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ABSTRACT
It is generally thought that the World Wide Web belongs to the
class of complex networks that is scale-free: the distribution of the
number of links that nodes have follows a power law (’rich-get-
richer’ effect). This phenomenon is explained by a combination of
theoretical-computational and empirical analysis based on stochas-
tic network models. However, current network models embody a
number of assumptions and idealizations that are not valid for the
Web. Better and richer network models are needed, in association
with a much more refined and in-depth empirical data gathering and
analysis. In particular, the understanding of the dynamics leaves
much to desire. In this paper we present a dynamic network model
that avoids a number of unrealistic idealizations commonly intro-
duced. We show how properties such as average degree and power
laws are the outcome of dynamic network parameters. Exemplified
by a Wikipedia case study, we show how these dynamic parameters
might be empirically measured directly. We falsify several widely
held ideas about the emergence of power laws: (i) that they are re-
lated to growing networks; (ii) that they are related to (linear) pref-
erential attachment; (iii) that they may hold strictly. Power laws do
not have the status of a first principle in networks: if they hold, they
are just conditional and approximate empirical regularities.
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1. INTRODUCTION
The World Wide Web is a complex network thought to be scale-

free: the number of links that nodes have obeys a power law (more
popularly known as the rich-get-richer effect). This phenomenon
has been extensively studied by a combination of theoretical-
computational and empirical analysis based on statistical network
models. These studies have led to the common view that the emer-
gence of power laws is linked to two factors: (i) growth of net-
works, in conjunction with (ii) (linear) preferential attachment [2].

However, as critically reviewed in Sec. 2, current network mod-
els embody a number of assumptions and idealizations that are not
valid for the Web. This has implications for the Web Science re-
search agenda. Results from general network science might not be
as rock solid as they seem when applied to the Web. Moreover, al-
though the Web is often touted as highly dynamic, our understand-
ing of dynamic network aspects leaves much to desire. Thus, we

argue that as part of the research program investigating the Web-
as-a-network, better and richer network models are needed, in as-
sociation with a much more refined and in-depth empirical data
gathering and analysis.

We contribute to such a research program, by presenting and
analysing a dynamic network model that avoids a number of un-
realistic idealizations common in network science (Sec. 3). Mea-
surable properties such as average degree and degree distributions
are shown to be the outcome of dynamic parameters of the network.

At the empirical side of this research program, we discuss in
Sec. 4 how dynamic network parameters might be measured di-
rectly (rather than just their outcomes). This is a type of empirical
network study that has not been done yet, but is necessary to do as
it delivers basic but essential dynamic information (such as typical
time scales for different event types in the network). Exemplified
by a Wikipedia case study, we show that in principle it is indeed
possible to extract more refined empirical data about dynamic net-
work behaviour — information that is very much needed to validate
or falsify theoretical network model hypotheses.

2. THIN ICE
Despite significant network research efforts in the past 15 years,

our understanding of the Web-as-a-network must be assessed as
still very limited. Many aspects that are central in social network
research are still insufficiently understood and explained in the case
of the Web, both for the Web graph itself and for the many social
or sociotechnical networks it hosts. Examples of underresearched
or underexplained social network effects and mechanisms are the
tendency to reciprocate links, the tendency to form triangles (via
mutual acquaintances, also variously referred to as transitivity or
triadic closure) and the clustering coefficient (the number of trian-
gles in the network relative to the number of pure pairs).

Formal and empirical methods for analysis of social network
mechanisms as mentioned above already have a long standing in
the social and behavioural sciences [21]. These methods typically
focus on the structural, static aspects of networks. More recently,
tools that can also analyze the dynamics of networks have been
developed, especially the Groningen-Oxford model called SIENA
[19]. A limitation of the social science methods in the context of
Web is that they have originally been designed for relatively small
social networks (order hundreds of nodes). Unfortunately, it turns
out to be non-trivial to scale them up to the very large-scale net-
works (where one is easily talking order millions or more) that in-
habit the Internet and the Web. Only very recently attempts to do so
are emerging. They infuse the more traditional methods from the
sociological tradition with methods borrowed from natural science
(such as the mean-field approach) [6].

The network aspect that undoubtedly has been studied most ex-



tensively is that of the degree distribution, i.e., the number of links
that nodes have, and the associated phenomenon of power laws.
The thrust of this research originates from statistical natural science
(so has a very large-scale perspective to begin with), but interaction
of this type of work with that stemming from the sociological tra-
dition(s) is still hardly discernible in the scientific literature, both
in statistical physics and in the social sciences. Web Science might
offer an important contribution if it succeeds in bridging these two
hitherto separate traditions.

As we will now show, even in the (relatively simple) case of de-
gree distributions and power laws, the state of Web knowledge is
unsatisfactory. The existence of power laws is generally consid-
ered to be empirically well established also for the Web. Clauset et
al. [8] however discuss many caveats regarding empirical studies
proclaiming power laws. One of them is that there are several dis-
tributions that come close to power laws in certain regions, and that
it is empirically difficult to distinguish between them. The present
article will below offer additional theoretical grounds that support
this: if power laws occur at all, they will only be approximate.

The emergence of power laws has theoretically been made plau-
sible by the Price-Barabási family of generative network models
(for overviews see [2] and [17], Ch. 14). These theoretical net-
work models however make strong assumptions and idealizations
that are questionable for the study of the Web:

1. The network is indefinitely growing: in every time step a new
node is added, and it is these new nodes that create the links.

2. The probability to create links increases linearly with the de-
gree (preferential attachment).

3. The possibilities of link removal and of network churn (nodes
not only entering but also leaving the network) are ignored.

4. Studies of power-law emergence limit themselves to the
regime where a steady-state solution holds, i.e. after the pas-
sage of a very long (formally, infinite) time.

These assumptions and idealizations seem pretty appropriate for
citation networks (the area for which generative network models
were indeed originally developed), but they are much less so for
studies of the Web and the Internet. Assumptions 1 and 3 are sim-
ply not valid for the Web, assumption 4 focuses investigations on
the non-dynamic regime only, and assumption 2 considers only one
candidate hypothesis. All in all, theoretical network studies have
succeeded in showing that emergence of power laws is a possibil-
ity as a result of growth of networks combined with preferential
attachment; but they fall short of an actual demonstration of the
necessity and/or universality of power laws as a first principle (for
which they are often taken, though). The Web conditions have not
been properly taken into account, and therefore these studies can
not be considered conclusive.

It is already qualitatively easy to see why things might be dif-
ferent, see Figure 1. The left pane shows the situation considered
by the vast majority of generative network model studies. The link
creation process considered on its own will drive the system to ever
higher values of the degree k. The (only) counteracting mechanism
that drives the degree down is the steady introduction of new nodes
with zero or low degree. If there is a balance between these two
forces that holds for every value of k (in an appropriately differen-
tiated way for each k), the emergence of a power law is possible.
Link attachment linearly proportional to the degree is one such pos-
sibility according to generative network model studies.

The right panel shows the general case. Nothing changes for
link creation, but more counteracting mechanisms come into play

that drive the degree down. To dynamically obtain a power law,
the link creation process must be balanced by the joint process of
low-degree node addition, link removal, plus node removal. Con-
ceptually it is clear that this is possible in principle, but it is not
clear that power laws will emerge under the same conditions (lin-
ear preferential attachment). In this paper we consider the general
situation of the right pane, and we will show that conclusions for
the general case differ from the established ones specific for grow-
ing networks.

3. ENRICHED NETWORK MODELLING
AND ANALYSIS

Berners-Lee et al. [4, 5] point out in their call for an interdis-
ciplinary Web Science agenda that there is a clear need for better
mathematical modelling of the Web. Below we present and ana-
lyze one such model (based on the exciton model of [1]) that is
dynamic, includes the possibility of link loss and network churn
(so does not make the growing network assumption), and is able
to handle nonlinear forms of attachment. Furthermore, it is formu-
lated in terms of continuous time which makes it more amenable
to empirical measurement and testing (as measurements are carried
out in continuous rather than discrete-event time, a point also made
in [19] for empirical social network analysis). Importantly, these
are all features that increase the realism of network models in the
context of the Web but that almost all generative network models
lack.

If we include all these features, but otherwise retain the stochas-
tic nature of the existing network formation models, one can write
down a so-called master equation for the dynamics of the degree
distribution:

d
dt
qk(t) = +λ+

k−1 · qk−1(t)
−[λ+

k + µ−k + w0 + f0] · qk(t)
+µ−k+1 · qk+1(t) + f0 · δk,0

(1)

Here, qk(t) is the probability that a node has degree k at (real) time
t, λ+

k and µ−k denote the rates (transition probabilities per unit of
time) of link creation and loss, respectively, and network churn is
modelled here by a process of node loss with rate w0 and a process
of (initially linkless, k = 0) node creation with a rate f0. Note
that these processes are all stochastic, so the (discrete) events in the
network take place at irregular times (similar to incoming calls to
a helpdesk). For example, network churn is technically modelled
here as a process of irregular bursts known as shot noise. The rates
represent the average waiting time between events (and so are mea-
surable quantities, at least in principle, see Sec. 4). The link loss

Figure 1: Counteracting mechanisms that together may generate
power laws. Left panel: strictly growing networks. Right panel:
the general case.



rate µ−k is a bit special as it is the sum of direct link deletion and
link loss due to churn (node removal):

µ−k = λ−k + 2w0 · k, (2)

where λ−k is the intrinsic link deletion rate and the second term
represents the contribution as a result of node removal (the factor
of 2 models the fact that not only the links of the lost node itself are
removed, but also of the nodes it was connected to).

The master equation says that the rate of change of the occupa-
tion probability of a degree k by nodes in the network (the left-hand
side) is the net total of all transitions per unit of time leading into
that state k minus the sum total of all transitions per unit of time
moving out of that state. Link creation, link loss and network churn
all contribute to these changes. One would generally expect that all
these processes influence whether or not a power law emerges, and
if so, what their impact is on the shape, as determined by the power-
law exponent.

The above exciton model is much more general than the Price-
Barabási type of generative network models, and in fact subsumes
them: the usual generative network models are recovered by setting
the rates for link deletion (λ−) and node removal (w0) equal to
zero for all k, and by setting the node creation rate f0 equal to one.
Although our model is much more general, it still admits of several
important results that can be obtained in an explicit analytical form.
Here we state a few of them.

Modelling Nonlinearities. The key dynamic parameters in
Eq. (1) are the various transition rates: together they fully deter-
mine the dynamic evolution of the network including important
variables such as the average degree and the degree distribution.
Moreover, they have a clear conceptual interpretation in terms of
the mean waiting time between network events of a given type (e.g.
link creation, removal) and, much more so than the transition prob-
abilities that are put central in the generative network model stud-
ies, they are accessible to direct empirical measurement. The net-
work science tradition is to assume that transitions increase linearly
with the degree k, known as preferential attachment: ‘popular’ or
‘rich’ (i.e. high-degree) nodes have a higher probability to obtain
new links than ‘poor’ low-degree nodes.

However, there is no a priori reason that transitions must be
linear in the degree, even though this is the case that hitherto al-
most exclusively has been studied. To study the possible effects
of nonlinearities, we therefore assume a parametrized polynomial
plus broken-power shape for the transition rates, as follows:

λ±k = kγ · [a±0 + a±1 · k + a±2 · k
2 +O(k3) · · · ], (3)

with 0 ≤ γ < 1. This parametrization subsumes and extends
the investigations done so far. It subsumes the constant (random
graph) and linear (preferential attachment) cases; the factor with
γ enables to study broken powers (the case studied by Krapivsky
et al. [14, 13]), and it enables to study for example quadratic and
other superlinear or sublinear shapes.

Here we will focus on contrasting the results for the traditional
linear case, what happens if we include link removal and net-
work churn, and furthermore what happens if nonlinearities of a
quadratic form are introduced. The broken-power case will be sep-
arately studied in the Appendix.

Linear Preferential Attachment & Strictly Growing Net-
works. As a first model example we consider the situation that
link creation is linear in the degree k (so γ = 0 , a±k≥2 = 0
in Eq. (3)), and that both links and nodes are never removed
(λ−k = w0 = 0 in Eq. (1)). Essentially, we consider the situation of

the left pane of Figure 1 with a linear preferential attachment rate
(λ+
k = a+0 + a+1 · k), so that in effect one is assuming that the Web

behaves in a way similar to citation networks. This is the situation
assumed in the vast majority of generative network model studies.

In [1] we introduced and explained a novel method computing
litmus tests for the emergence of power laws, based on the prin-
ciple of detailed balance. It enables to analyze whether or not a
power law ultimately emerges in the network and in addition what
the power-law exponent is, without having to know the stationary
solution itself (which is much more complicated but is what all
generative network model studies do).

If we apply this method, we find that the stationary solution is
approximately 1 a power-law distribution

(
1
k

)α with a power-law
exponent α given by:

α linearpref,growing = 1 +
f0

a+1
. (4)

One observes that the long-term outcome for the degree distribution
is determined by the dynamic parameters of the network (in this
case f0 and a+1 ).

Specifically, the type of power law that emerges is determined by
the relative speeds of the counteracting processes that are at play
(here, link creation and linkless new node introduction). This con-
firms quantitatively what one would expect qualitatively. If node
addition is fast (relatively many events per unit of time) compared
to link creation, the power law exponent will be higher and the de-
gree distribution steeper than when it is relatively slow.

The above result can be easily specialized so as to recover the
major results of the first wave of generative network studies [3,
12, 10, 9]. In these studies it is typically assumed that one node
is added per unit of time, and so we can set f0 = 1 in Eq. (4).
Furthermore, it is assumed that the linear link creation function
for attachment relates to the probabilities (rather than the rates) for
attachment and therefore must normalized to unity (in our notation,
this implies the assumption a+1 + a+0 = 1).

If we introduce these assumptions, Eq. (4) simplifies to:

α generative,linearpref,growing = 1 +
1

a+1
= 2 +

a+0
a+1

, (5)

which is indeed the result according to the link-copying model of
Kleinberg et al. [12], the early citation network studies by Derek
de Solla Price [10, 9] and, if we adopt an even split in linking prob-
ability a+1 = a+0 = 1

2
, we obtain α = 3, the original result by

Barabási et al. [3].
We note that these works derive the power-law exponent in ways

very different from our method. An important conceptual differ-
ence is that the generative network model studies take the attach-
ment functions as referring to the transition probabilities, whereas
in our exciton model they refer to the transition rates. Interestingly,
for linear preferential attachment this difference does not matter
and the quantitative results for the power law are the same. How-
ever, this difference is no longer inconsequential when one con-
siders nonlinear attachment functions (see further below and the
Appendix).

1To be more precise: the litmus test of [1] shows that the station-
ary solution is a (non-power law) distribution that coincides with
a power law in the two leading orders when a series expansion of
the distribution for the adjacent degrees is made with 1

k
as the small

parameter. Simply put, a power law emerges, but it is only approxi-
mate; and the approximation holds well only for the tail containing
the nodes with high degree.



Linear Preferential Attachment & General Networks.
That the Web really behaves like a citation network is unlikely. A
novel and more realistic case is therefore to consider linear prefer-
ential attachment, but also allow network churn and link removal
(as in the right pane of Figure 1). Remarkably, this more general
and very relevant case has hardly received attention in the network
science literature, with just a few and partial exceptions: [16] stud-
ied the inclusion of node deletion and [17] (Sec. 14.4.2) that of
linear link removal.

Here we include all these processes simultaneously, following
Eq. (1), and assume a linear link creation rate as above and linear
link removal according to λ−k = a−1 · k). Applying the litmus test
approach of [1] employing a power-series expansion in 1/k we see
that link and node removal both significantly change the picture.

Following this method we get instead of Eq. (4):

α linearpref,general = 1 +
f0 + w0

a+1 − (a−1 + 2w0)
. (6)

So, as soon as link and/or node removal become significant com-
pared to link creation, one obtains unrealistic values of the power-
law exponent or the power-law behavior becomes even totally lost.

Quadratic Attachment & General Networks. As pointed
out previously, there is no a priori reason that preferential attach-
ment should be linear. It is just a convenient hypothesis, although
warranted to make because it is basically the simplest one, next to
constant attachment that does not work because it predicts a Pois-
sonian ‘bell-shape’ degree distribution rather than a right-skewed
one such as an approximate power law that is also observed empir-
ically. But above we have demonstrated that the linear preferential
attachment hypothesis also runs into trouble or is at least question-
able in view of well-established empirical observations of the Web
if we integrate realistic Web phenomena such as link removal and
node churn into the theoretical network model.

This constitutes a trigger to investigate yet other hypotheses, in
particular the possibility of nonlinear attachment functions. Be-
yond linear preferential attachment, most likely the next-simplest
hypothesis is a quadratic shape for attachment. Accordingly, we
now consider the case of quadratic link creation and removal rates:
λ+
k = a+0 +a+1 ·k+a+2 ·k2 and λ−k = a−1 ·k+a−2 ·k2. Mathemati-

cally, we proceed in the same way as indicated above (although the
mathematical bookkeeping in comparing terms in the power-series
expansion again becomes a bit more tedious). In summary, this
analysis leads to the following results for the quadratic attachment
case.

In general, the stationary solution here is a non-power law distri-
bution but one that is well approximated for not too small k by the
equation:

qstatk =
ν

kα
·
(
a+2
a−2

)
, (7)

where ν is a normalization constant, and

α quad,general = 2 +
a−1
a−2
− a+1
a+2

+
2w0

a−2
. (8)

In other words, the general long-term solution in the quadratic at-
tachment case has a power-law like factor but with an exponential
cut-off in the high-degree tail.

It follows that under certain conditions, namely if a+2 = a−2 im-
plying a regime of non-growth whereby link removal and link cre-
ation are approximately balancing each other, we have a stationary
solution that is pretty close to a power law. This is confirmed by
considering the second moment M2 =

∑∞
0 k2qstatk and requiring

that it goes to infinity as should be the case in truly scale-free net-
works. If we apply this to Eq. (1) we obtain an additional constraint
to the dynamic parameters, as a result of which the power-law ex-
ponent in the scale-free network limit becomes:

α quad,general,scale−free = 3− (f0 + w0)

(a+2 + a−2 )
. (9)

Hence, in the quadratic attachment case, the power-law exponent
will be close to 3 if node addition and deletion are small compared
to the link creation and deletion rates, and it will be close to 2 when
all process rates have the same order of magnitude. This fits the
empirical observations regarding the Web very well, and so the
quadratic attachment or other nonlinear hypotheses are certainly
ones that are to be taken seriously. The above equations (8) and
(9) nicely show how all processes of link creation, link deletion,
node addition and node deletion influence the emergence of power
laws as well as the numerical value of the power-law exponent in
ways that have as yet not been uncovered by the traditional linear
preferential attachment network studies. It moreover follows that
approximate power-law behaviour is also possible in non-growing
networks, in contrast to what is often thought [2, 16].

Average Degree as an Outcome of Dynamics. In the gen-
erative network model studies that have been carried out so far, the
average degree of a network is always a fixed and constant param-
eter, input rather than output. This is unlikely to be realistic, as the
average degree is expected to be not predetermined but to be the
outcome of the dynamic processes and parameters in the network.
This is in fact the case in our network model. If we take the first
moment of Eq. (1) and take the long-time limit t −→∞, we obtain
an expression for M1 =

∑∞
0 k · qstatk . The average degree c pre-

dicted for the network follows from the key dynamic parameters as
follows:

c =
a+0

a−1 − a
+
1 + 3w0 + f0

. (10)

This equation subsumes both the linear and quadratic forms of
attachment as discussed above (for the latter it is assumed that
a+2 = a−2 , i.e. rough balance between link addition and removal).
Without going into detail, it is clear that (i) the average degree is
not predetermined (as the generative network model studies have
it) but is the outcome of dynamic parameters of the network; (ii)
all processes of link creation, link removal, node addition and node
removal are co-determining the average degree of a network.

In summary, in order to be able to select between the large vari-
ety of possible theoretical models, we need richer in-depth empir-
ical data. It is not sufficient to have data on power-law behaviour
as such, because this does not shed any light on the underlying
mechanisms. Even, where one has attempted to measure preferen-
tial attachment directly [11], these are aggregated studies that are
not able to distinguish between link/node creation and removal, but
just measure the net result over a time window. But as the transi-
tion rates for the linkand node update processes fully determine the
dynamics, a question is whether one cannot obtain direct empirical
information on these transition rates themselves. This has to our
knowledge never been studied, and is what we turn to now.

4. TRANSITION RATES: EMPIRICAL
STUDY

Churn is an inherent part of the Web, and all node and link re-
lated events (addition and deletion) dynamically contribute to the
changes in the complex network structure in a different way. But
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Figure 2: Evolution of the average number of links over time (on a
monthly basis).

as already stated, all prior studies only analyze the net result of
these processes by aggregating them so that one cannot distinguish
the differentiated impact of the separate processes (cf. Fig. 1). Em-
pirically, we believe one can (and therefore should) go a step fur-
ther. Therefore, below we carry out a simple empirical case study
demonstrating that one can in fact obtain much more detailed in-
sights into the different counteracting processes also directly from
empirical data themselves. Using Wikipedia [22] as an example of
a large-scale evolving network, we show how key dynamic network
parameters might be measured or estimated directly from empirical
data, and how for example churn influences the degree distribution.

Wikipedia is one of the large-scale dynamic evolving networks,
due to the continuous collaborative editing and maintenance of its
content by users. We conduct this case study on the so-called
Wikipedia hyperlink network, where its articles are nodes in the
network linked to each other by means of internal links (i.e., within
Wikipedia). Its entire edit history is available on a monthly basis for
download, and we use the edit history dump of the simple English
language Wikipedia [18] as of January 1, 2013 for our measure-
ments. Currently, the number of articles of this Wikipedia stands
at 91,451. The edit history dump contains every revision (times-
tamp, full article text and user information about the editor of the
revision) for every article of Wikipedia. Deleted pages, however,
are not included into any public Wikipedia data dump due to some
legal constraints.

The hyperlink network of Wikipedia can be represented as a sim-
ple directed graph G = (V,E) evolving over time, with new pages
appearing, pages deleted, and links added and removed on demand.
In fact, links may change due to page edits or to vandalism. In
the latter case malicious users sometimes overwrite entire pages,
thereby temporarily removing or adding the links from vandalized
pages. We can clearly see this flux of links in Figure 2: initially the
network grows to become more connected, followed by periods of
Wikipedia cleanup and expansion, when users collaboratively ex-
pand the content of existing pages or fix pages that do not adhere
to Wikipedia standards on content and style. The average degree is
not very high (in the range of 2–3), but is a dynamic variable as it
clearly changes over time (where generative network models have
it constant and mostly as a predetermined input variable).

As one would expect (although theoretical network models cur-
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Figure 3: Evolution of the cumulative degree distribution of the
simple Wikipedia. The y axis shows the fraction of nodes in the
network having at least degree d.

rently do not account for this), the degree distribution of the net-
work also evolves over time. Figure 3 visualizes the changes in
the cumulative degree distribution of the network over time. Each
curve in the Figure represents the degree distribution of nodes in
the indicated year. (Again, deletion of pages could not be included
in these results.).

Subsequently, we have extracted a graph of the links between
Wikipedia pages for every month, taking into account all revisions
of every Wikipedia page, and from this we have attempted to di-
rectly measure the link creation, link removal and node addition
rates (λ+

k , λ
−
k and f0 in the exciton model of Eq. (1)).

4.1 Measurement and Estimation Procedures
Let k be a degree of a Wikipedia page, i.e., the number of in-

coming (internal) links to the page. The pages with degree k
of the Wikipedia hyperlink network form a subgraph Gk(t) =
(Vk(t), Ek(t)) at time t. As described above, a page has its re-
vision history, each of which has a timestamp and a set of hyper-
links to the other Wikipedia pages. We take ∆t as an average time
window between two consecutive revisions of any page through the
entire Wikipedia history.

In order to capture link addition and link removal events of a
page separately, we compare every pair of consecutive revisions of
the page, computing the complement of the set of its links. Thus,
we obtain the number of added links and the number of removed
links. For all pages vk ∈ Vk(t) with (in)degree k, and for all their
respective revisions r(vk) ∈ Rk, the total number of links addition
events ε+k (t) at time t can be expressed as:

ε+k (t) =
∑

vk∈Vk,

r(vk)∈Rk

|r(vk, t) \ r(vk, t− 1)| (11)

where r(vk, t) is the latest revision of the page vk, prior to time t.
Similar to ε+k (t), the total number of link removal events ε−k (t) at
time t is

ε−k (t) =
∑

vk∈Vk,

r(vk)∈Rk

|r(vk, t− 1) \ r(vk, t)| (12)



The rate of link addition λ+
k can then be computed as the number

of links added to the Wikipedia pages averaged over the number of
pages in the network and over time:

λ+
k =

1

|T | ·
∑
t∈T

e+k (t)

|Vk(t)| (13)

Likewise, the rate of link removal λ−k is empirically computed,
averaging the link removal events over all pages, their revisions,
and over the entire period of the Wikipedia history:

λ−k =
1

|T | ·
∑
t∈T

e−k (t)

|Vk(t)| (14)

For our empirical case study, we estimated that a suitable time step
∆t for the simple Wikipedia from the entire period (01.01.2001 –
01.12.2012) is one month; in Eqs. (13) and (14), |T | = 132.

Finally, the page addition rate per time month is computed as
the size of the complement of two sets: (i) the set of pages V (t)
existing at time t, and (ii) the set of pages V (t− 1) existing at time
t− 1, averaged over the number of months of the empirical data:

f0 =
1

|T | ·
∑
t∈T

|V (t) \ V (t− 1)|
|V (t)| (15)

where |T | = 132.
Since the Wikipedia dumps with the complete edit history (or

any other public Wikipedia dump) do not contain deleted pages, it
is currently not possible to get a reliable measure for the rate of
page deletion wk.

4.2 Observations and Caveats
We now summarize some observations made in the course of our

empirical study on the growing Wikipedia hyperlink network.

Results. We plot the resulting rates λ+
k , λ

−
k , measured as de-

scribed above. The scatterplots in Figure 4 show the rates of link
addition λ+

k and link deletion λ−k per month for a degree k. The
results suggest that overall the link addition rate is higher than the
link removal rate. However, the link removal rate is approximately
20% of the link addition, so it cannot be neglected as most genera-
tive network studies do to date. Thus, link removal is a significant
process that should be taken into account into theoretical network

model studies. Moreover, as the higher magnification insets in Fig-
ure 4 suggest, the link addition rate has a local minimum around
degree 50, while the same degree corresponds to a local maximum
of the link removal rate; for this degree the link removal is only half
of the link addition rate.

Furthermore, the plots (Figures 4, 5 and 6) suggest the combina-
tion of a ‘bell-shape’ curve, combining an increasing curve for the
smaller degrees of the nodes, an intermediate regime resembling
a plateau (up to 200, note that this is nearly two orders of magni-
tude larger than the average degree) and an exponentially decreas-
ing curve for the long tail of the very high node degrees (≥ 200).
The left inset figure in Figure 4 also suggests that the first peak
in the link addition rate roughly coincides with the average degree
(see Figure 2). Note that the regimes with degree < 200 will con-
tain the vast majority of the nodes.

Furthermore, the node addition rate for Wikipedia is higher than
the node removal rate (since the overall number of pages grows de-
spite the page removals). We obtained from the empirical data that
the page creation rate is f0 = 0.076301841. The number is actu-
ally quite high, and suggests that the counteracting process such as
page removal should be high too. As mentioned before, it is now
not possible to measure wk directly from the Wikipedia dump as
the deleted pages are removed from the public data. As an estimate,
we can only base ourselves for now on findings in [20] [Table 2.3],
where page addition and removal rates have been measured for the
English Wikipedia version for a duration of 4 months: 10.94% of
pages added compared to 5.03% of pages removed, suggesting that
the average node deletion rate w0 is about half of the node addition
rate f0.

Choosing The Time Window. To observe the dynamics in
networks directly via the empirical data, the time interval needs
to be chosen very carefully. On the one hand, good statistics is
required, so the time window should be large enough in order to
have enough individual events for statistical estimates and be able
to average out fluctuations or noise. On the other hand, the time
window should be small enough to observe the significant changes
in and emergent behaviour of the network. In other words, the issue
here is to separate what is signal and what is noise in the empirical
data. If the time window is too small, one is keeping in too much
noise; if it is too big one is also averaging out meaningful dynamic
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Figure 4: Empirically estimated average rates λ+
k (left) and λ−k (right) for different degrees k. Inset figures show peaks of the rates.
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Figure 5: Scatter plots with fitted curves for average rates λ+
k (left) and λ−k (right) for degrees k < 120.

features of the network. This choice is therefore critical. It will
depend on the specifics of the network under study (as the typical
time scales of change in networks are not universal features but
vary very much depending on the nature of the network), but the
proper choice of the time window constitutes a general and very
non-trivial issue in the empirical study of network dynamics [19].

In the present case study, for example, although Wikipedia pages
are periodically edited causing changes in the (hyperlink) network
structure, there are pages with much fewer revisions than the rest.
We thus chose the time interval to be an average time window be-
tween two consecutive revisions of any page through the entire
Wikipedia history, which is approximately one month.

Network Flux. As described above, we separately measure link
addition and link removal events for different node degrees. We
measure these fluctuations between time intervals of one month
each. However, the average rates λ+

k , λ
−
k that we derive in this way

are approximate since we may miss out on intermediate short-term
degree fluctuations within the time interval.

Most studies also disregard the churn in a network, notably, by
assuming that nodes are added one-by-one in a sequence, but are
never removed. Moreover, new nodes are assumed to have a fixed
degree (zero, one, or equal to the average degree are the common
cases in the theoretical model studies). Actually, in the case of
Wikipedia, some pages may already have links to it before their
creation and some do not. This suggests for theoretical studies of
network dynamics that both the initial and boundary conditions are
more complex than accounted for now by the network model stud-
ies.

Since any public data dump of Wikipedia does not contain
deleted pages, it is not possible to directly measure the rate of pages
deletion wk. The only way to compute the rate of page deletion is
by collecting Wikipedia dumps at different time points and com-
pare the set of pages in them, thereby tracking the deleted pages.

Finally, the number of possible degrees of pages is very high,
which results in a relatively sparse sample set for the rates estima-
tion. For example, there are very few Wikipedia pages that have an
extremely high number of the links (k ≥ 500). The average rates
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Figure 6: Scatter plots and fitted curves for average rates λ+
k (left) and λ−k (right) for different degrees k.



for these degrees are not representative. Nevertheless, they create
a very long tail in the graph (see Figures 4 and 6). In order to get
more accurate average rates it might help to consider ranges (bins)
of the intervals for node degrees, where we adapt the size of an
interval in such a way that every interval covers a statistically suit-
able minimum number of samples (i.e. nodes with the respective
degrees).

Link Asymmetry. Large networks are typically asymmetric. In
fact, the Wikipedia hyperlink network is a directed graph: if page
A refers to page B in the Wikipedia, it does not imply that page B
also refers to page A. Thus, a page may have a different number of
incoming links (in-degrees) and outgoing links (out-degrees). The
popularity of a Wikipedia page is best estimated by its in-degree
k, which we used as the basis to compute the rates λ+

k and λ−k .
The asymmetry of in-degrees and out-degrees has been previously
discussed and measured in [12, 7]. It is however relatively straight-
forward to include link asymmetry into our model of Eq. (1), by
generalizing it to a two-dimensional random walk; the state space
of such a model will be spanned by the (out-degree, in-degree) pair
of the nodes.

In summary, our empirical investigations lead to the following
overall picture:

• It is indeed possible to extract direct and differentiated em-
pirical information from network data regarding the rates of
link creation, link removal, and node addition and deletion.

• The appropriate measurement and interpretation procedures
need careful scrutiny and come with a number of caveats; a
key reason (but not the only one) is that the empirical data
show a lot of scatter.

• Nevertheless, a pretty strong conclusion is that link removal
and network churn do play a non-negligible empirical role in
the dynamics of networks, in ways that theoretical network
model studies to date have not accounted for.

• Moreover, the data suggest that (even strongly) nonlinear and
complex forms of link attachment as well as link removal
might occur in practice.

Although more case studies on other dynamic networks are called
for, we believe to have shown that this line of work is necessary and
fruitful to set new tasks for and requirements on theoretical and
computational network models. Furthermore, we deem it pretty
likely that theoretical network models must become much more
sophisticated before they can properly handle empirically observed
network dynamics, even for relatively simple network variables
such as average degree and the degree distribution.

5. CONCLUSION
To better understand the dynamic mechanisms at work in the

Web, we must develop a more advanced set of theoretical and em-
pirical instruments for dissecting the Web-as-a-network — instru-
ments that are able to cut much deeper.

Theoretically, we have shown that nonlinear attachment is a
serious possibility to explain observed power-law behaviour, that
power-law behaviour is possible in non-growing networks, but also
that there can be many regimes in networks where power laws are
only approximate or even absent.

In order to be able to select between the many theoretical pos-
sibilities, we need measurement programs leading to more refined
and in-depth data.

Empirically, we have shown that it is actually possible to directly
measure dynamic network parameters such as link addition, link
removal and node churn.

Although these studies have a tentative nature, they also point to
the possibility of nonlinear forms of attachment.

Given the complexity of the Web and the variety of the so-
cial/sociotechnical networks it hosts, it is in our view necessary to
have a research program of more in-depth and dynamics-oriented
theoretical-computational studies as well as stronger and richer em-
pirical data gathering and testing, in a way that mutually informs
both.
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APPENDIX
Why Nonlinearity Cannot Be Ruled Out
In this Appendix we take a critical look at the studies that have been
done so far on nonlinear attachment and the conclusions they draw.
As pointed out earlier in this paper, there is no convincing a priori
reason that attachment should be linear. Both the present paper as
well as other recent Web Science investigations [15] offer theoreti-
cal and empirical reasons to believe that (minimally) the hypothesis
of nonlinear attachment is worthwhile to investigate carefully.

Since almost all theoretical network model studies employ the
assumption of linear attachment, there are not that many on nonlin-
ear attachment. To the best of our knowledge, only a set of studies
by Krapivsky et al. (e.g., [14, 13]) have studied some of these mat-
ters in depth.

Their studies investigate the possibility that link creation is mod-
elled by a broken-power function kγ , called the attachment kernel
Ak , where γ is any real number inbetween zero and two. If γ = 1
we have the usual linear attachment, if γ < 1 we have sublinear
attachment, and if γ > 1 we have superlinear attachment.

In very brief summary, these theoretical model studies lead to
the basic conclusion that only linear attachment is able to generate
power laws.

This is an interesting and strong conclusion, because — if correct
— it seems to settle the matter as to how power laws emerge. The
implied and pretty attractive argument goes as follows:

1. Power-law degree distributions are empirically observed in
many networks (including the Web).

2. The generative network model studies generally show that lin-
ear attachment is able to produce power laws in networks.

3. The studies of Krapivsky et al. offer grounds to believe that
nonlinear attachment functions do not and can not lead to
power-law behaviour.

4. Therefore, the hypothesis of linear preferential attachment
must be correct.

However, we will show now that point 3 is an overstatement and in
part invalid, so that nonlinear attachment cannot be ruled out.

Krapivsky et al. consider growing networks (one node added per
unit of time, only link creation). Their basic model is specified by
a rate equation for the number of nodes with k links Nk(t):

d
dt
Nk =

Ak−1 ·Nk−1 −Ak ·Nk
A

+ δk,1, (16)

where Ak = kγ , and A =
∑
k AkNk. which is a normalization

factor: Ak−1 · Nk−1 is the rate at which link creation occurs and
the factor A turns this into a normalized probability.

These authors then show, by summing Eq. (16) over k, that
Nk(t) = nk · t: the number of nodes with k links ultimately in-
creases linearly in time for all k, and also A(t) = Mγ · t. Substi-
tuting this into Eq. (16), one sees that the time dependence cancels,
and one is left with a static equation for nk, where nk is the degree
distribution in the long-time limit t −→∞:

nk =
Ak−1 · nk−1 −Ak · nk

Mγ
+ δk,1. (17)

In fact, the degree distribution nk equals what we call the stationary
solution qstatk in this paper and, following the definition of A, Mγ

is in fact the γ-th moment of the degree distribution. For linear
attachment, it is the first moment of the degree distribution, which
is equal to the average degree (which equals one by construction in
the model of Krapivsky et al.). Generally, for this model Eq. (17)
is the equation for the stationary solution of the degree distribution
if we have nonlinear attachment.

Now let us compare this with our exciton model of Eq. (1). If we
assume the same growing network case (no link and node removal,
i.e., λ−k = w0 = 0) and look for the stationary solution by setting
the left-hand side equal to zero we get:

0 = λ+
k−1 · nk−1 − [λ+

k + f0] · nk + f0 · δk,0. (18)

It is easy to see that the two models represented by Eq. (17) and
Eq. (18) will essentially predict the same degree distribution if we
set:

λ+
k = Ak = kγ and f0 = Mγ . (19)

Hence, what the model by Krapivsky et al. represents is in-
deed modelling a nonlinear (broken-power) link creation rate, but
through its assumed normalization factor it effectively changes the
node addition rate. Rather than the node addition rate being one
(the standard assumption in generative network model studies) it
equals Mγ .

Accordingly, the comparison by Krapivsky et al. between differ-
ent nonlinear attachment kernels is not on the same basis, because
Mγ quickly monotonically increases as a function of γ: it is easy
to generally prove that if γ2 > γ1 then Mγ2 > Mγ1 . Rather than
staying constant at one (which it is for the linear case), the node ad-
dition rate quickly grows for superlinear attachment. So the model
by these authors has (implicitly) different node addition rates for
each different value of γ. This is not proper: for the study of non-
linear forms of attachment, one should vary only the parameter γ,
but certainly not the node addition rates at the same time.

This explains for example why our results in this paper for
quadratic attachment (Sec. 3) are very different from those of
Krapivsky et al.. It is in fact no surprise that no power laws emerge
in their model: recall that for quadratic attachment a power law will
have a second moment M2 that is infinite. Then the node addition
rate has to be also infinite in the model by Krapivsky et al. which
is clearly absurd. If we set the node addition rate to a finite value
that is different from the second moment (as we do in our model)
then in the quadratic attachment case power laws can occur with
realistic exponents (as demonstrated in Sec. 3, also for the general
case including link removal and network churn).

This whole argument also applies to other values of γ. Our
model predicts that for any superlinear form of attachment power
laws may emerge (although the exponent may not necessarily as-
sume values that are in the range of the empirical observations; the
predicted exponent in our model generally is γ ± additional terms



coming from link removal and network churn, roughly analogous
to what we see in Eq. (8) for the quadratic case. For sublinear
attachment it predicts that they generally don’t (a proof of this is
outside size and scope of this paper).

The general and essential point is that in a continuous-time
model (expressed by ordinary differential equations) rates rather
than probabilities occur, and the former do not require normaliza-
tion. Rates occur because otherwise the dimensions (one over time,
t−1) at both sides in the dynamic equations can not be right. Even if
rates occur (as in our model), it can be formally demonstrated that
the degree distribution qk(t) is properly normalized for any time t,
and therefore this holds also for the long-time limit nk or qstatk (to
prove this requires some matrix algebra).

The conclusion of no power laws for nonlinear attachment is
therefore basically an artefact of an improper way of normalization.
It is possible to rewrite continuous-time models in terms of transi-
tion probabilities that should be normalized (although this requires
transform theory and convolution equations). But then the evolu-
tion equations do not take the shape of ordinary differential equa-
tions but of random-walk discrete-time equations that are event-
driven. The connection of transition rates and properly normalized
transition probabilities is given by:

p±k =
λ±k
Λk

, with Λk = [λ+
k + λ−k + w0 + f0], (20)

where p±k are the properly normalized transition probabilities for
link attachment and removal. If we include node addition and
removal, the total transition probability is properly normalized to
unity. Without going into further detail, it is clear that this is fun-
damentally different from the normalization procedure followed by
Krapivsky et al..

Overall, the conclusion of Krapivsky et al. expressed in point
3 above that nonlinear attachment can not lead to power laws is
generally unwarranted. Consequently, the hypothesis of nonlinear
attachment cannot be ruled out.


