
Convexity in Contact Topology

Emmanuel Giroux
(Translated by Daniel Mathews)

July 12, 2010

Contents

I The notion of convexity 4
1 Preliminary definitions . . . . . . . . . . . . . . . . . . . . . . . . 4

A Symplectic and contact structures . . . . . . . . . . . . . 4
B Singular foliations of dimension 1 . . . . . . . . . . . . . . 4
C Characteristic foliation of a hypersurface . . . . . . . . . . 4

2 Characteristic hypersurface of a contact vector field . . . . . . . . 5
A Contact vector field . . . . . . . . . . . . . . . . . . . . . 5
B Characteristic hypersurface . . . . . . . . . . . . . . . . . 5
C Singularities of contact vector fields . . . . . . . . . . . . 6

3 Convex hypersurfaces . . . . . . . . . . . . . . . . . . . . . . . . 7
A Definition, example . . . . . . . . . . . . . . . . . . . . . . 7
B Vertically invariant contact structures . . . . . . . . . . . 8

4 Convex contact structures . . . . . . . . . . . . . . . . . . . . . . 10
A Pseudo-gradients of a Morse function . . . . . . . . . . . . 10
B Notion and condition of convexity for a contact structure 11
C Examples of convex contact structures . . . . . . . . . . . 12

II On the characteristic foliation of surfaces in dimension 3 13
1 Properties of characteristic foliations . . . . . . . . . . . . . . . . 13

A General form of characteristic foliations . . . . . . . . . . 13
B Generic properties of characteristic foliations . . . . . . . 14

2 Convex surfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
A Dividing set of a convex surface . . . . . . . . . . . . . . . 15
B Examples of non-convex surfaces . . . . . . . . . . . . . . 16
C Examples of convex surfaces . . . . . . . . . . . . . . . . . 17

3 Deformations of characteristic foliations . . . . . . . . . . . . . . 18
A A reduced form for characteristic foliations . . . . . . . . 18
B Elimination of singularities . . . . . . . . . . . . . . . . . 19
C End of the proof of proposition 3.1 . . . . . . . . . . . . . 20
D Foliations adapted to a given dividing set . . . . . . . . . 20

1



IIIConstruction of convex contact structures in dimension 3 22
1 Convex contact structures and essential surfaces . . . . . . . . . 22

A Existence results . . . . . . . . . . . . . . . . . . . . . . . 22
B Scheme of the proof of theorem 1.2 . . . . . . . . . . . . . 23

2 Attachment of handles of index 0 and 3 . . . . . . . . . . . . . . 24
A The model . . . . . . . . . . . . . . . . . . . . . . . . . . 24
B Handles of index 0 . . . . . . . . . . . . . . . . . . . . . . 24
C Handles of index 3 . . . . . . . . . . . . . . . . . . . . . . 25

3 Attachment of handles of index 1 and 2 . . . . . . . . . . . . . . 26
A The model . . . . . . . . . . . . . . . . . . . . . . . . . . 26
B Handles of index 2 . . . . . . . . . . . . . . . . . . . . . . 26
C Handles of index 1 . . . . . . . . . . . . . . . . . . . . . . 28

IVConstruction of essential surfaces 28
1 Some examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

A Examples of essential surfaces . . . . . . . . . . . . . . . . 29
B An example of a function having no essential surface (con-

structed with C. Lescop) . . . . . . . . . . . . . . . . . . . 30
2 A general method for constructing essential surfaces . . . . . . . 30

A Splitting along an essential surface . . . . . . . . . . . . . 30
B The principal construction . . . . . . . . . . . . . . . . . . 32
C An existence theorem . . . . . . . . . . . . . . . . . . . . 34

Translator’s note

Hopefully most of this is accurate. Thanks to Patrick Massot for several correc-
tions and suggestions. All translation errors and inaccuracies, however, should
be ascribed to me alone. All footnotes are mine. Figures and references can be
found in the original.

Introduction

This article tackles the study of convexity in contact geometry, as it has been
defined in [EG]: a structure, symplectic or contact, is called convex if it is
conformally invariant under the gradient flow of a proper Morse function. For
symplectic manifolds, this property plays the same role as that of strict pseudo-
convexity in complex analytic manifolds. It can only, for example, be shown on
open manifolds having the homotopy type of polyhedra of half dimension and,
in [EG], Ya. Eliashberg and M. Gromov show how it tempers the geometry and
forbids certain exotic phenomena (see also [Gr] and [El1]). In contact geometry,
the situation presents itself differently. First of all, the usual structures, on jet
spaces of order 1, spheres and manifolds of contact elements, are all convex (see
I.4.C). Then, the results obtained here show that in dimension 3, there exist
numerous convex contact manifolds. In particular, certain exotic structures
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discovered by T. Erlandsson and D. Bennequin (see [Be]) are convex; in fact,
we do not know any examples of non-convex structures.

The approach adopted is the following: given a proper Morse function f on
a 3-dimensional manifold V , one tries to construct on V a contact structure ξ
which is invariant under the flow of a gradient X of f . The study of contact
fields (i.e. fields preserving the contact structure) shows that, if this structure
ξ exists, the surface C of points of V where X is tangent to ξ must satisfy,
vis-à-vis f , the following conditions (Proposition I.4.5):

(i) f |C is a proper Morse function;

(ii) the critical points of f are all on C and are exactly the critical points of
f |C ;

(iii) f and f |C have the same local extrema.

A Morse function does not always admit surfaces satisfying these properties
(see IV.1.B). Nevertheless, one can modify it, adding only several critical points
of indices 1 or 2 in a position of elimination, so that such a surface C exists
(Theorem IV.2.7). Also, being given C allows one effectively to construct the
desired contact structure ξ (Theorem III.1.2). To obtain this, one puts on
each handle an induced structure via immersion in a well-chosen model on R3.
The difficulty is to adjust these immersions in order to be able to glue the
pieces: this problem is localised along certain faces of the handles. Yet, in
the neighbourhood of a surface, a contact structure is entirely described by
the (singular) dimension-1 foliation that it traces on the surface. Moreover,
each surface considered here, corresponding to a regular level set of f , is found,
by construction, to be transverse in R3 to a vector field that preserves the
model structure and holds the role of gradient of f . The crucial point then
is to understand how, when one moves the surface by an isotopy keeping it
transversal to this field, one modifies its foliation (Proposition II.3.6). At this
point, a convex contact structure appears geometrically describable by a finite
number of these foliations, carried by the different regular level sets of the
function and determined only up to prior modifications.

Among these possible modifications of the foliation is the elimination of
pairs of singularities (Lemma II.3.3). One can thus extend a result of Ya.
Eliashberg that permits the elimination of certain complex points on a sur-
face contained in the pseudo-convex boundary of a holomorphic domain (see
[El1], Theorem 6.1 and [El2]). For that, in place of the theory of holomorphic
curves in 4-dimensional symplectic manifolds, we use the following remarkable
fact (Proposition II.2.6): in a contact 3-dimensional manifold, a surface gener-
ically possesses a transverse contact vector field. Thanks to this property of
invariance, the problem of elimination reduces to the symplectic geometry of
surfaces.

The problems studied in this article have been expounded to me by Yasha
Eliashberg during some conversations which were marvellously enriching for me;
I thank him heartily. I equally thank François Laudenbach and Jean-Claude
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Sikorav for their numerous remarks and pertinent suggestions regarding this
text.

I The notion of convexity

1 Preliminary definitions

A Symplectic and contact structures

A symplectic structure on a vector space V of dimension 2n is an exterior 2-
form ω whose exterior n’th power is nonzero. The orthogonal complement of a
subspace W of V is the subspace {v ∈ V | ∀w ∈ W, ω(v, w) = 0}.

One says that W is coisotropic if it contains its orthogonal complement.
Note that, if c is a nonzero real number, cω is still a symplectic form and the
orthogonal complement of W is the same for ω and cω.

A symplectic structure on a vector bundle of even rank is a field of symplectic
forms on its fibres.

A symplectic structure on a manifold V of dimension 2n is a closed differen-
tial 2-form ω which induces on each tangent space a symplectic form.

A contact structure on a manifold V of dimension 2n + 1 is a completely
non-integrable hyperplane field ξ, that is, defined locally by a 1-form α such
that α ∧ (dα)n is nowhere vanishing. In other words, dα|ξ is at every point a
symplectic form. Multiplying α by a nowhere vanishing function f changes dα|ξ
to f ·dα|ξ, so that ξ is furnished with a conformal symplectic structure. We also
remark that, if n is even, ξ is naturally oriented while, if n is odd, V is naturally
oriented. In either case, any orientation transverse to ξ (which exists if and only
if ξ admits a global equation α = 0) orients at the same time ξ and V .

B Singular foliations of dimension 1

In this text, a singular foliation (of dimension 1) on a manifold M of dimension
m is a foliation F defined by an atlas {Ui, Xi} where: {Ui} is a covering of M ,
Xi a vector field on Ui and, for every (i, j), there exists a nowhere vanishing
function fij on Ui ∩ Uj such that Xi = fijXj .

Remark 1.1 If each Ui is furnished with a volume form θi, the data of Xi is
equivalent to being that of the (m − 1)-form i(Xi)θi (interior product of θ with
Xi).

We say that a vector field X on M directs F if, for all i, there exists a
nowhere vanishing function fi on Ui such that X = fiXi; we say that F is
orientable if such a field exists.

C Characteristic foliation of a hypersurface

Let S be a hypersurface in a contact manifold (V, ξ) of dimension 2n + 1. The
trace on ξ of the tangent bundle of S determines a distribution (of non-constant
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rank) of coisotropic subspaces in ξ|S . The orthogonal distribution, via the
conformal symplectic structure on ξ|S , is of rank 0 on the singular locus Σ where
ξ is tangent to S, and of rank 1 otherwise. It defines a singular foliation, in the
sense of B, that we call the characteristic foliation of S. Locally, if θ is a volume
form on S and β the 1-form induced by an equation for ξ, the characteristic
foliation is defined by the vector field X such that i(X)θ = β ∧ (dβ)n−1. One
easily verifies that the characteristic foliation of S is orientable if and only if the
normal bundle of S is isomorphic to the quotient bundle (TV/ξ)|S .

Remark 1.2 Outside the singular locus Σ, the characteristic foliation F of S
has a transverse contact structure, (ξ ∩ TS)/F , invariant under holonomy (see
[McD]). On Σ, TS|Σ = ξ|Σ has a conformal symplectic structure, invariant
under local vector fields which direct F (see 2.C).

2 Characteristic hypersurface of a contact vector field

A Contact vector field

Let (V, ξ) be a contact manifold.

Definition 2.1 A contact vector field on (V, ξ) is a vector field whose flow
preserves ξ.

It is well known (see [A]) that:

Proposition 2.2 The contact vector fields on (V, ξ) are in bijective correspon-
dence with the sections of the normal bundle to ξ, TV/ξ. In other words, any
section of this quotient lifts to a unique contact vector field.

Corollary 2.3 Any contact vector field given locally can be extended globally.

Remark. In the presence of an equation for ξ, i.e. of a trivialisation of TV/ξ, a
section of TV/ξ is nothing other than a function, called the Hamiltonian of the
corresponding contact vector field.

B Characteristic hypersurface

Let X be a contact vector field on (V, ξ).

Definition 2.4 The characteristic hypersurface of X is the set C = C(X) of
points where X is tangent to ξ.

On the space of vector fields (furnished with the C∞ topology), the property
of having a reduction modulo ξ transverse to the zero section of TV/ξ is generic.
In this case, by abuse of language, we will say that the vector field is generic.
Its characteristic hypersurface is then regular.

Proposition 2.5 If X is generic, X is tangent to its characteristic hypersurface
C and directs the characteristic foliation on it.
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Proof The flow of X preserves X and ξ, therefore C, so that X is tangent to
C.

Let now x be a point of C and α a local equation for ξ near x. The hy-
persurface C is defined locally by the equation i(X)α = 0 (regular since X is
generic). Also, as X is contact, the Lie derivative of α satisfies: LXα = gα for
some function g. For v ∈ TxC ∩ ξx, we then have:

dα(x) · (X(x), v) = (LXα)(x) · v − (di(X)α)(x) · v

= (gα)(x) · v − (di(X)α)(x) · v = 0

since the two terms are zero. Thus X(x) is orthogonal to TxC ∩ ξx.
Moreover, if X(x) = 0, we have:

(LXα)(x) = (gα)(x) = (di(X)α)(x).

Therefore ξ is tangent to C at x. !

Remark. If ξ is transversally orientable, there exist contact vector fields X
with empty characteristic hypersurface; there are vector fields transverse to ξ,
i.e. Reeb fields associated to various equations for ξ.

Example 2.6 Any contact vector field X which is nonsingular or has nonde-
generate singularities is generic.

Proof Let α be a local equation for ξ; we want to show that d(i(X)α) is
nonzero at every point where i(X)α is zero. As X preserves ξ, LXα = gα for
some function g. Then di(X)α = gα− i(X)dα.

If X is nonsingular at x ∈ C, (i(X)dα)(x) is not proportional to α(x) since
dα(x) is nondegenerate on ξx. Thus, considering the expression for the Lie
derivative, di(X)α is nonzero at x.

Now, if X has at x a nondegenerate singularity, its linearisation Ax : TxV −→
TxV is invertible. Then the form (di(X)α)(x), which is equal to α(x) ◦ Ax, is
nonsingular. !

C Singularities of contact vector fields

Remarks.

(i) The singularities of a contact vector field lie on its characteristic hyper-
surface.

(ii) The divergence of a vector field at a singular point does not depend on
the local volume form with which it is calculated: it is the trace of the
linearisation.

Proposition 2.7 Let (V, ξ) be a contact manifold of dimension 2n + 1 and let
X be a generic contact vector field. To each singularity x of X is associated a
nonzero real number c = c(x) (the coefficient of contraction) having the following
properties:
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(i) (n + 1)c (resp. nc) is the divergence of X at x (resp. of X |C at x);

(ii) for any local equation α of ξ, which induces a form β on C, we have:

(L(X)α)(x) = cα(x) and (L(X |C)dβ)(x) = c dβ(x).

Proof As X is contact, L(X)α = gα for some function g; thus, if it exists, the
desired coefficient is c = g(x). But, as X is generic, g(x) is nonzero. Then:

L(X)dα = dL(X)α = dg ∧ α+ g dα.
!

As β(x) = 0, we clearly have: (L(X |C)dβ)(x) = c dβ(x). Now, to see that c
does not depend on the choice of α it suffices to show (i). But as α ∧ (dα)n

and (dβ)n are local volume forms on V and C respectively, (i) follows from the
expressions above by derivation of a product. For example:

L(X)(α ∧ (dα)n) = (L(X)α) ∧ (dα)n + α ∧ L(X)(dα)n

= gα ∧ (dα)n + nα ∧ L(X)dα ∧ (dα)n−1 = (n + 1)gα ∧ (dα)n.

Corollary 2.8 If x is a singularity of a generic contact vector field, the eigen-
value transverse to C (the tangent space to C is stable) is equal to c.

Corollary 2.9 Suppose that X is, for a certain metric, the gradient of a func-
tion f which has at x a Morse critical point of index i. If c(x) is positive
(respectively negative), then i is at most equal to n (resp. at least equal to
n + 1).

Proof Let α be an equation of ξ near x and β the form induced on C.
The form dβ(x) is a symplectic form on TxC. If c(x) is positive, the tangent

space at x to the stable manifold of X |C has dimension i, since the transverse
eigenvalue is positive; moreover it is necessarily isotropic, that is, contained in
its symplectic orthogonal complement (see remark 4.3). Then, i is at most equal
to n. By similar reasoning on the unstable manifold, we see that, if c(x) < 0,
then i ≥ n + 1. !

3 Convex hypersurfaces

A Definition, example

Definition 3.1 We say that a hypersurface S embedded in a contact manifold
(V, ξ) is convex if there exists a contact vector field transverse to S.

A convex hypersurface is therefore transversally orientable, that is, its tubu-
lar neighbourhoods are diffeomorphic to S × R. Also, any germ of a contact
vector field along S, which is transverse to S, extends to a global contact vector
field. The study of convex hypersurfaces is therefore closely linked to that of
contact structures on S×R invariant under the vertical vector field ∂/∂t, where
t denotes the coordinate on R.
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Example 3.2 (Contactization of an exact symplectic manifold). We say that
a symplectic manifold (W,ω) is exact if ω is the differential of a 1-form β called
the Liouville form. By symplectic duality, it is equivalent to say that there exists
on W a vector field X, called the Liouville vector field, whose flow dilates ω
exponentially: L(X)ω = ω. If (W,ω = dβ) is an exact symplectic manifold, the
form β+dt defines on W ×R a vertically invariant contact structure. Moreover,
the Liouville field X, ω-dual to β, directs the characteristic foliation on the
hypersurfaces W × {t}, t ∈ R.

Remark 3.3 (i) The contact structure thus obtained depends not only on
the symplectic structure ω but also on the primitive β chosen. We observe
however that, if we change β to β + dh, where h is a function on W ,
the diffeomorphism φ : W × R −→ W × R, given by φ(x, t) = (x, t +
h(x)), satisfies φ∗(β + dt) = (β + dh) + dt. This therefore establishes an
isomorphism between the two contact structures.

(ii) If H ⊂ W is a hypersurface transverse to X, the form induced by β on H
is contact. Indeed, β ∧ (dβ)n−1 = (1/n) i(X)ωn induces on H a volume
form.

B Vertically invariant contact structures

Let S be a manifold of dimension 2n. A contact structure ξ, transversally
orientable and vertically invariant, on the cylinder S × R, can be defined by a
global equation β + u dt = 0, where β and u are respectively a 1-form and a
function on S such that:

the form θ = (dβ)n−1 ∧ (u dβ + nβ ∧ du) does not vanish on S. (1)

In fact θ ∧ dt = (β + u dt) ∧ (d(β + u dt))n.
We observe that:

(i) The set Σ where u = 0 is the trace on S × {0} of the characteristic
hypersurface of the vector field ∂/∂t; it’s a regular hypersurface on which
β induces a contact form since, along Σ, 1 is written (dβ)n−1∧β∧du += 0.

(ii) On the open set Ω = S\Σ, ξ is still defined by β/u + dt = 0 and we have:
θ = un+1(d(β/u))n. Thus (Ω × R, ξ) is the contactization of the exact
symplectic manifold (Ω, d(β/u)).

Let Y be the vector field tangent to S defined by:

β ∧ (dβ)n−1 = i(Y )θ. (2)

This vector field directs the characteristic foliation of S × {0} (see 1.C)
and satisfies the relations below.

(iii) On Σ: Y · u = −1/n. Indeed:

β ∧ (dβ)n−1 = −n i(Y )[du ∧ β ∧ (dβ)n−1] = −n(Y · u)β ∧ (dβ)n−1,

since i(Y )[β ∧ dβn−1] = 0.
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(iv) On Ω, let X be the Liouville vector field of β/u defined by β/u = i(X)d(β/u);
we have:

X = nuY.

Indeed:

i(X)θ = un+1i(X)

(

d

(

β

u

))n

= nun+1β

u
∧

(

d

(

β

u

))n−1

= nuβ∧(dβ)n−1.

Proposition 3.4 Let S be a closed manifold of dimension 2n and let F be
a singular foliation of dimension 1 on S (see 1.B). There exists on S × R a
vertically invariant contact structure which induces F as characteristic foliation
on S × {0} if and only if there exists in S a hypersurface Σ transverse to F (in
particular, avoiding the singularities of F) such that:

(i) the complement S′ of an open tubular neighbourhood of Σ, whose fibres
are in F , is an exact symplectic manifold whose Liouville field directs F
and exits transversally on the boundary;

(ii) the involution of the double cover ∂S′ −→ Σ, obtained by following the
leaves of F across the tube, preserves the contact structure induced on ∂S′

(see remark 3.3b) but reverses its transverse orientation.

Proof We suppose first of all that there exists on S × R a vertically invariant
contact structure ξ which induces F as characteristic foliation on S × {0}. The
intersection Σ of S with the characteristic hypersurface of the vector field ∂/∂t
is a hypersurface of S transverse to F (see (1) and (3) above). On Ω = S\Σ,
the vertical vector field is transverse to ξ, so ξ is transversally orientable and
defined by a unique equation β+ dt = 0, where β is necessarily a Liouville form
on Ω. Using local equations near Σ and the relations (3) and (4) above, we see
that the Liouville field X associated to β exits along ∂S′, if S′ is chosen as in the
statement. Finally, the contact structure ξ′ defined by β on ∂S′ is the trace on
∂S′ of the contact structure transverse to F and invariant under the holonomy
of F . It follows that the involution of the double cover ∂S′ −→ Σ preserves ξ′;
but, as X changes the direction of crossing Σ, the transverse orientation of ξ′ is
reversed.

Conversely, we now suppose that conditions (i) and (ii) are satisfied. We
denote by dβ the exact symplectic structure on S′ whose Liouville field X directs
F and exits along ∂S′.

Lemma 3.5 We can suppose that: (ii)’ the involution of the double cover
∂S′ −→ Σ reverses the form induced by β on ∂S′.

Proof Let S̄′ be the manifold obtained as follows: we glue to S′ the cylinder
∂S′ × [0,∞) along ∂S′ = ∂S′ × {0}, connecting X with the vector field ∂/∂r
where r is the coordinate on [0,∞); we still denote the extended vector field
X . If η denotes the 1-form induced by β on ∂S′, we extend β to S̄′ by setting

9



β = erη on ∂S′ × [0,∞). Then (S̄′, dβ) is an exact symplectic manifold whose
Liouville field is X .

Now let τ be the involution of the double cover ∂S′ −→ Σ; by hypothesis,
there exists a function, negative on ∂S′, denoted −eh, satisfying τ∗η = −ehη;
as τ2 is the identity, we have: τ∗h = −h. Let h0 be a minimum of h on ∂S′ and
let

S′
0 = S′ ∩ {(y, r) ∈ ∂S′ × [0,∞) | r ≤

1

2
[h(y) − h0]}.

Then the form induced by β on ∂S′
0
∼= ∂S′ is: η0 = e(h−h0)/2η; by the following:

τ∗η0 = eτ∗(h−h0)/2τ∗η = −e−(h+h0)/2ehη = −η0.

Finally we have an isotopy which sends S′
0 to S′ and respects the foliation by

the orbits of X , which proves the lemma. !

On S′ × R, the equation β + dt = 0 defines a vertically invariant contact
structure ξ which we seek to extend over Σ × R. For this, we suppose first of
all that Σ is transversally orientable, and we take a split neighbourhood, U ∼=
Σ×(−1−ε, 1+ε), in which the leaves of F are the segments {pt}×(−1−ε, 1+ε).
We choose the parametrisation so that:

• Σ ∩ U = Σ × {0} and ∂S′ ∩ U = Σ × {−1, 1};

• on S′ ∩ U , X has the expression −s(∂/∂s), where s is the coordinate on
the interval (−1 − ε, 1 + ε).

The relations L(X)β = β, i(X)β = 0 and property (ii)’ show that β|S′∩U =
(1/s)γ, where γ is a contact form on Σ × {1}. Then the form γ + s dt defines
on U a contact structure which coincides with ξ on (U ∩ S′) × R.

Finally, if Σ is not transversally orientable, we pass to a cover of S in which
it becomes so and we perform the preceding construction in an equivariant
manner. !

Remark 3.6 (F. Laudenbach) If n is even and if S is orientable, the hyper-
surface Σ separates. Indeed, ξ is then orientable, thus transversely orientable,
since S×R is orientable. Then, the two sides of Σ are given by the sign of ∂/∂t
relative to this transverse orientation.

4 Convex contact structures

A Pseudo-gradients of a Morse function

Definition 4.1 Let f : M −→ R be a Morse function, that is, a function all
of whose critical points are nondegenerate. We say that a vector field X is a
pseudo-gradient of f if there exists on M a Riemannian metric and a positive
function ρ such that, everywhere in M , we have X · f ≥ ρ||df ||2. We then have
a similar relation for any other Riemannian metric. For example: the gradient
of f for a given metric verifies this inequality.
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We recall that a singularity x of a vector field X is hyperbolic if the lineari-
sation Ax of X at x is hyperbolic, i.e., has no eigenvalue with zero real part.
In this case, the theorem of the stable manifold asserts that the points having
x for ω-limit (resp. α-limit) form an immersed submanifold called the stable
manifold (resp. unstable); its tangent space at x is the stable (resp. unstable)
manifold of the linearised field Ax. It is well known that:

Proposition 4.2 Let f be a Morse function on a manifold M of dimension m
and let X be a pseudo-gradient of f . Then:

(i) the singularities of X are hyperbolic and are exactly the critical points of
f ;

(ii) at a critical point of f of index i, the stable (resp. unstable) manifold of
X has dimension i (resp. m − i).

Remark 4.3 Let A be a hyperbolic endomorphism of R2n and let ω be a linear
symplectic form on R2n. If (etA)∗ω = ectω for c a positive constant and for
all real t, then the stable manifold W s of the linearised field A is isotropic (i.e.
contained in its symplectic orthogonal complement). Indeed, for v, w ∈ W s,
ω(v, w) = e−ct ω(etAv, etAw) tends towards 0 when t tends towards +∞, thus
is zero. This allows us to extend corollary 2.9 to the case where X is a pseudo-
gradient of a Morse function.

B Notion and condition of convexity for a contact structure

In [EG], Ya. Eliashberg and M. Gromov propose the following definition.

Definition 4.4 We say that a contact structure ξ on a manifold V is convex
if there exists a proper Morse function f : V −→ [0,∞) having a complete
pseudo-gradient which preserves ξ.

The regular levels of f are then convex hypersurfaces. Moreover it follows
from 2.C and 4.A that:

Proposition 4.5 Let (V, ξ) be a contact manifold and f : V −→ [0,∞) a proper
Morse function. If ξ is preserved by a pseudo-gradient of f , the characteristic
hypersurface C of this vector field satisfies the following:

(i) f |C is a proper Morse function;

(ii) the critical points of f are on C and are exactly the critical points of f |C ;

(iii) a critical point of index i for f gives, for f |C, a critical point of index i if
i ≤ n and of index i − 1 if i ≥ n + 1.

In part III, we will show how to construct, conversely, convex contact struc-
tures on a 3-dimensional manifold V , starting from a Morse function and a
surface in V satisfying the above conditions.

11



C Examples of convex contact structures

Example 4.6 (Contactization of a Weinstein manifold)

Definition 4.7 (Ya. Eliashberg and M. Gromov, EG ) We say that a sym-
plectic manifold (W,ω) is Weinstein if there exists a proper Morse function
f0 : W −→ [0,∞) having a complete pseudo-gradient X0 which dilates ω expo-
nentially: L(X0)ω = ω. Such a symplectic manifold is therefore exact since, as
ω is closed, we have ω = dβ where β = i(X0)ω.

Under these conditions, the contact structure ξ defined on W × R by the
equation β + dt = 0 is convex. Indeed, the field X = X0 + t(∂/∂t) preserves ξ
since L(X)(β + dt) = β + dt. Moreover, X is a complete pseudo-gradient for
the proper Morse function f : W × R −→ [0,∞) given by f(x, t) = f0(x) + t2.

A typical example of a Weinstein manifold is the cotangent space (of any
manifold whatsoever) furnished with its canonical symplectic structure ω. In
this case, we can choose X0 so that β = i(X0)ω differs from the canonical
Liouville form by the differential of a function. The contactization of β is then
isomorphic to the canonical contact structure on the space of 1-jets of functions
(see remark 3.3a (3.3, (i))): this structure is consequently convex.

Example 4.8 The contact structure given on S2n+1 by the complex tangencies
of the unit sphere in Cn+1 is convex. Indeed, if zj = xj + iyj, 1 ≤ j ≤ n+1, are
the coordinates, this structure has for example the form induced by −

∑

yj dxj ;
we check then that the contact vector field associated to the hamiltonian xk is
a pseudo-gradient of the function yk. The characteristic hypersurface of this
vector field is the equatorial sphere with equation xk = 0.

Example 4.9 (Canonical structure on the manifold of contact elements.) Let
π : V −→ M be the fibre bundle of contact elements on a manifold M of
dimension n+1. Then the canonical contact structure on V (see [A]) is convex.

Argument. Given a proper Morse function f0 : M −→ [0,∞), we choose
a complete pseudo-gradient X0 of f0 having the following property: at each
critical point of f0, the eigenvalues of X0 are real and distinct. Like all vector
fields on M , the vector field X0 lifts naturally to a contact vector field X on
V . It turns out that X is a complete pseudo-gradient for some proper Morse
function f : V −→ [0,∞). We obtain f by perturbing by perturbing the function
f0 ◦ π above a neighbourhood of the critical points of f0 as follows: above such
a point x, the vector field X is tangent to the fibre F = π−1(x) and is none
other than the vector field induced naturally by the linearisation of X0 on the
projective cotangent space; as the eigenvalues of X0 are real and distinct, X |F
is the gradient of a Morse function g : F −→ [0,∞) having exactly n+1 critical
points with distinct indices; it is this function g, properly weighted and extended,
that we add to f0 ◦ π.

Remark 4.10 The characteristic hypersurface of the vector field X above is the
conormal of the vector field X0.
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II On the characteristic foliation of surfaces in

dimension 3

1 Properties of characteristic foliations

We are interested here in singular foliations on a surface S which can be realised
as characteristic foliations by embedding S in a 3-dimensional contact manifold.
In such a manifold, naturally oriented, the normal bundle of S is isomorphic to
the bundle ∧2TS; this allows us to speak of germs of contact structures along
S without specifying the ambient manifold.

A General form of characteristic foliations

Definition 1.1 We say that a singularity x of a vector field Y is isochore1 if
the divergence of Y at x is zero. An isochore singularity of Y is then an isochore
singularity of f · Y for any function f ; this notion is therefore well defined for
singular foliations in the sense of 1.1.B.

Proposition 1.2 Let F be a singular foliation on a surface S. We fix an
orientation on the manifold ∧2TS and we are interested only in germs of contact
structures along S which give this orientation.

(i) F is the characteristic foliation induced on S by a germ of contact struc-
tures if and only if F is without isochore singularities.

(ii) If S is closed, two germs of contact structures which induce the same
characteristic foliation F are isomorphic: they are conjugate by a germ of
a diffeomorphism which is isotopic to the identity through diffeomorphisms
preserving F .

Proof (i) The absence of isochore singularities is necessary; indeed, if α
is a contact form which induces on S a form β which is null at x, the
form dβ(x), which is none other than dα(x)|Ker α(x), is nondegenerate; in
other words, the vector field Y given near x by β = i(Y )dβ has nonzero
divergence at x.

The converse and (ii) rest on the following fact: let S0 be an orientable
surface; a 1-form α = βt + ut dt on S0 × R is contact if and only if:

ut dβt + βt ∧

(

dut −
∂βt

∂t

)

is nowhere zero. (3)

In particular, β0 being given, the pairs (u0, (∂βt/∂t)|y=0) which satisfy
this inequality for t = 0, with a fixed sign, form a convex set; yet these
pairs are those which determine a contact structure. We now suppose that
S is orientable and we take on S an area form ω such that ω ∧ dt gives
the chosen orientation on ∧2TS ∼= S × R. We suppose additionally that

1Straight from the French!
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F is transversally orientable, that is, given by an equation β = 0, where β
is a 1-form on S. We denote by u the function defined on S by dβ = uω,
and we take a 1-form γ on S such that the 2-form β ∧γ is positive or zero
with respect to ω, and strictly positive outside the singular locus of β. We
then set βt = β + t(du − γ. The condition 3 shows immediately that the
1-form βt +u dt defines a contact structure near S×{0} in S×R; indeed:

u dβ + β ∧

(

du −
∂βt

∂t
|t=0

)

= u2ω + β ∧ γ.

Yet, as F has no isochore singularities, u is nonzero at each point of the
singular locus of β.

Finally, if S is not orientable or if F is not transversally orientable, we
remedy this problem by passing to a cover of order 2 or 4 on which we
carry out the preceding construction in an invariant manner.

(ii) Passing if necessary to a double cover of S on which F becomes transver-
sally orientable, we reduce to the case where the two germs of contact
structures are transversally orientable. They then admit equations α0

and α1 which induce on S the same form. The formula 3 shows that the
kernel ξs of αs = (1 − s)α0 + sα1 is, near S, a contact structure for all
s ∈ [0, 1].

We now seek, by J. Moser’s method, an isotopy ϕs, s ∈ [0, 1], which takes
ξ0 to ξs, i.e. satisfies: α0 ∧ ϕ∗

sαs = 0. This condition shows that the path
s /→ ϕ∗

sαs remains on the ray {rα0, r > 0} in the space of 1-forms; in other
words:

ϕ∗
sαs ∧

∂

∂s
(ϕ∗

sαs) = 0 for all s.

Denoting by Xs the infinitesimal generator of (ϕs), this relation can be
written:

(L(Xs)αs)|ξs = −
∂αs

∂s
|ξs .

We take for Xs the vector field satisfying at the same time

i(Xs)αs = 0 and (i(Xs)dαx)|ξS = −
∂αs

∂s
|ξs .

This system has a unique solution by definition of a contact structure.
Moreover, if v is a vector of ξx ∩ TS = ξ0 ∩ TS, we have (∂αs/∂s)(v) = 0,
then dαs(Xs, v) = 0. This shows that Xs is tangent to F along S. We
finally use that S is closed to integrate X to an isotopy. !

B Generic properties of characteristic foliations

The space of singular foliations on a surface S (in the sense of I.1.B) has a
natural topology as the quotient of the space of plane fields by the null section
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in ∧2TS. If now S is embedded in an oriented 3-dimensional manifold V , the
function which to a plane field on V associates the induced foliation on S is
open. As the set of contact structures forms an open set, its image is an open
set in the space of singular foliations of S. Also, contact structures being locally
stable by a theorem of J. Gray [G], we see:

Lemma 1.3 Let P be a property of singular foliations which is C∞-generic and
let S be a surface embedded in a contact manifold (V, ξ). We can move S by a
C∞-small isotopy so that its characteristic foliation satisfies P.

Example 1.4 Recall that a vector field on a closed surface is said to be Morse-
Smale if it satisfies the three following properties:

(i) the singularities and the periodic orbits of X are hyperbolic;

(ii) the α-limit set (resp. ω-limit) of every point is a singularity or a limit
cycle;

(iii) there are no connections between saddles.

After a theorem of M. Peixoto, a vector field on a closed orientable surface is
C∞-generically Morse-Smale.

Let then S be a closed orientable surface in a contact manifold (V, ξ). If ξ is
transversally orientable, the characteristic foliation of S is directed by a vector
field that we can make Morse-Smale by a C∞-small isotopy of S in V .

2 Convex surfaces

A Dividing set of a convex surface

Recall that a surface S, embedded in a 3-dimensional contact manifold (V, ξ),
is called convex if there exists a contact vector field transverse to S. Such a
surface is transversally orientable, therefore orientable. It follows immediately
from propositions I.3.4 and II.1.2(b) that:

Proposition 2.1 Let (V, ξ) be a 3-dimensional contact manifold, S a closed
orientable surface embedded in V and F its characteristic foliation. Then the
surface S is convex if and only if there exists on S a curve Γ transverse to F ,
in general disconnected, which decomposes S into subsurfaces where F can be
directed by a dilating vector field, for a certain area form, and exiting through
the boundary.

Remark.In particular, if S is convex, all leaves of F cut Γ at most once.

In the following, we will say that Γ is the dividing set of S (see remark 2.3
(2.3)). The data of a contact vector field X transverse to S realises this dividing
set as the curve of points of S where X is tangent to ξ.
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Proposition 2.2 (i) Let S be a closed surface. Two vertically invariant con-
tact structures on S×R which define the same orientation and induce the
same characteristic foliation F on S×{0} are isotopic: they are conjugate
by a product diffeomorphism ϕ × Id, where ϕ is isotopic to the identity
through diffeomorphisms which preserve F . Moreover, if the dividing set of
S associated to the vertical vector field is the same for the two structures,
it is preserved all along the isotopy.

(ii) For i = 0, 1 let Si be a convex surface in a contact manifold (Vi, ξi); let Fi

be the characteristic foliation and Xi a contact vector field transverse to
Si (the data of Xi orients Si). If S0 and S1 are closed (compact without
boundary) and there exists a diffeomorphism from S0 to S1 which respects
orientations and sends F0 to F1, then there exists a germ of a contact
diffeomorphism, from (V0, S0) to (V1, S1), which sends X0 to X1.

Proof (ii) follows immediately from (i) which is proved exactly like (ii) in
proposition 1.2. The isotopy consists of sliding along the leaves of F to make
one of the contact structures turn into the other. This is possible in general
only if S is closed. !

Remark 2.3 Proposition 2.2 shows that the characteristic foliation F of a con-
vex surface S totally determines, up to isotopy through curves transverse to F ,
the dividing set Γ, that is the trace on S of the characteristic surface of a trans-
verse contact field. In paragraph 3, we will see to what extent this curve reveals
the geometry of the characteristic foliation of S. But first we give geometric
criteria for convexity and non-convexity and we show in particular that an ori-
entable surface is generically convex. This genericity, exceptional, is related to
the fact that every open connected set in R (respectively, in C) is convex (re-
spectively pseudo-convex): in dimension 3, the minimal dimension of contact
manifolds, convexity is a degenerate property.

B Examples of non-convex surfaces

A contact structure on S ×R invariant under ∂/∂t is (locally) defined by equa-
tions of the type β + u dt = 0 where β and u are respectively a 1-form and a
function on (a neighbourhood of) S such that:

u dβ + β ∧ du is nowhere zero. (4)

The characteristic foliation F of S is then defined by β = 0. If ω is an area
form on S and if Y is the vector field which directs F defined by i(Y )ω = β,
then condition 4 says

udivω(Y ) − Y · u += 0. (5)

This shows immediatlely that the characteristic foliation of a closed convex
surface S cannot be defined by a closed (nonsingular) form. For example, the

16



invariant tori of the Hopf fibration in S3 are not convex for the standard struc-
ture. We see similarly that, if S is convex, its characteristic foliation F possesses
no closed leaf having a first return map tangent to the identity. Indeed, in a
neighbourhood of one such leaf F , the foliation F admits an equation β = 0
where dβ|F is identically zero; it is then impossible to find a function u such
that u dβ + β ∧ du is nonzero on F since u|F necessarily has critical points.
Finally, convexity forbids certain connections of saddles; to be precise, we say:

Definition 2.4 Let x be a non-isochore singularity of a singular foliation F .
We say that we positively orient F at x when we choose, to direct F near x, a
vector field for which the divergence at x is positive.

If S is convex, no leaf of its characteristic foliation joins two saddles while
being a stable separatrix for both when they are positively oriented. This results
for example from 5: if, near such a leaf F , we orient the foliation by a vector
field Y directed from the saddle x0 towards the saddle x1, we must have u(x0)
negative and u(x1) positive. Yet, by 5 u can be zero only when decreasing in
the direction of Y .

C Examples of convex surfaces

Definition 2.5 We say that a singular foliation F on a closed surface S is
Morse-Smale if it satisfies the following conditions:

(i) the singularities and the closed leaves of F are hyperbolic;

(ii) the limit set of each half-leaf is a singularity or a closed leaf;

(iii) F has no connections between saddles.

We say that F is almost Morse-Smale if it satisfies (i), (ii) and:
(iii)’ when we orient F positively near saddles, the associated stable manifolds
do not intersect.

Proposition 2.6 Let S be an orientable closed surface embedded in a contact
manifold (V, ξ). If the characteristic foliation F of S is almost Morse-Smale,
then S is convex.

Proof By (b) of proposition 1.2 it suffices to construct on S × R a contact
structure invariant under ∂/∂t which makes F the characteristic foliation on
S × {0}. Around each closed leaf (resp. each focus), we take an annulus (resp.
a disk) with boundary transverse to F . Near saddles, we orient F positively.
Using (ii) of definition 2.5, we place bands around their stable manifolds so that
the union of these annuli, discs and bands forms a surface S0 with boundary
transverse to F (see Figure 1). By construction, using (iii)’ of definition 2.5, on
a neighbourhood U of S0, F is directed by a vector field Y exiting along ∂S0 and
for which singularities have positive divergence. There then exists an area form
ω on S such that divω(Y ) > 0 on U . We set u = 1, then udivω(Y ) − Y · u > 0
on U .
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On the surface with boundary S′ = Cl(S\S0), F is a nonsingular foliation
transverse to the boundary and without closed leaves.2 By (ii), as S is ori-
entable, S′ is a union of annuli foliated by segments going from one boundary
to another. We can then conclude by using proposition 2.1 or the following
elementary reasoning. We choose on S′ a nonsingular vector field Y ′ directing
F and coinciding with ±Y on a collar neighbourhood U ′ of ∂S′ in U ∩ S′. We
set u′ = ±1 on U ′ accordingly as Y ′ = ±Y ; we then seek to extend to S′ the
germ of u′ on the boundary, so as to have: u′divω(Y ′)− Y ′ · u′ > 0 on S′. This
extension follows immediately from the following remark.

Remark 2.7 Let h : [0, 1] −→ R be a function positive at 0 and negative at 1.
There exists a function v : [0, 1] −→ R equal to 1 near 0 and equal to −1 near

1 such that vh − dv/dθ is positive; we take v(θ) = w(θ) exp(
∫ θ
0 h(σ)dσ) where

w : [0, 1] −→ R is a suitable decreasing function.

3 Deformations of characteristic foliations

A A reduced form for characteristic foliations

Let S be a closed orientable surface embedded in a 3-dimensional contact man-
ifold (V, ξ) with a Morse-Smale characteristic foliation F . By proposition 2.6,
there exists a germ of a contact vector field transverse to S. Given any neigh-
bourhood U of S, it’s easy to extend this germ to a contact vector field for
which the flow defines an embedding S × R −→ V with image V0 ⊂ U . On
V0

∼= S × R, ξ0 = ξ|V0
is a contact structure invariant under ∂/∂t and the

characteristic surface of this contact vector field is a cylinder Γ × R where Γ
decomposes S = S×{0} as indicated in 2.1. Then any function h : S −→ R has
for its graph a convex surface Sh contained in V0 having the “same dividing set
Γ” as S.

Proposition 3.1 There exists a function h : S −→ R such that the character-
istic foliation Fh of Sh is Morse-Smale and gives, on each component S′ of the
surface obtained by decomposing Sh along Γ, the following:

(i) if S′ is a disk, Fh|S′
has a unique singularity which is a focus and has no

closed leaves: topologically it is a radial foliation;

(ii) if S′ is not a disk, Fh|S′
has exactly one closed leaf and only has saddles

for singularities.

Moreover we can choose h non-positive.

We will show this proposition in C; it also follows from proposition 3.6.

2Cl here denotes closure.
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B Elimination of singularities

Definition 3.2 Given a singular foliation without isochore singularities on a
surface, we say that a focus x0 and a saddle x1 are in simple elimination position
(resp. in cyclic elimination position) if when we positively orient the foliation
near x1, one and only one stable separatrix comes from x0 (resp. two stable
separatrices come from x0).

Lemma 3.3 (Elimination lemma) (see [El1] theorem 6.1 and [El2]). With
the notation and the hypotheses of 3.A, let x0 and x1 be a focus and a saddle of
F in simple or cyclic elimination position.

(i) There exists in S an annulus A disjoint from Γ and satisfying:

• the only singularities of F on A are x0 and x1;

• F|A has no closed leaf;

• F is transverse to the boundary of A.

The two configurations are shown in figures 2 and 3.

(ii) There exists a function k : A −→ (−∞, 0] with support in the interior
of A and such that the characteristic foliation on the graph of k has no
singularity.

Proof (i) Let S′ be the connected component of x1 in the surface obtained
by decomposing S along Γ. There exists on S′ a vector field which directs
F , exiting along ∂S′ and dilating some area form on S′. In particular this
vector field positively orients F near x1 and the stable manifold W s(x1)
lies in S′.

If x0 and x1 are in cyclic elimination position, we choose for A an annular
neighbourhood of the union {x0} ∪ W s.

If x0 and x1 are in simple elimination position, choose one of the two:
either the other branch of W s comes from a focus x2, or it comes from a
closed leaf F necessarily disjoint from Γ. In the first case, we take for A a
disk neighbourhood of the union {x0, x2} ∪ W s, minus a disk around x2.
In the second case, we first take an annulus A′ around F with boundary
transverse to F ; the branch of W s which comes from F then cuts ∂A′ in
a point x; we take for A a neighbourhood of the union of the arc which
joins x to x0 in W s and of the component of x in ∂A′.

(ii) As A is disjoint from Γ, the contact structure on A×R is the contactisation
of a Liouville form β on A; in other words, it has an equation of the form
β + dt = 0. Thus, for any function k : A −→ R the characteristic foliation
on the graph Ak of k is defined by β + dk = 0.

Let then ω be any area form on A and Y the vector field given by i(Y )ω =
β. We seek to add to Y the ω-Hamiltonian Yk of a function k with support
in the interior of A such that Y + Yk is nonsingular (here Yk is defined by
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i(Yk)ω = dk. For this we take, on A, a foliation by circles parallel to the
boundary which we denote G. On a neighbourhood B of ∂A in A, F and
G are transverse. On A\B, the vector field Y is bounded. We therefore
choose a function k : A −→ (−∞, 0], with support in the interior of A,
constant on the leaves of G, and for which the ω-Hamiltonian Yk is very
large on A\B. Then Y + Yk is nonzero on A\B. On B, Y is nonsingular
and is transverse to Yk there or Yk is nonzero. Then Y +Yk is everywhere
nonzero. !

Remark 3.4 In the case where x0 and x1 are in cyclic elimination position,
we thus create a closed leaf.

In the case where x0 and x1 are in simple elimination position all leaves go
from one boundary to the other of the annulus.

We can easily check that this construction preserves the Morse-Smale char-
acter of the foliation.

C End of the proof of proposition 3.1

Let S′ be a component of the surface obtained by decomposing S along Γ. On
S′, we choose a vector field Y which directs F and which dilates a given area
form; the foci and the closed orbits of Y are then repulsive.

(i) We suppose that S′ is a disk. Then S′ does not contain any closed orbits
since Y is dilating. If x1 ∈ S′ is a saddle of Y , its stable manifold lies
in S′, therefore x1 is in elimination position with a focus. When we have
eliminated all the saddles, there remains only one focus.

(ii) We now suppose that S′ is not a disk. The orbits of Y which leave from a
focus x0 ∈ S′ cannot go across a closed orbit F ⊂ S′. Nor can they all exit
since S′ is not a disk. It follows that at least one goes towards a saddle
x1 ∈ S′ such that we can eliminate all the foci of S′. Now, as the α-limit
set of every point in S′ is in S′, S′ contains at least one closed orbit. If
it contains only one, we stop. If it contains two, F and F ′, then S′ is not
an annulus and there exists at least one saddle x in S′ for which one and
only one separatrix comes from F ′. Indeed, if not, let y1, . . . , yp be the
saddles for which one separatrix (and in fact the whole stable manifold)
comes from F ′; the set of points of S′ which have for α-limit one of the yi,
or F ′, is a connected component of S′, but S′ is connected. By the inverse
procedure to cyclic elimination, we replace F ′ by a focus x0 and a saddle
x1 in cyclic elimination position. The separatrix of x which came from F ′

now comes from x0 so that x0 and x are in simple elimination position.

D Foliations adapted to a given dividing set

Let S be a convex closed surface in a 3-dimensional contact manifold (V, ξ), and
let X be a contact vector field transverse to S whose flow defines an embedding
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S × R −→ V . We denote by Γ the dividing set of S associated to X , the curve
consisting of points of S where X is tangent to ξ, and we denote by SΓ the
compact surface with boundary obtained by decomposing S along Γ.

Definition 3.5 (i) An admissible isotopy of S in V is an isotopy of S through
surfaces transverse to X, which in particular avoid singularities of X.

(ii) A singular foliation on S is adapted to Γ if the foliation induced on SΓ

is directed by a vector field which dilates an area form and which exits
transversely through the boundary ∂SΓ.

Proposition 3.6 Let F be a foliation on S adapted to Γ. Then there exists an
admissible isotopy δs : S −→ V , s ∈ [0, 1], such that the characteristic foliation
on δ1S is δ1F . Moreover, for all s ∈ [0, 1], the dividing set of δsS associated to
X is δsΓ.

Proof We denote by F0 the characteristic foliation of S and by ξ0 the vertically
invariant contact structure induced on S×R by the flow of X , ψ : S×R −→ V .
We take an area form ω on S such that ω ∧ dt orients S × R like ξ0; finally we
take a closed tubular neighbourhood A of Γ, small enough so that F and F0

foliate it by segments from one boundary to the other.
On (S\intA) × R, ξ0 admits a unique equation of the type i(Y0)ω + dt = 0,

where Y0 is a vector field on S\intA which directs F0 and which dilates ω. Also,
as F is adapted to Γ there exists on S\intA a vector field Y which directs F and
which dilates a certain area form; observing that div±egω(Y ) = e−gdivω(egY ),
we replace Y with a vector field Y1 which dilates ω. For s ∈ [0, 1], we set
Ys = (1 − s)Y0 + sY1. Then, the equation i(Ys)ω + dt = 0 defines, for each s in
[0, 1], a vertically invariant contact structure ξs on (S\intA)×R. Now, on a small
neighbourhood U of A in S, we take vector fields Y ′

0 and Y ′
1 which respectively

direct F0 and F and which coincide with ±Y0 and ±Y1 on U ∩ (S\intA); for
s ∈ [0, 1], we again set Y ′

s = (1−s)Y ′
0 +sY ′

1 . On U×R, the contact structure ξ0 is
defined by a unique equation of the type i(Y ′

0)ω+u0dt; the function u0 is zero on
Γ, is equal to ±1 wherever Y ′

0 = ±Y0 and satisfies on U : u0divω(Y ′
0)−Y ′

0 ·u0 > 0.
Then, using remark 2.7, we form a family us of functions on U such that, for

all s ∈ [0, 1], we have usdivω(Y ′
s ) − (Y ′

s · us) > 0, with us = ±1 wherever Y ′
s =

±Ys. We thus obtain on S × R a family still denoted ξs, s ∈ [0, 1], of vertically
invariant contact structures; by construction, the characteristic surface of the
vertical vector field is Γ×R for each structure ξs, and the characteristic foliation
induced by ξ1 on S × {0} is none other than F .

J. Moser’s method (see the proof of proposition 1.2) then provides a family of
vertically invariant vector fields on S×R which, since S is closed, integrates to an
isotopy ϕs satisfying ϕ∗

sξs = ξ0; moreover the diffeomorphisms ϕs : S × R −→
S × R preserve ∂/∂t therefore Γ × R; it follows that ϕ−1

s (S × {0}) is always
transverse to ∂/∂t and is decomposed by its intersection with Γ×R. Composing
with a vertical translation, we can arrange that ϕ−1

s (X × {0}) extends to S ×
(−∞, 0]. We then set δs = ψ ◦ ϕ−1

s |S×{0}. !
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Remark. The previous proposition allows us, with lemma 3.3, to eliminate
singularities and prove proposition 3.1. Equally it gives other reduced forms for
the characteristic foliation of convex surfaces; for example:

Example 3.7 (Foliation associated to a handle decomposition). Let (S, X, Γ, SΓ)
be as above. By handle decomposition of SΓ, we mean a finite collection of arcs
γ1, . . . , γr , disjoint in SΓ, going from boundary to boundary, and such that the
complement in SΓ of a regular neighbourhood Ω of ∂SΓ∪γ1∪· · ·∪γr is a disjoint
union of disks ∆1, . . . , ∆q.

To any handle decomposition of SΓ, we associate a singular foliation of SΓ,
unique up to homeomorphism, in the following manner: on each disk ∆i, we
put a radial foliation and, on Ω, we take the foliation described in Figure 4;
this foliation is directed by a vector field exiting through ∂SΓ, entering through
∂Ω\∂SΓ, which has no closed orbits and which has for singularities precisely
r saddles with positive divergence for which the unstable manifolds are the γj;
note that the stable manifolds of these saddles come from the centres of the disks
∆i. By gluing, we construct on S foliations adapted to Γ, without closed leaves.

III Construction of convex contact structures in

dimension 3

1 Convex contact structures and essential surfaces

A Existence results

Definition 1.1 (i) Let V be a 3-dimensional manifold and f : V −→ [0,∞)
a proper Morse function. We say that a surface C embedded in V , not
necessarily connected, is f -essential if it satisfies the following three prop-
erties:

(a) f |C is a proper Morse function;

(b) all critical points of f are on C and are exactly the critical points of
f |C;

(c) a critical point of index 1 or 2 for f is of index 1 for f |C; equivalently
f and f |C have the same local extrema.

(ii) We say that a contact structure on an oriented 3-dimensional manifold is
positive if it induces the given orientation.

Theorem 1.2 (Existence theorem) Let V be a 3-dimensional oriented man-
ifold and f : V −→ [0,∞) a proper Morse function. There exists on V a contact
structure which is preserved under a complete pseudo-gradient of f if and only
if there exists in V an f -essential surface C.

Remark. In I.4, we saw that the existence of an f -essential surface is nec-
essary; we will prove that this is also sufficient. The problem of existence of
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essential surfaces for a given function will be discussed in part IV; from this
discussion will follow a version of the theorem of R. Lutz and J. Martinet (see
[Ma]) for convex contact structures, namely:

Theorem 1.3 Any oriented 3-dimensional manifold carries a positive convex
contact structure.

Definition 1.4 (Ya. Eliashberg [El3]). We say that a contact structure on a
3-dimensional manifold V is overtwisted if there exists a 2-dimensional disk
embedded in V , for which the characteristic foliation has a limit cycle (with
exactly one singularity in the interior according to [El3], but the arguments of
II.3 show that this condition adds nothing).

R. Lutz has described a procedure for constructing on any 3-dimensional
manifold an overtwisted contact structure [Lu]; we will give a “convex” version
showing that:

Corollary 1.5 Any oriented 3-dimensional manifold carries a positive convex
overtwisted contact structure.

By a theorem of M. Gromov and Ya. Eliashberg (see [Gr] and [El1]), over-
twisted contact structures are not symplectically fillable (see [El1] and [EG] for
the definition). It follows that there exist contact structures which are convex
but not symplectically fillable, answering a question of [EG].

B Scheme of the proof of theorem 1.2

Let a0 < a1 < · · · be the critical values of f , which we suppose are distinct
(only to simplify the exposition), and let b0 < b1 < · · · be intermediate regular
values, i.e. so that a0 < b0 < a1 < b1 < · · · . We set Vk = {x ∈ V | f(x) ≤ bk}
and Ck = C ∩ Vk.

Then Vk+1 is obtained from Vk by attaching a single handle of index equal
to the index of f at the critical point xk+1 of value ak+1. As C is f -essential,
Ck+1 is obtained simultaneously from Ck by attaching a handle of index equal
to the index of f |C at xk+1. Precisely, let Hi = Di × D3−i be a handle of
index i = 0, 1, 2, 3; the attachment of Hi to Vk is given by an embedding ϕ :
∂Di×D3−i −→ ∂Vk; the pair (Vk+1, Vk) only depends on the isotopy class of ϕ.
For j ≤ i, let Dj be the sub-dis Dj×{0} contained in Di; then for an appropriate
choice of ϕ, the handle that we attach to Ck is Dj×D2−j with j = 0, 1, 1, 2 when
i = 0, 1, 2, 3; we glue it along the restriction of ϕ to ∂Dj ×D2−j ⊂ ∂Di ×D3−i.

By induction on k, we will construct on Vk a positive contact structure ξk,
as well as a pseudo-gradient Xk of fk = f |Vk

, which preserves ξk and for which
the characteristic surface is Ck. For this we distinguish four cases corresponding
to the different possible indices. It is not necessary to worry about the problem
of completeness since we can always handle it afterwards; indeed:

Remark 1.6 Let c be a given positive number, S a closed surface and ξ a
vertically invariant contact structure on S× [0, 1]. Then there exists on S× [0, 1]
a contact structure ξ′ having the following properties:
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(i) ξ′ coincides with ξ near the boundary;

(ii) ξ′ is preserved by a vector field X ′ which is equal to ∂/∂t near the bound-
ary, and whose orbits are the segments {·}× [0, 1] covered in time c.

Proof We extend ξ to a vertically invariant contact structure on S × R and
we choose a diffeomorphism ρ : [0, c] −→ [0, 1] which coincides with the identity
near 0 and with a translation near c; we then take for ξ′ and X ′ the images
under Id × ρ of ξ and ∂/∂t. !

2 Attachment of handles of index 0 and 3

A The model

On R3 oriented by dx∧dy∧dz, the plane field with equation dz+uy dx+vx dy =
0, u, v ∈ R, is a positive contact structure if and only if v − u > 0. This plane
field is preserved by all vector fields of the form

ax
∂

∂x
+ by

∂

∂y
+ cz

∂

∂z
, a, b, c ∈ R, with c = a + b;

indeed, their flow at time t is given by (x, y, z) /→ (eatx, ebty, ectz). Finally, for
v − u > 0 and c = a + b, the characteristic surface of the contact vector field so
defined has equation: cz + (au + bv)xy = 0.

Let ζ0 be the contact structure with equation dz − y dx + x dy = 0. The
contact vector fields

Z0 = x
∂

∂x
+ y

∂

∂y
+ 2z

∂

∂z
and Z3 = −Z0

both have for characteristic surface the plane {z = 0} are pseudo-gradients
respectively of g0 = x2 + y2 + z2 and g3 = −g0.

We denote by H3 the handle of index 3: {(x, y, z) ∈ R3 | x2 + y2 + z2 ≤ 1}
which we orient by ζ0; we denote by F3 the boundary of H3 furnished with the
orientation induced by the entering vector field Z3: this orientation is opposite
to the usual orientation of the unit sphere in R3 as the boundary of the ball.

B Handles of index 0

As a0 is the minimum of f , there exists a diffeomorphism of V0 onto the closed
ball B3 = {(x, y, z) ∈ R3 | x2 + y2 + z2 ≤ 1} which respects orientations, which
sends C0 to B3 ∩ {z = 0} and which, up to an affine transformation of R,
conjugates f0 = f |V0

to x2 + y2 + z2. Then the inverse of this diffeomorphism
transforms ζ0 into a contact structure ξ0 on V0 and sends the vector field Z0 to
a pseudo-gradient X0 of f0; by construction, this pseudo-gradient preserves ξ0
and has C0 as its characteristic surface.

Any “attachment” of a handle of index 0 can be dealt with in the same
manner.
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C Handles of index 3

On Vk we have, by the inductive hypothesis, a contact structure ξk, as well as
a pseudo-gradient Xk of fk = f |Vk

which preserves ξk and has characteristic
surface Ck.

Definition 2.1 Let S ⊂ ∂Vk be a surface. We will say that an isotopy δs of
embeddings of S in Vk is admisible if, for all s, δsS is transverse to Xk in Vk

and cuts Ck along δs(S ∩ Ck).

It is clear that such an isotopy extends to an isotopy of embeddings δ̄s :
Vk −→ Vk which are admissible in the following sense:

• for all s, δ̄s sends Ck to Ck;

• for all s, δ̄∗s is still a pseudo-gradient of fk and evidently preserves the
positive contact structure δ̄∗sξk.

We now suppose that Vk+1 is obtained from Vk by attaching a handle of index
3, that is, by gluing a ball onto a spherical component S of ∂Vk. Simultaneously
Ck+1 is obtained by attaching to Ck a disk along S ∩ ∂Ck; this intersection is
tthus a connected curve Γ. We denote by φ : F3 −→ S a gluing diffeomorphism
which respects orientations and sends F3 ∩ {z = 0} onto Γ.

Lemma 2.2 We can find an admissible isotopy δs : S −→ Vk, s ∈ [0, 1], such
that there exists a germ of a diffeomorphism ψ : (H3, F3) −→ (Vk, δ1S) having
the following properties:

(i) ψ|F3
is isotopic to δ1φ through diffeomorphisms of F3 in δ1S which send

F3 ∩ {z = 0} to δ1Γ;

(ii) ψ takes ζ0 to ξk and Z3 to Xk.

Proof By proposition II.2.2, it suffices to find an admissible isotopy δs for
which the diffeomorphism δ1φ : F3 −→ δ1S respects orientations and sends the
characteristic foliation induced by ζ0 to that induced by ξk. This isotopy is
immediately given by proposition II.3.6 since the foliation obtained on S by
transporting via φ the characteristic foliation on F3 is adapted to Γ. !

Now let δ̄s be an admissible isotopy of embeddings Vk −→ Vk which extends
the isotopy δs of the above lemma (see 2.1). We can attach H3 to Vk by gluing
on the one hand δ̄∗1(ξk) to ζ0, and on the other δ̄∗1(Xk) to Z3. We then extend
fk to this manifold via a function on H3 which admits Z3 as a pseudo-gradient
and equals (ak+1 − x2 − y2 − z2) near the origin. On the other components of
∂Vk, we add an exterior collar up to the level bk+1; there, we extend Xk trivially
then ξk in an invariant manner.
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3 Attachment of handles of index 1 and 2

A The model

On R3 oriented by dx ∧ dy ∧ dz, let ζ1 be the positive contact structure with
equation dz + y dx + 2x dy = 0. The contact vector fields

Z1 = 2x
∂

∂x
− y

∂

∂y
+ z

∂

∂z
and Z2 = −Z1

have as characteristic surface the plane {z = 0} and are pseudo-gradients re-
spectively of g1 = x2 − y2 + z2 and g2 = −g1.

Given ε > 0, we denote by H1 = H1(ε) the handle of index 1 {(x, y, z) ∈
R3 | x2 + z2 ≤ ε2, y2 ≤ 1} and we denote by F1 = F1(ε) the surface H1 ∩ {y =
±1}. The data of ζ1 and Z1 orient H1 and F1. Similarly, we denote by H2 the
handle of index 2 {(x, y, z) ∈ R3 | y2 ≤ ε2, x2+z2 ≤ 1} and we denote by F2 the
surface H2∩{x2+z2 = 1}; H2 and F2 are oriented by the data of ζ1 and Z2. If we
parametrise F2 by (θ, y) /→ (x = sin θ, y, z = cos θ), θ ∈ [0, 2π], the orientation
described previously is given by dθ ∧ dy. In addition the characteristic foliation
induced by ζ1 has equation: (y cos θ − sin θ) dθ + 2 sin θ dy = 0; this appears
therefore as in figure 5.

We can easily show that:

Lemma 3.1 For i = 1, 2 and ε > 0 given, let hi be a non-singular germ of
a function along Fi, equal to a negative constant on Fi. Then hi extends to
a function on Hi which coincides with gi near the origin, for which Zi is a
pseudo-gradient.

B Handles of index 2

We suppose that Vk+1 (resp. Ck+1) is obained by attaching to Vk (resp. to
Ck) a handle of index 2 (resp. of index 1). This attachment is given by an
embedding φ : F2 −→ S = ∂Vk which respects orientations and which meets
Γ = ∂Ck exactly along F2 ∩ {z = 0}. The attaching curve Θ, the image under
φ of F2 ∩ {y = 0}, therefore cuts Γ in two points and is thus divided into two
arcs denoted Θ+ and Θ−. Finally, we denote by SΓ the surface obtained by
decomposing S along Γ. To construct the contact structure ξk+1 and the vector
field Xk+1 on Vk+1 it suffices, by lemma 3.1, to show that:

Lemma 3.2 We can find an admissible isotopy δs : S −→ Vk, s ∈ [0, 1], such
that there exists an annulus A around Θ, and a germ of a diffeomorphism ψ :
(H2, F2) −→ (Vk, δ1A) having the following properties:

(i) ψ|F2
is isotopic to δ1φ through embeddings of F2 in δ1A which meet δ1Γ

exactly along F2 ∩ {z = 0};

(ii) ψ takes ζ1 to ξk and Z2 to Xk.
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Proof We begin by building an admissible isotopy δ′s : S −→ Vk, s ∈ [0, 1],
such that there exists an annulus A around Θ, and a diffeomorphism ψ′ : F2 −→
δ′1A which respects orientations, which meets δ′1Γ exactly along F2∩{z = 0} and
which conjugates the characteristic foliations induced respectively by ζ1 and ξk.
For this, we take two arcs γ+ and γ− having their endpoints on Γ and satisfying
the following conditions (see figure 6):

• γ+ and γ− are contained in a tubular neighbourhood Ω of Θ in S and are
respectively isotopic to Θ+ and Θ− in Ω; moreover they do not cut Γ in
their interiors;

• γ± crosses Θ± at a single point m±;

• in Ω, Θ cuts Γ between γ+ and γ−.

We then extend the data of γ+ and γ− to a handle decomposition of SΓ (see
example II.3.7). The associated foliation induces on S a foliation F adapted
to Γ (Definition II.3.5) which, on an annulus A around Θ, is conjugate to the
germ of the characteristic foliation of F2 along the circle {y = 0, x2 + z2 = 1}.
Proposition II.3.6 provides an admissible isotopy δ′s : S −→ Vk such that δ′1A
has characteristic foliation δ′1(F). We thus obtain the desired diffeomorphism
ψ′ : F2 −→ δ′1A.

Now, we extend ψ′ to a germ of a diffeomorphism, still denoted ψ′, (H2, F2) −→
(Vk, δ′1A), which sends Z2 to Xk. Thus, ξk (resp. ψ′

∗ζ1) induces on S × R, via
δ′1 and the flow of Xk, a vertically invariant contact structure η0 (resp. η). It
then suffices to establish the following fact:

Lemma 3.3 (Sub-lemma) We can extend η to S×R as a vertically invariant
contact structure η giving on S × {0} the same characteristic foliation and the
same dividing set as η0.

Proof that 3.3 implies 3.2. As S is closed, we can now argue from the
uniqueness of vertically invariant contact structure which induce a given char-
acteristic foliation on S × {0} (proposition II.2.2): there exists an isotopy
ϕs : S × R −→ S × R, which preserves at once ∂/∂S and the levels S × {t},
such that ϕ1 straightens η1 to η0. We then obtain an admissible isotopy δs
and the desired diffeomorphism ψ by correcting by ϕ1 the isotopy δ′s and the
diffeomorphism ψ′. !

Proof (of 3.3) As ψ′ meets δ′1Γ exactly along F2 ∩ {z = 0}, there exists a
function h : A −→ R such that, if η0 is defined near a point of A × R by an
equation β + u dt = 0, then η1 is defined near this point by β + ehu dt = 0. We
extend h arbitrarily in a neighbourhood of Γ.

On SΓ × R, η0 induces a vertically invariant contact structure, globally de-
fined by an equation of the form i(Y )ω + u dt = 0 where:

• ω is an area form on SΓ;
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• Y is a vector field which exits along ∂SΓ and which directs the foliation
on SΓ induced by F , that is, the foliation associated to the handle decom-
position chosen on SΓ;

• u is a positive function on the interior of SΓ, zero at the boundary and
satisfying u div ω(Y ) − Y · u > 0.

Let AΓ be the part of SΓ corresponding to A; on AΓ × R, η induces a contact
structure with equation i(Y )ω+ ehu dt = 0. From which: u(div ω(Y )−Y ·h)−
Y · u > 0, in other words:

u (Y · h) < u div ω(Y ) − Y · u. (6)

We must therefore extend h to SΓ preserving this inequality. We observe that,
on a sufficiently small neighbourhood of ∂SΓ, the function h given arbitrarily
satisfies 6 since u is zero on ∂SΓ. The fact the we can then extend h results
from the two following remarks:

• On the interior of SΓ, where u > 0 6 says Y · h < div ω(Y ) − Y · log u.
Yet each orbit of Y which exits AΓ goes in finite time to ∂SΓ without
cutting AΓ again. On such a segment of the orbit, h is given near its
endpoints, but the variation of − logu is infinite and div ωY is bounded;
we can therefore extend h over the segment.

• An orbit of Y which enters into AΓ comes to a focus without cutting AΓ

first. On a time interval of the type (−∞, τ0], h is only given near τ0.
The condition 6, which bounds its derivative from above by a quantity
which is strictly positive and bounded from below, does not prevent us
from extending h to a function with compact support. !

C Handles of index 1

We suppose that Vk+1 (resp. Ck+1) is obtained from Vk (resp. Ck) by attaching
a handle of index 1 to two points p and q of Γ = ∂Ck ⊂ S = ∂Vk. We denote by
p0 and q0 the points with coordinates (0, 1, 0) and (0,−1, 0) in R3. By lemma
3.1, it suffices to establish the following fact:

Lemma 3.4 There exists a germ of a diffeomorphism (Vk, p, q) −→ (H1, p0, q0)
which sends ξk to ζ1 and Xk to Z1.

It is in this lemma, whose proof is easy, that the orientability of V is needed.

IV Construction of essential surfaces

In this part, we give methods for constructing, on 3-dimensional manifolds,
Morse funcitons having essential surfaces (see definition III.1.1). I have had
the pleasure of discussing this question with several people, in particular Slava
Kharlamov, François Laudenbach, Christine Lescop and Alexis Marin; I thank
them for their suggestions and remarks.
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1 Some examples

A Examples of essential surfaces

Example 1.1 (F. Laudenbach). Let V0 be a compact 3-dimensional manifold
with connected boundary C = ∂V0, and let f0 : V0 −→ R be a function having
the following properties:

(i) f0 is nonsingular and its restriction to C is a Morse function;

(ii) any local minimum (resp. local maximum) of f0|C is a local minimum
(resp. local maximum) of f0 on V0.

Then there exists on the double V = V0 ∪C V0 of V0 a Morse function f for
which C is an essential surface.

Remark 1.2 We will see later (lemma 2.2) that, if V0 possesses a function f0

satisfying (i) and (ii) then V0 is a handlebody.

Proof A simple way to construct the double V of V0 is the following: we
take a Morse function g0 : (V0, C) −→ ([0, 1], 1) without singularities near the
boundary. We take on V0 × [−1, 1] the function g(x, s) = g0(x) + s2 and we set
V = {g = 1} ⊂ V0 × [−1, 1]. We have a smooth manifold which is identified
with the double of V0 via the two functions V0 −→ V , x /→ (x,±(1− g0(x))1/2),
which send C to C × {0} ⊂ V .

Now let π be the projection V0 × [−1, 1] −→ V0 and let f be the restriction
to V of f0 ◦ π. As the kernel of d(f0 ◦ π) contains at each point ∂/∂s at as the
tangent space to V is defined by d(g0 ◦ π) + 2s ds = 0, we see that the critical
points of f all lie on C × {0} = V ∩ (V0 × {0}) and correspond exactly to the
critical points of f0|C . Moreover condition (ii) follows since each local minimum
(resp. maximum) of f |C is a minimum (resp. maximum) of f . !

Example 1.3 (V.M. Kharlamov). Let Γ be a link in S3 and π : V −→ S3

a branched double cover over Γ. We suppose there exists a Seifert surface C0,
bounded by Γ, and a Morse function f0 on S3 satisfying the following conditions:

(i) the critical points of f0 lie on C0\Γ and are exactly the critical points of
f0|C0

;

(ii) f0|C0
has no local minimum nor local maximum on Γ.

Then C = π−1(C0) is an essential surface for f = f0 ◦ π.

Remark 1.4 For several links, we can find a Seifert surface satisfying (i) and
(ii) with f0 the standard height function on S3.

Proof The critical points of f (resp. of f |C) are of two types:

• the preimages under π of critical points of f0 (resp. of f0|C0
);

• the preimages under π of critical points of f0|Γ. For f , such a point x ∈ V
is of index 1 or 2 accordingly as f0|Γ has at π(x) a minimum or maximum;
for f |C , such a point is always of index 1, by (ii). !
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B An example of a function having no essential surface (constructed
with C. Lescop)

Example 1.5 Let p, q be relatively prime integers with 0 ≤ q ≤ p − 1. The
oriented lens space L(p, q) possesses a “canonical” Morse function f which is
ordered and has exactly one Morse critical point of each index 0,1,2,3. If this
function has an essential surface C then either q = 1, or q = p − 1, or q is odd
and p = 2(q ± 1).

Proof Let b be a regular value of f between critical values of index 1 or 2. We
set C0 = C ∩ {f ≤ b}, Γ = ∂C0 ⊂ {f = b} and we denote by Θ the attaching
curve of the handle of index 2 on the surface {f = b}, which is an oriented torus.
Finally, we denote by µ an oriented meridian of this torus (µ bounds a disk in
{f ≤ b}) and by λ the oriented curve determined by the 2 following conditions:

• the intersection number with µ is +1: [λ] · [µ] = +1;

• for a good orientation of Θ, [Θ] = q[µ] + p[λ].

We distinguish two cases accordingly as C0 is orientable or not.

(i) If C0 is orientable, it’s an annulus and the curve Γ has two isotopic com-
ponents, Γ0 and Γ1, which cut µ once each. Orienting them appropriately,
we have, for i = 0, 1:

[Γi] = m[µ] + [λ],

therefore
[Θ] · [Γi] = pm − q, where m ∈ Z.

Thus, Γ cuts Θ in at least 2|pm − q| points; yet, since C exists, Θ cuts Γ
in exactly two points, so pm− q = 0, 1 or −1. It follows that either m = 0
and q = 1 (unless q = 0 and p = 1) or m = 1 and q = p − 1.

(ii) If C0 is not orientable, it’s a Mobius strip and Γ is connected. With the
appropriate orientation, we have [Γ] = m[µ] + 2[λ], where m is an odd
integer.

The same argument as before shows that we must have mp− 2q = 0, 2 or
−2; then, m = 1 and p = 2(q ± 1), with q odd since p and q are relatively
prime. !

Remark 1.6 Keeping in mind proposition I.4.5, this example shows that there
exist vector fields which, for global reasons, do not preserve any contact struc-
ture.

2 A general method for constructing essential surfaces

A Splitting along an essential surface

Definition 2.1 Let S be a surface and Γ a closed curve on S, in general dis-
connected. We will say that Γ divides S “equitably” if we can recover S from
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two subsurfaces, in general non connected, which are both bounded by Γ and
have the same Euler–Poincaré characteristic.

Lemma 2.2 Let V be a 3-dimensional manifold, f : V −→ [0,∞) a proper
Morse function (with distinct critical values) and C an f -essential surface trans-
versely orientable in V . Then:

(i) C separates V into handlebodies;

(ii) C cuts each regular level set of f along a curve which divides the level set
equitably.

We recall that a compact handlebody is a compact 3-dimensional manifold
with boundary obtained by attaching to a ball handles of index 1; in the non-
compact case, a handlebody is a direct limit of compact handlebodies.

Proof We choose a transvese orientation on C and we take two regular values
of f , b0 < b1, between which f takes exactly one critical value. For i = 0, 1,
we set Vi = {f ≤ bi}, Ci = C ∩ Vi, Si = {f = bi} and Γi = C ∩ Si. Thus, V1

(resp. C1) is obtained from V0 (resp. from C0) by attaching a handle H (resp.
K ⊂ H : see the discussion of II.1.B). We observe that K separates H into two
components; we denote them H− and H+, K being transversally oriented from
H− towards H+.

If the critical value of f between b0 and b1 is the absolute minimum of f , C1

is a disk which separates the ball V1 into two balls (with corners). Moreover,
Γ1 is circle and therefore divides the sphere S1 equitably.

We now suppose that V0 is the union of two handlebodies, possibly discon-
nected and with corners, which intersect each other exactly along C0. We denote
them by V −

0 and V +
0 , C0 being transversally oriented from V −

0 towards V +
0 . We

suppose additionally that Γ0 divides S0 equitably.
As the attachment of K to C0 must respect the transverse orientation, C1

separates V1 into V −
1 = V −

0 ∪ H− and V +
1 = V +

0 ∪ H+. Thus C separates V
into two submanifolds V − and V +.

To show (i) and (ii), we observe that the boundary of V ±
i , for i = 0, 1,

decomposes into two parts: Ci and S±
i = V ±

i ∩ Si. By hypothesis, S−
0 and S+

0
have the same Euler characteristic. Yet:

• If H has index j = 0, 1, V ±
i is obtained from V ±

0 by attaching a handle of
index j. Similarly, S±

i is obtained from S±
0 by attaching a handle of index

j, hence:
χ(S±

i ) = (−1)j + χ(S±
0 ),

therefore
χ(S+

1 ) = χ(S−
1 ).

• If H has index j = 2, 3, V ±
i is homeomorphic to V ±

0 : we simply glue a ball
along a disk contained in the boundary. However, S±

i is obtained from
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S±
0 by a “half-surgery” of index j (a surgery along an arc or a disc lying

on the boundary of S±
0 ). We then have:

χ(S±
i ) = (−1)j + χ(S±

0 ),

therefore, as previously,

χ(S+
1 ) = χ(S−

1 ).
!

B The principal construction

Lemma 2.3 Let S be a closed surface, Γ0 a closed curve in S, not necessarily
connected, and α a simple arc joining in S two points of Γ0 without other in-
tersection. Then there exists a Morse function f : S × [0, 1] −→ [0, 1] satisfying
the following conditions:

(i) f has exactly two ordered critical points with respective indices 1 and 2;
moreover, for t near 0 or 1, f |(S×t) = t;

(ii) f has an essential surface which cuts S × {0} along Γ0 and S × {1} along
the curve Γ1, drawn in figure 7 and obtained as follows: we add a small
closed component Γ′, on one side or the other of α and we perform surgery
on Γ0 along α in a neighbourhood of α avoiding Γ′.

(iii) If Γ0 divides S equitably, C is transversely orientable, and Γ1 divides S
equitably also.

Proof The method is the following: we realise S × [0, 1] by attaching succes-
sively a handle of index 1 to S × [0, ε], then a handle of index 2 in elimination
position; simultaneously, we attach two handles of index 1 to Γ0 × [0, ε] so as to
obtain the desired essential surface.

Let α0,α1 be elements of Γ0 at the endponints of α. For i = 0, 1 we choose
on αi a basis (vi, wi) for the tangent space to S having the following properties:

(i) v0 and v1 are tangent to Γ0 and on the same side of α;

(ii) w0 and w1 are tangent to α and go inside α.

We attach then a handle of index 1, H1 = {(x, y, z) ∈ R3 | 0 ≤ x ≤
1, y2 + z2 ≤ 1}, to S × {ε}, as follows: we send (i, 0, 0) to αi, (∂/∂y)(i, 0, 0) to
vi and (∂/∂z)(i, 0, 0) to wi. More precisely, the points (i, y, 0) with −1 ≤ y ≤ 1
go to Γ0 and the points (i, 0, z) with 0 ≤ z ≤ 1 go to α. We thus attach
K1 = H1 ∩ {z = 0} to Γ0 × {ε}. We denote by C1 the surface obtained and by
Γ its upper boundary: Γ = ∂C1\Γ0.

For i = 0, 1 we now denote by α′
i the α image of (i, 0, 1) and α′ the sub-arc

of α joining α′
0 and α′

1. In the lateral boundary of H , H ∩ {y2 + z2 = 1},
we choose an arc α′′ transverse to the circles {x = const.}, isotopic to the
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fixed endpoints of the segment {(x, 0, 1) | 0 ≤ x ≤ 1} and which cuts the set
{(x,±1, 0) | 0 ≤ x ≤ 1} in two points (see Figure 8).

We then attach a handle of index 2 along Θ = α′∪α′′. As α′′ is transverse to
the circles {x = const.}, the manifold thus obtained is diffeomorphic to S× [0, 1]
by the elimination lemma of S. Smale [Mi]. Moreover, by construction, Θ cuts
Γ in two points in such a way that we can attach (in a unique way) a handle of
index 1 to C1. We then see painlessly that the surface C obtained satisfies the
stated conditions. !

Example 2.4 If S is the sphere S2 and if Γ0 is a circle, the curve Γ1 given by
lemma 2.2 is composed of three nested circles (i.e. for which the complement is
a disjoint union of two disks and two annuli).

Corollary 2.5 There exists a Morse function g : S2× [0, 2] −→ [0, 2] satisfying
the following conditions:

(i) for t near 0 or 2, g|S2×{t} = t;

(ii) g possesses an essential surface C which cuts S2×{0} and S2×{2} along
a circle, and which meets S2 × {1} along three nested circles.

Proof Let f : S2× [0, 1] −→ [0, 1] be “the” function given by lemma 2.3 taking
for Γ0 a circle. We obtain g by gluing f with the function: S2 × [1, 2] −→ [1, 2],
(x, y) /→ (2 − f(x, 2 − t)). !

Corollary 2.6 (Convex version of the Lutz modifictaion [Lu]). Any 3-dimensional
manifold which carries a convex contact structure carries a convex overtwisted
contact structure.

Remark 2.7 This corollary shows how to deduce corollary III.1.5 from theorem
III.1.3.

Proof Let V be the manifold. If there exists on V a convex contact structure,
then there exists, by proposition I.4.5, a proper Morse function f : V −→ [0,∞)
possessing an essential surface C. For a regular value b of f , slightly larger than
the absolute minimum and for ε sufficiently small, the set {b−ε ≤ f ≤ b+ε} is a
product cobordism W ∼= S2 × [0, 1] which C cuts along a cylinder with circular
base Γ× [0, 1]. Corollary 2.5 allows us to replace f by a proper Morse function
f ′ : V −→ [0,∞) with an essential surface C′ which cuts S = {f ′ = b} ∼= S2

along three nested circles. Theorem III.1.2 gives a positive contact structure
ξ′ on V which is invariant under a pseudo-gradient X ′ of f ′ admitting C′ as
characteristic surface. Proposition II.3.1 shows that then, up to admissible
isotopy, the characteristic foliation of S has two limit cycles, each bounding by
a disk with exactly one singularity in its interior. !
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C An existence theorem

Theorem 2.8 On any 3-dimensional manifold, there exists a positive proper
Morse function which admits a transversally orientable essential surface.

Remark 2.9 Theorem 2.7, with theorem III.1.2, immediately implies theorem
III.1.3.

Proof Let V be the manifold, and f : V −→ [0,∞) a proper Morse function,
having only one maximum if V is closed and no maximum if V is open. Let b0

and b1 be two regular values of f between which f takes only one critical value
a. We set Vi = {f ≤ bi} for i = 0, 1 and S = {f = b0}.

If a is the absolute minimum of f , f |V1
possesses a transversally orientable

essential surface. We therefore now suppose that f |V0
has a transversally ori-

entable essential surface C0, with boundary Γ0, and we distinguish three cases,
according to the index of the critical value a.

Index 1. V1 is obtained from V0 by attaching a handle H of index 1. Chang-
ing the attachment of H by isotopy, we can simultaneously attach along C0 a
handle of index 1 so as to have, for f |V1

, a transversally orientable essential
surface.

Index 2. Byy lemma 2.2, Γ0 divides S equitably. It follows that the attaching
curve Θ and the handle H of index 2 cuts Γ0 in an even number 2r of points.
If r = 1, we can attach to C0 a handle of index 1, K ⊂ H , which gives for
f |V1

a transversally orientable essential surface. If r = 0, we move Θ by an
isotopy to create two intersection points. Now if r > 1, we apply lemma 2.3
to a sub-arc α of Θ which joins two consecutive intersection points with Γ0.
We thus eliminate these two points replacing f |V0

with a function f ′ which has
two more critical points with respective indices 1 and 2; we then have a new
transversally orientable essential surface C′

0 whose boundary Γ′
0 still divides the

surface {f ′ = b0} = {f = b0} equitably. Repeating this operation several times,
we reduce to the case where r = 1.

Remark 2.10 For compact manifolds with boundary, the proof is finished; for
open and non-compact manifolds, we finish with a classic direct limit argument.

Index 3. As f has a single maximum, the surface S = {f = b0} is a sphere.
If Γ0 ⊂ S is a circle, we can, attaching a handle of index 3, reglue a disk to C0,
which gives the sought transversally orientable essential surface. Now, if Γ0 is
not connected, we proceed as follows.

By lemma 2.2, Γ0 divides S equitably. Then, there exists a component Γ of
Γ0 which satisfies the following properties:

(i) Γ does not bound a disk of S\Γ0;

(ii) in one of the hemispheres of S bounded by Γ, each component of Γ0 bounds
a disk of S\Γ0; we denote by S′ this hemisphere and S′′ the other.

(To see that Γ exists, we observe that, if no component of Γ satisfies (i), S\Γ0

is composed on the one hand of a disjoint union of disks, and on the other of a
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disk with holes. Consequently, Γ0 does not divide S equitably. To obtain (ii),
we choose a component Γ satisfying (i) “minimally”.)

Now, we take a component Γ′ of Γ0 in S′ and, in S′′, we choose a compo-
nent Γ′′ which we can connect to Γ by an arc α∗ without recutting Γ0. The
inverse construction to that of lemma 2.3 allows us to eliminate Γ′ by doing
connected sum of Γ and Γ′′ along α∗. The curve thus obtained again divides S
equitably and has two fewer components. Repeating this operation, we render
Γ0 connected which ends the proof. !
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