered. A trace or trajectory γ over a state ontology Ont and time frame T is an
indication of which state occurs at which time point, for example if a discrete time
frame based on natural numbers is taken, a trace is a sequence of states γt (t ∈ T).
The set of all traces over state ontology Ont is modeled by the sort TRACE.
Depending on the application, the time frame T may be dense (e.g., the real numbers),
or discrete (e.g., the set of integers or natural numbers or a finite initial segment of the
natural numbers), or any other form, as long as it has a linear ordering. A dynamic
property over state ontology Ont is a temporal statement that can be formulated with
respect to traces based on the state ontology. Such temporal statements can express,
for example, a temporal relationship between the fact that in a given trace a certain
state property holds at a certain time point and another state property holds at some
other time point. For more formal details, see Appendix A.

3.2 The Language Meta-TTL for Second-Order Dynamic Properties

The formalizations of the properties sometimes take the form of second-order
dynamic properties, i.e., properties that refer to dynamic properties expressed within
TTL. Such second-order dynamic properties are expressed in meta-TTL: the meta-
language of TTL. Again, for more formal details, see Appendix A.

4 Handling Incompleteness of Information by Enrichment Rules

The trace of occurrences as logged during or reported from an incident management
process usually is incomplete and therefore difficult to analyze. To overcome this
incompleteness problem, additional assumptions have to be made on events that have

341

occurred but are not explicitly mentioned in the logged trace. Such assumptions are
addressed in this section. These extra assumptions enrich the trace with elements that
are derived from the information in the trace itself, for example at later time points in
case an analysis is performed afterwards. An example is the assumption that if at
some time point an estimation of the situation is communicated, then at previous time
points the necessary information to make that assessment was received or observed by
the communicating role.

Addition of such elements to enrich a trace are based on rules which express that
given certain trace elements, an additional element can be assumed. These rules in
principle can be of two forms: Strict rules which can always be applied and provide
conclusions that are certain, and defeasible rules which are used in case strict rules are
insufficient to obtain a trace with a reasonable amount of information. However, it is
not always possible to claim that a rule is a strict rule. Therefore, such rules are
considered premises for the whole analysis.

Examples of such rules are presented below, note that the formal form of these
rules can be found in Appendix B. Rule EP1 states that everybody present on the
scene is assumed to have an internal judgment about the seriousness of the disaster:

EP1: Internal judgment at scene
if at time t role R is present at the scene
 and situation S is the case
 and S is classified as being a disaster
then there exists a later point in time t2 < t+d at which R has an internal judgment that this

situation is a disaster

Furthermore, in case a role receives a communication that the situation is a disaster
and this role does not communicate that he does not believe it being a disaster, then it
is assumed that he has the internal judgment that it concerns a disaster:

EP2: Internal judgment based on communication
if at time t R1 communicates to R2 that the current situation S is a disaster
 and there exists no time point at which R2 communicates to R1 he thinks the situation is not

a disaster
then at every time point t2 > t R2 interprets the current state of affairs as being a disaster

5 Property Hierarchies: A Simple Example

This section shows how, for a simple example, properties to be satisfied within an
organization can be represented in the form of a property hierarchy. Specifying
properties in such a hierarchy has as an advantage that diagnosis of properties can be
done in a top down fashion. Such a diagnostic process starts by checking highest level
property, and in case such a property is not satisfied pinpoints the error by gradually
going down the tree to the unsatisfied properties, while leaving the satisfied properties
and their refinements aside. Property hierarchies obtained from the field of incident
management are specified in the section hereafter.

The simple example concerns the evacuation of a building in case of an alarm. The
overall goal of such a process is to evacuate all people from the building within a
certain duration d after the alarm has sound:

342

SP1(d): Evacuate building
if at time t the evacuation alarm sounds in a building
then there exists a time point t1 later than t and before t + d such that at t1 there are no more

people inside the building.

Again, the formal forms for these properties can be found in Appendix B. Of course
such a goal is not simply accomplished by itself: more refined properties can be
formulated that together enable reaching this goal. These properties are shown in the
tree in Figure 2. Three main, more refined properties constitute the achievement of the
goal. First of all, a certain percentage of people will simply leave the building upon
their own initiative after hearing the alarm (SP2). People leaving on their own
initiative leave the building before αd, where α is between 0 and 1. The percentage of
people that do not leave the building by themselves, are told to do so by an appointed
person that checks all the rooms to be sure the building is empty (SP3). This results in
these people leaving the building as well. Note that the duration d to be set, depends
on the allowed percentage of people not directly responding. In case of a tight d this
percentage should be low, otherwise the appointed person can never be done in time.
A parameter β with a value between α and 1 is used to specify when these people
should have been asked to leave the building (which should be before βd). Finally, the
appointed persons themselves leave the building (SP4), due to the parameter β at
which the people should have been informed, the appointed persons have a time
frame between βd and d to leave the building.

SP2(αααα, d, p): Leave immediately
if at time t the evacuation alarm sounds in a building
then there exists a time point t1 later than t and before t + αd (with α between 0 and 1) such

that at least p percent of all person initially in the building are outside at time point t.

SP3(αααα, ββββ, d, p): Leave after correction
if at time t the evacuation alarm sounds in a building
 and at time t + αd at least p percent of the people are outside of the building already
 and at time t + αd person P is still in the building
 and person P is not responsible for emptying the building
then there exists a time point t1 later than t + αd and before t + βd (with β between α and 1)

and a person AP such that person AP is appointed for emptying the building
 and person P is told at time point t1 by AP to leave the building
 and before t + d this person P is outside of the building

This property again can be refined into two lower level properties. First of all, given
the same condition, the communication by the appointed person takes place (SP5),

SP1

 SP2 SP3 SP4

Fig. 2. Property hierarchy for the evacuation of a building
upon an alarm

 SP5 SP6

343

and secondly, once a person receives this communication he leaves the building
(SP6).

SP5(αααα, ββββ, d, p): Communicate correction
if at time t the evacuation alarm sounds in a building
 and at time t + αd person P is still in the building
 and at time t + αd at least p percent of the people are outside of the building already
 and person P is not responsible for emptying the building
then there exists a time point t1 later than t + αd and before t + βd and a person AP such

that person AP is appointed for emptying the building
 and person P is told at time point t1 by AP to leave the building

SP6(ββββ): Leave after receiving communication of correction
if before time t + βd person P is told by AP to leave the building
then there exists a later point in time t1 before t + d at which person P is no longer in the

building.

The final property indeed specifies that the appointed person leave the building as
well:

SP4(αααα, d, p): Appointed persons leave before deadline
if at time t the evacuation alarm sounds in a building
 and person P is an appointed person
 and at time t + αd at least p percent of the people are outside of the building already
then before t + d this person P is outside of the building

6 Property Hierarchies for Incident Management Organizations

This section presents generic properties for incident management organizations in the
Netherlands. Only the informal and semi-formal forms are presented here. For the
formal form of these properties, see Appendix B.

6.1 Warning of Relevant Parties

The warning of relevant parties by the operator is a high level property stating that:
“the operator should alarm all necessary parties in case it is informed of an incident”:

P1(d): Warn relevant parties
if at time t the operator is informed about an incident type I by a role R1,
 and for incident type I role R2 should be informed according to the disaster plan
then there exists a time t2 later than t and before t + d at which R2 is informed about the

incident type I

This property can be refined into a number of similar properties restricted to specific
categories of roles that should be informed. For diagnosis, at the highest level
property P1(d) can be checked, for example with the result that P1(d) is not satisfied
which means that not all relevant parties were informed (but without information on
which specific categories were not informed). At one level lower, the diagnosis can be
refined by checking the refined properties, resulting in an indication of which of the
categories of relevant roles were not informed.

344

6.2 First Arriving Ambulance

Second, the behavior of the first arriving ambulance is addressed. First, a formal
definition of the first arriving ambulance is given:

first_arriving_ambulance(γγγγ:TRACE, t:TIME, A:AMBULANCE)
An ambulance is the first arriving ambulance if:
the ambulance arrives at the scene of an incident at time t
and there does not exist a time t’ < t at which another ambulance arrived at the scene of the
incident

On the highest level, the first arriving ambulance behavior is described by three
important aspects: (1) signaling the green alarm light; (2) communicating a situation
report, and (3) presence of at least one person belonging to the ambulance until the
officer on duty arrives at the scene:

P2: First arriving ambulance global behavior
if at a time t ambulance A is the first to arrive at the scene
 and at time t3 > t the officer on duty arrives at the scene
then for all t2 � t and t2 < t3 at least one person belonging to the ambulance should be

present at the ambulance
 and for all t4 � t the ambulance is signaling the green alarm light
 and there exists a time t5 later than t at which the driver of that ambulance communicates a

correct interpretation of the situation to the operator.

This property can be related to lower level properties as shown in Figure 3. When
trying to diagnose why the highest level property is not satisfied, the properties on the
lower level can be checked. In case such a property is not satisfied, and it concerns a
leaf property, at least one cause for the non-fulfillment of the high-level property has
been found. Otherwise, go further down the tree to find the cause. In the tree a
number of properties are present to enable satisfaction of P2. First of all, the signaling
of the green light, as expressed below.

P3: First ambulance green light behavior
if at a time t ambulance A is the first to arrive at the scene
then for all later points in time t2 the ambulance is signaling the green light.

Second, the presence of a person belonging to the ambulance for the time until the
officer on duty is present:

P4: First arriving ambulance personnel presence
if at a time t ambulance A is the first to arrive at the scene
 and at time t3 > t the officer on duty arrives at the scene

P2

P3 P5 P4

P6 P7 P8

Fig. 3. Property hierarchy for the first
arriving ambulance.

345

then for all t2 � t and t2 < t3 at least one person belonging to the ambulance should be
present at the ambulance

Finally, a property expressing the communication of the correct situation to the
operator:

P5(d): First arriving ambulance interpretation
if at a time t ambulance A is the first to arrive at the scene
then at a later point in time t2 < t + d the driver of that ambulance communicates a correct

interpretation of the situation

Note that parameter d includes the time to interpret the situation plus the time to start
communicating that particular interpretation. Testing whether the interpretation was
correct can be performed afterwards (e.g., the amount of casualties). The property P5
can be refined again into three lower level properties. First of all, when arriving at the
scene, the paramedic should investigate the current state of affairs:

P6(d): Paramedic investigation
if at a time t ambulance A is the first to arrive at the scene
 and at time t a paramedic is in the ambulance
then at a later point in time t2 < t + d the paramedic of that ambulance will start an

investigation and not be at the ambulance any more

Second, the paramedic will return, communicating the current situation:

P7(d): Paramedic communication
if at a time t ambulance A is the first to arrive at the scene
 and at time t the paramedic is in the ambulance
 and at time t2 the physical position of the paramedic is not inside the ambulance
then at a later point in time t3 < t2 + d the paramedic of that ambulance will communicate a

correct interpretation of the situation to the driver

Finally, once the driver has received the communication, he will communicate this to
the operator:

P8(d): Driver communication
if at a time t the driver of the first ambulance at the scene receives a situation description

from the paramedic
then at a later point in time t2 < t + d the driver of that ambulance communicates a correct

interpretation of the situation to the operator

6.3 Disaster Staff Activation

Furthermore, properties have been specified for the formation of the disaster staff and
activities following from the disaster staff. On the highest level the correctness of
these processes in the disaster staff can be described as follows: In case the operator
has the internal judgment that the current situation is a disaster, the operational leader
will eventually output actions belonging to a strategy communicated by the disaster
staff.

P9: Successful disaster staff
if at time t the operator judges the current situation as a disaster
then there exists a later point in time t2 at which the disaster staff communicated a strategy
and there exists an even later time at which the operational leader communicates an action

appropriate for the strategy according to the disaster plan.

346

Fig. 4. Property hierarchy for the disaster staff activation and functioning.

Such properties can be related to lower-level properties as shown in Figure 4. On the
intermediate level, three properties are present. First, the correct initiation of a disaster
staff is expressed:

P10: Correctly activated disaster staff
if at time t the operator interprets the current situation being a disaster
then at a later point in time t2 the disaster staff will be informed (and assumed to be present

as a result)

Thereafter, in case the disaster staff is formed, it should be active, which is
characterized by an output in the form of a strategy:

P11: Active disaster staff
if at time t the organizational unit called disaster staff is informed
then at a later point in time t2 > t the organizational unit outputs a strategy S

Finally, such a strategy should lead to actions be taken by the operational leader:

P12: Active operational leader
if at time t the operational leader is informed of a strategy S to be applied
then at a later point in time t2 > t the operational leader will command the appropriate

actions according to the disaster plan to the roles.

Each of these intermediate properties can again be split up to properties for individual
roles within the organization. In order to obtain property P10 a number of properties
need to hold. First of all, the mayor should be warned by the operator:

P13(d): Warn mayor
if at time t the operator interprets the current situation being a disaster
then at a later point in time t2 > t and t2 < t +d the operator communicates the occurrence of

a disaster to the mayor.

Thereafter, the mayor should decide to form the disaster staff:

P14: Form disaster staff
if at time point t the mayor interprets the current state of affairs as being a disaster
then at a later point in time t2 > t the mayor forms the organizational unit called disaster staff

Finally, in case the mayor communicates the decision to form the disaster staff, the
operator should warn the appropriate parties:

P15(d): Warn rest disaster staff
if at time t the operator receives the request of the mayor to form the disaster staff
 and role R is part of the disaster staff
then at a later point in time t2 > t and t2 < t +d the operator communicates to role R that the

disaster staff is being formed.

P9

P10 P11 P12

P13 P15 P14 P16 P17 P18 P19

347

Regarding the intermediate property P11 the following properties need to hold for
satisfaction of the intermediate property. First, after the mayor has decided to form the
disaster staff he will eventually request advice from his disaster staff.

P16: Start deliberation
if at time t the mayor decides to form the disaster staff
then at a later point in time t2 > t the mayor starts a deliberation within the disaster staff by

requesting advice

After such advice is received, he should choose the appropriate strategy:

P17: Choose strategy
if at time t starts a deliberation within the disaster staff by requesting advice
then at a later point in time t2 the mayor communicates a strategy to the operational leader

Finally, the intermediate property P12 is refined to two other properties. First, the
operational leader should discuss the strategy with his operational team:

P18: Choose action
if at time t the mayor communicates a strategy S to the operational leader
then at a later point in time t2 > t the operational leader requests his operational team for

advice how to implement S

Finally, the operational leader communicates actions to be performed, based on the
advices obtained in the discussion.

P19: Communicate action
if at time t the operational leader request his operational team for advice how to

implement S
then at a later point in time t2 the operational leader will communicate actions appropriate for

strategy S according to the disaster plan

6.4 Ambulance Routing

Finally, properties are specified regarding ambulance routing. The police should act
as follows:

P20: Route plan includes all wounded nests
if at time t there are n wounded nests
and at a later time point t2 > t the police communicates details concerning the route to be

taken by the ambulances to cpa (the central ambulance post)
then this communication should contain such a route description that ambulances will be

sent to all wounded nests.

An alternative property not following standard procedure expresses that the routing is
done based explicitly on victim locations:

P21: Send ambulance to all wounded on the scene
if at time t there is a wounded person at a position P
then at a later time point t2 an ambulance will be sent to position P
 and at an even later time point t3 that ambulance will be at position P

 Fig. 5. Property hierarchy for ambulance routing

P21

P22 P23 P24

348

The property hierarchy for this high-level property is shown in Figure 5 and can be
decomposed into several other properties. First of all, a wounded person will result in
a communication to the operator of the physical position of this wounded person:

P22: Communicate wounded location
if at time t there is a wounded person at a position P
then at a later time point t2 this position will be communicated to the operator

For every communication received by the operator, he eventually communicates the
location to an ambulance:

P23: Send ambulance to wounded
if at time t a wounded person is communicated to be at a position P
then at a later time point t2 an ambulance will be sent to position P

Finally, once the ambulance gets this communication it will arrive at the location at a
later point in time:

P24: Ambulance arrives at wounded
if at time point t an ambulance is sent to position P
then at a later time point t2 that ambulance will be at position P

7 Human Error Types

This Section presents a classification scheme for the properties in incident
management. Such a classification can help to determine the dedicated training
needed. The human error classification presented by James Reason [11] is therefore
adopted, who introduces a General Error Modeling approach which identifies three
basic error types: (1) skill based slips; (2) rule based mistakes, and (3) knowledge
based mistakes. This classification scheme is also used in (Duin, 1992) in which
incident management is investigated. Rule based, and knowledge based errors come
into play after the individual has become conscious of a problem, which is not the
case for skill based slips. In that sense, skill based errors generally precede detection
of the problem whereas rule based and skill based mistakes arise during subsequent
attempts to find a solution to the problem. Skill based and rule based level error occur
when humans use stored knowledge structures whereas knowledge based errors occur
when such knowledge structures have been exhausted. Errors are much more likely to
occur at the knowledge based level. Table 1 shows how the distinction between the
different error types based on several dimensions.

349

Table 1. Distinctions between different error types (from [11])

For the properties specified for incident management the following classification
scheme is used. Skill based properties are those properties that are part of the very
basic training of incident management workers. For example, how to start the water
pump on a fire truck. A property is classified as a rule based property in case an
incident management plan literally includes the property. Finally, a property is called
a knowledge based property in case an incident management plan states that a
decision needs to be taken, but does not specify how to come to this solution. Using
this classification scheme, none of the properties from Section 5 are routine based,
whereas properties P1, P3, P5, P6, P8, P13, P14, P15, P16, P19, P22, and P24 are rule
based properties. Finally, properties P7, P17, P18, P20, and P23 are knowledge base
properties. Note that only the leaf properties are categorized as these are the
properties that define the individual role behavior within the organization.

In order to identify which types of error the different participants in the incident
management organization are making, the following formula is used (formal form in
Appendix B):

if an agent A is allocated to a particular role R in a particular period between t1 and t2 in
trace γ,

and a situation S occurs in that same period in which property P is relevant for role R
whereby the type of property P for role R is of type X (where X is either skill based, rule
based or knowledge based)

and the property has a specification which does not hold in the fragment of this trace
then an error of type X is made concerning property P by role R played by agent A.

8 Case Study

As a means to validate the approach presented above, a disaster which has been
thoroughly investigated in the Netherlands is taken as a case study. The disaster

Dimension Skill-based errors Rule-based errors Knowledge-based
errors

Type of activity Routine actions Problem-solving activities
Focus of attention On something other

than in the task in hand
Directed at problem-related issues

Control mode Mainly by automatic processes
(schemata) (stored rules)

Limited, conscious
processes

Predictability of error
types

Largely predictable
(actions) (rules)

Variable

Ratio of error to
opportunity for error

Though absolute numbers may be high, these
constitute a small portion of the total number of
opportunities for error

Absolute numbers
small, but opportunity
ratio high

Influence of situational
factors

Low to moderate; intrinsic factors (frequency of
prior use) likely to exert the dominant influence

Extrinsic factors
likely to dominate

Ease of Detection Detection usually fairly
rapid and effective

Difficult, and often only through external
intervention.

Relationship to Change Knowledge of change
not accessed at proper
time

When and how
anticipated change will
occur unknown

Changes not prepared
for or anticipated.

350

concerns a bar fire which occurred in Volendam, the Netherlands, at New Years Night
of the year 2001. The logs of the disaster have been thoroughly described in [8] and
have been formalized using the approach presented in Section 3. Thereafter, the trace
enrichment rules from Section 4 have been applied. A part of the resulting trace is
shown in Figure 6, which uses the same ontology as used for the formalization of the
properties in Section 5. On the left side of the Figure, the atoms are shown that occur
during the incident management whereas the right side shows a timeline where a dark
box indicates an atom being true at that time point and a gray box indicates the atom
being false. The trace is used to verify whether the properties as specified in Section 5
indeed hold for the Volendam disaster. The following properties were shown not to
hold: P2, P4, P5, P7, P8, P9, P10, P14, and P20. In other words, in the Volendam case
study the first ambulance did not comply to the global desired behavior because the
information was not communicated properly, and because there exist time points at
which nobody was present at the ambulance. Furthermore, the disaster staff was not
activated properly because the mayor did not communicate that the disaster staff
should be formed, and finally the ambulance routing of the police was incorrect, but
luckily the direct routing of the health care services was satisfied. These results

disaster(bar_fire_volendam)
situation(bar_fire_volendam)

physical_position(wounded, zeestraat)
physical_position(wounded, pellersplein)

output(cpa)|communication_from_to(cpa, operator, disaster(bar_fire_volendam))
output(operator)|communication_from_to(operator, rmc, disaster(bar_fire_volendam))

output(operator)|communication_from_to(operator, fd_volendam, disaster(bar_fire_volendam))
output(operator)|communication_from_to(operator, fd_edam, disaster(bar_fire_volendam))

output(operator)|communication_from_to(operator, fd_monnickendam, disaster(bar_fire_volendam))
output(operator)|communication_from_to(operator, vc2, disaster(bar_fire_volendam))

output(operator)|communication_from_to(operator, ladder_truck, disaster(bar_fire_volendam))
output(operator)|communication_from_to(operator, mayor, disaster(bar_fire_volendam))

output(operator)|communication_from_to(operator, ovd, disaster(bar_fire_volendam))
output(rmc)|communication_from_to(rmc, operator, physical_position(wounded, zeestraat))

output(operator)|communication_from_to(operator, ambulance, goto(zeestraat))
output(operator)|communication_from_to(operator, ecf734, disaster(bar_fire_volendam))

output(rmc)|communication_from_to(rmc, operator, physical_position(wounded, pellersplein))
output(operator)|communication_from_to(operator, fd_katwijk, disaster(bar_fire_volendam))

output(operator)|communication_from_to(operator, ambulance, goto(pellersplein))
output(operator)|communication_from_to(operator, second_operator, disaster(bar_fire_volendam))

output(operator)|communication_from_to(operator, fd_commander, disaster(bar_fire_volendam))
physical_position(ambulance, scene)

physical_position(ambulance, pellersplein)
physical_position(driver, ambulance)

physical_position(paramedic, ambulance)
alarm_lights(ambulance, green)

investigating(paramedic)
physical_position(mayor, scene)

physical_position(odh, scene)
output(paramedic)|communication_from_to(paramedic, driver, situation_description(bar_fire_volendam))

output(operator)|communication_from_to(operator, hospital, disaster(bar_fire_volendam))
output(operator)|communication_from_to(operator, doctor_service, disaster(bar_fire_volendam))

output(operator)|communication_from_to(operator, undertaker, disaster(bar_fire_volendam))
output(police)|communication_from_to(police, cpa, route_plan(zuideinde))

physical_position(ambulance, zeestraat)
physical_position(wounded_nest_zuideinde, scene)
physical_position(wounded_nest_pellerplein, scene)

route_passes_wounded_nest(route_plan(pellersplein), wounded_nest_pellersplein)
output(police)|communication_from_to(police, cpa, route_plan(pellersplein))

output(operator)|communication_from_to(operator, civil_servant_disasters, disaster(bar_fire_volendam))
output(operator)|communication_from_to(operator, neighboring_building, disaster(bar_fire_volendam))

time 0 20 40 60 80 100 120 140 160 180 200

Fig. 6. Partial trace of the Volendam case study

351

exactly comply to the conclusions in the disaster report [8] which resulted from a
thorough investigation of a committee specialized in incident management.

9 Discussion

This paper presents an agent-based approach which can be used for error detection in
incident management organizations. The approach consists of several parts. First, a
formal approach for the specification of both traces and properties that can be verified
against these traces is presented. In domains like incident management, traces might
be incomplete. Therefore, enrichment rules for these traces are identified to cope with
this incompleteness. Furthermore, the properties that ought to be verified against these
traces can be specified in a hierarchical fashion: in case the highest level property is
not satisfied, the cause of this dissatisfaction can be determined by looking at the
properties one level deeper in the tree, which continues until a leaf property is found
which is not satisfied. Finally, a classification mechanism is presented for the
different properties based on psychological literature. In case an error is observed
such a classification immediately gives insight in the functioning of a particular agent
playing a role, which enables performing dedicated training sessions or giving
appropriate warning messages.

In the future, the approach presented can be incorporated in personal agents of
people involved in incident management. Such agents automatically log all incoming
and outgoing information in the form of traces and have knowledge on the property
the particular role the agent is playing is required to fulfill. In case properties are
observed not to be satisfied, a reminder or warning can for instance be given to the
person. Such agents can be useful for training sessions, as it can be observed what
kind of mistakes a person typically makes, but could possibly even be used during
actual incident management.

Many information systems have been developed or proposed that support processes
involved in incident management. Already in the 1980s [14] a decision support
system for disaster management has been proposed. In [10], a system is proposed for
the support of scaling up an incident management organization. [7] presents the IMI
system which can be used as an information source and a communication system,
enabling crucial information to be sent to the appropriate people immediately, and
information sources such as disaster plans to be widely available and easily usable.
The reasoning behind these systems is to minimize the errors that occur in incident
management. Despite these efforts, errors will continue to occur in incident
management due to the stress, pressure, and incomplete information. Minimizing the
consequences of such an error is therefore a necessity. This is exactly what can be
established using the system presented in this paper.

In the field of information agents, support systems have also been developed for
incident management (see e.g. [13]). In such systems however, the agents again do
not check whether errors are made, but simply provide people with information to
make sure they are aware of their tasks. This does however not offer a mechanism to
detect errors and avoid a chain of unwanted events. Approaches for e.g. detection of
protocols (see e.g. [12]), also called overhearing, have been introduced. These

352

approaches are however more focused on recognizing patterns, not on detection of
errors.

Error detection itself is another related research field. In [3] behavioral properties
for a parallel computing system can be specified, and can be checked on the fly. The
properties are however specified as simple sequences of states, whereas the TTL
language as used in this paper has the ability to express timing parameters between
these states, often a necessity in incident management. In [5] properties for error
detection are specified by means of a finite state machine which again does not allow
for time parameter specification.

Acknowledgements

The authors wish to thank the Dutch Ministry of Economic Affairs for funding this
research. Furthermore, the authors would like to thank the Netherlands Institute for
Fire Service and Disaster Management for sharing their expertise in the domain of
incident management.

References

[1] Boissier, O., Dignum, V., Matson, E., Sichman, J. (eds.), Proc. of the 1st Workshop From
Organizations to Organization Oriented Programming in MAS (OOOP), 2005.

[2] Duin, M.J. van, Learning from Disasters (in Dutch), PhD Thesis, Leiden, 1992.
[3] Fromentin, E., Raynal, M., Garg, V.K., and Tomlinson, A., On the Fly Testing of Regular

Patterns in Distributed Computations, Information Processing Letters 54:267-274, 1995.
[4] Giorgini, P., Müller, J., Odell, J. (eds.), Agent-Oriented Software Engineering IV, LNCS,

vol. 2935, Springer-Verlag, Berlin, 2004.
[5] Jard, C., Jeron, T., Jourdan, G.V., and Rampon J.X. “A general approach to trace-

checking in distributed computing systems”, In Proc. IEEE International Conference on
Distributed Ccomputing Systems, pp. 386-404, Poznan, Poland, June, 1994.

[6] Jonker, C.M., Treur, J. Compositional verification of multi-agent systems: a formal
analysis of pro-activeness and reactiveness. International. Journal of Cooperative
Information Systems, vol. 11, 2002, pp. 51-92.

[7] Lee, M.D.E. van der, Vugt, M. van. IMI – an information system for effective
multidisciplinary incident management. In: Carlé, B., Walle, B. van der (eds.),
Proceedings of the International Workshop on Information Systems for Crisis Response
and Management '04, Brussels, Belgium. 2004.

[8] Ministry of the Interior, Investigation Bar Fire New Years Night 2001 (in Dutch), SDU
Publishers, The Hague, 2001.

[9] Municipality of Amsterdam, Disaster Plan (in Dutch), 2003.
[10] Oomes, A.H.J., Neef, R.M., Scaling-up Support for Emergency Response Organizations,

In: Walle, B. van, and Carle, B. (eds.), Proceedings of ISCRAM 2005, pp. 29-41, 2005.
[11] Reason, J., Human Error, Cambridge University Press, 1990.
[12] Rossi, S., Busetta, P, Towards Monitoring of Group Interactions and Social Roles via

Overhearing, In: Klusch, M., Ossowski, S., Kashyap, V., and Unland, R. (eds),
Cooperative Information Agents VIII, LNAI 3191, Spinger-Verlag, pp. 47-61, 2004.

[13] Storms, P.A.A., Combined Systems: A System of Systems Architecture, In: Proceedings
of ISCRAM 2004, pp. 139-144, May 2004, Brussels.

353

[14] Wallace, W.A., Balogh, F. de, Decision Support Systems for Disaster Management, Public
Administration Review, Vol. 45, Special Issue: Emergency Management: A Challenge for
Public Administration, pp. 134-146, 1985.

354

Appendix A: Temporal Trace Language (TTL)

This appendix presents a formal description of the language TTL and meta-TTL.

A.1 The Language TTL for Dynamic Properties

In TTL [6], ontologies for states are formalized as sets of symbols in sorted predicate
logic. For any ontology Ont, the ground atoms form the set of basic state properties
BSTATPROP(Ont). Basic state properties can be defined by nullary predicates (or
proposition symbols) such as hungry, or by using n-ary predicates (with n>0) like
has_temperature(environment, 7). The state properties based on a certain ontology Ont are
formalized by the propositions (using conjunction, negation, disjunction, implication)
made from the basic state properties and constitute the set STATPROP(Ont).

In order to express dynamics in TTL, important concepts are states, time points,
and traces. A state S is an indication of which basic state properties are true and
which are false, i.e., a mapping S: BSTATPROP(Ont) → {true, false}. The set of all possible
states for ontology Ont is denoted by STATES(Ont). Moreover, a fixed time frame T is
assumed which is linearly ordered. Then, a trace γ over a state ontology Ont and time
frame T is a mapping γ : T → STATES(Ont), i.e., a sequence of states γt (t ∈ T) in STATES(Ont).
The set of all traces over ontology Ont is denoted by TRACES(Ont).

The set of dynamic properties DYNPROP(Ont) is the set of temporal statements that
can be formulated with respect to traces based on the state ontology Ont in the
following manner. Given a trace γ over state ontology Ont, a certain state at time point t
is denoted by state(γ, t). These states can be related to state properties via the formally
defined satisfaction relation, indicated by the infix predicate |=, comparable to the
Holds-predicate in the Situation Calculus. Thus, state(γ, t) |= p denotes that state property p

holds in trace γ at time t. Likewise, state(γ, t) |≠ p denotes that state property p does not
hold in trace γ at time t. Based on these statements, dynamic properties can be
formulated in a formal manner in a sorted predicate logic, using the usual logical
connectives such as ¬, ∧, ∨, �, and the quantifiers ∀, ∃ (e.g., over traces, time and
state properties). For example, consider the following dynamic property for a pattern
concerning belief creation based on observation:

if at any point in time t1 the agent observes that the situation is a disaster,
then there exists a time point t2 after t1 such that

at t2 in the trace the agent believes that the situation is a disaster

This property can be expressed as a dynamic property in TTL form with free variable
γ as follows:

 ∀t:T [state(γ, t) |= observes(itsadisaster) � ∃t' ≥ t state(γ, t') |= belief(itsadisaster)]

The set DYNPROP(Ont, γ) is the subset of DYNPROP(Ont) consisting of formulae with γ
occurring in which is either a constant or a variable without being bound by a
quantifier. For a more elaborate explanation of TTL, see [6].

355

A.2 The Language Meta-TTL for Second-Order Dynamic Properties

The language meta-TTL includes sorts for DYNPROP(Ont) and its subsets as indicated
above, which contain TTL-statements (for dynamic properties) as term expressions.
Moreover, a predicate holds on these sorts can be used to express that such a TTL
formula is true. When no confusion is expected, this predicate can be left out. To
express second-order dynamic properties, in a meta-TTL statement, quantifiers over
TTL statements can be used.

356

Appendix B: Properties Formally Specified in TTL

This Appendix presents the properties as presented in an informal or semi-formal
form in the paper in a formal form using TTL.

B.1 Internal Judgment Properties (Section 4)

EP1: Internal judgment at scene
∀ R:ROLE, t:TIME, S:SITUATION
[state(γ, t) |= physical_position(R, scene) &
 state(γ, t) |= current_situation(S) &
 state(γ, t) |= disaster(S)]
� ∃t2>t & t2 < t+d [state(γ, t2) |= internal_judgment(R, disaster(S))]

EP2: Internal judgment based on communication
∀R1,R2:ROLE, P:POSITION, t:TIME, S:SITUATION
[state(γ, t) |= communication_from_to(R1, R2, disaster(S)) &
 ¬∃t’>t [state(γ, t’) |= communication_from_to(R2, R1, not(disaster(S)))]]
� ∀t2 > t [state(γ, t2) |= internal_judgment(R2, disaster(S))]

B.2 Building Evacuation Property Hierarchy (Section 5)

SP1(d): Evacuate building
∀t:TIME
[state(γ, t) |= alarm_bell_sounds
 � ∃t1:TIME > t [t1 < t + d & ¬∃P:PERSON [state(γ, t1) |= in_building(P)]]]

SP2(αααα, d, p): Leaving immediately
∀t:TIME
[state(γ, t) |= alarm_bell_sounds
 � ∃t1:TIME > t [t1 < t + αd & ∃I:INTEGER [percentage_out_between(γ, t, t1, I) & I ≥ p]]]

The percentage of people getting already outside of the building can be expressed in
TTL as

 percentage_out_between(γ, t, t1, I) ⇔

∃ I2, I3:INTEGER
 [amount_out_between(γ, t, t1, I2) & amount_people_in_building_at(γ, t, I3) &
 I2/I3 * 100 ≤ l1 < I2/I3 * 100 +1]

where:

 amount_out_between(γ, t, t1, I) ⇔
[�∀P:PERSONS case([state(γ, t1) |= ¬in_building(P) & state(γ, t) |= in_building(P)], 1, 0)] = I

and

 amount_people_in_building_at(γ, t, I) ⇔
[�∀P:PERSONS case([state(γ, t) |= in_building(P)], 1, 0)] = I

357

Here for any formula f, the expression case(f, v1, v2) indicates the value v1 if f is true, and
v2 otherwise.

SP3(αααα, ββββ, d, p): Leaving after correction
∀t:TIME, P:PERSON, I :INTEGER
[[state(γ, t) |= alarm_bell_sounds &
 percentage_out_between(γ, t, t + αd, I) & I ≥ p &
 state(γ, t + αd) |= in_building(P) &
 state(γ, t + αd) |= ¬person_for_emptying_building(P)]
 � ∃t1:TIME > t + αd, AP:PERSON
 [t1 < t + βd &
 state(γ, t1) |= person_for_emptying_building(AP) &
 state(γ, t1) |= communication_from_to(AP, P, leave_building) &

 ∃t2:TIME > t1 [t2 < t + d & state(γ, t2) |= ¬in_building(P)]]

SP5(αααα, ββββ, d, p): Communicate correction
∀t:TIME, P:PERSON, I:INTEGER
[[state(γ, t) |= alarm_bell_sounds &
 percentage_out_between(γ, t, t + αd, I) & I ≥ p
 state(γ, t + αd) |= in_building(P) &
 state(γ, t + αd) |= ¬person_for_emptying_building(P)]
 � ∃t1:TIME > t + αd, AP:PERSON
 [t1 < t + βd &
 state(γ, t1) |= person_for_emptying_building(AP) &

 state(γ, t1) |= communication_from_to(AP, P, leave_building)]]

SP6(ββββ, d): Leaving after receiving communication of correction
∀t:TIME, P:PERSON, AP:PERSON
[state(γ, t) |= communication_from_to(AP, P, leave_building)
 � ∃t1:TIME > t [t1 < t + (1-β)d & state(γ, t1) |= ¬in_building(P)]]

SP4(αααα, d, p): Appointed persons leave before deadline
∀t:TIME, P:PERSON, I:INTEGER
[[state(γ, t) |= alarm_bell_sounds &
 percentage_out_between(γ, t, t + αd, I) & I ≥ p &
 state(γ, t) |= person_for_emptying_building(P)]
� ∃t1:TIME > t [t1 < t + d & state(γ, t1) |= ¬in_building(P)]]

B.3 Incident Management Organization Property Hierarchy (Section 6)

P1(d): Warn relevant parties
∀I:INCIDENT_TYPE, t:TIME, R1, R2:ROLE
[state(γ, t) |= communication_from_to(R1, operator, I) &
 state(γ, t) |= according_to_plan_should_be_involved_in(R2, I)]
 � ∃t2 > t & t2 < t + d [state(γ, t2) |= communication_from_to(operator, R2, I)]]

first_arriving_ambulance(γγγγ:TRACE, t:TIME, A:AMBULANCE)
[state(γ, t) |=physical_position(A, scene) & ¬∃t’< t, [∃B:AMBULANCE [state(γ, t’) |=physical_position(B, scene)]]

P2: First arriving ambulance global behavior
∀A:AMBULANCE, t, t2:TIME
[first_arriving_ambulance(γ, t, A) &
state(γ, t2) |= physical_position(officer_on_duty, scene) &
 ¬∃t’’’< t2 [state(γ, t’’’) |= physical_position(officer_on_duty, scene)]]
�

358

∀t3 < t2
 [t3 ≥ t � [∃R:ROLE [state(γ, t3) |= physical_position(R, A)]]]
 & ∀t4 > t [state(γ, t4) |= alarm_lights(A, green)]
 & ∃t5 > t, X:SITUATION[state(γ, t5) |= communication_from_to(driver, operator, situation_description(X)) &
 situtation(X)]]

P3: First ambulance green light behavior
∀A:AMBULANCE, t:TIME
 [first_arriving_ambulance(γ, t, A) � ∀t2:TIME > t [state(γ, t2) |= alarm_lights(A, green)]]

P4: First arriving ambulance personnel presence
∀A:AMBULANCE, t, t2:TIME
[first_arriving_ambulance(γ, t, A) &
 state(γ, t2) |= physical_position(officer_on_duty, scene) &
 ¬∃t’’’< t2 [state(γ, t’’’) |= physical_position(officer_on_duty, scene)]]
� ∀t3 < t2 [t3 ≥ t � [∃R:ROLE [state(γ, t3) |= physical_position(R, A)]]]

P5(d): First arriving ambulance interpretation
∀A:AMBULANCE, t:TIME
first_arriving_ambulance(γ, t, A)
� ∃X:SITUATION, t2:TIME < t + d & t2>t
 state(γ, t2) |= physical_position(driver, A) &
 state(γ, t2) |= communication_from_to(driver, operator, situation_description(X)) &
 state(γ, t2) |= situtation(X)]

P6(d): Paramedic investigation
∀A:AMBULANCE, t:TIME
[first_arriving_ambulance(γ, t, A) &
 state(γ, t) |= physical_position(paramedic, A)]]
� ∃t2:TIME < t + d & t2 > t
 [state(γ, t2) |= not physical_position(paramedic, A) & state(γ, t2) |= investigating(paramedic)]

P7(d): Paramedic communication
∀A:AMBULANCE, t,t2:TIME
[first_arriving_ambulance(γ, t, A) &
 state(γ, t) |= physical_position(paramedic, A) & t2 > t &
 state(γ, t2) |= not physical_position(paramedic, A) &
 state(γ, t2) |= investigating(paramedic)]
� ∃t3:TIME < t2 + d & t3 > t2, X:SITUATION
 [state(γ, t3) |= physical_position(paramedic, A) &
 state(γ, t3) |= communication_from_to(paramedic, driver, situation_description(X)) &
 state(γ, t3) |= situtation(X)]

P8(d): Driver communication
∀A:AMBULANCE, t,t2:TIME, X :SITUATION
[first_arriving_ambulance(γ, t, A) &
 state(γ, t2) |= communication_from_to(paramedic, driver, situation_description(X))
� ∃t3:TIME < t2 + d & t2 > t [state(γ, t3) |= communication_from_to(driver, operator, situation_description(X))]

P9: Successful disaster staff
∀t:TIME
[state(γ, t) |= internal_judgement(operator, disaster)
 ���� ∃t2:TIME > t, S:STRATEGY
 [state(γ, t2) |= communication_from_to(disaster_staff, operational_leader, S) &
 ∃t3:TIME > t2, A:ACTION, R:ROLE
 [state(γ, t3) |= appropriate_action_according_to_plan(S, A) &

359

 state(γ, t3) |= accompanying_role(A, R)] &
 state(γ, t3) |= communication_from_to(operational_leader, R, perform(A))]

P10: Correctly activated disaster staff
∀t:TIME, R:ROLE
[state(γ, t) |= internal_judgement(operator, disaster) &
 state(γ, t) |= part_of(R, disaster_staff)
 ���� ∃t2:TIME > t + d [state(γ, t2) |= communication_from_to(operator, R, form_disaster_staff)]]

P11: Active disaster staff
∀t:TIME
[state(γ, t2) |= part_of(R, disaster_staff) &
 state(γ, t2) |= communication_from_to(operator, R, form_disaster_staff)
 � ∃S:STRATEGY, t2 > t [state(γ, t2) |= communication_from_to(disaster_staff, operational_leader, S)]

P12: Active operational leader
∀t:TIME, S:STRATEGY, A:ACTION, R:ROLE
[state(γ, t2) |= communication_from_to(disaster_staff, operational_leader, S) &
 state(γ, t) |= appropriate_action_according_to_plan (S, A) &
 state(γ, t) |= accompanying_role(A, R)
 ���� ∃t2:TIME > t state(γ, t2) |= communication_from_to(operational_leader, R, perform(A))]

P13(d): Warn mayor
∀t:TIME
[state(γ, t) |= internal_judgement(operator, disaster) &
���� ∃t2:TIME > t & t2 < t + d [state(γ, t2) |= communication_from_to(operator, mayor, disaster)]

P14: Form disaster staff
∀t:TIME
[state(γ, t) |= internal_judgement(mayor, disaster) &
 ¬∃t’< t [state(γ, t’) |= internal_judgement(mayor, disaster)] &
 � ∃t2 > t [state(γ, t2) |= communication_from_to(mayor, operator, form_disaster_staff)]

P15(d): Warn rest disaster staff

∀t:TIME, R:ROLE
state(γ, t) |= communication_from_to(mayor, operator, form_disaster_staff) &
state(γ, t) |= part_of(R, disaster_staff)
���� ∃t2:TIME > t + d [state(γ, t2) |= communication_from_to(operator, R, form_disaster_staff)]]

P16: Start deliberation
∀t:TIME
[state(γ, t) |= communication_from_to(mayor, operator, form_disaster)
 ���� ∃t2:TIME > t [state(γ, t2) |= communication_from_to(mayor, disaster_staff, request_advice)]]

P17: Choose strategy
∀t:TIME
[state(γ, t) |= communication_from_to(mayor, disaster_staff, request_advice)
 ���� ∃S:STRATEGY, t2:TIME > t state(γ, t2) |= communication_from_to(mayor, operational_leader, S)]

P18: Choose action
∀t:TIME, S:STRATEGY
[state(γ, t) |= communication_from_to(mayor, operational_leader, S)
 ����
 ∃ t2:TIME > t state(γ, t2) |= communication_from_to(operational_leader, operational_team, request_advice(S))]

360

P19: Communicate action
∀t:TIME, S:STRATEGY, A:ACTION, R:ROLE
[state(γ, t) |= communication_from_to(operational_leader, operational_team, request_advice(S)) &
 state(γ, t) |= appropriate_action_according_to_plan (S, A) &
 state(γ, t) |= accompanying_role(A, R)
 ���� ∃ t2:TIME > t state(γ, t2) |= communication_from_to(operational_leader, R, perform(A))]

P20: Route plan includes all wounded nests
∀W:WOUNDED_NEST, R:ROUTE_PLAN, t:TIME
[state(γ, t) |= physical_position(W, scene) &
 state(γ, t) |= communication_from_to(police, cpa, R)]
 � state(γ, t) |= route_passes_wounded_nest(R, W)

P21: Send ambulance to all wounded on the scene
∀W:WOUNDED, P:POSITION, A:AMBULANCE, t:TIME
[state(γ, t) |= physical_position(W, P) &
� ∃t2 > t [state(γ, t2) |= communication_from_to(operator, A, goto(P))] &
 ∃t3 > t2 [state(γ, t3) |= physical_position(A, P)

P22: Communicate wounded location
∀W:WOUNDED, P:POSITION, t:TIME
[state(γ, t) |= physical_position(W, P) &
� ∃R:ROLE, t2 > t [state(γ, t2) |= communication_from_to(R, operator, physical_position(W, P))]]

P23: Send ambulance to wounded
∀W:WOUNDED, P:POSITION, R:ROLE, t:TIME
[state(γ, t) |= communication_from_to(R, operator, physical_position(W, P))
� ∃t2 > t, A:AMBULANCE [state(γ, t2) |= communication_from_to(operator, A, goto(P))]]

P24: Ambulance arrives at wounded
∀P:POSITION, A:AMBULANCE, t:TIME
[state(γ, t2) |= communication_from_to(operator, A, goto(P))
 � ∃t2 > t [state(γ, t3) |= physical_position(A, P)

B.4 Type Error Definition (Section 7)

Type Error ≡
∀γ:TRACE, t1, t2:TIME, A:AGENT, R:ROLE, P:DYNPROP, Q:DYNPROPEXPR, S:SITUATION,
X:PROPERTY_TYPE
[holds_in_period(has_role(A, R), γ, t1, t2) &
 holds_in_period(S, γ, t1, t2) &
 holds_in_period(relevant_for(P, R, S), γ, t1, t2) &
 holds_in_period(type_for(P, R, X), γ, t1, t2) &
 holds_in_period(has_specification(P, Q(R, γ, c1, c2)), γ, t1, t2) &
 ¬holds(Q(R, γ, t1, t2))]
� makes_error_of_type(A, R, P, X, γ, t1, t2)

361

Chapter 17

Automated Verification of Disaster Plans
in Incident Management

This chapter will appear as: Hoogendoorn, M., Jonker, C.M., Popova, V., and
Sharpanskykh, A., Automated Verification of Disaster Plans in Incident Management,
Disaster Prevention and Management, 2007.

Furthermore, part of this chapter appreared as: Hoogendoorn, M., Jonker, C.M.,
Popova, V., Sharpanskykh, A., Xu, L., Formal Modelling and Comparing of Disaster
Plans. In: Carle, B., and Walle, B. van de, (eds.), Proceedings of the Second
International Conference on Information Systems for Crisis Response and
Management ISCRAM '05, 2005, pp. 97-107.

362

363

Automated Verification of Disaster Plans
in Incident Management

Mark Hoogendoorn1, Catholijn M. Jonker2, Viara Popova1,
and Alexei Sharpanskykh1

1Vrije Universiteit Amsterdam, Department of Artificial Intelligence,
De Boelelaan 1081a, 1081 HV Amsterdam, The Netherlands

{mhoogen, popova, sharp}@cs.vu.nl
2Radboud University Nijmegen, Nijmegen Institute of Cognition and Information

Montessorilaan 3, 6525 HR Nijmegen, The Netherlands
C.Jonker@nici.ru.nl

Abstract. Every municipality in The Netherlands has its own disaster plan. A
disaster plan contains the blueprint of how to handle incidents in the
municipality with the aim of preventing incidents to grow into disasters. Given
that each municipality has its own organizations, enterprises, infrastructure, and
general layout, the disaster plans also differ. On the other hand, the disaster
plans have a lot in common. Some municipalities use a common starting point,
others develop their own disaster plan from scratch. In this paper two
independently developed disaster plans are compared using formal modeling
techniques. The analysis reveals that some interesting differences do not stem
from a difference in the makings of the municipality. Another question
considered in this paper is to which extent disaster plans are followed when
incidents occur. To answer this question an automated approach for verifying
properties from disaster plans on formalized empirical data by means of
dedicated software is proposed.

1 Introduction

Disasters are unforeseen events that cause great damage, destruction and human
suffering. The question that keeps rising is: “Could we have done anything to prevent
this?” The key element is the distinction between incidents and disasters. Incidents are
disturbances in a system that can lead to an uncontrollable chain of events, a disaster,
when not acted on properly.

Incidents will keep occurring. People can make mistakes and nature can be
unpredictable. Typically this causes chaotic situations and the resulting problems are
very complex and have to be solved within limited time. Examples of incidents that
took on disastrous proportions because of inadequate human intervention are the crash
of a Boeing 747 in an urban area in Amsterdam and the Hercules disaster in
Eindhoven in the Netherlands.

In order to cope with such incidents, every municipality in The Netherlands has its
own disaster plan. A disaster plan contains the blueprint of how to handle incidents

364

with the aim of preventing incidents to grow into disasters. The plan describes the
relations with all organizations that might possibly be involved, like the mayor, the
fire department, police, ambulances, hospitals, other municipalities, provincial
government, national government. When comparing municipalities both
commonalities and differences stand out. The commonalities encompass such basic
elements as a local government, the availability of some kind of police force, fire
department, and ambulance services. Small municipalities might not have their own
forces of the kind mentioned, but have to share them with other municipalities. Big
cities have subdivided their forces in smaller units that predominantly serve specific
parts of the city. More fundamental differences involve the infrastructure of the
municipality (e.g., forms of public transportation, the road plan, water ways, bridges),
but also the enterprises and organizations available within the boundaries of the
municipality like airports, factories, restaurants, stadiums and theatres.

Given that each municipality has its own organizations, enterprises, infrastructure,
and general layout, it seems self-evident that the disaster plans also differ. On the
other hand, the disaster plans form only a blueprint of handling incidents. For every
entity in the municipality that carries a predictable risk a more detailed plan has to
exist, a so called disaster prevention plan. The advantage of separating disaster plans
from disaster prevention plans is that the disaster plan is applicable in all situations
and is a relatively compact document. This line of reasoning entails again that the
disaster plans of different municipalities should have, and in fact do have a lot in
common. On the basis of the above, one might expect that disaster plans are
developed from a common template. In general, they are not. Some municipalities use
a common starting point; others develop their own disaster plan from scratch. It raises
the question how comparable these disaster plans actually are.

Another question is to what extent disaster plans are followed when incidents
occur. The identification of differences between the occurrences during an incident
and the specification of the disaster plan is of particular importance for the detailed
analysis of incidents and, as a result, improvement of incident management (e.g., by
performing dedicated training sessions, and possibly by making necessary corrections
in disaster plans). The data about the actual events and actions occurring during the
incident management process are often available in the form of informal logs. Since
the manual analysis of such logs is a time-consuming and error-prone process, tools
for the automated analysis would be of use.

This paper presents an approach to support incident management based on disaster
plans. The contribution of the approach is threefold: First of all, the paper presents a
method to formally describe disaster plans. Using this formal description, disaster
plans of different municipalities can be checked for consistency, to avoid problem that
could arise once these municipalities have to combine their forces to manage an
incident. Furthermore, the formal description of the disaster plans allows for the
automated verification of such disaster plans against the empirical data that describe
incident management processes occurred in reality.

To illustrate the proposed approach two disaster plans of municipalities of
Eindhoven [4] and Uithoorn [5] have been used as a case study for this paper.
Eindhoven is a relatively large city in the Netherlands with approximately 200,000
residents. A large scale aviation accident occurred at the airport in 1996 of which logs
have been obtained [8]. Uithoorn is a much smaller town than Eindhoven. However,

365

Uithoorn belongs to a group of municipalities including Amsterdam and 6
surrounding municipalities that base their disaster plans on a common template.

The paper is organized as follows. In Section 2 the formal specification method for
disaster plans is presented, whereas Section 3 shows how such formal description of
different disaster plans can be compared. Thereafter, Section 4 addresses the
verification of formal properties obtained from disaster plans against logs. Finally,
Section 5 is a discussion.

2 Formal Specification of Disaster Plans

This section provides some general guidelines for extracting a formal model of the
disaster plan from a textual disaster/incident plan and thus bridging the gap between
informal and formal representation. In principle, any modeling approach for
organizations and any formal language for modeling organizations can be used as a
point of departure. For example, a formal language based on description logic for
specifying disaster management is introduced in [6]. In this paper, the modeling
approach of [3] and [7] based on an order-sorted predicate logic [11] is used for
formal modeling of the structure of an incident management organization. Based on
the formal structural description from a disaster plan, different scenarios of
organizational behavior can be specified and analyzed, using for example the
Temporal Trace Language [9].

The formal description of the incident management organization (identified by a
name of sort ORGANIZATION) is associated with the disaster plan in which it is
specified by the following predicate:

is_based_on: ORGANIZATION x DISASTER_PLAN.
Based on experience in modeling disaster plans the following stages are advocated:

phase identification, structure analysis and modeling, task and responsibility analysis,
organizational change modeling. Each of these stages is explained in more detail. The
comparison of disaster plans is discussed after the modeling steps.

2.1 Phase Identification

In each disaster plan a number of phases of incident management are identified.
Typically they are grouped in three general phases depending on the severity of the
situation:
• Small incident – no co-ordination between police, fire department and medical

forces is needed, the highest level of decision-making and co-ordination only
involves functionaries of these three institutions.

• Serious incident – involvement of the mayor is needed at the highest level of
decision-making. Typically a disaster management team is formed at the city
hall.

• Severe incident involving more than one municipality – co-ordination between
the municipalities is needed. Typically the National Coordination Centre is also
involved.

366

The first step in this modeling approach is to identify which particular phases are
covered by the disaster plan. The Eindhoven disaster plan identifies five phases: (1)
Local incident; (2) Local calamity or disaster; (3) Local incident, calamity, or disaster
with use of regional coordination; (4) Inter-local incident; and (5) Inter-local calamity
or disaster.

With each phase an organization structure (denoted by its name of sort
ORGANIZATION) is associated. For this the following predicate is used:

is_organization_in_phase: ORGANIZATION x PHASE is introduced.

2.2 Structure Analysis and Modeling

Each phase of incident management has its own organizational structure. Therefore,
the structure of the organization has to be analyzed and modeled for each phase.
Structure analysis aims at identifying all parties involved and their relevant
organizational roles and relationships.
• Disaster plans typically contain lists of all parties involved. Institutions like the

fire department, ambulance services, police, municipal service and other
associated institutions are almost always involved. These institutions exist
irrespective of whether an incident occurs or not. However, disaster plans also
refer to parties like the operation team, regional coordination centre, and
management team, depending on the phase and scope of a disaster/incident and
only exist during these phases. The structure can consist of roles that contain
other roles and so forth.

• After identifying the roles in the organization at a certain phase, the
communications between roles or composite roles need to be identified. For
example, a policy team always maintains communication with fire department
action centre. With respect to communication and interaction the disaster plans
studied by the authors are typically incomplete, making it difficult and in some
cases impossible to identify the exact links in the structural model.

The structure of an incident management organization can be described at different
aggregation levels, which allows managing the level of complexity and refinement of
an organization representation. The aggregation levels refer to a level of the
organization consisting of roles and the interaction between those roles. A model of
an organization with several aggregation levels also contains a specification of the
inter-level relations of those aggregation levels. Therefore, a model of an
organizational structure consists of roles, interaction links, interlevel links, and
structural properties regarding those elements.
(1) A role represents a subset of functionalities, performed by an organization,
abstracted from instances of real agents. At the highest aggregation level, the whole
organization can be represented as one role. Further, each role can be decomposed
into several other roles, until the necessary level of aggregation is achieved.
Graphically, a role is represented as an ellipse with white (input interfaces) and black
(output interfaces) dots (see Figure 1). A role which is composed of (interacting)
subroles, is called a composite role. Each role has an input and an output interface,
which facilitate in the communication with other roles. Although in this paper the

367

emphasis is on the organization structure of incident management, an organization is
realized by the agents (or sets of agents) fulfilling the roles.
(2) An interaction link represents an information channel between two roles.
Graphically, it is depicted as a solid arrow, which denotes the direction of possible
information transfer. For example, interaction links between roles Fire Department
and Police in Figure 1 represent the possibility of communication between them.
(3) An interlevel link connects a composite role with one of its subroles. It relates two
adjacent aggregation levels. Graphically, it is depicted as a dashed arrow, which
shows the direction of interlevel transition (see Figure 1).
(4) Structural properties specify the number of instances of a specified role and the
various role-subrole relations. Although the structure of an organization can be
specified partly using graphs (see Figure 1), a formal textual language is needed to
specify the structural properties. Sorts are introduced for the basic elements of an
organization and relations between them (i.e., ROLE, AGENT, ORGANIZATION,
INTERLEVEL_LINK, and INTERLEVEL_LINK). Furthermore, a set of relations is
defined to specify the structural aspects of the organization. A complete overview is
given in [3], here only a few examples are given:

 is_role_in: ROLE x ORGANIZATION identifies a role in an organization

 has_subrole_in: ROLE x ROLE x ORGANIZATION defines a subrole of a composite role in

an organization.
Examples of structural properties are: is_role_in(FD,ORG1),
has_subrole_in(FD,VC_FD,ORG1).

	�(

)
�
*

+(�
*)�
�
*

)
�����!�

	,(

+(�����!�)�
�����!�

���

*���� ���
-).,(�

.�����/

.������

Fig. 1. Example of an organization structure, described at two adjacent aggregation levels

Often, structural properties are valid during the whole period of organization

existence and can be considered as static. But in rapidly developing and adapting
organizations (e.g., incident management organizations) structural change processes

368

gain special importance. Structural properties for such organizations will be described
later.

For each of the phases identified in the previous step, the structure of the
organization has been identified; only the second phase is presented in this paper, see
Figure 2.

Fig. 2. Structure of the Eindhoven disaster prevention organization in the Local Incident
phase.

The abbreviations used in the Figure are the following: OSF stands for On Scene
Forces, Off Scene Forces are abbreviated to OF and GGD is an abbreviation for the
Medical Services. Finally, CoRT stands for Command Disaster Area. Inter-level
connections between composite roles and their subroles are often omitted because the
disaster plan does not specify any of these relationships. A partial specification of this
Figure in the formal language as presented is shown in Figure 3 in Section 2.5.

369

2.3 Tasks and Responsibilities Analysis

Having identified the organizational structure in the different phases of incident
management, the tasks and responsibilities of the roles have to be determined.
Problems at this stage might be vague and unclear formulations of the tasks, no
detailed information for the responsibilities per task and per role.

The dynamics of an organization are formed by the execution of tasks by the
organization and the change of an organization. To analyze and model the first of
these, the tasks and responsibilities of the different structural elements of the
organizational model have to be identified. An ontology based on the order-sorted
predicate language is introduced that provides a way to express statements describing
the hierarchy of tasks, responsibilities of roles for certain tasks in a particular situation
and leadership within a composite role. The introduced ontology is useful for any
organization that encounters change on a regular basis.

The main sorts are TASK, PHASE, ROLE, and ORGANIZATION. Using these
sorts, the language can be extended with a set of relations to specify tasks,
responsibilities and the phases of an organization.

• Primary co-ordination of task – which role co-ordinates the execution of the
task

• Secondary co-ordination of a task – in some situations the primary co-
coordinating role can be replaced by the secondary co-coordinating role.
That might happen for example when the particular type of disaster has
specifics that can more appropriately be handled by the secondary co-
coordinating role.

• Primary execution of a task – the role(s) that execute the task
• Secondary execution of a task – for particular disasters where the emphasis

is shifted towards an institution (role) not involved in the primary execution
of the task, this institution can also become involved in it.

• Operational leadership within a complex role – the role that takes the
leadership of the complex role (group, institution, etc.)

To specify such information the following relations re introduced:
is_subtask_of_in: TASK x TASK x ORGANIZATION, to describe the

task-subtask ordering in the organization.
executes_task_primary_in: ROLE x TASK x ORGANIZATION, describes which

role is the principle performer of a task in the
organization.

executes_task_secondary_in: ROLE x TASK x ORGANIZATION, describes which
role is the secondary performer of a task in the
organization.

coordinates_task_primary_in: ROLE x TASK x ORGANIZATION, describes which
role is the principle coordinator of a task in the
organization.

coordinates_task_secondary_in: ROLE x TASK x ORGANIZATION, describes which
role is the secondary coordinator of a task in the
organization.

operational_leadership_in: ROLE x ROLE x ORGANIZATION, describes which role
is the leader in a part of the organization.

370

From the analysis of the disaster plans considered so far a certain level of similarity in
the task and process hierarchy has been discovered. This indicates that it is possible
and beneficial to build a general ontology of tasks in disaster situations. A partial one
was built on the information available from these two disaster plans and it is
considered to analyze more in order to adjust and refine the ontology.

Some examples of structural relations from the Eindhoven disaster plan are: the
fire department is in charge of the task of fighting the fire, the police is responsible for
evacuating the people, and the medical services are responsible for collecting
contaminated goods. These examples are formally represented in Figure 3 in Section
2.5.

2.4 Organizational Change Modeling

Knowing the organizational structures during the different phases of incident
management is not enough to model a disaster plan. The last but vital part of the
modeling is the specification of organizational change. This entails the identification
of all conditions of organizational change. They normally depend on the different
incidents/disasters. Typical problems that occur during this phase are lack of
information concerning the triggers that cause change. Often the decision to change
the organization is left to a deliberation group without stating specific definitions of
the triggers.

The modeling process delivers a lot of information concerning how thoroughly a
disaster plan is specified. In case some unclear parts are identified, the disaster plan
can be improved in a number of ways, e.g., using experts and/or training. Another
option is to organize a training dedicated to an unclear part.

The disaster plan of Eindhoven is vague about organizational change: it is left to
the mayor and its advisors to decide on the appropriate phase. However, the triggers
can be derived by comparing the definitions of each of the phases. For example, going
from phase 1 (a local incident) to phase 2 (a local disaster) means that the public is
actually seriously threatened. The change of organization involves the following
elements: An operational team is added to the organization which is responsible for
the action centers of the regional emergency services. Furthermore some of the
communication lines are changed.

To formally specify changes to be performed within an organization the language
shown is used. The language takes as a basis the structural language as introduced
before and the responsibilities and tasks language as defined in the previous section.
Sorts used to represent these elements are STRUCT_ELEMENT and
RESPONS_TASK_ELEMENT. The sorts are combined into the sort
ORG_ELEMENT. Functions are defined for adding, deleting and modifying an
organization element (which can also be seen as a combination of add and delete):

add: ORG_ELEMENT → ORG_CHANGE_ELEMENT, describes an
organizational element being added.

delete: ORG_ELEMENT → ORG_CHANGE_ELEMENT, describes an
organizational element being deleted.

371

modify: ORG_ELEMENT x ORG_ELEMENT → ORG_CHANGE_ELEMENT,
describes that the first organization element is modified to the
second argument.

Besides the need to specify what needs to be changed also the triggers that cause the
change need to be formally specified. For this the following predicate is introduced:

is_trigger_for_from_to: TRIGGER x ORG_CHANGE_ELEMENT x PHASE x PHASE,
describes that when a trigger occurs the phase is changed (if
necessary) from the present phase to some other phase, and the
organization is changed according to the specification defined in
ORG_CHANGE_ELEMENT.

Examples of the use of this ontology are shown in Section 2.5 below.

2.5 Example Formal Description

Figure 3 shows a part of the formal specification of the disaster plan of Eindhoven,
covering each of the aspects as addressed in this section.

3 Comparing of Disaster Plans

A comparison of disaster plans consists of the following elements: comparison of
phases, comparison of organizational structures in comparable phases, comparison of
the task structure in comparable phases, and comparison of the responsibilities
scheme in comparable phases. The comparison of phases is a rather straightforward
matter. Comparison of the organizational structures entails the identification of
comparable and incomparable structures within the organization at each of the phases
of incident management, and a comparison of the ontologies used. The comparison of
task structures concentrates on the tasks identified in each disaster plan, and discusses
comparable and incomparable tasks. Given the comparable tasks, the comparison of
responsibilities entails the allocation of responsibilities to roles. This Section presents
the results of the comparison of the two disaster plans as introduced before.

For the purpose of comparison of the disaster plans described above a number of
relevant properties have been identified. These properties constitute two groups: (1)
local municipality properties and (2) regional coordination properties. The first group
describes properties that do not influence the incident management organization of
other (neighboring) municipalities and can therefore differ between these
municipalities. Properties in the second group do influence the incident management
organization of other municipalities. In case of an inter-local incident these kind of
properties have to be the same to enable a proper functioning of the disaster
management organization.

Consider an example of local municipality properties.

Property 1.
Informal form
The command centre of surroundings of the incident area (ComRT) is a part of the
incident management organization of municipality X in phase 4.

372

Is

_b
as

ed
_o

n(
di

sa
st

er
_p

re
ve

nt
io

n_
or

ga
ni

za
tio

n,
’E

in
dh

ov
en

’)
is

_o
rg

an
iz

at
io

n_
in

_p
ha

se
(d

is
as

te
r_

pr
ev

en
tio

n_
or

ga
ni

za
tio

n,
ph

as
e2

)
is

_r
ol

e_
in

(c
om

m
an

d_
di

sa
st

er
_a

re
a,

di
sa

st
er

_p
re

ve
nt

io
n_

or
ga

ni
za

tio
n)

is

_r
ol

e_
in

(p
ol

ic
y_

te
am

,d
is

as
te

r_
pr

ev
en

tio
n_

or
ga

ni
za

tio
n)

ha

s_
su

br
ol

e_
in

(p
ol

ic
y_

te
am

,m
ay

or
,d

is
as

te
r_

pr
ev

en
tio

n_
or

ga
ni

za
tio

n)

so
ur

ce
_o

f_
in

te
ra

ct
io

n(
co

m
m

an
d_

di
sa

st
er

_a
re

a,
lin

k0
,d

is
as

te
r_

pr
ev

en
tio

n_
or

ga
ni

za
tio

n)

so
ur

ce
_o

f_
in

te
ra

ct
io

n(
po

lic
y_

te
am

,li
nk

1,
di

sa
st

er
_p

re
ve

nt
io

n_
or

ga
ni

za
tio

n)

de
st

in
at

io
n_

of
_i

nt
er

ac
tio

n(
co

m
m

an
d_

di
sa

st
er

_a
re

a,
lin

k1
,d

is
as

te
r_

pr
ev

en
tio

n_
or

ga
ni

za
tio

n)

de
st

in
at

io
n_

of
_i

nt
er

ac
tio

n(
po

lic
y_

te
am

,li
nk

0,
di

sa
st

er
_p

re
ve

nt
io

n_
or

ga
ni

za
tio

n)

co
or

di
na

te
s_

ta
sk

_p
rim

ar
y(

fir
e_

de
pa

rt
m

en
t,f

ig
ht

_f
ire

, d
is

as
te

r_
pr

ev
en

tio
n_

or
ga

ni
za

tio
n)

co

or
di

na
te

s_
ta

sk
_p

rim
ar

y(
m

ed
ic

al
_s

er
vi

ce
s,

co
lle

ct
_c

on
ta

m
in

at
ed

_g
oo

d,
 d

is
as

te
r_

pr
ev

en
tio

n_
or

ga
ni

za
tio

n)

co
or

di
na

te
s_

ta
sk

_p
rim

ar
y(

po
lic

e,
ev

ac
ua

tin
g_

pe
op

le
, d

is
as

te
r_

pr
ev

en
tio

n_
or

ga
ni

za
tio

n)

is
_t

rig
ge

r_
fo

r_
fr

om
_t

o(
pu

bl
ic

_s
er

io
us

ly
_t

hr
ea

te
ne

d,
 a

dd
(is

_r
ol

e_
in

(o
pe

ra
tio

na
l_

te
am

,d
is

as
te

r_
pr

ev
en

tio
n_

or
ga

ni
za

tio
n)

),
ph

as
e2

,p
ha

se
3)

is

_t
rig

ge
r_

fo
r_

fr
om

_t
o(

pu
bl

ic
_s

er
io

us
ly

_t
hr

ea
te

ne
d,

ad
d(

de
st

in
at

io
n_

of
_i

nt
er

ac
tio

n(
co

m
m

an
d_

di
sa

st
er

_a
re

a,
lin

k4
,d

is
as

te
r_

pr
ev

en
tio

n_
or

ga
ni

za
tio

n)
),

ph
as

e2
,p

ha
se

3)

is
_t

rig
ge

r_
fo

r_
fr

om
_t

o(
pu

bl
ic

_s
er

io
us

ly
_t

hr
ea

te
ne

d,
ad

d(
de

st
in

at
io

n_
of

_i
nt

er
ac

tio
n(

op
er

at
io

na
l_

te
am

,li
nk

2,
di

sa
st

er
_p

re
ve

nt
io

n_
or

ga
ni

za
tio

n)
),

ph
as

e2
,p

ha
se

3)

is
_t

rig
ge

r_
fo

r_
fr

om
_t

o(
pu

bl
ic

_s
er

io
us

ly
_t

hr
ea

te
ne

d,
 a

dd
(d

es
tin

at
io

n_
of

_i
nt

er
ac

tio
n(

op
er

at
io

na
l_

te
am

,li
nk

5,
di

sa
st

er
_p

re
ve

nt
io

n_
or

ga
ni

za
tio

n)
),

ph
as

e2
,p

ha
se

3)

is
_t

rig
ge

r_
fo

r_
fr

om
_t

o(
pu

bl
ic

_s
er

io
us

ly
_t

hr
ea

te
ne

d,
 a

dd
(d

es
tin

at
io

n_
of

_i
nt

er
ac

tio
n(

po
lic

y_
te

am
,li

nk
3,

di
sa

st
er

_p
re

ve
nt

io
n_

or
ga

ni
za

tio
n)

),
ph

as
e2

,p
ha

se
3)

is

_t
rig

ge
r_

fo
r(

pu
bl

ic
_s

er
io

us
ly

_t
hr

ea
te

ne
d,

 a
dd

(s
ou

rc
e_

of
_i

nt
er

ac
tio

n(
co

m
m

an
d_

di
sa

st
er

_a
re

a,
lin

k5
,d

is
as

te
r_

pr
ev

en
tio

n_
or

ga
ni

za
tio

n)
),

ph
as

e2
,p

ha
se

3)

is
_t

rig
ge

r_
fo

r_
fr

om
_t

o(
pu

bl
ic

_s
er

io
us

ly
_t

hr
ea

te
ne

d,
 a

dd
(s

ou
rc

e_
of

_i
nt

er
ac

tio
n(

op
er

at
io

na
l_

te
am

,li
nk

3,
di

sa
st

er
_p

re
ve

nt
io

n_
or

ga
ni

za
tio

n)
),

ph
as

e2
,p

ha
se

3)

is
_t

rig
ge

r_
fo

r_
fr

om
_t

o(
pu

bl
ic

_s
er

io
us

ly
_t

hr
ea

te
ne

d,
 a

dd
(s

ou
rc

e_
of

_i
nt

er
ac

tio
n(

op
er

at
io

na
l_

te
am

,li
nk

4,
di

sa
st

er
_p

re
ve

nt
io

n_
or

ga
ni

za
tio

n)
),

 p
ha

se
2,

ph
as

e3
)

is
_t

rig
ge

r_
fo

r(
pu

bl
ic

_s
er

io
us

ly
_t

hr
ea

te
ne

d,
 a

dd
(s

ou
rc

e_
of

_i
nt

er
ac

tio
n(

po
lic

y_
te

am
,li

nk
2,

di
sa

st
er

_p
re

ve
nt

io
n_

or
ga

ni
za

tio
n)

),
 p

ha
se

2,
ph

as
e3

)
is

_t
rig

ge
r_

fo
r(

pu
bl

ic
_s

er
io

us
ly

_t
hr

ea
te

ne
d,

 d
el

et
e(

de
st

in
at

io
n_

of
_i

nt
er

ac
tio

n(
co

m
m

an
d_

di
sa

st
er

_a
re

a,
lin

k1
,d

is
as

te
r_

pr
ev

en
tio

n_
or

ga
ni

za
tio

n)
),

 p
ha

se
2,

ph
as

e3
)

is
_t

rig
ge

r_
fo

r(
pu

bl
ic

_s
er

io
us

ly
_t

hr
ea

te
ne

d,
 d

el
et

e(
de

st
in

at
io

n_
of

_i
nt

er
ac

tio
n(

po
lic

y_
te

am
,li

nk
0,

di
sa

st
er

_p
re

ve
nt

io
n_

or
ga

ni
za

tio
n)

),
 p

ha
se

2,
ph

as
e3

)
is

_t
rig

ge
r_

fo
r(

pu
bl

ic
_s

er
io

us
ly

_t
hr

ea
te

ne
d

,d
el

et
e(

so
ur

ce
_o

f_
in

te
ra

ct
io

n(
co

m
m

an
d_

di
sa

st
er

_a
re

a,
lin

k0
,d

is
as

te
r_

pr
ev

en
tio

n_
or

ga
ni

za
tio

n)
),

 p
ha

se
2,

ph
as

e3
)

is
_t

rig
ge

r_
fo

r(
pu

bl
ic

_s
er

io
us

ly
_t

hr
ea

te
ne

d,
de

le
te

(s
ou

rc
e_

of
_i

nt
er

ac
tio

n(
po

lic
y_

te
am

,li
nk

1,
di

sa
st

er
_p

re
ve

nt
io

n_
or

ga
ni

za
tio

n)
),

 p
ha

se
2,

ph
as

e3
)

St
ru

ct
ur

al

R
es

po
ns

e.

/ T
as

ks

C
ha

ng
e

Fi

g.
 3

. P
ar

t o
f a

 fo
rm

al
 s

pe
ci

fi
ca

tio
n

of
 a

 d
is

as
te

r p
la

n

373

Formal form
[is_role_in(ComRT,ORG4) ∧
 is_based_on(ORG4,X) ∧
 is_organization_in_phase(ORG4,PHASE4)]

This property holds for X = Uithoorn and does not hold for X = Eindhoven.
Consider two examples of regional coordination properties.

Property 2.
Informal form
The mayor of the biggest municipality coordinates the work of the Managing
Platform Centre (MPC) in the incident management organization of municipality X in
phase 4.
Formal form
[coordinates_task_primary_in(biggest_municipality_mayor, regional_collaboration_in_MPC,
ORG4) ∧ is_based_on(ORG4, X) ∧ is_organization_in_phase(ORG4,PHASE4)]

This property holds for X = Uithoorn and does not hold for X = Eindhoven.

Property 3.
Informal form
The mayor of the municipality that was the first involved in an incident, coordinates
the work of the Managing Platform Centre (MPC) in the incident management
organization of municipality X in phase 4.
Formal form
[coordinates_task_primary_in(mayor_involved_first, regional_collaboration_in_MPC, ORG4) ∧
 is_based_on(ORG4,X) ∧ is_organization_in_phase(ORG4,PHASE4)]

This property holds for X = Eindhoven and does not hold for X = Uithoorn.
The formal approach in the comparison of disaster plans allows us to go further

and analyze these differences and investigate whether they indeed lead to serious
consequences. An example of such analysis is given in the following paragraphs. It is
already known (see property 1) that the role ComRT is present in the disaster plan of
Uithoorn but not in that of Eindhoven. This role represents the team responsible for
activities in the surroundings of the disaster area including traffic regulation, isolation
of the area, etc. In both plans the team CoRT is present which co-ordinates the on-
scene operations. Is this difference fundamental? Maybe the tasks of ComRT for the
case of Uithoorn are actually assigned to CoRT in the case of Eindhoven. This
hypothesis is expressed in property 4, and decomposed into properties 5 through 8 to
ease the formal proof process, as depicted in Figure 4. The formal relations are:

Property 5 ∧ Property 6 |= Property 4
Property 7 ∧ Property 8 |= Property 6

Only the formal specifications of the leaves of the tree in Figure 4 are given.

374

Fig. 4. The decomposition of property 4 represented in an and-tree

Property 4.
Informal form
The set of tasks assigned to CoRT in the disaster plan of Eindhoven is the same as the
set of tasks assigned to CoRT or ComRT in the disaster plan of Uithoorn.

Property 5.
Informal form
All tasks of CoRT in the disaster plan of Eindhoven are either tasks of CoRT or of
ComRT in the disaster plan of Uithoorn:
Formal form
∀ T:TASK ∀O:ORGANIZATION:
coordinates_task_primary_in(CoRT,T, O) ∧
is_based_on(O,‘Eindhoven’)
� ∃O’:ORGANIZATION [coordinates_task_primary_in(CoRT,T, O’) ∨
coordinates_task_primary_in(ComRT,T, O’)] ∧ is_based_on(O’,‘Uithoorn’)

Property 6.
Informal form
All tasks of CoRT or ComRT in the disaster plan of Uithoorn are also tasks of CoRT
in the disaster plan of Eindhoven.

Property 7.
All tasks of CoRT in the disaster plan of Uithoorn are also tasks of CoRT in the
disaster plan of Eindhoven.
∀ T:TASK ∀O:ORGANIZATION:
coordinates_task_primary_in(CoRT,T,O) ∧
is_based_on(O,‘Uithoorn’)
� ∃O’:ORGANIZATION coordinates_task_primary_in(CoRT,T,O’) ∧ is_based_on(O’,‘Eindhoven’)

Property 8.
All tasks of ComRT in the disaster plan of Uithoorn are also tasks of CoRT in the
disaster plan of Eindhoven.
∀ T:TASK ∀ O:ORGANIZATION:
coordinates_task_primary_in(ComRT,T,O) ∧ is_based_on(O,‘Uithoorn’)

375

� ∃O’:ORGANIZATION coordinates_task_primary_in(CoRT,T,O’) ∧ is_based_on(O’,‘Eindhoven’)

By checking properties 5, 7 and 8, it is discovered that the functions of CoRT in the
case of Eindhoven and CoRT and ComRT in the case of Uithoorn indeed overlap.
Therefore, while the absence of ComRT is certainly a difference between the two
disaster plans, in reality the difference is smaller than expected at first sight.

The comparison between the disaster plans of Uithoorn and Eindhoven revealed
two differences in the regional coordination. The first concerns leadership: which
mayor is in charge of the disaster management organization in case of an inter-local
incident. The Uithoorn plan states that the mayor of the biggest municipality is the
leader. The Eindhoven plan states that the mayor of the municipality where the
incident started is in charge. Imagine that these are neighboring municipalities and
that an incident that affects both municipalities is first discovered in Uithoorn, which
is the smallest municipality of the two. According to the Eindhoven disaster plan
Uithoorn remains in charge, and therefore does not take any initiative in forming an
inter-local incident management organization. Uithoorn however thinks Eindhoven
will take the initiative as it is the biggest municipality involved in the incident. To
prevent this kind of errors, such differences should be avoided. The second regional
coordination difference concerns the incident phases described in the disaster plans.
There does not exist a one-to-one mapping between these phases, therefore the
municipality that has the lead in the incident management organization might declare
a certain phase that cannot be interpreted by the other municipalities involved. For
example, in the Uithoorn disaster plan, a phase is present where there is multi-
disciplinary coordination without the mayor being involved. In the Eindhoven disaster
plan there doesn’t exist any phase including multi-disciplinary coordination in which
the mayor is not involved in the disaster prevention organization.

Differences in local municipality properties were also observed in the comparison
of the disaster plans. These differences include elements such as splitting up the
command of the disaster area in the disaster plan of Uithoorn while this remains one
group in the Eindhoven disaster plan. These difference can however be formally
mapped to each other, and are therefore not as crucial.

4 Verification of Disaster Plan Properties Against Logs

In order to determine to which extent disaster plans are followed in reality, when
incidents occur, an automated verification method is proposed. By means of this
method, the formal specification of a disaster plan is checked automatically on
formalized empirical data concerning an incident. This empirical data are usually
represented in the form of informal logs (also called traces) that contain events. Such
informal logs can be formalized using the formal language TTL [9]. The translation
from a log of events to a formal trace is currently done by hand. However, for the
future there are plans to develop a methodology that supports non-expert users in
making this translation. After such a formalization of a log has been created, the
formal properties extracted from the disaster plan can be automatically verified
against the formalized trace. This Section first of all shows what such a formalized

376

trace looks like, and thereafter presents results of checking the properties obtained
from the Eindhoven disaster plan to the logs of the Hercules airplane crash in 1996.

4.1 Formalizing an Empirical Trace

An example of a formalization of a trace is shown in Figure 5. It shows the most
relevant parts of the occurrences during the Hercules incident. The ontology used in
the trace is identical to the one introduced in Section 2 on formally describing a
disaster plan. In the left side of the figure, the relevant so called atoms in the trace are
shown whereas the right part represents a time line. In the time line a black box
indicates that the atom is true whereas a grey box indicates that it is false.

is_organization_in_phase(disaster_prevention_organization, phase2)
is_organization_in_phase(disaster_prevention_organization, phase3)

trigger(disaster)
is_role_in(OSC, disaster_prevention_organization)

has_subrole_in(OSC, on_scene_fources, disaster_prevention_organization)
has_subrole_in(OSC, CoRT, disaster_prevention_organization)

executes_task_primary_in(mayor, lead_policy_team, disaster_prevention_organization)
is_role_in(operational_team, disaster_prevention_organization)

time 0 5 10 15 20 25 30

Fig. 5. Partial Empirical Trace of the Eindhoven Plan Crash

As can be seen in the trace, from time point 0 to 10 the phase declared is phase 2
whereas between 10 and 30 phase 3 holds. Furthermore, at time point 9 a trigger is
observed for changing the organization, namely that the current situation has been
declared a disaster. The partial structure of the organization at different time points is
shown in the figure as well. During the entire incident, the OSC (for On Scene
Commander) role is part of the organization and of the On Scene Forces group.
Furthermore, the OSC is never part of the Command Disaster Area (abbreviated to
CoRT in the trace). Finally, the operational team role is added to the organization
from time point 10 and on.

4.2 Verification of Properties Against a Formalized Trace

After having obtained a formalized trace, properties extracted from the disaster plans
can be verified against such a trace. By means of this verification one can determine
what part in the example incident management process described by the trace did not
follow the disaster plan.

For such verification, based on the formal representation of the disaster plan, a set
of facts is defined in the form follows_from_disaster_plan(X), where X is a relation from
the formalized disaster plan. Then, based on the identified facts dynamic properties
are specified that can be verified on the formalized empirical trace by means of the
dedicated software environment TTL Checker. To enable automated verification,
dynamic properties should be expressed by formulae in the Temporal Trace

377

Language. The software environment takes a TTL formula and one or more traces as
input, and checks whether the formula holds for the trace(s).

Below, a number of dynamic properties in the form of TTL formulae are
considered, based on the disaster plan for the Eindhoven municipality. These
properties have been checked automatically on the formalized empirical trace, a part
of which is depicted in Figure 5.

First of all, it is checked whether the organizational structure in the different phases
indeed corresponds to the disaster plan. Note that this property only concerns the
subrole relationship, similar properties can be specified for the other structural
relationships.

Property 9.
Informal form
For all time points t in trace γ, if the phase at time point t is P, and the disaster plan specifies
that a particular role R2 should have a subrole R1 in organization O in phase P, then role R1 is
indeed a subrole of role R2 in organization 0 at time t.

Formal form
∀t:TIME, ∀R1,R2:ROLE, ∀P:PHASE, ∀O, O’:ORGANIZATION:
[[state(γ, t) |= is_organization_in_phase(O, P) &
 follows_from_disaster_plan(has_subrole_in(R1, R2, O’))) &
 follows_from_disaster_plan(is_organization_in_phase(O’, P))]
� state(γ, t) |= has_subrole_in(R1, R2, O)]

The relation state(γ, t) |= p denotes that within the state state(γ, t) at time point t in trace γ

the state property p holds. This property is not satisfied in the given trace, because the
OSC role should be part of the CoRT role in both phase 1 and 2 according to the
disaster plan, whereas it is not in the trace.

A second property concerns the checking whether the tasks and responsibilities
mentioned in the disaster plan are indeed performed. Again, this property just shows
an example of how to check one relationship for the tasks, the rest of the relationships
can be checked in a similar fashion.

Property 10.
Informal form
For all time points t in trace γ, if the phase at time point t is P, and the disaster plan specifies
that a particular role R should be the primary executer of a task T in phase P, then role R is
indeed the primary executer of this task T at time t.

Formal form
∀t:TIME, R:ROLE, ∀P:PHASE, ∀T:TASK ∀O, O’:ORGANIZATION:
[[state(γ, t) |= is_organization_in_phase(O, P) &
 follows_from_disaster_plan(executes_task_primary_in(R, T,O’)) &
 follows_from_disaster_plan(is_organization_in_phase(O’, P))]
� state(γ, t) |= executes_task_primary_in(R, T, O)]

This property is again not satisfied, as the mayor role should be the primary executer
of the task to lead the policy team, whereas he does not perform that task.

A final property which has been checked against the trace is to investigate whether
the organizational change processes in the organization have been successful, as
shown in property 11.

378

Property 11.
Informal form
For all time points t in trace γ, if the phase at time point t is P and a trigger T holds, and
furthermore the disaster plan specifies that in phase P given trigger T a new phase P2 should
hold, and roles should be added, then at a later point in time t2 phase P2 will be the case, and
the organizational element will have been added.

Formal form
∀t:TIME, ∀OL:ORG_ELEMENT, ∀P1,P2:PHASE, ∀T:TRIGGER ∀O, O’:ORGANIZATION:
[[state(γ, t) |= is_organization_in_phase(O, P1) &
 state(γ, t) |= trigger(T) &
 follows_from_disaster_plan(is_organization_in_phase(O’, P1)) &
 follows_from_disaster_plan(is_trigger_for_from_to(T, add(OL:ORG_ELEMENT), P1, P2))]
� ∃t’ t’>t [state(γ, t’) |= ORG_ELEMENT & state(γ, t’) |= is_organization_in_phase(O, P2)]]

This property is satisfied in the trace. The phase transitions do go according to the
disaster plan. The initial organization however is, as has already been stated, not
correct. Since the change is only concerned with transitions between phases, this
property does hold.

5 Discussion

In this paper a formal framework for modeling and comparing disaster plans and
checking disaster plans on empirical traces is presented and applied to a number of
case studies. The framework extends earlier work of [7] and [3] with specific
constructs and reusable patterns for the domain of incident management, in specific
for disaster plans. The approach uses formal graphical, and textual languages, in casu
sorted first-order predicate logic and TTL (see [9]). More specifically, sorted first-
order predicate logic is used for formalizing structural properties in disaster plans and
TTL is used for expressing causal temporal properties for the automated verification
on formalized empirical traces by means of the dedicated software.

When compared with the work of [6] the framework presented in this paper is
more generic from several perspectives. The first advantage is that the framework
allows modeling on different levels of abstraction, and is, therefore, capable of
modeling the Dutch disaster plans, which are on a highly abstract level of abstraction
when compared to the plans that [6] modeled. The second advantage is that
simulation of the models in different situations is possible. The third advantage is the
software support for checking the model against simulation and transcribed real
traces.

[12] introduce an approach for the verification of properties against simulation
traces of an agent-based system which models human behavior in incidents. They do
however not address using empirical logs from the incident management field within
their work. Furthermore, the paper work does not concern the formal specification of
disaster plans and automated verification of the properties described in such plans,
which is one of the main contributions of this paper.

With respect to incident management this work contributed by proposing a formal
approach for the modeling and comparison of disaster plans. The approach is

379

explained in detail and tested in two case studies. The main results are the
classification of differences into local differences and inter-local differences. The
local differences effect only incident management in the municipality itself. The local
differences can be fundamental or not when comparing the actual incident
management. For example, two disaster plans differed in having only one or two
zones around the epicenter of the incident. This difference has clear effects on the
organizational structure prescribed in the disaster plans. However, the tasks associated
with the zones are comparable. The same holds for the associated responsibilities. In
other words, the organizational structure differs, but the dynamics are comparable.
The inter-local differences are counterproductive when municipalities have to
cooperate in case inter-local incidents. Comparing two disaster plans in this manner
revealed a possible conflict regarding leadership. The consequence is clear: all
neighboring municipalities should use the same rules for determination of leadership.
Therefore, all municipalities in The Netherlands should share those rules.

In the future, systems such as the IMI system [10] will contain many disaster plans.
Making sure that these disaster plans are consistent with each other is of crucial
importance for inter-local incident management. The plans in the system can be
formalized, and verifying whether a new plan is consistent with the plans currently in
the database would simply entail formalizing that plan and performing verification. In
case the plan is indeed consistent the plan can be added to the database, including the
formal description. On the long run an entirely different approach can be followed.
Instead of taking an informal disaster plan as a point of departure, in future disaster
plans should be first and foremost formal plans, from which an informal plan that is
readable for human beings is automatically generated.

References

[1] Abbink, H., Dijk, R. van, Dobos, T., Hoogendoorn, M., Jonker, C.M., Konur, S., Maanen,
P.P. van, Popova, V., Sharpanskykh, A., Tooren, P. van, Treur, J., Valk, J., Xu, L., Yolum,
P., Automated Support for Adaptive Incident Management. In: Walle, B. van de, and
Carle, B. (eds.), Proc. of the First International Workshop on Information Systems for
Crisis Response and Management, ISCRAM'04. Brussels, 2004.

[2] Breuer, K., Satish, U. Emergency Management Simulations-An approach to the
assessment of decisionmaking processes in complex dynamic environments. In Jose J.
Gonzalez (eds), From modeling to managing security: A system dynamics approach,
HoyskoleForlaget, 2003, pp. 145-156.

[3] Broek E. L. van den, Jonker, C.M., Sharpanskykh, A., Treur J., and Yolum, P., Modeling
and Analyzing Multi-Agent Organizations (Submitted to Fourth International Joint
Conference on Autonomous Agents and Multiagent Systems, AAMAS’05)

[4] Gemeente Eindhoven, Rampenplan, Eindhoven, the Netherlands, May 1993.
[5] Gemeente Uithoorn, Rampenplan, Uithoorn, the Netherlands, October 2003.
[6] Grathwohl, M., de Bertrand de Beuvron, F., and Rousselot, F., A new application for

description logics: Disaster management. In Proc. of the International Workshop on
Description Logics '99, Linkoping, Sweden, 1999

[7] Hoogendoorn, M., Jonker, C.M., Schut, M., and Treur, J., Modelling the Organisation of
Organisational Change. In: Proc. of the Sixth International Workshop on Agent-Oriented
Information Systems, AOIS'04.

380

[8] Inspectie Brandweerzorg en Rampenbestrijding, Vliegtuigongeval Vliegbasis Eindhoven
15 juli 1996, SDU Grafische Bedrijf, The Hague, 1996.

[9] Jonker, C.M., Treur, J. Compositional verification of multi-agent systems: a formal
analysis of pro-activeness and reactiveness. International. Journal of Cooperative
Information Systems, vol. 11, 2002, pp. 51-92.

[10] Lee, M.D.E. van der, Vugt, M. van. IMI – an information system for effective
multidisciplinary incident management. In: Carlé, B., Walle, B. van der (eds.),
Proceedings of the International Workshop on Information Systems for Crisis Response
and Management '04, Brussels, Belgium. 2004.

[11] Manzano, M. Extensions of First Order Logic, Cambridge University Press. 1996.
[12] Narzisi, G., Mysore, V., Nelson, L., Rekow, D., Triola, M., Halcomb, L., Portelli, I., and

Mishra, B., Complexities, Catastrophes and Cities: Unraveling Emergency Dynamics. In:
International Conference on Complex Systems (ICCS 2006), Boston, MA, USA June 25-
30, 2006.

381

Part VII
Discussion

382

383

Chapter 18

Conclusion

384

385

Conclusion

The research presented in this thesis covers a broad spectrum of the issues involved in
organizational change. The spectrum ranges from the analysis of the performance of
an existing organization, to the evaluation of an organizational change process, and of
the steps in between.

The analysis of the performance of an existing organization is addressed from
various perspectives, ranging from an analytic approach based upon labeled graph for
the performance of organizations (Chapter 2), to models that identify the precise
problems in the organization and suggest a possible new organization (Chapter 3, 4,
and 5). To specify models that determine a possible new organization, a number of
techniques are used, inspired by meta-reasoning (Chapter 3), the domain of
organizational design (Chapter 4), and the algorithmic domain of graph theory and
max flow networks (Chapter 5). Each technique presents a particular strength in the
analysis. Chapter 2 focuses mainly on an extensive analysis of the detailed aspects of
task performance, but does not address how the organization can be changed to
perform correctly (if necessary). Chapter 5, using a graph based approach, abstracts
away from the specific tasks in the analysis, to suggest an update to an organizational
model based upon the problems identified. Specification of such an update
mechanism using the extensive analysis method presented in Chapter 2 would
certainly be possible using the approach presented in Chapter 5 by considering a
separate graph for each specific task. In Chapter 3 the possible changes in the
organization are assumed to be pre-specified, thereby mainly focusing on the choice
between various possibilities to change the organization. Finally, Chapter 4 focuses
on the specification of requirements of an organization based upon changing
environmental conditions, It presents a specific component-based model for
specifying knowledge on how such changes within the environment can be refined to
a more operational level and how an organization can be changed in order to fulfill
such requirements. The broad spectrum of techniques offered is shown to be effective
in several domains, such as incident management, the naval domain, and large scale
manufacturing organizations. The analysis techniques can easily be reused due to the
abstraction level that has been used in the specification of these techniques. The
combination thereof provides a basic set of reusable tools that enable analysis of the
current organization and an investigation of potentially new organizations before
going into the actual change process. As a result, these techniques contribute to a
more effective analysis of the problems in organizations, resulting in more effective
change processes as well.

Of course, a description of a potential new organization does not immediately
result in that new organization being in place. The process of moving from one
organization to another has therefore been addressed in this thesis as well. Again, it is
addressed from several perspectives based upon the way the change process is
directed. First of all, centralized change processes are addressed which focus on some
central entity that directs the change process. Centralized change models are specified
without addressing the specific agents, which makes them highly generic and
reusable. For the creation of centralized models, inspiration was found in organization
theory, due to the body of research that exists there. As a result, a model is created

386

based upon a popular theory for moving from one organization to another (Chapter 6).
In order to evaluate the usefulness of the change model it has been evaluated in a
number of case studies. For the naval domain, the model is used to describe and
analyze changes in fleet formation (Chapter 7), whereas the model is also used in the
domain of government organizations (Chapter 8). The evaluation of the model in
these specific domains shows that an analysis using the model is useful, which was
also acknowledged by for instance government employees that were involved in the
modeling of their organizational change processes. Some domains however, do not
have a central authority that can direct change, therefore, decentralized change
processes are addressed in this thesis as well. In domains such as biology, such
change processes are frequently observed, therefore, a model has been created for
decentralized change drawing inspiration from honeybee colonies (Chapter 9). To
make this model even more generic and reusable, a higher abstraction level is
introduced, and specializations thereof, including both quantitative and qualitative
specializations (Chapter 10). The model is shown to describe human organizations as
well, namely in the field of incident management. Besides the specification of a
reusable model for decentralized organizational change, the issue of populating such
an organization is addressed as well by means of negotiation (Chapter 11 and 12). In
these negotiation processes and strategies that are specified, both the preference
(Chapter 11) as well as the efficiency of the solution (Chapter 12) are addressed. The
different strategies are shown to be effective, and are thoroughly analyzed by using
actual company data. As a result, both a model is specified that can be used by
organization modelers who want to specify an organization exhibiting decentralized
organization change, as well as approaches for the formation such an organization in
an effective manner. Finally, also approaches are defined in this thesis that are generic
in the sense that they can be used for both centralized and decentralized organization
change; mixed change processes. First of all, an approach is presented which is able
to evaluate centralized and decentralized change processes (Chapter 13), which is of
crucial importance when designing an organizational model. Strategies that have been
tested include well known approaches for coordination in an organization. In order to
specify such coordination approaches, an extensive language is presented as well
(Chapter 14).

The final topic addressed in this thesis is the evaluation of the effectiveness of
organizational change. This has been addressed from the viewpoint of verifying
traces of the functioning of the changed organization. Actually, this topic has been
addressed as well in other parts of this thesis. For the domain of incident management
however, dedicated approaches have been created that enable an analysis of critical
event occurrences in such organizations. First of all, two approaches are presented
that specify properties an incident management organization should satisfy (Chapter
15 and 16). The verification of such properties against empirical logs results in the
identification of specific errors that need to be addressed. Chapter 15 thereby mainly
focuses on the formalization of an empirical trace and the identification of what kind
of properties to verify against an empirical trace. Chapter 16 uses the approach
presented in Chapter 15 and extends it with verification using hierarchies of
properties. Furthermore, Chapter 16 also identifies the types of errors that can be
made by agents when they are playing a particular role. The domain of incident
management is a suitable domain to perform these evaluations due to the logging of

387

information (i.e. disaster reports), as well as the description of properties that should
hold within such organizations, which is done in great detail (i.e. disaster plans and
disaster prevention plans). Finally, also plans for organizational change are
evaluation, in the form of the evaluation of disaster plans (Chapter 17). The
evaluation approaches presented are generic in the sense that they can easily be
applied in other domains as well. Using such approaches after a change has been
performed gives a good insight on the effectiveness of such a change, and can as a
result be used by organizational experts and modelers as well.

To summarize, the contribution of this thesis is the introduction of models and
techniques to describe and improve change within organizations. A broad spectrum of
such models and techniques has been presented in this thesis, both focusing on the
specification of the models and techniques themselves, as well as on the analysis
thereof. To demonstrate the variety of applicability of these models and techniques,
domains including social insects, business organizations, computer organizations, and
government organizations have been used as case studies. The models and techniques
have all been specified in a generic manner allowing for reuse of these models and
techniques, and furthermore, they have been analyzed in some depth. Practitioners in
the field of organizational change can use such models and techniques to improve the
effectiveness of organizational change.

388

389

Chapter 19

Related Work

390

391

Related Work

The work presented in this thesis is of a multi-disciplinary nature. As a result, the
work is related to the disciplines involved, i.e., economics, social science,
computational and mathematical organization theory, biology, computer
science/artificial intelligence. The discussion in this related work section only
addresses work related to the thesis as a whole. For related work concerning the
specific cases studied, the reader is referred to the discussion or related work section
of that specific chapter.

This chapter is organized as follows. First of all, organizational change literature
originating within human organizations is addressed. Thereafter, literature in the
domain of organizational change within biology is presented and related to the work
presented in this thesis. Furthermore, Section 3 concerns related work in computer
science, and finally, in Section 4 the approach as a whole is compared to other
organizational modeling approaches.

1 Change in Human Organizations

In human organizations, change is a part of everyday life. Due to rapid developments
in society, change of organizations has become inevitable. Hence, some organizations
are continuously undergoing change. Change in organizations is however not always
successful. Both Hall et al. [1] and Bashein et al. [3] state that over 70% of all change
processes do not achieve the intended goal. Boonstra [4] criticizes typical
explanations given for failure of such change processes; he states that insufficient
attention is paid to the change process itself. This thesis tries to address both the
processes before and after change of an organization as well as the process of change
itself, addressed in parts iii to v.

In general, three main types of organizational change are identified in literature
(see e.g. [4]): planned organizational change, in which the problems and solutions of
change are known. In organizational development the problems are known but not
entirely clear in organizational development, whereas the solutions are not known, but
there is at least an idea about the direction of search for solutions. Finally,
transformational change is defined by Ackerman [1] as “emergence of a totally new
state of being out of the remains of the old state”. As can be observed, the clarity of
problems and solutions of change becomes more vague with the type of change. The
types of change addressed in this thesis are both planned organizational change as
well as organizational development. In this related work section, first of all the
evaluation of organizations and the search for the optimal organization given the
circumstances is addressed, thereafter the process of organizational change is
discussed.

392

Evaluating an Organization. Evaluation of an organization can be performed by
measurement of the effectiveness of an organization. Cunningham [9] for example
introduces seven alternative strategies for assessing organization effectiveness and
provides criteria when each one of these approaches can be used. Triggers for a
change of an organization, due to a loss of effectiveness can for instance be found in
Jaffee [21]. Once it is observed that an organization is indeed becoming less effective,
a new organization needs to be designed, and such a design needs to be evaluated as
well. These problems have for example been addressed in the field of contingency
theory, which aims at finding the best organization given the environmental
conditions under which it is functioning (see e.g. [12]). Furthermore, Mintzberg [28]
for instance specifies the characteristics for which particular organizational forms are
best suitable. In operations research (see e.g. [16]), an emphasis is put upon design of
organizations in the most efficient manner. Work from these fields has been taken as a
source of inspiration for the models presented in this thesis. The work in this thesis
can also contribute to a more formal analysis of the functioning of an organization.

Organizational Change Processes. The organizational change processes addressed
in this thesis (i.e. planned organizational change and organizational development)
both concern a process of change that moves from one stable state to another. A vast
amount of research has been performed concerning such change processes, see, e.g.,
[2;23;24;27].

From a centralized organizational change perspective, the theory used as a source
of inspiration for a lot of this research is the three step change model introduced by
Lewin [23]. Lewin identifies three phases within an organizational change process:
unfreezing, movement, and refreezing. He states that there are two opposing forces at
work when changing an organization: forces that resist the change, and forces that
drive towards the newly desired organization. The unfreezing phase begins at the
moment that change becomes necessary and consists of the process of changing the
resisting and driving forces in such a way that change becomes possible (i.e., the
driving forces outweigh the resisting forces). The actual change of the organization is
contained in the movement phase in which the organization is moved from the current
state to the desired stated. The refreezing phase involves freezing the newly formed
organization so that there is no possibility to return to the former status quo or to
continue changing in another unwanted direction. The whole re-organization process
is completed when all phases have been completed. The unfreezing can be performed
by increasing the driving forces and/or by decreasing the resisting forces. An example
of an extension of Lewin’s theory is that of Lippitt et al. [24], who identify seven
steps based upon the three step model of Lewin. The centralized change model of
Lewin is in this thesis taken as a basis for modeling centralized organizational change
processes, and has been described in the modeling approach used throughout this
thesis. Furthermore, it has been analyzed by means of logical simulation and
verification. Such an analysis of the theory of Lewin has not been found in any other
related work.

When looking at decentralized organizational change processes, the actual process
of convincing people to move to a new organization does not exist, since the people
themselves decide when and how to change. Examples of organizations exhibiting
decentralized organizational change are the cellular organization [27], and the organic

393

organization [2]. This thesis presents models for such decentralized change processes
that can potentially be used when modeling these types of organizations. In such
decentralized organizational change process, negotiations are sometimes used to form
an organization. In part iv of this thesis, two chapters are devoted to the analysis of
the results found using the MAGNET negotiation system [7], both addressing
satisfaction of the participants of the organization as well as the optimality of the
solution found. Regarding the satisfaction of participants of the organization, new
bidding algorithms have been proposed for negotiation that emphasize on the
preference for particular tasks. When looking at the optimality of the solution found,
new, efficient algorithms have been proposed as well.

2 Organizational Change in Biological Systems

Change in biology is studied for a number of aspects. Organizations are sometimes
studied on a low level, such as the organization of chemical processes and their
relation in a cell. Chemical processes in the E.Coli bacteria are, for example described
by means of mathematical differential equations [31]. On a higher level however,
change is also addressed from a social biological perspective. Wilson for example,
focuses on colonies in social inspects, see, e.g., [17], and the roles and tasks that can
be distinguished in such organizations. For honeybee colonies, the division of labor
between worker bees, and the change thereof over time, has been of particular
interest, see, e.g., [32;36]. Many other social insects have also been intensively
described. Researchers in the field of computational biology use such mechanisms
observed in social insects as source of inspiration for algorithms for self-organization
(see, e.g., [35]). This thesis has aimed at describing the high level socio-biological
processes, such as labor division on an organizational modeling level. In particular,
the part covering decentralized organizational change processes has described and
analyzed organizational models that draw inspiration from biological organizations
and allows for an analysis of such processes. The approach used in this thesis that
differs from the approaches used in for instance computational biology is the logical
nature of the models presented in this paper, contrary to the models expressed by
means of differential equations such as in use in computational biology.

3 Organizational Change in Software Systems

Due to the increase in complexity of software organizational views of software
systems are used more often nowadays in computer science. Using the organizational
views as an initial step, allocation of software agents (or components) to perform
particular roles is a next step to be taken, also when changing an organization. A
method that allows for specification on the organizational level with software
engineering in mind is for instance GAIA [37].

A next step after having specified the organizational level of a software system is
the allocation of agents to particular roles within a (changed) organization. This raises
a number of research questions. First of all, which agent should be allocated to what

394

particular roles. Different approaches for role-allocation and reallocation algorithms
are compared in [29]. The comparison is based on a framework developed for the
Role-based Markov Team Decision Problem. Multi-agent negotiation is one particular
discipline that can also be used to determine which agent is best to be allocated to a
particular role. Just as in human organizations, auctions have also been proposed for
allocation of computational resources [22]. One of the most popular paradigms in use
is the contract-net protocol [34]. Other fields, in which allocation is addressed are
centralized scheduling [6] and distributed planning [8]. Moreover, coordination
algorithms have been proposed that allow for an effective allocation of agents to
particular tasks. Maes [25], for instance, proposes a centralized algorithm that
determines which agent is to become active, given the current state of the world.
Other approaches such as voting [30] and the pandemonium [33] try to achieve the
same, but are specified from a more decentralized perspective.

In this thesis the aim is to model and analyze such allocation mechanisms. An
analysis methodology for coordination strategies as well as a language for the
specification of such strategies has been presented in part v. The language allows for
both the specification of centralized strategies as well as decentralized strategies,
which makes the language unique. For the comparison of such strategies, a
completely new approach has been developed to evaluate strategies. In addition, the
work presented in part iv concerning negotiations introduces an allocation
mechanism. The approach is however more aimed at supporting the formation of
human organizations.

4 Organizational Modeling Approaches

A number of organizational modeling approaches exist besides AGR [13] extended
with dynamic models [14]. GAIA [37] distinguishes five main elements for
describing an organization: (1) the environment; (2) roles; (3) the interaction between
roles; (4) organizational rules, and (5) organizational structures. As has been stated
before, GAIA is motivated from the perspective of being a first step in the
development of the implementation of a multi-agent system. It does however also
allow for an analysis at the organizational level. Besides defining organizational
structure, MOISE [20] specifies missions for roles, which can include concepts such as
goals, plans, actions, and resources. Furthermore, authority links between roles can
also be specified. OperA [10] identifies three models: the organizational model, the
social model, and the interaction model. The approach describes the behavior of the
organization as a whole, and the distribution of these objectives between different
roles. Agent behavior is regulated by social contracts describing the role the agent is
playing. In addition, interaction contracts describe actual interactions between agents.

The description of an organizational model by means of norms (see e.g. [5]) is used
in several of these approaches. In the modeling approach used throughout this thesis,
such norms can also be expressed. The following norm, for example (from [26]])
“Students are prohibited from sitting the exam if they have not completed the
assignment” can easily be formulated in terms of a dynamic property for the student

395

role. In this way, the approach used in this thesis is suitable for modeling
organizations in terms of norms.

In organizational modeling, organizational change has been addressed before. In
[26] a framework is introduced which enables verification and analysis of
organizational change. In the framework, changes in the organizational structure are
allowed, however the process of organizational change itself is not addressed nor
modeled, contrasting it to the work performed in this thesis. Their framework enables
verification on the static organizational model to check whether the organizational
model is workable. Furthermore, analysis is performed on simulations of possible
outcomes of the organizational model, which is meant to see how the organization
will act when populated by different societies of agents. The simulations used
throughout this thesis abstract from the population of agents, and allows for the
simulation of the organizational model itself. This avoids the development of agents
to investigate the effectiveness of such organizational models. Dignum et al. [11],
emphasize the necessity for multi-agent organizations to have the ability to
reorganize, and state that additional requirements are needed for agents that have the
ability to change. This thesis makes those requirements more concrete in the form of
providing several models and templates for such organizations. In MOISE+ [19]
reorganization is addressed as well. Four phases in a reorganization process are
identified for controlled organizational change: (1) monitoring phase; (2) design
phase; (3) selection phase, and (4) implementation. The reorganization is being
controlled by an organization manager within a reorganization group. This
architecture however restricts the analysis possibilities using this approach, since
decentralized change processes can for instance not be addressed, whereas these
approaches are addressed in this thesis. In [18] a general diagnosis engine is presented
which drives adaptation processes within multi-agent organizations using the TAEMS
modeling language as the primary representation of organizational information. In the
design of the diagnostic engine three distinct layers are identified: symptoms,
diagnosis, and reactions. The redesign of organizations is however not addressed from
an organizational modeling perspective, which is the case in the approach presented in
this thesis. The approach presented in [18] is specified purely on the agent level. This
makes it harder to reuse such models.

References

[1] Ackerman, L.S., Development, transition, or transformation: the question of change in
organization, OD Practitioner, 18(4) , 1986, pp. 1-9.

[2] Aiken, M., and Hage, J., The Organic Organization and Innovation, Sociology 1:63-82,
1971.

[3] Bashein, M.L., Marcus, M.L., and Riley, P., Business Process Reengineering:
preconditions for success and failure, Information Systems Management 9, 1994, pp. 24-
31.

[4] Boonstra, J.J. (editor), Dynamics of Organizational Change and Learning, Wiley, 2004.
[5] Castelfranchi, C., 1998, Modelling Social Action for AI Agents. Artificial Intelligence,

103: pp.157 - 182.

396

[6] Chien,S., Barrett, A., Estlin, T., and Rabideau, G. A comparison of coordinated planning
methods for cooperating rovers. In Proc. of the Fourth Int'l Conf. on Autonomous Agents,
pages 100--101. ACM Press, 2000.

[7] Collins, J., Ketter, W. and Gini, M., A multi-agent negotiation testbed for contracting tasks
with temporal and precedence constraints. Int'l Journal of Electronic Commerce, 7(1):35--
57, 2002.

[8] Cox, J.S., Durfee, E.H., and Bartold, T., A distributed framework for solving the
multiagent plan coordination Problem, In Autonomous Agents and Multi-Agent Systems,
pages 821--827, 2005.

[9] Cunningham, J.G., Approaches to the Evaluation of Organizational Effectiveness,
Academy of Management Review 2: 463-474, 1977.

[10] Dignum, V., A Model for Organizational Interaction: Based on Agents, Founded in Logic,
PhD thesis, 2003.

[11] Dignum, V., Sonenberg, L., Dignum, F., 2004, Dynamic Reorganization of Agent
Societies, In: Proceedings of CEAS: Workshop on Coordination in Emergent Agent
Societies at ECAI 2004.

[12] Donaldson, L., The Contingency Theory of Organizations, Sage Publications, 2001.
[13] Ferber, J. and Gutknecht, O., A meta-model for the analysis and design of organisations in

multi-agent systems. In: Proceedings of the Third International Conference on Multi-
Agent Systems (ICMAS’98), IEEE Computer Society Press, pp. 128-135.

[14] Ferber, J., Gutknecht, O., Jonker, C.M., Müller, J.P., and Treur, J., Organization Models
and Behavioural Requirements Specification for Multi-Agent Systems, in Y. Demazeau,
F. Garijo (eds.), Multi-Agent System Organizations. Proceedings of MAAMAW'01, 2001.

[15] Hall, G., Rosenthal, T., and Wade, J. How to make reengineering really work, Harvard
Business Review, 71(6), 1993, pp. 119-131.

[16] Hillier, F.S. and Lieberman, G.J., Introduction to Operations Research, McCraw-Hill, SF,
2002.

[17] Hölldobler, B., and Wilson, E.O., The Ants, Harvard University Press, 1990.
[18] Horling, B., Benyo, B, and Lesser, V., Using Self-Diagnosis to Adapt Organizational

Structures, In: Muller, J.P., Ander, E., Sen, S., and Frasson, C., Proceedings of the Fifth
International Conference on Autonomous Agents, ACM Press, 2001, pp. 529-536.

[19] Hübner, J.F. and Sichman, J.S., Using the MOISE+ model for a cooperative framework of
MAS reorganization, Boletim Técnico BT/PCS/0314, Escola Politécnica da USP, São
Paulo, 2003.

[20] Hübner, J.F., Sichman, J.S., and Boissier, O., A Model for the Structural, Functional and
Deontic Specification of Organizations in Multiagent Systems. In: Proc. 16th Brazilian
Symposium on Artificial Intelligence (SBIA'02), Porto de Galinhas, Brasil, 2002.
Extended abstract in: C. Castelfranchi and W.L. Johnson (eds.), Proc. of the First
International Joint Conference on Autonomous Agents and Multi-Agent Systems,
AAMAS'02. ACM Press, 2002, pp. 501-502.

[21] Jaffee, D. (2001), Organization Theory – Tension and Change, McGraw-Hill Companies.
[22] Krishna, V., Auction Theory, Academic Press, London, UK, 2002.
[23] Lewin, K. (1951), Field Theory in Social Science, Harper & Row, New York.
[24] Lippit, R., Watson, J., Westley, B., The Dynamics of Planned Change, Harcourt, New

York, 1958.
[25] Maes, P., How to do the right thing. Connection Science, 1989. 1(3): pp. 291-323.
[26] McCallum, M., Vasconcelos, W.W., and Norman, T.J., 2005, Verification and Analysis of

Organisational Change. In: Boissier, O., Dignum, V., Matson, E., Sichman, J. (eds.), Proc.
1st OOOP Workshop.

[27] Miles, R.E., Snow,, C.C., Mathews, J.A., Miles, G., Coleman, H.J. (1997), "Organizing in
the knowledge age: anticipating the cellular form", Academy of Management Executive,
Vol. 11 No.4, pp.7-24.

397

[28] Mintzberg, H., Structure in Fives: Designing Effective Organizations, Prentice Hall, 1992.
[29] Nair, R., Tambe, M., Marsella, S., Role Allocation and Reallocation in Multiagent Teams :

Towards a Practical Analysis, In: Proceedings of the Second Conference on Autonomous
Agent and Multi-Agent Systems (AAMAS 2003), pp. 552-559, ACM Press, 2003.

[30] Ordeshook, P. Game theory and political theory: An Introduction. Cambridge: Cambridge
University Press, 1986.

[31] Rohwer, J.M., Meadow, N.D., Roseman, S., Westerhoff, H.V., and Postma, P.W. (2000).
Understanding glucose transport by the bacterial phosphoenolpyruvate:glycose
phosphotransferase system on the basis of kinetic measurements in vitro. J Biol Chem.
2000 Nov 10; 275(45): 34909-21.

[32] Schultz, D.J., Barron, A.B., Robinson, G.E., 2002, A Role for Octopamine in Honey Bee
Division of Labor, Brain, Behavior and Evolution, vol. 60, pp. 350-359.

[33] Selfridge, O. G. Pandemonium: a paradigm for learning in mechanization of thought
processes. In Proceedings of a Symposium Held at the National Physical Laboratory,
pages 513-526, London, November 1958.

[34] Smith, R.G., The contract net protocol: High level communication and control in a
distributed problem solver, IEEE Trans. Computers, 29(12):1104--1113, December 1980.

[35] Theraulaz, G., Bonabeau, E., and Deneubourg, J.L., 1998, Response thresholds
reinforcement and division of labor in insect societies. Proceedings of the Royal Society of
London Series B-Biological Sciences, 265: 327-332.

[36] Winston, M.L. and Punnet, E.N., 1982, Factors determining temporal division of labor in
honeybees, Canadian Journal of Zoology, vol. 60, pp. 2947-2952.

[37] Zambonelli, F., Jennings, N., Wooldridge, M., 2001, Organizational Rules as an
Abstraction for the Analysis and Design of Multi-agent Systems, Journal of Software and
Knowledge Engineering, Vol. 11, pp. 303-328.

398

399

Chapter 20

Future Work

400

401

Future Work

Many directions exist in which the research presented in this thesis can be further
extended. One topic which has not been addressed is that of organizational learning.
An organization can learn from past experiences, and change based upon those
experiences. It could be argued that the decentralized organizational model presented
for honeybee colonies exhibits learning from the past due to the threshold mechanism
(which causes thresholds to decrease over time), however in organization theory
many more advanced strategies are presented (see e.g. [2]). It would be interesting to
see how such learning mechanisms can be modeled. Besides learning from
occurrences of events in the past, an approach could also be to “learn” the optimal
organization given the current circumstances. In [3] a first attempt towards such
learning is presented based upon genetic algorithms. This domain would certainly be
worth exploiting.

The approaches presented in this thesis are based upon AGR extended with
dynamic models [4]. An open question is how the models and techniques presented in
this thesis could be used in other organizational modeling approaches, such as
presented in the related work section. Such a survey would help modelers who prefer
other organization modeling approaches to apply the models and techniques presented
here.

As organizations are becoming more dynamic, so is the structure of those
organizations. Nowadays, organizations that are of the cellular [5] or organic type [1]
are occurring more frequently. The investigation of how well existing human
organizations that exhibit such an organizational structure can be described and
analyzed using the models for organizational change presented in this thesis would
certainly be interesting.

In the specific domains of application throughout this thesis, a lot of potential for
future work exists as well. For the domain of incident management for example,
several approaches for evaluating the effectiveness of change have been proposed in
this thesis. These approaches have been evaluated by means of the investigation of
historic cases. It would be interesting to see how effective these evaluation
approaches could be at runtime. Extensive case studies can be performed to see
whether the effectiveness of change in incident management organizations can indeed
be improved. In the domain of logistical organizations, addressed in the negotiation
chapters of this thesis, evaluations of the proposed allocation strategies can be
evaluated for more complex cases as well, such as multiple goods that can be
combined within one truck.

In a more generic sense, in order to make the models and techniques presented in
this thesis more accessible for practitioners, a support environment can be created that
integrates them. Such a support environment could as a result facilitate more
effective organizational change. Of course, whether the effectiveness is indeed
improved would need to be investigated after such a system has been used by these
practitioners.

402

References

[1] Aiken, M., and Hage, J., The Organic Organization and Innovation, Sociology 1:63-82,
1971.

[2] Argyris, C., On Organizational Learning, Blackwell Publishing, 1999.
[3] Bou, E., Lopez-Sanchez, M., and Rodriguez-Aguilar, J.A., Self-Configuration in

Automatic Electronic Institutions, In: Coordination, Organization, Institutions and Norms
in Agent Systems (COIN@ECAI 2006), 2006, pp.1-7.

[4] Ferber, J., Gutknecht, O., Jonker, C.M., Müller, J.P., and Treur, J., Organization Models
and Behavioural Requirements Specification for Multi-Agent Systems, in Y. Demazeau,
F. Garijo (eds.), Multi-Agent System Organizations. Proceedings of MAAMAW'01, 2001.

[5] Miles, R.E., Snow,, C.C., Mathews, J.A., Miles, G., Coleman, H.J. (1997), "Organizing in
the knowledge age: anticipating the cellular form", Academy of Management Executive,
Vol. 11 No.4, pp.7-24.

403

Samenvatting: Modelleren van Verandering
in Multi-Agent Organisaties

Organisatie kan gedefinieerd worden als een systematische ordening van elementen
die samen een bepaald doel willen bereiken. Organisatie komt niet alleen bij mensen
voor, maar ook in biologische systemen binnen de informatica komt organisatie voor.
Binnen het veld van de computationele en mathematische organisatietheorie probeert
men theorieën die bestaan over organisaties te ontwikkelen en testen met behulp van
computationele en mathematische modellen. Eén van de disciplines binnen de
computationele en mathematische organisatietheorie is de discipline van de multi-
agentsystemen. Een multi-agentsystem is een systeem dat bestaat uit diverse inter-
acterende agenten die een bepaald proces of doel nastreven. Zulke systemen worden
met name gebruikt om het collectieve gedrag binnen een organisatie op basis van het
individuele gedrag van agenten te onderzoeken. Hierbij worden deze systemen
voornamelijk vanuit een abstract, organisatieperspectief beschreven. Het voordeel van
zo’n abstracte manier van representeren is dat complexere systemen gemakkelijker
beschreven kunnen worden.

Een belangrijk aspect binnen organisaties is de verandering van zulke organisaties.
Onderzoek heeft uitgewezen dat 70% van de organisatieveranderingen in bedrijven
het van tevoren gestelde doel niet haalt. Gegeven de ontwikkelingen in het veld van
computationele en mathematische organisatietheorie en in het bijzonder op het gebied
van multi-agentsystemen is de vraag of deze nieuwe aanpakken gebruikt kunnen
worden om organisatieveranderingsprocessen te beschrijven, en zo mogelijk te
verbeteren. Dit is precies waarover dit proefschrift gaat. Het doel van het proefschrift
is om organisatieveranderingsprocessen te analyseren en modelleren met behulp van
aanpakken uit het veld van multi-agentsystemen. Verder is het doel om modelleurs
van organisaties te voorzien van blauwdrukken en hulpmiddelen om hen in staat te
stellen ook organisatieveranderingen te modelleren.

Om dit doel te bereiken is er gekozen om een bestaande aanpak te gebruiken. Deze
aanpak bestaat uit twee delen, te weten een deel waarmee de structuur van de
organisatie op verschillende aggregatieniveaus gerepresenteerd kan worden en een
deel waarmee het gedrag van deze organisatie, ook op verschillende
aggregatieniveaus, beschreven kan worden. De methode om het gedrag mee te
beschrijven is een formele logische methode waarmee zowel kwantitatieve als
kwalitatieve eigenschappen uitgedrukt kunnen worden.

In dit proefschrift worden aan de hand van deze methode diverse facetten van
organisatieverandering onderzocht. Deel ii van dit proefschrift richt zich op de
analysefase binnen organisatieveranderingsprocessen. Hierin wordt gekeken naar de
huidige organisatie en geanalyseerd of en, zo ja, welke zaken er niet juist verlopen
binnen een organisatie. Op basis van deze analyse worden vervolgens methodes
gepresenteerd om deze organisaties te verbeteren. In deel iii, iv en v wordt het proces
van organisatieverandering zelf gemodelleerd en geanalyseerd. Hierbij gaat het dan
om de verandering van de huidige organisatie naar de nieuwe organisatie. Deze
veranderingen kunnen plaatsvinden op een gecentraliseerde manier (deel iii), een
decentrale manier (deel iv), of een tussenvorm (deel v). Nadat een verandering heeft

404

plaatsgevonden dient deze ook geëvalueerd te worden om te onderzoeken of de
verandering inderdaad succesvol gebleken is. Hoe zo’n evaluatie uitgevoerd kan
worden met behulp van de gebruikte aanpak wordt in deel vi gepresenteerd. Tenslotte
presenteert deel vii conclusies, geeft het een overzicht van gerelateerd werk, en
presenteert het mogelijke vervolgstappen in het onderzoek.

405

SIKS Dissertation Series

1998-1 Johan van den Akker (CWI)
 DEGAS - An Active, Temporal Database of Autonomous Objects

1998-2 Floris Wiesman (UM)
Information Retrieval by Graphically Browsing Meta-Information

1998-3 Ans Steuten (TUD)
A Contribution to the Linguistic Analysis of Business Conversations within the
Language/Action Perspective

1998-4 Dennis Breuker (UM)
Memory versus Search in Games

1998-5 E.W.Oskamp (RUL)
Computerondersteuning bij Straftoemeting

1999-1 Mark Sloof (VU)
Physiology of Quality Change Modelling; Automated modelling of Quality Change
of Agricultural Products

1999-2 Rob Potharst (EUR)
Classification using decision trees and neural nets

1999-3 Don Beal (UM)
The Nature of Minimax Search

1999-4 Jacques Penders (UM)
The practical Art of Moving Physical Objects

1999-5 Aldo de Moor (KUB)
Empowering Communities: A Method for the Legitimate User-Driven Specification
of Network Information Systems

1999-6 Niek J.E. Wijngaards (VU)
Re-design of compositional systems

1999-7 David Spelt (UT)
Verification support for object database design

1999-8 Jacques H.J. Lenting (UM)
Informed Gambling: Conception and Analysis of a Multi-Agent Mechanism for
Discrete Reallocation.

2000-1 Frank Niessink (VU)
Perspectives on Improving Software Maintenance

2000-2 Koen Holtman (TUE)
Prototyping of CMS Storage Management

2000-3 Carolien M.T. Metselaar (UVA)
Sociaal-organisatorische gevolgen van kennistechnologie; een procesbenadering en
actorperspectief.

2000-4 Geert de Haan (VU)
ETAG, A Formal Model of Competence Knowledge for User Interface Design

2000-5 Ruud van der Pol (UM)
Knowledge-based Query Formulation in Information Retrieval.

406

2000-6 Rogier van Eijk (UU)
Programming Languages for Agent Communication

2000-7 Niels Peek (UU)
Decision-theoretic Planning of Clinical Patient Management

2000-8 Veerle Coup‚ (EUR)
Sensitivity Analyis of Decision-Theoretic Networks

2000-9 Florian Waas (CWI)
Principles of Probabilistic Query Optimization

2000-10 Niels Nes (CWI)
Image Database Management System Design Considerations, Algorithms
and Architecture

2000-11 Jonas Karlsson (CWI)
Scalable Distributed Data Structures for Database Management

2001-1 Silja Renooij (UU)
Qualitative Approaches to Quantifying Probabilistic Networks

2001-2 Koen Hindriks (UU)
Agent Programming Languages: Programming with Mental Models

2001-3 Maarten van Someren (UvA)
Learning as problem solving

2001-4 Evgueni Smirnov (UM)
Conjunctive and Disjunctive Version Spaces with Instance-Based Boundary Sets

2001-5 Jacco van Ossenbruggen (VU)
Processing Structured Hypermedia: A Matter of Style

2001-6 Martijn van Welie (VU)
Task-based User Interface Design

2001-7 Bastiaan Schonhage (VU)
Diva: Architectural Perspectives on Information Visualization

2001-8 Pascal van Eck (VU)
A Compositional Semantic Structure for Multi-Agent Systems Dynamics.

2001-9 Pieter Jan 't Hoen (RUL)
Towards Distributed Development of Large Object-Oriented Models,
Views of Packages as Classes

2001-10 Maarten Sierhuis (UvA)
Modeling and Simulating Work Practice
BRAHMS: a multiagent modeling and simulation language for work practice analysis
and design

2001-11 Tom M. van Engers (VUA)
Knowledge Management: The Role of Mental Models in Business Systems Design

2002-01 Nico Lassing (VU)

Architecture-Level Modifiability Analysis

2002-02 Roelof van Zwol (UT)
Modelling and searching web-based document collections

407

2002-03 Henk Ernst Blok (UT)
Database Optimization Aspects for Information Retrieval

2002-04 Juan Roberto Castelo Valdueza (UU)
The Discrete Acyclic Digraph Markov Model in Data Mining

2002-05 Radu Serban (VU)
The Private Cyberspace Modeling Electronic Environments inhabited
by Privacy-concerned Agents

2002-06 Laurens Mommers (UL)
Applied legal epistemology; Building a knowledge-based ontology of the legal
domain

2002-07 Peter Boncz (CWI)
Monet: A Next-Generation DBMS Kernel For Query-Intensive Applications

2002-08 Jaap Gordijn (VU)
Value Based Requirements Engineering: Exploring Innovative E-Commerce Ideas

2002-09 Willem-Jan van den Heuvel(KUB)
Integrating Modern Business Applications with Objectified Legacy Systems

2002-10 Brian Sheppard (UM)
Towards Perfect Play of Scrabble

2002-11 Wouter C.A. Wijngaards (VU)
Agent Based Modelling of Dynamics: Biological and Organisational Applications

2002-12 Albrecht Schmidt (Uva)
Processing XML in Database Systems

2002-13 Hongjing Wu (TUE)
A Reference Architecture for Adaptive Hypermedia Applications

2002-14 Wieke de Vries (UU)
Agent Interaction: Abstract Approaches to Modelling, Programming and
Verifying Multi-Agent Systems

2002-15 Rik Eshuis (UT)
Semantics and Verification of UML Activity Diagrams for Workflow
Modelling

2002-16 Pieter van Langen (VU)
The Anatomy of Design: Foundations, Models and Applications

2002-17 Stefan Manegold (UVA)
Understanding, Modeling, and Improving Main-Memory Database Performance

2003-01 Heiner Stuckenschmidt (VU)
Ontology-Based Information Sharing in Weakly Structured Environments

2003-02 Jan Broersen (VU)
Modal Action Logics for Reasoning About Reactive Systems

2003-03 Martijn Schuemie (TUD)
Human-Computer Interaction and Presence in Virtual Reality Exposure Therapy

2003-04 Milan Petkovic (UT)
Content-Based Video Retrieval Supported by Database Technology

2003-05 Jos Lehmann (UVA)
Causation in Artificial Intelligence and Law - A modelling approach

408

2003-06 Boris van Schooten (UT)
Development and specification of virtual environments

2003-07 Machiel Jansen (UvA)
Formal Explorations of Knowledge Intensive Tasks

2003-08 Yongping Ran (UM)
Repair Based Scheduling

2003-09 Rens Kortmann (UM)
The resolution of visually guided behaviour

2003-10 Andreas Lincke (UvT)
Electronic Business Negotiation: Some experimental studies on the interaction
between medium, innovation context and culture

2003-11 Simon Keizer (UT)
Reasoning under Uncertainty in Natural Language Dialogue using Bayesian
Networks

2003-12 Roeland Ordelman (UT)
Dutch speech recognition in multimedia information retrieval

2003-13 Jeroen Donkers (UM)
Nosce Hostem - Searching with Opponent Models

2003-14 Stijn Hoppenbrouwers (KUN)
Freezing Language: Conceptualisation Processes across ICT-Supported Organisations

2003-15 Mathijs de Weerdt (TUD)
Plan Merging in Multi-Agent Systems

2003-16 Menzo Windhouwer (CWI)
Feature Grammar Systems - Incremental Maintenance of Indexes to Digital
Media Warehouses

2003-17 David Jansen (UT)
Extensions of Statecharts with Probability, Time, and Stochastic Timing

2003-18 Levente Kocsis (UM)
Learning Search Decisions

2004-01 Virginia Dignum (UU)
A Model for Organizational Interaction: Based on Agents, Founded in Logic

2004-02 Lai Xu (UvT)
Monitoring Multi-party Contracts for E-business

2004-03 Perry Groot (VU)
A Theoretical and Empirical Analysis of Approximation in Symbolic
Problem Solving

2004-04 Chris van Aart (UVA)
Organizational Principles for Multi-Agent Architectures

2004-05 Viara Popova (EUR)
Knowledge discovery and monotonicity

2004-06 Bart-Jan Hommes (TUD)
The Evaluation of Business Process Modeling Techniques

409

2004-07 Elise Boltjes (UM)
Voorbeeldig onderwijs; voorbeeldgestuurd onderwijs, een opstap naar
abstract denken, vooral voor meisjes

2004-08 Joop Verbeek(UM)
Politie en de Nieuwe Internationale Informatiemarkt, Grensregionale politiële
gegevensuitwisseling en digitale expertise

2004-09 Martin Caminada (VU)
For the Sake of the Argument; explorations into argument-based reasoning

2004-10 Suzanne Kabel (UVA)
Knowledge-rich indexing of learning-objects

2004-11 Michel Klein (VU)
Change Management for Distributed Ontologies

2004-12 The Duy Bui (UT)
Creating emotions and facial expressions for embodied agents

2004-13 Wojciech Jamroga (UT)
Using Multiple Models of Reality: On Agents who Know how to Play

2004-14 Paul Harrenstein (UU)
Logic in Conflict. Logical Explorations in Strategic Equilibrium

2004-15 Arno Knobbe (UU)
Multi-Relational Data Mining

2004-16 Federico Divina (VU)
Hybrid Genetic Relational Search for Inductive Learning

2004-17 Mark Winands (UM)
Informed Search in Complex Games

2004-18 Vania Bessa Machado (UvA)
Supporting the Construction of Qualitative Knowledge Models

2004-19 Thijs Westerveld (UT)
Using generative probabilistic models for multimedia retrieval

2004-20 Madelon Evers (Nyenrode)
Learning from Design: facilitating multidisciplinary design teams

2005-01 Floor Verdenius (UVA)
Methodological Aspects of Designing Induction-Based Applications

2005-02 Erik van der Werf (UM)
AI techniques for the game of Go

2005-03 Franc Grootjen (RUN)
A Pragmatic Approach to the Conceptualisation of Language

2005-04 Nirvana Meratnia (UT)
Towards Database Support for Moving Object data

2005-05 Gabriel Infante-Lopez (UVA)
Two-Level Probabilistic Grammars for Natural Language Parsing

2005-06 Pieter Spronck (UM)
Adaptive Game AI

2005-07 Flavius Frasincar (TUE)
Hypermedia Presentation Generation for Semantic Web Information Systems

410

2005-08 Richard Vdovjak (TUE)
A Model-driven Approach for Building Distributed Ontology-based Web
Applications

2005-09 Jeen Broekstra (VU)
Storage, Querying and Inferencing for Semantic Web Languages

2005-10 Anders Bouwer (UVA)
Explaining Behaviour: Using Qualitative Simulation in Interactive Learning
Environments

2005-11 Elth Ogston (VU)
Agent Based Matchmaking and Clustering - A Decentralized Approach to
Search

2005-12 Csaba Boer (EUR)
Distributed Simulation in Industry

2005-13 Fred Hamburg (UL)
Een Computermodel voor het Ondersteunen van Euthanasiebeslissingen

2005-14 Borys Omelayenko (VU)
Web-Service configuration on the Semantic Web; Exploring how semantics meets
pragmatics

2005-15 Tibor Bosse (VU)
Analysis of the Dynamics of Cognitive Processes

2005-16 Joris Graaumans (UU)
 Usability of XML Query Languages

2005-17 Boris Shishkov (TUD)
Software Specification Based on Re-usable Business Components

2005-18 Danielle Sent (UU)
Test-selection strategies for probabilistic networks

2005-19 Michel van Dartel (UM)
Situated Representation

2005-20 Cristina Coteanu (UL)
Cyber Consumer Law, State of the Art and Perspectives

2005-21 Wijnand Derks (UT)
Improving Concurrency and Recovery in Database Systems by Exploiting
Application Semantics

2006-01 Samuil Angelov (TUE)
Foundations of B2B Electronic Contracting

2006-02 Cristina Chisalita (VU)
Contextual issues in the design and use of information technology in organizations

2006-03 Noor Christoph (UVA)
The role of metacognitive skills in learning to solve problems

2006-04 Marta Sabou (VU)
Building Web Service Ontologies

2006-05 Cees Pierik (UU)
Validation Techniques for Object-Oriented Proof Outlines

411

2006-06 Ziv Baida (VU)
Software-aided Service Bundling - Intelligent Methods & Tools for Graphical Service
Modeling

2006-07 Marko Smiljanic (UT)
XML schema matching -- balancing efficiency and effectiveness by means of
clustering

2006-08 Eelco Herder (UT)
Forward, Back and Home Again - Analyzing User Behavior on the Web

2006-09 Mohamed Wahdan (UM)
Automatic Formulation of the Auditor's Opinion

2006-10 Ronny Siebes (VU)
Semantic Routing in Peer-to-Peer Systems

2006-11 Joeri van Ruth (UT)
Flattening Queries over Nested Data Types

2006-12 Bert Bongers (VU)
Interactivation - Towards an e-cology of people, our technological environment,
and the arts

2006-13 Henk-Jan Lebbink (UU)
Dialogue and Decision Games for Information Exchanging Agents

2006-14 Johan Hoorn (VU)
Software Requirements: Update, Upgrade, Redesign - towards a Theory of
Requirements Change

2006-15 Rainer Malik (UU)
CONAN: Text Mining in the Biomedical Domain

2006-16 Carsten Riggelsen (UU)
Approximation Methods for Efficient Learning of Bayesian Networks

2006-17 Stacey Nagata (UU)
User Assistance for Multitasking with Interruptions on a Mobile Device

2006-18 Valentin Zhizhkun (UVA)
Graph transformation for Natural Language Processing

2006-19 Birna van Riemsdijk (UU)
Cognitive Agent Programming: A Semantic Approach

2006-20 Marina Velikova (UvT)
Monotone models for prediction in data mining

2006-21 Bas van Gils (RUN)
Aptness on the Web

2006-22 Paul de Vrieze (RUN)
Fundaments of Adaptive Personalisation

2006-23 Ion Juvina (UU)
Development of Cognitive Model for Navigating on the Web

2006-24 Laura Hollink (VU)
Semantic Annotation for Retrieval of Visual Resources

2006-25 Madalina Drugan (UU)
Conditional log-likelihood MDL and Evolutionary MCMC

412

2006-26 Vojkan Mihajlovic (UT)
 Score Region Algebra: A Flexible Framework for Structured Information Retrieval

2006-27 Stefano Bocconi (CWI)
Vox Populi: generating video documentaries from semantically annotated media
repositories

2006-28 Borkur Sigurbjornsson (UVA)
Focused Information Access using XML Element Retrieval

2007-01 Kees Leune (UvT)
Access Control and Service-Oriented Architectures

2007-02 Wouter Teepe (RUG)
Reconciling Information Exchange and Confidentiality: A Formal Approach

2007-03 Peter Mika (VU)
Social Networks and the Semantic Web

2007-04 Jurriaan van Diggelen (UU)
Achieving Semantic Interoperability in Multi-agent Systems: a dialogue-based
approach

2007-05 Bart Schermer (UL)
Software Agents, Surveillance, and the Right to Privacy: a Legislative Framework for
Agent-enabled Surveillance

2007-06 Gilad Mishne (UVA)
Applied Text Analytics for Blogs

2007-07 Natasa Jovanovic (UT)
To Whom It May Concern - Addressee Identification in Face-to-Face Meetings

