Home-work exercises for week 2

Introduction to Contact Topology, Fall 2014

Exercise 1. Let S^{2n+1} denote the unit sphere in the Euclidean space \mathbb{R}^{2n+2} . Let α_0 be the 1-form

$$\alpha_0 = \sum_{j=1}^{n+1} (x_j \, dy_j - y_j \, dx_j),$$

with $(x_1, y_1, \ldots, x_{n+1}, y_{n+1})$ denoting cartesian coordinates on \mathbb{R}^{2n+2} .

- (a) Show that α_0 defines a contact structure on the sphere.
- (b) Compute the Reeb flow of α_0 .

Exercise 2. Let M be a manifold of dimension 2n + 1 and ξ a co-orientable hyperplane field.

(a) Let α be a 1-form with ker $\alpha = \xi$. Prove that $d\alpha$ is non-degenerate on ξ if and only if

$$\alpha \wedge (d\alpha)^n \neq 0.$$

(b) Let α and α' be 1-forms with $\xi = \ker \alpha = \ker \alpha'$. Check that α satisfies the contact condition if and only if α' does.

Exercise 3. Let (B,g) be a Riemannian manifold and denote by STB and ST^*B the unit sphere bundle in the tangent and cotangent bundle, respectively, of B. Prove that the geodesic flow on STB and the Reeb flow of the Liouville form on ST^*B coincide under the metric isomorphism.