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Abstract

We consider two types of queues with workload-dependent arrival rate and
service speed. Our study is motivated by queueing scenarios where the arrival
rate and/or speed of the server depends on the amount of work present, like
production systems and the Internet.

First, in the M/G/1 case, we compare the steady-state distribution of the
workload (both at arbitrary epochs and at arrival instants) in two models,
in which the ratio of arrival rate and service speed is equal. Applying level
crossing arguments, we show that the steady-state distributions are propor-
tional. Second, we consider a G/G/1-type queue with workload-dependent
interarrival times and service speed. Using a stochastic mean value approach,
several well-known relations for the workload at various epochs in the ordinary
G/G/1 queue are generalized.
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1 Introduction

In queueing systems, the speed of the server often depends on the amount of work
present. This is particularly true if the server does not represent a machine, but
rather a human being. For example, Bertrand and Van Ooijen [3] describe a produc-
tion system where the speed of the server is relatively low when there is much work
(stress) or when there is very little work (laziness). In addition, the rate at which
jobs arrive at the service system may also depend on the amount of work present.
In the human-server example, we may try to control the arrival of jobs to optimize
server performance. In packet-switched communication systems, the transmission
rate of data connections may be dynamically adapted based on the buffer content,
see for instance [10, 11, 18, 21]. In particular, feedback information on the buffer
state provides the basis for the Transmission Control Protocol (TCP) to carefully
regulate the transmission rate of Internet flows.
These considerations led us to study single-server queues with state-dependent in-
terarrival times and general (state-dependent) service speed. In the first part of
this paper, customers are assumed to arrive at the queueing system according to
a Poisson process, where the arrival rate depends on the workload. The service
requirement of a customer is generally distributed, and work is depleted according
to a general release rate function that also depends on the workload. In the second
part, the Markovian case is extended to the regenerative case: we consider a similar
model, however with general interarrival times, which may depend on the amount
of work present.
In classical queueing systems, the speed of the server and the arrival rate of customers
are usually assumed to be constant. In such systems, the Markovian case amounts
to an ordinary M/G/1 queue, whereas the regenerative case represents the classical
G/G/1 queue. Furthermore, the workload process in the Markovian model with
general release rule constitutes a dam process. In fact, dams with general release
rate function were studied before queues with general service speed drew attention,
see Prabhu [20] for an overview of dam studies up to 1965. Dams with general release
and Poisson inputs were studied by Asmussen [1], Cohen [6], Gaver and Miller [12],
Harrison and Resnick [13], and many others. For dams with more general input
processes, see Cohen and Rubinovitch [7], Kaspi et al. [15], and references therein.
The two main goals of our study are the following. (i) To establish relationships
between two queueing models with arrival rates λi(x) and release rates ri(x), i =

1, 2, for which λ1(x)
r1(x)

= λ2(x)
r2(x)

, ∀x > 0. Such relationships will allow us to obtain

results for a whole class of models from the analysis of one particular model. (ii) To
extend relations between the steady-state workload and the workload at arrival times
(waiting times) for the GI/G/1 queue to queues with workload-dependent arrival
rates and service speeds. We now discuss these two aspects in slightly greater detail.
Ad (i). We consider two related dams, or M/G/1 queues, with general (state-
dependent) arrival rate and service speed. We show that the workload distributions
are proportional and argue that the difference between the two models is just a
rescaling of time. A similar result holds for the workload just before arrival instants
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- a quantity that does not necessarily equal the waiting time when the service speed is
workload-dependent. The derivation of the proportionality relations is partly based
on level crossing arguments that lead to a Volterra integral equation of the second
kind. These insights also provide an important tool in determining the steady-
state workload distribution in an individual model. It turns out that a release rate
function r(·) allowing the possibility of an empty system plays a crucial role.
Ad (ii). The G/G/1 queue with state-dependent release requires a different method.
Using a Palm theoretic approach, we establish some general relations between the
workload just before arrival instants and the workload at arbitrary time epochs. In
the case of Poisson arrivals, we generalize the PASTA property for a continuous-state
Markov process. Moreover, various well-known relations for ordinary G/G/1-type
queues are extended to queues with general release rate.
This paper is organized as follows. In Section 2, we introduce the M/G/1-type
model with state-dependent arrival rate and service speed and consider the level
crossing equations. In Section 3, we present the proportionality relations with re-
spect to the workload process when we consider two related M/G/1-type queues.
The steady-state densities of some special cases are determined explicitly in Section
4. In Section 5, we present several relations between the steady-state workload and
the workload just before arrival instants for the G/G/1 queue with state-dependent
release. Finally, Section 6 contains conclusions and suggestions for further research.

2 Model description and preliminaries

In this section, we introduce some notation for the M/G/1-type queue with general
state-dependent arrival rate and service speed. The level crossing equation is stated
for this particular model and some special attention is paid to the case that the
workload process has no atom at state 0.

Model description
Consider a Markovian workload process with the following dynamics. Between ar-
rivals, the server serves according to some workload-dependent service rate function
r(x). Arrivals are governed by a workload-dependent rate function λ(x). More pre-
cisely, let Vt be the workload at time t and Wn be the workload immediately before
the n-th arrival epoch. Given that the workload at time t0 is w and the next arrival
is at time t1 > t0, the workload process during the interval (t0, t1) behaves as Vt0+t =
w −

∫ t0+t

t0
r(Vs)ds (a deterministic process). If A is distributed like the time until

the next arrival (starting from initial workload w), then Pw(A > t) = e−
∫ t
0 λ(Vs)ds,

meaning that the hazard rate function of A (its density divided by the tail) at t is
given by λ(Vt). We assume that λ(·) is nonnegative, left-continuous, and has a right
limit on [0,∞). Also, we assume that r(0) = 0 and that r(·) is strictly positive,
left-continuous, and has a strictly positive right limit on (0,∞). Each arrival in-
creases the workload by some positive amount (job size), where these amounts form
a sequence of i.i.d. random variables B1, B2, . . .. The random variables Bi have
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distribution function B(·), with mean β, and Laplace-Stieltjes Transform (LST)
β(·).
Throughout, we assume that the workload process is ergodic and has a stationary
distribution. In order to prevent a general drift to infinity, the rate functions must
satisfy lim supx→∞ β

λ(x)
r(x)

< 1 (see also Cohen [5] and Gaver and Miller [12]). Next,
let the steady-state random variables of Vt and Wn be denoted by V and W , and
let v(·), w(·) denote their densities.

Define

R(x, z) :=

∫ x

z

1

r(y)
dy, 0 ≤ z < x <∞, (1)

representing the time required to move from state x down to state z in the absence of
any arrivals. Of particular interest is R(x) := R(x, 0) representing the time required
for a workload x to drain, again in the absence of arrivals. A related quantity is

R̃(x, z) :=

∫ x

z

λ(y)

r(y)
dy, 0 ≤ z < x <∞.

In particular, R̃(x) := R̃(x, 0) determines whether or not the workload process has
an atom at 0 (see also Asmussen [1], p. 288, in case λ(·) is fixed). The case R̃(x) <∞,
for all 0 < x < ∞, represents the situation that the workload process has an atom
at state 0, whereas R̃(x) = ∞, for some 0 < x < ∞ (and then for all) identifies
the case that state 0 cannot be reached by the workload process. We assume that∫ x

0
λ(y)dy and

∫ x
0
r(y)−1dy cannot be both infinite.

Level crossings
Taking r(x) ≡ 1 and λ(x) ≡ λ results in the ordinary M/G/1 queue. The level
crossing identity for the workload is well-known in this case, see e.g. Cohen [4, 6].
In M/G/1-type queues with time-varying arrival rate, the workload level crossing
identity has been obtained by Takács [23], while Hasofer [14] shows some additional
properties. The proof proposed by Takács may be extended in a rather straightfor-
ward way to queues with workload-dependent service and arrival rates. This results
in the following theorem:

Theorem 2.1. The workload density v(x) exists and satisfies the equation

r(x)v(x) = λ(0)V (0)(1−B(x)) +

∫ x

y=0+

(1−B(x− y))λ(y)v(y)dy, x > 0. (2)

This integro-differential equation has the following interpretation. The left-hand
side of the equation corresponds to the downcrossing rate through level x, while
the right-hand side represents the long-run average number of upcrossings through
x from the workload level 0 and workload levels between 0 and x respectively. If
the workload process has an atom at state 0, it is obvious that {Vt, t ≥ 0} is a
regenerative process, with arrivals of customers in an empty system as regeneration
points. Under the assumption of an ergodic process, the expected cycle length is
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finite and it follows by level crossing theory that the workload density is well-defined.
With some modification, the result can be extended to workload processes that do
not reach state 0 (see e.g. [5] for details). Note that if R̃(x) = ∞, then V (0) = 0.
However, the level crossing equation still holds, and the first term on the right-hand
side of (2) just disappears.

3 Relations between two M/G/1 queues

In this section we consider two isolated M/G/1 queues with arrival rates λi(·),
release rates ri(·) and service requirements Bi

n for the n-th customers (i = 1, 2).
Let Bi

1, B
i
2, . . . be independent and identically distributed random variables with

distribution function B(·), and let ri(·), λi(·) have the same analytical properties
as r(·), λ(·) specified in Section 2. Furthermore, define R̃i(·, ·), R̃i(·), Vi(·), vi(·), and
wi(·) in a similar way as we defined R̃(·, ·), R̃(·), V (·), v(·), and w(·) in Section 2. We
assume that the two queueing models, to be denoted as Models 1 and 2, are related
in the following way:

λ1(x)

r1(x)
=
λ2(x)

r2(x)
, ∀x > 0. (3)

Note that R̃1(x) thus equals R̃2(x). As a consequence, the workload process in both
models either has an atom at state 0, or does not hit state 0 at all.
We now state the three theorems of this section.

Theorem 3.1. For all x > 0,

v1(x)

v2(x)
= C

r2(x)

r1(x)
,

with C = λ1(0)V1(0)
λ2(0)V2(0)

if R̃i(x) < ∞ for all 0 < x < ∞, and C = 1 if R̃i(x) = ∞ for
some 0 < x <∞.

We now turn to the density w(·). Without proof, we claim that it exists just like
v(·) (see Theorem 2 and the end of this section).

Theorem 3.2. Wi(0) = λi(0)Vi(0)/λ̄i, i = 1, 2, with λ̄i :=
∫∞

0+ λi(x)vi(x)dx +
λi(0)Vi(0), and for all x > 0,

wi(x) =
1

λ̄i
λi(x)vi(x), i = 1, 2.

Theorem 3.3. W1(0) = W2(0), and for all x > 0,

w1(x) = w2(x).

Remark 3.1. In principle Theorem 3.3 (Theorem 3.1) can be derived from Theo-
rems 3.1 and 3.2 (3.3 and 3.2). To give more insight into the underlying similarities
between the two models, we prove each of the three theorems separately.
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Remark 3.2. Note that λi(x) ≡ λ would yield the PASTA result that the workload
at an arbitrary time and the workload at an arrival epoch have the same distribution.
Theorem 3.2 may thus be viewed as a generalization of the PASTA result, however,
under the assumption of a continuous-state stationary workload process.

Proof of Theorem 3.1. We apply the level crossing identity to Model i and define
zi(x) := ri(x)vi(x), i = 1, 2. Then (2) reduces to

zi(x) = λi(0)Vi(0)(1−B(x))+

∫ x

y=0+

(1−B(x−y))
λi(y)

ri(y)
zi(y)dy, x > 0. (4)

If R̃i(x) =∞ for some 0 < x <∞, then Vi(0) = 0 and the result follows easily. So
assume that R̃i(x) <∞ for all 0 < x <∞.
Observe that (4) is a Volterra integral equation of the second kind. Let its kernel

be K(i)(x, y) := (1 − B(x − y))λi(y)
ri(y)

for 0 < y < x < ∞ and K
(i)
∗ (x, 0) := 1 − B(x)

for 0 < x <∞. Notice that due to (3) the kernels of both models are the same and
we may drop the index i from our notation. Now define recursively

Kn(x, y) :=

∫ x

y

K(x, z)Kn−1(z, y)dz, 0 < y < x <∞, n = 2, 3, . . . ,

and

Kn∗(x, 0) :=

∫ x

0+

Kn(x, y)K∗(y, 0)dy, 0 < x <∞, n = 1, 2, . . . ,

where K1(x, y) := K(x, y) and K0∗(x, 0) := K∗(x, 0). So the classical successive
substitution method for Volterra integral equations gives:

zi(x) = λi(0)Vi(0)K∗(x, 0) +

∫ x

0+

K(x, y)K∗(y, 0)λi(0)Vi(0)dy + . . .

= K0∗(x, 0)λi(0)Vi(0) +K1∗(x, 0)λi(0)Vi(0) + . . .

= λi(0)Vi(0)
∞∑
n=0

Kn∗(x, 0). (5)

Dividing z1(x) by z2(x) and substituting zi(x) = ri(x)vi(x), i = 1, 2, gives

v1(x)

v2(x)
=
r2(x)

r1(x)

λ1(0)V1(0)

λ2(0)V2(0)
,

and we have shown the result.

The Volterra approach provides a useful tool for determining the workload densities.
If R̃i(x) < ∞ for all 0 < x < ∞, we can follow an idea of Harrison and Resnick

[13], and use the bound K(x, y) ≤ λ(y)
r(y)

to show inductively that K(n+1)∗(x, y) ≤
(R̃(x,y))

n

n!
λ(y)
r(y)

. Note that the sum in (5) is well-defined and we have a closed-form

expression for zi(x) and thus for vi(x).
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However, if R̃i(x) =∞ for some 0 < x <∞, then the workload process approaches
the state 0, but never reaches it. In this case the integrated kernel,

∫ x
0
K(y, 0)dy,

is unbounded and equation (4) is often referred to as a singular integral equation.
Solving these equations is very hard in general, and goes beyond the scope of this
research (see Linz [17], Ch. 1 and 3.5, Mikhlin [19] Ch. 1 and 3, and Zabreyko et
al. [24], Ch. 1,6, and 9 for a more detailed discussion). In Section 4 we give the
steady-state workload distribution for some special cases.

Let us now give an intuitive explanation of Theorem 3.2, based on a Bayesian argu-
ment. In Section 5 we derive a more general result, from which the theorem follows
as a special case.

Consider either of the two models and drop the index i from the notation. The
probability of having two or more arrivals in a small time interval (t, t+∆) is of order
o(∆). Then, by simple conditioning arguments we have P(arrival in (t, t + ∆)) =∫∞
y=0+ λ(y)∆v(y)dy+λ(0)∆V (0)+o(∆) and P(arrival in (t, t+∆)|Vt > x)P(Vt > x) =∫∞
y=x

λ(y)∆v(y)dy + o(∆). Let us consider the excess probability of the workload at
jump epochs,

P(W > x) = lim
∆→0

P(Vt > x|arrival in (t, t+ ∆))

= lim
∆→0

P(arrival in (t, t+ ∆)|Vt > x)P(Vt > x)

P(arrival in (t, t+ ∆))

=
1

λ̄

∫ ∞
y=x

λ(y)v(y)dy, x ≥ 0,

where λ̄ =
∫∞
y=0+ λ(y)v(y)dy + λ(0)V (0). Differentiating results in the intuitive

explanation of the theorem:

w(x) =
d

dx
(1− P(W > x)) =

1

λ̄
v(x)λ(x).

We now turn to Theorem 3.2. Let us consider either of the two models and define

Awn,x = workload decrement between arrivals n and n+ 1,

when workload immediately after n−th arrival epoch is x, n ∈ N, x > 0.

Observe that Awn,x may be interpreted as some kind of interarrival time between the
n-th and (n+1)-st customer. While the interarrival time is usually expressed in terms
of time, Awn,x represents the workload decrement between two successive arrivals. Re-
member that a similar argument holds for the service requirement, which in general
does not equal the service time, and the workload at jump epochs, which in gen-
eral differs from the waiting time. This demonstrates that the following well-known
relation, usually interpreted in terms of time, holds again in terms of workload:

Wn+1 = (Wn +Bn − Awn,Wn+Bn)+, n = 1, 2, . . . . (6)
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If we omitted the times between successive arrivals, we would have a system of
only upward (arrival of a customer) and downward jumps (workload decrement
during an interarrival interval). The distribution of the workload at arrival epochs
only depends on the sizes of these jumps, as can be concluded from (6). Hence,
the workload at jump epochs only depends indirectly on the time between two
successive arrivals. The distribution of the service requirements (upward jumps)
is by assumption identical for Models 1 and 2. In order to prove Theorem 3.3, it
suffices to show that the sizes of the downward jumps, i.e. the workload decrements
during an interarrival interval, are identically distributed for Models 1 and 2.

Thus let us consider the interarrival time and the workload decrement in an interar-
rival interval of either of the two models. Assume that at time 0 a customer arrives
and the workload just after the arrival is W + B, with realization W + B = y.
Denote by Aty the conditional interarrival time and by Awy the conditional workload
decrement during the interarrival time, i.e., the event {Awy > v} represents the situ-
ation that when the next customer arrives the workload is smaller than y− v. If we
let tv be the conditional time required for a workload decrease of v, then the events
{Awy > v} and {Aty > tv} are identical.
Next, use an alternative definition of a Poisson arrival process with rate λ(x) when
the workload equals x, to determine the excess probability of the conditional inter-
arrival time,

P(Aty > tv) = e−
∫ tv
t=0 λ(Vt)dt, y > v. (7)

Recall that r(x) is the rate of decline at time t if the workload Vt equals x. Hence,
between successive arrivals the workload process satisfies (see, e.g., [1, 5, 12, 13])

dVt
dt

= −r(Vt). (8)

Since the amount of work at t = 0 equals y, and tv is defined such that
∫ y
y−v

1
r(x)

dx =

tv, the next proposition follows easily from (7) and (8).

Proposition 3.1. Assume that the workload just after an arrival is y (W +B = y),
then, for y > v:

P(Awy > v) = e−
∫ y
u=y−v

λ(u)
r(u)

du. (9)

Differentiation of (9) yields the conditional density:

d

dx
P(AwW+B ≤ x|W +B = y) =

λ(x)

r(x)
e−

∫ y
z=x

λ(z)
r(z)

dz, 0 < x < y. (10)

Proof of Theorem 3.3. Since Awn,x depends on Wn +Bn, (6) leads to:

P(Wn+1 > z) =

∫ ∞
u=z

P(Awn,u < u−z | Wn+Bn = u)dP(Wn+Bn ≤ u), n = 1, 2, . . . .

Notice that the distribution of Awn,x (cf. (9)) depends only on the ratio λ(·)
r(·) and hence

is the same in both models. Since the distribution of the service requirements is the
same by assumption, we can use a stochastic coupling argument to complete the
proof.
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From Theorem 3.1 and the discussion of Theorem 3.3 we can conclude that changing
between Model 1 and Model 2 is just a rescaling of time. If we consider the workload
process of Model i, with the speed of time equal to 1

ri(x)
when the workload is x,

then Models 1 and 2 are equivalent. The special case with r1(x) ≡ r1 and r2(x) ≡ r2

can thus be interpreted as observing the workload at two different (but constant)
time scales, which clearly does not affect the workload distribution. It obviously
follows from the rescaling arguments and the existence of a workload density at
arrival instants in the ordinary M/G/1 queue, that the density w(·) in the more
general model is also well-defined.

4 Special cases

The main results of Section 3 provide us with a tool to translate known results for
a particular model to a whole class of related models. In this section we consider
several examples. Throughout the section we use the notation f(x) ∝ g(x) if f(x) =
cg(x) for all x > 0 and some constant c.

Case (i): Arrival control follows service rate.
We start with an M/G/1 queue with λ(x) = Cr(x). Note that this special case
might be applicable to queues where the arrival control must follow the service rate,
see for instance [3]:

• high workload: panicking server, reduce λ(·)

• medium workload: fast server, send more work

• small workload: lazy server, send less work

Note that the third case does not seem desirable. However, in practical situations
the main focus will be on a server with a relatively high workload and regimes with
a small workload are usually of very limited interest.

It is obvious that λ(x)
r(x)

= C
1

. Apply Theorems 3.1 and 3.3 to see that r(x)v(x) ∝
vM/G/1(x) and w(x) = wM/G/1(x), where vM/G/1(·) and wM/G/1(·) are the workload
densities of the ordinary M/G/1 queue with arrival rate C and service speed 1,
at arbitrary and arrival epochs, respectively. Hence the workload process in the
M/G/1 queue with general service speed r(x) and arrival rate λ(x) = Cr(x) can be
analyzed in detail.

Case (ii): Shot noise.
Another well-known example is the shot noise model, i.e., λ(x) ≡ λ and r(x) = rx,
cf. [16], [22], p. 393, or [6], p. 558. First notice that for the shot noise model
R̃(x) =∞ for x > 0 and the Volterra successive iteration approach cannot (at least
not directly) be applied. However, it is still possible to analyze this model due to
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the special form of λ(·) and r(·). First consider the level crossing identity (2) for
this case,

rxv(x) = λ

∫ x

y=0+

(1−B(x− y))v(y)dy, x > 0.

Let φ(s) :=
∫∞

0
e−sxv(x)dx be the Laplace Transform (LT) of the workload density,

then − d
ds
φ(s) =

∫∞
0
e−sxxv(x)dx and we have,

− d

ds
φ(s) =

λ

r

1− β(s)

s
φ(s).

Solving this differential equation yields (cf. [16], [22], p. 393, or [6], p. 558)

φ(s) = exp

{
−λ
r

∫ s

0

1− β(u)

u
du

}
. (11)

Because of the PASTA property, the LT of the workload density at arrival epochs
also equals φ(·).
Since the shot noise model is thus solved, we immediately obtain the LT of the work-
load density at arbitrary and at arrival epochs of models with λ(x) = f(x)xα and
r(x) = f(x)xα+1, where

∫ x
0
f(y)yαdy and

∫ x
0
f(y)−1y−(α+1)dy are not both infinite

(use Theorems 3.1-3.3).
Furthermore, let us consider some special properties of the shot noise model. Take
λ ≡ r ≡ 1, and use (9) to observe that, given Wn+Bn, Wn+1 is uniformly distributed
on the stochastic interval (0,Wn+Bn). This means that the steady-state distribution
W must satisfy

W =d U(0,W +B), (12)

with U(x, y) denoting the uniform distribution on the interval (x, y). But if W is
U(0,W +B) distributed, then also B must be U(0,W +B) distributed. Hence, in a
model with exponentially distributed service requirements, W must have the same
exponential distribution as the service requirements B.

Remark 4.1. Using LST’s it can also be readily shown that equation (12), with B
exp(µ) distributed, implies that W is exp(µ) distributed. Indeed, (12) implies that
the LST ψ(s) of W satisfies

ψ(s) =
1

s

∫ s

σ=0

ψ(σ)
µ

µ+ σ
dσ,

with boundary condition ψ(0) = 1, which after differentiation yields ψ(s) = µ
µ+s

.

Another special case arises when the service requirements are exponential random
variables with rate µ, while λ, r are not necessarily identically 1. Substituting
β(s) = µ

µ+s
in (11) yields

φ(s) =

(
µ

µ+ s

)λ/r
.
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This is the LST of the Gamma distribution, i.e., v(·) ∝ Gamma(λ
r
, µ) and due to

the PASTA property also w(·) ∝ Gamma(λ
r
, µ). Furthermore, if we consider the

model with λ(x) = λ
x

and r(x) ≡ r, it follows that w(·) ∝ Gamma(λ
r
, µ) and v(x) is

proportional to xw(x), hence, v(·) ∝ Gamma(λ
r

+ 1, µ). Note that taking λ ≡ r ≡ 1
indeed gives that w(·) is exponentially distributed with parameter µ.

Case (iii): Exponential service times.
Consider the M/M/1 queue with general λ(·) and r(·) functions. Substituting
B(x) = 1− e−µx in (2) gives

r(x)v(x) = λ(0)V (0)e−µx +

∫ x

y=0+

λ(y)v(y)e−µ(x−y)dy, x > 0. (13)

Multiply by eµx, define f(x) := eµxr(x)v(x) and differentiate to obtain

d

dx
f(x) = f(x)

λ(x)

r(x)
.

The solution of this differential equation is unique up to a constant and may be
written in the form

f(x) = C exp
{
R̃(x, 1)

}
, x > 0. (14)

Using a straightforward extension of Asmussen [1], p. 295, it follows that we have
positive recurrence (and hence, C can be determined by normalization) if and only
if

α :=

∫ ∞
0

1

r(x)
exp

{
R̃(x, 1)− µx

}
dx <∞.

If V (0) = 0, then C = α−1. However, if V (0) > 0, observe from (13) that
limx↓0 r(x)v(x) = λ(0)V (0) and use the straightforward extension R̃(x, y) = −R̃(y, x)
for 0 < x < y <∞ to see that C = λ(0)V (0) exp{R̃(1, 0)}. Hence, if V (0) > 0, then

v(x) =
λ(0)V (0)

r(x)
exp

{∫ x

0

(
λ(y)

r(y)
− µ

)
dy

}
.

From this solution it becomes immediately clear that for two models with λi(·) and
ri(·) (i = 1, 2) satisfying (3), Theorem 3.1 holds in the M/M/1 case.

Case (iv): Some other models.
Next, consider the M/G/1 queue with λ(x) ≡ λ and r(x) = x2. Noting that∫∞

0
x2v(x)e−sxdx = φ

′′
(s) and using the level crossing identity (2) yields

φ
′′
(s) = λ

1− β(s)

s
φ(s). (15)

Denoting g(s) := λ1−β(s)
s

and using the transformations φ(s) = ef(s) and h(s) = f
′
(s)

gives

h
′
(s) +

[
h(s)

]2
= g(s).

11



This non-linear first-order differential equation is in general very difficult to solve.
Note that R̃(x) = ∞, for all x > 0, and the workload process can thus not reach
state 0. However, for some specific choices of the service requirement we obtain an
expression for the LT. For instance, the LT of v(x) in the M/M/1 case is given by
(use (14))

φ(s) = G

∫ ∞
0

e−(s+µ)x

x2
e−

λ
xdx,

with G some normalizing constant. Integrating φ
′′
(s) by parts shows that (15) is

satisfied for the case of exponential service requirements.

If we let the service requirement be Erlang(2, µ) distributed, then substituting
λ(x) = λ, r(x) = x2 into (2), defining z(x) := eµxv(x), and differentiating twice
gives

x2z
′′
(x) + (4x− λ)z

′
(x) + (2− λµ)z(x) = 0. (16)

This linear second-order differential equation can be transformed into a differential
equation of Bessel type. Furthermore, define ψ(s) :=

∫∞
0
e−sxz(x)dx, take the LT

in (16), and observe that
∫∞

0
e−sxz

′′
(x)dx = s

∫∞
0
e−sxz

′
(x)dx − z

′
(0) = s2ψ(s) −

z
′
(0)−z(0) and φ(s) = ψ(s+µ) to show that (15) is satisfied. We conclude with the

observation that if we can calculate v(·) and/or w(·) this immediately gives results
for M/G/1 models with λ(x) = f(x)xα and r(x) = f(x)xα+2, where

∫ x
0
f(y)yαdy

and
∫ x

0
f(y)−1y−(α+2)dy are not both infinite (again use Theorems 3.1-3.3).

Remark 4.2. If λ(x) ≡ λ and r(x) = eax, then R(x) =
∫ x

0
e−aydy <∞ for 0 < x <

∞, |a| < ∞. In this case, we can follow [13], using the bound K(x, y) ≤ λ
r(y)

and
show inductively that

Kn+1(x, y) ≤ λn+1(R(x)−R(y))n

r(y)n!
=
λn+1e−ay(e−ay − e−ax)n

ann!
, 0 < y < x <∞.

Thus the sum
∑∞

n=1Kn(x, y) is well-defined, and hence,
∑∞

n=0Kn∗(x, y) is well-
defined as well. So the steady-state workload density is given by (5):

v(x) = λV (0)e−ax
∞∑
n=0

Kn∗(x, 0), x > 0,

with V (0) determined via normalization:

V (0) =

[
1 +

∫ ∞
0+

λe−ax
∞∑
n=0

Kn∗(x, 0)dx

]−1

.

Of course, this can be extended to models with λ(x) = f(x)ebx and r(x) = f(x)eax,
where

∫ x
0
f(y)ebydy and

∫ x
0
f(y)−1e−aydy are not both infinite.

12



5 Palm theoretic approach

So far, we considered M/G/1-type queues with general arrival and service rate,
λ(·), r(·), depending on the amount of work in the system. Recall that Bn denotes
the service requirement of the n-th customer and An denotes the interarrival time
between the n-th and (n + 1)-th customer, n = 0, 1, . . ., where B and A are their
steady-state random variables. Furthermore, let Vt again denote the workload at
time t and let Wn again be the workload immediately before the n-th jump epoch,
with steady-state random variables V and W , respectively.
In this section, we first continue the study of this Markovian case. Using Palm
theoretic principles, we establish a general relation between V and W , or rather
f(V ) and f(W ). Some specific well-chosen f(·)-functions yield convenient relations
for, e.g., the excess probability, the expectation, or the LST of the considered random
variables. In addition, Theorem 3.2 follows easily as a consequence. We proceed
by allowing general renewal arrival processes and again establish a general relation
between V and W . Some examples show that the relations may be viewed as
extensions of some well-known relations for ordinary G/G/1 queues. Furthermore,
in case of Poisson arrivals, the level crossing equations are derived in an alternative
way. We conclude with an extension of the dynamics driving the workload process in
the ordinary G/G/1 queue to similar dynamics in G/G/1-type queues with general
release rate.
In Sections 3 and 4 the arrivals followed a Poisson process. We applied the level
crossing equations (2) to determine the limiting distribution and to show some equiv-
alence properties. Although level crossing arguments still hold for non-Poissonian
arrival processes (see Doshi [8]), their applicability, however, is limited. In order to
handle the general renewal nature of the input process, we adopt a totally different
approach based on Palm theoretic principles, see for instance [2], Section 1.3. Specif-
ically, we express Ef(V ) as a stochastic mean value over one arbitrary interarrival
interval. Let W +B and WA denote the workload at the beginning and end, respec-
tively, of the (arbitrary) interarrival interval A. If we assume that the function f(·)
is such that the considered expectations exist and are finite, then

Ef(V ) =
1

EA
E
[∫ A

t=0

f(Vt)dt

]
. (17)

First, let us consider the Markov case.

Theorem 5.1. Let f(·) be such that Ef(V ) exists and is finite, then

Ef(V ) = E
[
f(W )

λ(W )

]
1

E 1
λ(W )

. (18)

Proof. Starting with the stochastic mean-value result (17) and introducing the in-
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dicator function I(·), we have

E[f(V )] =
1

EA
E
[∫ A

t=0

f(Vt)dt

]
=

1

EA
E
[∫ ∞

t=0

f(Vt)I(A > t)dt

]
.

Note that E(I(A > t)|W + B) = P(A > t|W + B) = P(WA < Vt|W + B), and use
(8) to see that

E[f(V )] =
1

EA
E
[∫ 0

x=W+B

f(x)P(WA < x|W0 = W +B)
dx

−r(x)

]
=

1

EA
E
[∫ W+B

x=0

f(x)

λ(x)
dP(WA ≤ x|W0 = W +B)

]
=

1

EA
E
[
f(WA)

λ(WA)

]
. (19)

The second equality sign follows by combining (9) and (10). Notice that WA and
W have the same distribution. Furthermore, taking f(x) ≡ 1 yields

EA = E
1

λ(W )

which completes the proof.

Let us briefly consider some special cases of f(·). Taking f(x) = x, respectively
f(x) = e−sx, gives a relation between EV and EW , respectively a relation be-
tween the LST’s of V and W . Furthermore, taking f(x) = I(x > v) expresses the
steady-state excess probability of the workload in terms of λ(·) and the steady-state
workload density at arrival epochs. Taking f(x) = λ(x)g(x) yields

E[λ(V )g(V )] =
Eg(W )

E 1
λ(W )

= Eλ(V )Eg(W ), (20)

or equivalently

Eg(W ) =
E[λ(V )g(V )]

Eλ(V )
,

where the second equality sign in (20) follows from taking f(x) = λ(x) in (18). Now
taking g(x) = e−sx yields

E
[
e−sW

]
=

E
[
λ(V )e−sV

]
Eλ(V )

. (21)

Because of the one-to-one correspondence between an LST and its inverse, (21)
implies that the steady-state workload density at arrival epochs w(x) is proportional

14



to the product of λ(x) and the steady-state workload density v(x). Note that we
have just proven Theorem 3.2.

Now let us consider a generalization of the above-described M/G/1-type model, by
allowing generally distributed interarrival times, which may depend on the workload
W found upon arrival according to some distribution P(A < x|W = w). We again
derive a relation between V and W by starting from the stochastic mean-value result
(17). Let Be denote the residual service requirement, then its density is 1−B(·)

EB .

Theorem 5.2. Let f(·) be such that Ef(V ) exists and is finite, then

E[f(V )|V > 0] = E[r(V )|V > 0]E
[
f(W +Be)

r(W +Be)

]
. (22)

Proof. First define g(w, z) :=
∫ z

0
f(w + u)du and consider

E
[∫ B

0

f(w + x)dx

]
= E[g(w,B)]

=

∫ ∞
0

g′(w, x)P(B > x)dx+ g(w, 0)

=

∫ ∞
0

f(w + x)P(B > x)dx

= EBE[f(w +Be)]. (23)

Starting with the stochastic mean-value result (17), making the substitution u = Vt
and using (8) yields

E[f(V )] =
1

EA

(
E
[∫ W

u=W+B

f(u)
du

−r(u)

]
+ f(0)E(A− τ)+

)
, (24)

where x+ = max(0, x) and τ := inf{t > 0 : Vt = 0}. As V = 0 might be a special
point we focus on V > 0, resulting in:

E[f(V )|V > 0]P(V > 0) =
1

EA
E
[∫ W+B

u=W

f(u)

r(u)
du

]
. (25)

Since Wn+1 depends on Wn + Bn the boundaries in
∫W+B

W
really are dependent, as

they represent the workload at two successive arrival epochs. But we can rewrite
E
∫W+B

W
= E

[∫W+B

0
−
∫W

0

]
and observe that both Wn and Wn+1 have the same

steady-state distribution as W . Thus we can rewrite (25) into

E[f(V )|V > 0]P(V > 0) =
1

EA
EB

[∫ ∞
w=0

dP(W ≤ w)

∫ w+B

u=w

f(u)

r(u)
du

]
=

1

EA

∫ ∞
w=0

dP(W ≤ w)EBE
[
f(w +Be)

r(w +Be)

]
=

EB
EA

E
[
f(W +Be)

r(W +Be)

]
, (26)
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where we have used (23) in the second equality. The Theorem follows by taking
f(x) = r(x), leading to E[r(V )|V > 0]P(V > 0) = EB

EA .

Again, taking respectively f(x) = x, f(x) = e−sx, and f(x) = I(x > v) gives a
relation between the workload at arbitrary epochs V and the workload at arrival
epochs W , for respectively the expectation, the LST, and the excess probabilities.
Taking f(x) = r(x)g(x) yields

E[r(V )g(V )|V > 0] = E[r(V )|V > 0]E[g(W +Be)],

and in particular

E
[
r(V )e−sV |V > 0

]
= E [r(V )|V > 0] E

[
e−s(W+Be)

]
. (27)

The latter relation implies that the steady-state density of W + Be is proportional
to the product of r(·) and the conditional steady-state density of V .

Using (27) we obtain an alternative proof of the level crossing identity (2). To show
this, we let the arrival process be Poisson with intensity λ(x) when the workload
equals x. Note that the interarrival time and workload at arrival epochs are depen-
dent; however, we can still apply Theorem 5.2 and (24). Furthermore, observe that
for the choice of f(x) = r(x)e−sx, we have that f(0) = 0, since we assumed that
r(0) = 0. Then, by conditioning, it follows directly from (26) that Er(V ) = EB

EA , and
similarly, we can rewrite (27) into

E
[
r(V )e−sV

]
=

EB
EA

E
[
e−s(W+Be)

]
.

Using the one-to-one correspondence between an LST and its inverse again, yields

r(x)v(x) =
EB
EA

∫ x

y=0−

1−B(x− y)

EB
w(y)dy,

where the 0− in the integral denotes the inclusion of the (possibly exceptional) point
0. Furthermore, we had proven that w(y) = λ(y)v(y)/λ̄, with λ̄ =

∫∞
0−
λ(y)v(y)dy

(see for instance Theorem 3.2). Take f(x) = λ(x) in (19) to see that 1/λ̄ = EA and
the constants cancel,

r(x)v(x) =

∫ x

y=0−
(1−B(x− y))λ(y)v(y)dy, x > 0.

Hence, we have shown the level crossing identity (2) in an alternative way.

Remark 5.1. Formula (25) is also valid when the n-th service time Bn is dependent
on the workload Wn at its arrival.
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Remark 5.2. It should be noted that taking r(x) ≡ 1 in (27) results in a well-known
result for the GI/G/1 queue, cf. [6], p. 296 or [1], p. 189:

V |V > 0 =d W +Be.

Another interesting relation between V and W in the ordinary GI/G/1 queue is
presented in Asmussen [1], p. 189:

V =d (W +B − Ae)+, (28)

where Ae denotes a residual interarrival time. We now generalize (28) to a G/G/1
queue with general service rate r(x) when the workload equals x. By the stochastic
mean-value result (17) and some similar manipulations as we did proving Theorems
5.1 and 5.2, one can find the following relation:

E[f(V )] =
1

EA
EA,Vt

[∫ ∞
t=0

f(Vt)I(A > t)dt

]
= EVt

[∫ ∞
t=0

f(Vt)
P(A > t)

EA
dt

]
= Ef(VAe).

Take f(x) = I(x > v), where I(·) is the indicator function, then it follows that
P(V > v) = P(VAe > v). The latter probability equals the probability that Ae is less
than the time required for a process, which decreases according to the function r(·),
to go from W + B (workload at t = 0) to v. Recall that R(x) (see (1)) represents
the time required for a workload x to drain in the absence of any arrivals. Moreover,
the time required to go from W +B to v according to the described process equals
R(W +B)−R(v) = R(W +B, v). Hence, we obtain

P(V > v) = P(R(W +B)−R(v) > Ae), v ≥ 0.

When r(x) ≡ 1, this indeed yields (28).

In the remainder of this section we assume that the workload process {Vt, t ≥ 0}
has an atom at zero, or equivalently, that R(x) < ∞. Our goal is to study the
process {R(Vt), t ≥ 0}. Note that R(x) (like R(w + x,w)) is strictly increasing in x
so we can speak unambiguously of R−1(t). We are interested in the service (release)
process, and assume for the moment that the arrival process is shut off. Besides
the time required for a workload u to go down to x, 0 ≤ x ≤ u, in the absence
of any arrivals (which equals R(u) − R(x)), we are interested in, for instance, the
workload level at time t > 0 when V0 = u. It is well-known that the latter expression
equals R−1(R(u)− t) [13]. So, in principle it is possible to switch from the workload
interpretation to the time interpretation and vice versa. However, there does not
seem to be much hope for convenient expressions.
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Using the definition of R(·) and the transformation property (8) between workload
and time, it is easy to see that R(V ) transforms the workload V into the time
required to finish the work in the system when no arrivals occur. This means that
as long as there are no jumps, the process R(Vt) decreases linearly with slope −1
until R(Vt) = 0 and then remains 0 until the next arrival. To get some feeling for the
R(Vt) process, it is easiest to think of its graphical representation: we have rescaled
the workload axis such that in each time interval of length ∆x where no arrival
occurs, the decrement of the function R(·) is ∆x. This means that every very small
workload interval (x, x+ r(x)∆x) of the Vt process is compressed (or expanded) to
an interval (x, x+ ∆x). Since r(·) is left-continuous and has right-hand limits, it is
bounded on closed intervals and hence the time required to move down from level
x+ r(x)∆x to level x is indeed r(x) ∆x

r(x)
= ∆x for ∆x small enough.

The jump sizes of the R(Vt) process consist of the differences of the time required
to empty the system just before, and just after, the arrival epoch. Hence, in
steady state this service requirement equals R(W + B) − R(W ), or alternatively
R(W + B,W ). Thus the R(Vt) process behaves like an ordinary GI/G/1 queue
with workload-dependent service requirements, and follows the same sample path
as Vt if we transform the jump size distribution according to the above integral.
From the arguments above we can observe that for the G/G/1 queue with service
rate r(x) when the workload equals x, we have the following relations between V
and W :

Theorem 5.3. If R(x) <∞ for all 0 < x <∞, then

R(V ) =d
(
R(W +B)− Ae

)+
, (29)

R(W ) =d
(
R(W +B)− A

)+
. (30)

Furthermore, if we were able to solve the stationary distribution (density) of the
R(Vt) process, denoted by V R(·) (vR(·)), we would have the stationary distribution

(density) of Vt, since v(x) = vR(x)
r(x)

.

Remark 5.3. Taking r(x) ≡ 1 in (29) and (30) results respectively in (28) and the
well-known relation for the GI/G/1 queue (see for instance [6], p. 167).

Remark 5.4. In a similar way like (22) we can derive that the expected jump size
of the R(Vt) process equals EBE 1

r(W+Be)
.

Hence, the transformation from a G/G/1 queue with general service rate function
r(·) to an ordinary G/G/1 queue (with a server working at unit speed) can be
interpreted as a rescaling of the service requirement. In the transformed R(Vt)
model, the amount of work a customer brings upon arrival takes into account the
time required to finish this additional workload. If, for instance, r(x) ≡ r, we rescale
the service requirement by the factor r−1 to take into account that the server would
have been working at speed r in the Vt process. Note that, in the absence of any
arrivals, the time required to finish a workload B at speed r indeed equals the time
required to finish a workload r−1B at unit speed.
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6 Conclusions and research topics

We studied single-server queues with state-dependent interarrival times and service
speed. The two main contributions of this paper may be summarized as follows.
Firstly, in the case of Poisson arrivals, we derived proportionality relations between
the workload distribution of two queues that have the same ratio of arrival rate
and service speed. Such relationships allow us to obtain results for a whole class of
models from the analysis of one particular model. Secondly, we analyzed G/G/1-
type queues with workload-dependent service speed and interarrival times. Using a
Palm theoretic approach, several well-known relations for the workload at various
epochs in the ordinary G/G/1 queue were generalized. Moreover, an extension of
the PASTA result to M/G/1 queues with state-dependent arrival rate followed as a
by-product.
Finally, we mention three topics for further research.

(i) Extension of the results for M/G/1-type queues with general (workload-depen-
dent) arrival and service rate to finite buffers. This is the subject of a forth-
coming study.

(ii) Derivation of the steady-state workload distribution is subject to some compli-
cations if the workload process has no atom at state 0. In the case of Poisson
arrivals, we observed that level crossing arguments lead to an integral equa-
tion that is very difficult to solve in general. The steady-state behavior of
a workload process without an atom at state 0 may be a subject of further
exploration.

(iii) In production systems, for example, workload management may be realized
by controlling the arrival rate of new jobs, or by regulating the speed of the
server. Given a target steady-state behavior of the workload, an important
issue is the design of the system such that this target is met. This so-called
reverse engineering (cf. [9]) is left for a subsequent investigation.
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