Home-work exercises for week 6

Introduction to Contact Topology, Fall 2014

Exercise 1. Let $\gamma:(a,b)\to (\mathbb{R}^3,\xi_{\mathrm{st}}=\ker(dz+x\,dy)),\ s\mapsto (x(s),y(s),z(s))$ be a Legendrian immersion and let γ_L be its Lagrange-projection. Then:

- 1. γ_L is also an immersion;
- 2. γ is completely determined by γ_L (up to translation in the z-direction);
- 3. if γ_L is a closed curve, then $\oint_{\gamma_L} x \, dy = 0$.

Exercise 2. Let $\gamma:(a,b)\to(\mathbb{R}^3,\xi_{\rm st}),\ s\mapsto(x(s),y(s),z(s))$ be a positively transverse curve (i.e., $(dz+x\,dy)\,(\dot{\gamma}(s))>0$ for all $s\in(a,b)$). Convince yourself that the only forbidden crossing in the front projection of γ is the one shown in the picture below and all other crossings are possible.

Exercise 3. Work out Example 3.5.7 in the book.