A Reflective Framework for Self-Management of Applications and Middleware

Reza Haydarlou
Benno Overeinder
Frances Brazier
Intelligent Interactive Distributed Systems Group
Department of Computer Science
Vrije Universiteit Amsterdam

Problem:
Increasingly complex systems
• composed of a variety of components
• operating in large-scale distributed heterogeneous environments
• require more and more human skills to install, configure, tune, and maintain

Approach:
Self-managing systems which are self-aware:
• determine when and where an error state occurs
• analyse the error state in its specific context
• devise a strategy to acquire more information or to solve the problem
• use the knowledge they have of the processes at hand and (partial) solutions

Self-Managing Tasks:
• Self-configuration
• Self-healing
• Self-optimization
• Self-protection
• Self-*

Diagnosis:
Determining the root cause:
• runtime failures, configuration errors, or reduced performance and scalability
• hindered by the lack of appropriate diagnostic feedback to human users

Reflective Model:
Explicit reflective knowledge is essential:
• reflective agents are pivotal, they represent the processes in the application/middleware involved
• reflective agents are capable of reasoning not only about their external environment, but also about their own behavior and other agents behavior at different meta-levels:
 – cognitive analysis and planning
 – instinctive analysis and planning
 – reflexive analysis and planning
• reflective agents are associated with middleware services, applications, middleware/application components, and constituent classes for diagnosis and repair at the appropriate level

Self-Management Architecture:
Managed elements and their compositional organization.
E.g., top level is web server farm composed of a number of servers (hosts), each running a number of services.
Next levels can be broken down into components of the services, and the classes of the components.

Supported by:

http://www.iids.org