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Abstract

In this paper, a rigorous computational method to enclose eigenpairs of complex
interval matrices is proposed. Each eigenpair x = (λ, v) is found by solving a non-
linear equation of the form f(x) = 0 via a contraction argument. The set-up of the
method relies on the notion of radii polynomials, which provide an efficient mean of
determining a domain on which the contraction mapping theorem is applicable.

1. Introduction

Computing eigenvalues and eigenvectors of matrices is a central problem in many
fields of applied sciences involving mathematical modelling. When applied to real-
life phenomena, models need to consider the occurrence of diverse errors in the data,
due for instance to inaccuracy of measurements or noise effects. Such uncertainty in
the data can be represented by intervals. In the context of studying a matrix with
uncertain entries, interval matrices can be considered. Our goal here is to develop a
rigorous computational method to enclose eigenpairs of complex interval matrices.

Before proceeding further, note that bounds for eigendecompositions of standard
(non interval) matrices are abundant, ranging from classical perturbation theory
like Bauer-Fike residual and condition number based theorems [4], via Kato-Temple
bounds [5], to Rayleigh-Ritz bounds [6, 7, 8, 9], to bounds coming from Newton-
Kantorovich type arguments [1, 2], to pseudospectral bounds, and so on. Many such
results can, for instance, lead to bounds on the nearest eigenpair to a given approx-
imation. Also, while the problem of computing rigorous bounds for the eigenvalue
set of interval matrices is well studied, see [10, 11] and the references therein, a not
so large literature has been produced regarding the simultaneous enclosure of the
eigenvalues and eigenvectors of interval matrices. In this direction we refer to [1, 12],
where different techniques have been developed to enclose simple eigenvalues and
corresponding eigenvectors, while for double or nearly double eigenvalues a method
has been introduced in [13]. For the rigorous enclosure of multiple or nearly multiple
eigenvalues of complex matrices, a contribution has been made by S. Rump in [3, 14].
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In this paper, we propose the new idea of enclosing rigorously the eigenpairs
of complex interval matrices by using the notion of the radii polynomials, which
provide a computationally efficient way of determining a domain on which the con-
traction mapping theorem is applicable. The radii polynomials approach, which is
similar to the approaches of Newton-Kantorovich and the Krawczyk operator, aims
at demonstrating existence and local uniqueness of solutions of nonlinear equations.
The Newton-Kantorovich approach fixes a priori the radius r of a ball B(r) around
a numerically computed eigenpair and attempt to demonstrate the existence of a
contraction on B(r). Similarly, the Krawczyk operator approach consists of apply-
ing directly the operator to interval vectors (in the form of small neighbourhoods
around a numerical approximation) and then attempt to verify a posteriori the hy-
potheses of a contraction mapping argument [15, 16]. On the other hand, the radii
polynomials are a priori conditions that are derived analytically, and once they are
theoretically constructed, they are used to solve for the sets (also in the form of
small neighbourhoods of a numerical solution) on which a Newton-like operator is
a contraction. The radii polynomials were originally introduced in [17] to compute
equilibria of PDEs with the goal of minimizing the extra computational cost required
to prove existence of solutions of infinite dimensional PDEs [18].

The paper is organized as follows. In Section 2, the method is introduced to
enclose rigorously eigenpairs of non interval matrices and in Section 3 it is generalized
to the case of interval matrices. In Section 4, we present applications and compare
our method to the method of [14] and to a method based on the Krawczyk operator.

2. The computational method

We fix some notation. We denote by ICn×n the set of complex matrices with
interval entries, A ∈ Cn×n an n×n complex matrix and A ∈ ICn×n an n×n interval
complex matrix, meaning that any entry of A is a complex interval of the form

Ai,j = [Re(Âi,j)± rad(1)
i,j ] + ı[Im(Âi,j)± rad(2)

i,j ], rad
(1)
i,j , rad

(2)
i,j ∈ R+ .

Â ∈ Cn×n is called the center of A while rad
(1)
i,j , rad

(2)
i,j are called the radii of the

real and imaginary part of Ai,j, resp. We denote A ∈ A, if Ai,j ∈ Ai,j for any
1 ≤ i, j ≤ n. Bold face letters will always denote interval quantities. Moreover,

• | · | is the complex absolute value and, in case of matrices M ∈ Cn×m, it acts
component-wise, that is |M |i,j = |Mi,j|;

• given two real matrices M , N , we write M � N if and only if Mi,j ≤ Ni,j for
all i, j. The same notation holds for ≺, � and �;

• In denotes the n × n dimensional identity matrix, 1n is the column vector of
length n with all the entries equal to 1;

• given any matrix M ∈ Cn×m, the object (M)k̂ stands for the n×(m−1) matrix
obtained by deleting the k-th column of M .
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Given A ∈ ICn×n, we aim to enclose eigenpairs of any A ∈ A. To simplify
the exposition, we first present the method in the context of non interval matrices
A ∈ Cn×n. Minor modifications are needed for the extension to the interval case.

Suppose that an approximate eigenpair of A has been computed, that is (λ̄, v̄)
such that Av̄ ≈ λ̄v̄ and let f(x) be the function f : Cn → Cn that maps a point
x = (λ, v1, v2, . . . , vk−1, vk+1, . . . , vn) to

f(x) = A


v1

.

.

.
v̄k

.

.

.
vn

− λ


v1

.

.

.
v̄k

.

.

.
vn

 (1)

where v̄k is the largest component in absolute value of v̄. Fixing vk = v̄k ensures
that the solution is isolated. Note that the more standard approach of fixing ‖v‖ = 1
will fail to provide isolation if v is complex. Indeed, given an eigenpair (λ, v) ∈ Cn+1

where v is complex, then for any θ, (λ, eiθv) is also an eigenpair and ‖eiθv‖ = 1.
By definition, a solution x of f(x) = 0 corresponds to an eigenpair (λ, v) of

A with the eigenvalue λ given by the first component of x and the eigenvector
v = (v1, . . . , vk−1, v̄k, vk+1, . . . , vn). We then aim at proving existence of zeros of
f(x) together with rigorous bounds. Denoting x̄ = (λ̄, v̄1, v̄2, . . . , v̄k−1, v̄k+1, . . . , v̄n)
and Df(x̄) the Jacobian matrix of f at x̄, one has that

Df(x̄) =

−


v̄1

.

.

.
v̄k

.

.

.
v̄n

 (A− λ̄In)k̂

 . (2)

We find zeros of f by introducing a fixed point operator T . Endow Cn with the norm
‖x‖∞ = maxi=1,...,n{|xi|}. Consider R ≈ Df(x̄)−1 an invertible matrix. Define

T : Cn → Cn : x 7→ T (x) = x−Rf(x). (3)

so that fixed points of T are in bijection with zeros of f . In practice, the matrix R
is computed numerically in MATLAB. Note that getting a good approximate inverse
is fundamental for our method to provide sharp bounds. Indeed, as one shall see
shortly, the better the approximate inverse R is, the smaller the bound Z(1) in (4)
will be. Since fixed points of T correspond to zeros of f(x), the idea is to construct
a small set B ⊂ Cn such that T : B → B is a contraction, and then to apply the
contraction mapping theorem to conclude about the existence of a unique fixed point
of T in B. Note that x̄ is an approximate zero of f and the operator T has been
defined as a Newton-like operator around the point x̄, thus it is advantageous to test
the contractibility of T on neighbourhoods of x̄ in Cn. More precisely, denote by
B(r) = {x ∈ Cn, ‖x‖∞ ≤ r} the closed ball of radius r around the origin and let
Bx̄(r) = x̄+B(r) be the ball with the same radius and centered at x̄. Treating r as
a variable, we choose the balls Bx̄(r) as the candidate sets where to check if T is a
contraction. The next result provides a recipe to determine the radius r.
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Theorem 2.1. Consider x̄ ∈ Cn and R a real n×n invertible matrix. Consider the
nonlinear problem (1) and bounds Y, Z(1), Z(2) ∈ Rn such that

|Rf(x̄)| � Y, |In −R ·Df(x̄)|1n � Z(1), 2|R|(1n)k̂ � Z(2). (4)

Define the radii polynomials p1(r), p2(r), . . . , pn(r) by

pi(r) = Z
(2)
i r2 + (Z

(1)
i − 1)r + Yi, (5)

and define I = ∩ni=1{r > 0 : pi(r) < 0}. If I 6= ∅, then for any r ∈ I, there exists a
unique x̂ ∈ Bx̄(r) such that f(x̂) = 0.

Proof. Consider r ∈ I 6= ∅. Recalling (3), consider T (x) = x−Rf(x). Then

sup
b,c∈B(r)

|DT (x̄+ b)c| = sup
b,c∈B(r)

|(In −R ·Df(x̄))c+R(Df(x̄)−Df(x̄+ b))c|

� sup
b,c∈B(r)

|(In −R ·Df(x̄))c|+ |R(Df(x̄)−Df(x̄+ b))c|

� Z(1)r + Z(2)r2.

In the last inequality, we used that for any b = (bλ, b1, . . . , bk−1, bk, . . . , bn) ∈ B(r)

(Df(x̄)−Df(x̄+ b)) =




b1

.

.

.
bk−1

0
bk+1

.

.

.
bn

 (bλIn)k̂

 .

Note that the k-th row of the above matrix is null. Since |bi| ≤ r, we have that
|(Df(x̄) − Df(x̄ + b))c| � 2r2(1n)k̂ and therefore supb,c∈B(r) |R[(Df(x̄) − Df(x̄ +

b))c]| � 2r2|R|(1n)k̂ = Z(2)r2.
Letting Z(r) := Z(1)r + Z(2)r2, we get that supb,c∈B(r) |DT (x̄+ b)c| � Z(r). The

Mean Value Theorem applied component-wise to T implies that for any x, y ∈ Bx̄(r)
and for any i = 1, . . . , n, Ti(x)−Ti(y) = DTi(z)(x− y), for some z ∈ {tx+ (1− t)y :
t ∈ [0, 1]} ⊂ Bx̄(r). Then,

|Ti(x)− Ti(y)| =
∣∣∣∣DTi(z)

r(x− y)

‖x− y‖∞

∣∣∣∣ 1

r
‖x− y‖∞ ≤

Zi(r)

r
‖x− y‖∞ ≤ Zi(r). (6)

Let x ∈ Bx̄(r) and y = x̄ in (6), and using that T (x̄)− x̄ = −Rf(x̄), one has that

|Ti(x)− x̄i| ≤ |Ti(x)− Ti(x̄)|+ |Ti(x̄)− x̄i| ≤ Zi(r) + Yi = Z
(2)
i r2 + Z

(1)
i r + Yi < r

by the hypothesis that pi(r) < 0, which follows from the fact that r ∈ I. That shows
that T (Bx̄(r)) ⊆ Bx̄(r). From (6), it follows that

‖T (x)− T (y)‖∞ = max
i
{|Ti(x)− Ti(y)|} ≤ ‖Z(r)‖∞

r
‖x− y‖∞.
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Since Zi(r) ≤ Zi(r) + Yi < r for any i = 1, . . . , n, it follows that ‖Z(r)‖∞ <

r. Hence T is a contraction with contraction constant ‖Z(r)‖∞
r

< 1. From the
contraction mapping theorem, there exists a unique x̂ ∈ Bx̄(r) such that T (x̂) = x̂.
By invertibility of R, there exists a unique x̂ ∈ Bx̄(r) such that f(x̂) = 0.

In summary, given an approximate eigenpair (λ̄, v̄), the method consists of com-
puting rigorously the bounds Y, Z(1), Z(2) given in (4), and then to check whether
there exists an interval I where all the polynomials pi(r) are negative. If I 6= ∅ we
select r = inf I and we conclude that f = 0 has a unique solution within the ball
Bx̄(r). In practice, we get the existence of an eigenpair (λ, v) of A, with |λ− λ̄| ≤ r,
|vj− v̄j| ≤ r, for j 6= k and vk = v̄k. To prove the existence of another eigenpair of A,
it is necessary to provide a different numerical approximate solution (λ̄, v̄), different
from the previous one, and to repeat the computation.

3. Extension to the interval case

Besides few modifications necessary to deal with interval quantities, the procedure
to compute rigorously bounds for the eigenpairs of an interval matrix A ∈ ICn×n

is basically the same as for the scalar case. However, a fundamental difference is
that all the computations are done using interval arithmetic [10], in which any of the
basic operations ◦ ∈ {+,−, ·, /} is extended to the interval case in order to satisfy
the general assumption

∀P ∈ P ∀Q ∈ Q, P ◦Q ∈ P ◦Q . (7)

Given an interval complex valued matrix A, we now address the problem wether
or not we can rigorously enclose the eigenpairs of any A ∈ A. Recall that Â is the
center of the interval matrix A. We first compute (λ̄, v̄) an approximate eigenpair
of Â and, as before, define x̄ = (λ̄, v̄1, v̄2, . . . , v̄k−1, v̄k+1, . . . , v̄n) where the missing
component v̄k is chosen so that |v̄k| = maxj{|v̄j|}. Then, replacing the scalar matrix
A in (1) by the interval matrix A, the function f(x) and the Jacobian matrix Df(x̄)
defined in (1) and (2) are replaced respectively by f : Cn → ICn and by an interval
matrix Df(x̄) that represents a linear operator from Cn to ICn. We choose R to be

a numerical inverse of D̂f(x̄), the center of Df(x̄), and we proceed to the definition
of the operator T (x) = x − Rf(x) and to the bounds Y, Z(1), Z(2), as done before
with the boldface quantities in place of the previous one. Clearly some quantities on
the left hand side of relations (4) are now intervals, thus we define component-wise
Y, Z(1), Z(2) as the supremum over the intervals involved, yielding uniform bounds

|Rf(x̄)| � Y, |In −R ·Df(x̄)|1n � Z(1), 2|R|(1n)k̂ � Z(2).

As in Theorem 2.1, define the radii polynomials by pi(r) = Z
(2)
i r2+(Z

(1)
i −1)r+Yi,

for i = 1, . . . , n. If r ∈ I = ∩ni=1{r > 0 : pi(r) < 0}, then for all A ∈ A, there exists
a unique (λ, v) ∈ Bx̄(r) such that |λ− λ̄| ≤ r, |vj − v̄j| ≤ r, vk = v̄k, and Av = λv.
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In other words, r is a uniform bound in A for the existence of an eigenpair of any

A ∈ A. Indeed, having fixed (λ̄, v̄) and R ≈
(
D̂f(x̄)

)−1
, for any A ∈ A define fA(x)

and DfA(x̄) as in (1) and (2), and the fixed point operator TA(x) = x − RfA(x).
The fundamental inclusion (7) implies that fA(x) ∈ f(x), DfA(x̄) ∈ Df(x̄) and
TA(x) ∈ T (x), for any A ∈ A and x ∈ Cn. Thus, as A varies in A, the bounds (4),
with TA in place of T , are satisfied for the same Y, Z(1), Z(2), r proving the existence
of a fixed point in Bx̄(r) for any TA and consequently an eigenpair for any A ∈ A.

4. Results

In this section we report some computational results. All the computations have
been done in MATLAB supported by the package INTLAB [19] where the interval
arithmetic routines have been implemented. The approximate eigenpairs (λ̄, v̄) of Â
have been computed running the standard eig.m function in MATLAB. In order to
avoid rounding error and to obtain rigorous results, we emphasize that the computa-
tional algorithm treats any matrix as an interval matrix. Thus, even if one wishes to
deal with a scalar matrix A, the method first constructs a (narrow) interval matrix
around A and perform all the computation with interval arithmetics.

Example 1. Consider the interval matrix A centered at

Â =

 −10.55360193 5.33379647 −5.24740415
0.31403414 2.33062549 −3.32865541
−7.49045333 5.01386821 −5.44369022


with radius rad = 9.66146973 · 10−7, meaning that each entry A(i, j) consists of the
interval [Â(i, j)− rad, Â(i, j) + rad]. Using the method of Section 2, it results that
any A ∈ A admits three eigenpairs (λi, vi), i = 1, 2, 3 each one lying in the ball of
radius ri around the approximate values (λ̄i, v̄i) given in Table 1.

i = 1 i = 2 i = 3

ri 2.7747640834393 · 10−6 3.5677963538014 · 10−5 3.6494066386385 · 10−5

λ̄i −13.9620493680589 −9.3632556453596 · 10−14 0.2953827013923

v̄i

 −0.77788012985175
−0.11136179959087
−0.61846669528252

  0.12133203779007
0.80769996168880
0.57697427021802

  0.15662675418092
0.83598562894630
0.52592403260356


Table 1: Rigorous enclosure of the eigenpairs of A.

We remark that in the general situation the genuine solution (λ, v) of the eigen-
problem is proved to exist in a complex neighborhood of the approximate solution
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(λ̄, v̄). Therefore, even if one or both λ̄ and v̄ are real vectors, the same cannot be
concluded for λ or v. However, if the matrix A and the approximate solution λ̄ and v̄
are real and the computation is successful, then the genuine solution so obtained by
solving the radii polynomials is also real. Indeed, suppose the contrary, that is the
exact solution λ and v are complex. Since A is real, the complex conjugate couple
(C(λ), C(v))) is also a solution of the eigenproblem, AC(v) = C(λ)C(v). But both the
solutions (λ, v) and (C(λ), C(v))) belong to the same ball in Cn around x̄ and this
violates the uniqueness result stated in Theorem 2.1. The same argument extends
in the case of interval matrices.

Example 2: matrices with interval entries of large radius. In this ex-
ample, we rigorously enclose all eigenpairs of an interval matrix A constructed as
follows: consider the complex number λ0 = 0 and λj = eı

2π
5
j, j = 1, . . . , 5 and define

D as the diagonal matrix with entries λi, i = 0, . . . , 5. Let Â = XDX−1, for a ran-
dom matrix X with values in the complex square [−1, 1] + ı[−1, 1] and finally let A
be the interval complex matrix centered at Â with component-wise radius rad both
in the real and imaginary part. For different values of rad we compute the enclo-
sure of the eigenvalues of A. Consider λ̄i the approximate eigenvalues of Â given by
λ̄0 = 0, λ̄1 = 0.30901+0.95105ı, λ̄2 = −0.80901+0.58778ı, λ̄3 = −0.80901−0.58778ı,
λ̄4 = 0.30901−0.95105ı and λ̄5 = 1. Denote by ri, i = 0, . . . 5 the radius of the ball in
the complex plane centered at λ̄i inside which, for any A ∈ A, a unique eigenvalues
of A has been proved to exist. The results are presented in Table 2. See also Figure 1
for the enclosure of the six eigenvalues of any A ∈ A for rad = 1.3 · 10−3.

rad r0 r1 r2 r3 r4 r5

1 · 10−5 1.2 · 10−4 1.0 · 10−4 9.2 · 10−5 1.4 · 10−4 1.3 · 10−4 1.0 · 10−4

1 · 10−4 0.0013 0.0011 0.0001 0.0015 0.0014 0.0012
1 · 10−3 0.0149 0.0115 0.0103 0.0184 0.0168 0.0122

1.5 · 10−3 0.0254 0.0186 0.0163 − 0.0307 0.0197
2.0 · 10−3 − 0.0272 0.0234 − − 0.0287
2.5 · 10−3 − 0.0390 0.0322 − − 0.0407
3.0 · 10−3 − − 0.0450 − − −
3.5 · 10−3 − − − − − −

Table 2: Enclosures of the eigenpairs of the complex interval matrix A, as rad grows.

We see in Table 2 that for values of rad ≈ 10−3 the method starts to fail. A
natural question is whether it is possible to predict up for which values of rad the
method will be successful. We underline that the technique we propose is a verifica-
tion method, therefore among other conditions, the success or the failure is strictly
related to the accuracy of the approximate solution that could change from one com-
putation to the other. Hence it is not possible to determine a priori the maximum

7



Figure 1: Balls in C enclosing the six eigenvalues of any A ∈ A for rad = 1.3 · 10−3.

value for rad. However we can to get an idea of what happens when rad increases
and, based on that, we can guess which is the maximal admissible value of rad. A
necessary condition for the method to be successful is that all the radii polynomials
defined in (5) cross the r-axis. That occurs if

(Z
(1)
i − 1)2 − 4YiZ

(2)
i > 0 (8)

for all i = 1, . . . , n. Roughly speaking, if the value of rad increases, while the
numerical solution is kept fixed, the norms of the components of the vectors Y and
Z(1) increase. Thus there is a value of rad large enough such that some of the
inequalities (8) are not satisfied anymore. To be more precise, assuming that x̄ is
a good numerical approximate solution, we can estimate |f(x̄)|∞ ≈ |x̄|1rad, where
|x|1 =

∑
i |xi|. Then we can write |Y |∞ ≈ ‖R‖∞|x̄|1rad. Concerning Z(1), we see

from (2) that the radius of Df is the same as the radius of A. Then, assuming that

the matrix R has been properly computed so that I − R · D̂f(x̄) ≈ 0, we estimate
|Z(1)|∞ ≈ n‖R‖∞rad. Finally |Z(2)|∞ ≈ 2‖R‖∞. By substituting into (8), we obtain

radmax =
n+ 4‖R‖∞|x̄|1 − 2

√
4‖R‖2

∞|x̄|21 + 2n‖R‖∞|x̄|1
n2‖R‖∞

.

For A considered above, radmax are computed and presented in Table 3. Note there
that the prediction of radmax is more precise when the dimension n is larger.

# 0 1 2 3 4 5
radmax 0.0016 0.0024 0.0028 0.0012 0.0014 0.0022

.

Table 3: radmax as a function of λ̄i, for i = 0, 1, . . . , 5.

Table 4 displays the results for the enclosure of two eigenpairs of A around
Â = XDX−1, where X is a random matrix and D = diag(1, 2, . . . , n) both for
n = 50 and n = 100 and the value of radmax.
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n = 50

λ̄20 = 20 λ̄47 = 47
radmax = 5.698 · 10−6 radmax = 1.701 · 10−5

rad r
1 · 10−7 3.806 · 10−5

2 · 10−6 8.399 · 10−4

5 · 10−6 1.956 · 10−3

6 · 10−6 -

rad r
1 · 10−7 2.163 · 10−5

1 · 10−5 2.621 · 10−3

1.7 · 10−5 6.134 · 10−3

1.8 · 10−5 -

n = 100

λ̄5 = 5 λ̄95 = 95
radmax = 2.753 · 10−6 radmax = 7.9715 · 10−7

rad r
1 · 10−7 6.474 · 10−5

1 · 10−6 7.154 · 10−4

2 · 10−6 1.693 · 10−3

3 · 10−6 -

rad r
1 · 10−7 1.239 · 10−4

6 · 10−7 9.630 · 10−4

8 · 10−7 1.857 · 10−3

9 · 10−7 -

Table 4: Test the theoretically derived radmax to some rad used in computations.

Example 3: comparison. We now compare our method, denoted by radiipol,
with two different algorithms developed by S. Rump. The first one, denoted by
verifyeig, has been introduced in [14] with the primary goal of computing enclosures of
multiple of nearly multiple eigenvalues (and related eigenvectors) of interval matrices.
The second one, denoted by verifynlss, is based on a Krawczyk operator [15, 16]
and is a general routine to rigorously compute well separated zeros of nonlinear
functions. In fact, in the code verifyeig.m (available in the library INTLAB [19]),
where the method verifyeig has been implemented, the author suggests to use verifynlss
to compute simple and well separated eigenpairs. This method is implemented in
the code verifynlss.m in the library INTLAB [19]. Table 5 provides the average of
the radius of the balls enclosing the exact eigenpairs for each method.

For both experiments the test matrices A have been constructed as in the previous
section: given N we define D ∈ CN+1,N+1 as a diagonal matrix with entries given by
N equispaced values on the unit circle in the complex plane and 0, i.e. diag(D) =

[0, ei
2π
N
j], j = 1, . . . , N . Then let Â = XDX−1, where X is a complex random matrix

with entries in the complex square [−1, 1] + i[−1, 1] and finally define A as the
interval complex matrix centered in Â and of radius rad.

The results presented in Table 5 confirm that the new approach radiipol is sat-
isfactory from the point of view of the accuracy of the results. Indeed, while the
algorithm verifynlss fails quite soon as N and rad increase (it fails for rad = 0 and
for all N ≥ 15), the new algorithm is successful also for large entries of A.
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N=5 N=10
rad 10−20 10−10 10−4 10−10 10−5 10−4 10−3

radiipol 9.14·10−15 2.76·10−9 0.0019 3.25·10−9 4.61·10−4 − −
verifyeig 4.69 ·10−15 2.07·10−9 0.0016 2.08·10−9 3.02·10−4 0.0049 −
verifynlss 6.26 ·10−9 − − − − − −

N=50 N=100 N=150
rad 10−10 10−8 10−5 10−10 10−8 10−7 10−10

radiipol 2.69·10−7 4.94·10−5 − 9.02·10−7 − − 1.31·10−6

verifyeig 5.59·10−8 9.45·10−6 − 1.31·10−7 2.07·10−5 − 1.64·10−7

verifynlss − − − − − − −

Table 5: Each number is the average of the radius of the disks enclosing the eigenvalues
for each method. Comparison of the accuracy of the three methods as the dimension N
and the radius rad of the test matrix A change. The entry − means that the method fails
in the enclosure of at least one of the eigenpair.
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