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Chapter 1

Chemical Reaction Networks

By Sander Hille

At cellular level Life’s processes consist of the electro-chemical interactions be-
tween a large number of different chemical compounds: ions, small signaling
molecules, peptides, proteins, RNA, DNA,... In this chapter we focus on the
mathematical modeling of (large) networks of chemical reactions. Theory on
structure of convex sets shall provide a unique set of so-called Elementary Flux
Modes (EFMs), introduced by Schuster and coworkers [9, 10]. These can be
interpreted as elementary modes of operation of the network at steady state.
Moreover, these are ‘pathways’: a directed path of chemical reaction starting
from a particular set of substrates leading to a particular set of products.

Although the concept of EFM is applicable to any chemical reaction net-
work, it has been developed for and is particularly useful in the study of
metabolic networks. Metabolism is the collective of chemical reactions in an or-
ganism that sustains life, i.e. realizes the break down of nutrients into a limited
set of compounds that is subsequently used to assemble more complicated chem-
ical building blocks, specific to the organism. For example, in the metabolic
process of glycolysis one molecule of glucose is step-wise broken down by var-
ious enzymes into two molecules of pyruvate, harvesting ‘energy’ on the way
that is stored in the form of two molecules of adenosine-tri-phosphate (ATP).
Pyruvate and ATP are subsequently used in various other metabolic processes.
In a fixed environment, metabolic processes quickly settle to a steady state,
typically. In contrast, the function of signaling networks in organisms derives
primarily from temporal changes in behaviour of the network. Therefore, other
techniques than EFM-analysis are more appropriate to study these.

In this chapter we focus on EFM-analysis for metabolic networks. Central
in the modeling is the stoichiometry of the reactions: the precise number of
molecules of specific species that are involved in a single step of a reaction in
the network. It is the stoichiometry of the network that limits the possible
states of the network at steady state, independent of the specific kinetics of
individual reactions involved. This type of analysis is known as constrained-
based stoichiometric analysis of the network. The specific steady state of a
network does depend on the specific kinetics and parameter settings of each
reaction.
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1.1 The stoichiometry of a reaction network

A reaction network is specified by a collection M := {M1, . . . ,Mm} of chemical
compounds (molecules, called ‘metabolites’ in a metabolic network) that are
distinguished either by their chemical structure, spatial configuration or their
physical location. The same molecule located in different physically separated
compartments is modeled as different Mi. When modeling cellular metabolism
a typical compartmentation is provided by the natural distinction between the
environment, or exterior, of the cell in which there are nutrients of interest,
like glucose, and the cytoplasm inside the cell. In bacteria the cytoplasm is the
sole interior compartment. However, cells of eukaryotes like yeast, the amoeba
Dictyostelium discoideum, animal cells or plant cells have multiple interior com-
partments in which parts of metabolism take place. Thus, for example glucose
in the environment and glucose in the cytoplasm of a bacterium is modelled by
Mi and Mj with i 6= j.

Species in M that reside in the same compartment can be transformed into
species in the very same compartment by means of internal reactions, labelled
R1, . . . ,Rn. Species in a compartment can be transported and/or transformed
into species in a neighbouring compartment by exchange reactions. These are
labelled ER1, . . . ,ERe.

R := {R1, . . . ,Rn} ∪ {ER1, . . . ,ERe}

is the total set of reactions in the network. Internal and exchange reactions
are distinguished because the latter require accounting for possibly different
volumes of compartments in which substrates and products reside (see below).
Reactions are considered to be either (essentially) irreversible or reversible.
Let Irr(R) and Rev(R) denote these disjoint subsets. A characteristic feature
of metabolic networks is that almost every reaction is catalyzed by a specific
enzyme. When this enzyme is not present the corresponding reaction is highly
improbable to occur. Effectively, it does not.

The stoichiometric matrix S for the reaction network is anm×(n+e)-matrix
with integer entries that codes how molecular numbers of each species in M
are changed when any reaction from R is executed once, in positive direction
in case of reversible reactions. In this matrix a negative integer indicates the
number of a particular metabolite that is used as substrate in a single reaction
step (in positive direction), while positive integers indicate the number of that
metabolite being produced per step. Accordingly, the disjoint partitioning of
R into Irr(R) and Rev(R) together with the specification of S defines for each
reversible reaction a positive direction.

Definition 1.1.1 A chemical reaction network N consists of the specifi-
cation of M, Irr(R) and Rev(R) (hence R) together with the stoichiometric
matrix S.

Figure 1.1 provides an example of an (artificial) chemical reaction network
and its associated stoichiometric matrix and a graph representation.
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Figure 1.1: A small reaction network with three internal reactions (R1, R2 and R3)

and two exchange reactions (ER1 and ER2). ER2 and R3 are reversible, all other

reactions are irreversible. The positive direction of the reactions is indicated by the

arrows. The corresponding stoichiometric matrix is presented.

1.2 The fundamental master equation

We formulate a mathematical model for the dynamics of a chemical reaction
network that is valid under the assumptions that (1) each compartment is
well-stirred, i.e. all molecules are homogeneously distributed within, and (2)
the molecular numbers are sufficiently high such that stochastic effects can be
ignored. The state of the system at time t can then be characterized well by the
number ni(t) of molecules of species Mi present at that time and the volumes of
the compartments. Denote by Vi(t) the volume at time t of the compartment in
which Mi is located. Equivalently, one can use concentrations xi and volumes Vi.
However, if there are exchange reactions between compartments with different
volumes one can start best with a number-description and derive from that a
concentration-description to get correct equations.

So let n := (n1, . . . , nm)T be the state vector of metabolite numbers. The
reaction flux of a reaction r ∈ R at a time t, Φr(t) is the (average) number
Φr(t) of reaction r that takes place per unit time at time t, with the convention
that Φr(t) ≥ 0 for r ∈ Rev(R) when the there are more or the same number of
reaction per unit time in positive direction than there are in negative direction.
Otherwise it is negative. So

{

Φr(t) ≥ 0, for all t ≥ 0, r ∈ Irr(R),

Φr(t) ∈ R, for all t ≥ 0, r ∈ Rev(R).
(1.1)

Let Φ = (Φ1, . . . ,Φn,Φn+1, . . .Φn+e)
T be the reaction flux distribution vector,

or simply the flux distribution. Here, the first n reaction fluxes correspond to
the internal reactions, while the last e fluxes correspond to the exchange fluxes.
Instead of Φr one can use reaction flux density vr, which is the (average) number
of reactions r that take place per unit volume per unit time. v then denotes the
corresponding vector of vr, r ∈ R. Notice, that the definition of reaction flux
density requires a rather arbitrary decision what compartment to take for the
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reference volume of an exchange reaction, since it connects two compartments
and can be considered to reside in either of them, or both. For internal reactions
of course one simply takes the volume of the compartment in which the takes
place as reference volume to define the reaction flux density.

Each Φr will be a function of metabolite concentrations and parameter val-
ues. That is, it will depend on the xi = ni/Vi. For example, if Mj is obtained
as product of an enzyme-catalyzed reaction of Michaelis-Menten type from a
substrate Mi, then

Φr =
νrxi

κr + xi
. (1.2)

(Recall Section [ref to S2.1]). More complicated enzymatic reactions lead to
more complicated expressions for Φr as function of concentrations in x (see
Section [ref to S2.3]). We simply write Φ = Φ(x; p) to express the dependence
of the flux distribution on the concentration vector and all parameters, now
summarized in the vector p.

Then we have the fundamental master equation

dn

dt
= SΦ(x; p). (1.3)

Writing n(t) = V (t)x(t), where V = diag(V1, . . . , Vm) is the m × m diagonal
matrix with the volumes Vi on the diagonal, one obtains

dx

dt
= V −1SΦ(x; p)− V −1dV

dt
x. (1.4)

The last term in (1.4) is called the dilution term. It accounts for change in
concentration due to change in volume of compartments rather than change in
molecular numbers. The diagonal matrix V −1 dV

dt
consists of the relative rates

of change of the compartments. Often, the dilution term is ignored, e.g. when
volumes hardly change or when the first (reaction) term in (1.4) is dominant.

In the literature, one most often encounters situations in which nutrients in
the environment are steadily supplied. It is an open system. These nutrients are
not included as metabolites in M then, because their number in the environ-
ment is kept constant due to active supply or great abundance. Moreover, only
a single internal compartment is considered (i.e. the cytoplasm in cells). Then
V is a multiple of the identity matrix. Ignoring dilution, (1.4) now reduces to

dx

dt
= V −1SΦ(x; p) or

dx

dt
= Sv(x; p). (1.5)

Recall that v is the vector of reaction flux densities taken with reference to
the volume of the single internal compartment in the model. It is the second
equation in (1.5) that is therefore typically encountered as model for metabolic
network dynamics, without the explicit mentioning of the various underlying
assumptions.

1.3 The steady state flux cone

Analysis of the detailed dynamics of the (large) system of non-linear ordinary
differential equations defined by (1.3), (1.4) or (1.5) can be complicated or even
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unfeasible. The reaction kinetics may not be known precisely, or when it is
(some) parameter values my be unknown. Useful information can be obtained
for the steady states however. Let us ignore dilution from here on.

For any steady state x∗ ∈ R
m
+ of (1.5) one must have

SΦ(x∗; p) = 0. (1.6)

From a purely mathematical perspective it is then natural to describe the as-
sociated steady state flux distribution Φ∗ := Φ(x∗; p) in terms of basis vectors
for the null space of S, ker(S). However, a basis is not unique and basis vectors
will generally fail to satisfy the positivity constraint (1.1) that is imposed on a
flux distribution for the network. Linear basis vectors thus have no biological
meaning. A more appropriate representation of all possible steady states by
means of particular flux distributions that do satisfy the positivity constrained
is needed.

To introduce such distributions, put

Γ := {Φ ∈ R
n+e : Φr ≥ 0 if r ∈ Irr(R)}.

Then Φ∗ is in the steady state flux cone

Γ∗ := {Φ ∈ Γ : SΦ = 0}. (1.7)

We say that ‘reaction r is involved in Φ ∈ Γ∗’ if Φr 6= 0. The support of Φ is

supp(Φ) := {r ∈ R : r is involved in Φ}. (1.8)

A flux mode is a subset of Γ∗ of the form {λΦ : λ > 0} for some 0 6= Φ ∈
Γ∗. Thus, two flux distributions that are in the same flux mode involve the
same reactions. The ratios of the reaction fluxes of the two distributions for
corresponding reactions are all equal.

Γ∗ is a convex cone in the sense that it is a convex set:

if Φ,Φ′ ∈ Γ∗, then λΦ+ (1− λ)Φ′ ∈ Γ∗ for all 0 < λ < 1,

and a cone: Φ ∈ Γ∗ implies λΦ ∈ Γ∗ for any λ ≥ 0. A convex cone is called
pointed when it does not contain any non-trivial linear subspace. So Γ∗ is
pointed if and only if Γ∗ ∩ (−Γ∗) = {0}. This happens e.g. when all reactions
are irreversible.

1.4 Generation of the steady state flux cone

One says that Γ∗ is generated by a collection E of subsets of Γ if for every Φ ∈ Γ∗

there exists E1, . . . Ek ∈ E and Φi ∈ Ei, i = 1, . . . , k, such that

Φ =
k

∑

i=1

λiΦi, with λi ≥ 0. (1.9)
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Representation (1.9) for Φ is not unique in general. It is still useful however,
when the collection E consists of ‘simple’ and biologically interpretable subsets.
Such sets we shall now identify.

The theory of convex sets (e.g. [7]) provides suitable candidates. First,
observe that Γ∗ is polyhedral. That is, it is a finite intersection of closed half-
spaces

Hai,νi := {v ∈ R
n+e : νi · v ≥ ai}

with ai ∈ R and νi ∈ R
n+e. Here νi · v denotes the standard inner product

between νi and v. The faces of Γ∗ are

Γ∗ ∩ ∂Hai,νi = Γ∗ ∩ {v ∈ R
n+e : νi · v = ai}

and intersections of these sets. The one-dimensional faces are called extreme
rays.

From the theory of convex sets (e.g. [7], Theorem 18.5) one obtains

Theorem 1.4.1 Assume that Γ∗ does not contain any linear subspaces, i.e. Γ∗

is pointed, then Γ∗ is generated by the collection of its extreme rays.

Notice that the extreme rays are uniquely determined by the cone. However,
not every steady state flux cone of a network need to be pointed. In general
the set of extreme rays does not generate the full cone.

We continue by discussing three collections of subsets that do generate the
steady state flux cone of a network. These are the collections of Extreme
Currents, Elementary Flux Modes and Extreme Pathways.

1.4.1 Extreme Currents

Extereme Currents were defined by Clarke [3] for networks that consist of irre-
versible reactions only. In that case, Γ∗ ⊂ R

n+e
+ , so Γ∗ is pointed. An Extreme

Current (EC) is a flux mode that is contained in an extreme ray of the steady
state flux cone Γ∗ of such a network (it is the extreme ray with 0 removed). For
such a network, there are finitely many ECs and they are uniquely determined
by S. In view of Theorem 1.4.1, Γ∗ in this case is generated by the collection of
ECs. There are algorithms to compute ECs from the stoichiometric matrix S.

1.4.2 Elementary Flux Modes

Schuster and coworksers (e.g. [9, 10]) started to consider reaction networks with
reversible reaction. They introduced the idea of simplicity: a flux distribution
Φ ∈ Γ∗ is simple if there does not exist Φ′ ∈ Γ∗, Φ′ 6= 0, such that supp(Φ′) is
properly contained in supp(Φ). This concept is equivalent to indecomposability:
the flux distribution Φ is indecomposable if there do not exist Φ1,Φ2 ∈ Γ∗,
Φi 6= 0 such that

Φ = λ1Φ1 + λ2Φ2 for some λ1, λ2 > 0 (1.10)

and supp(Φ1) and supp(Φ2) are different proper subsets of supp(Φ).
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Exercise 1.4.2 Prove that a flux distribution is simple if and only if it is in-
decomposable.

From a biological point of view, simplicity or indecomposability means that the
flux distribution consists of a minimal collection of reactions that together can
function in metabolic steady state. If one of the reactions involved is inhibited,
for example by genetic modification such that the enzyme(s) that catalyses this
reaction cannot be produced – that is, the corresponding gene is ‘knocked out’
– then there is no subset of the reactions involved in the flux distribution that
still gives a functioning metabolic steady state. Such distributions could be
viewed as corresponding to ‘metabolic pathways’.

Following Schuster et al. [9, 10],

Definition 1.4.3 An Elementary Flux Mode (EFM) is the flux mode generated
by a simple or indecomposable flux distribution.

One can show that in a reaction network with irreversible reactions only, each
Extreme Current is an Elementary Flux Mode.

In fact, it will turn out, that the EFMs of a reaction network N in which
there are reversible reactions are closely related to ECs of a reaction network
N ′ with irreversible reactions only that is naturally associated to N . N ′ is
called the ‘reconfigured reaction network’ associated to N . N ′ and N have the
same set of metabolites and irreversible reactions. Each reversible reactions
r ∈ Irr(N ) in N is replaced in N ′ by a pair of irreversible reactions, labelled
(r,+) and (r,−), where (r,+) corresponds to the direction of positive flux in
reaction r on N . The set {(r,+), (r,−)} is a reversible reaction pair. So

R(N ′) = Irr(N ′) = Irr(N ) ∪ Rev(N )× {±}. (1.11)

The flux cone Γ′ for N ′ is modified accordingly:

Γ′ := R
Rev(N ′)
+ = R

Irr(N )
+ × R

2Rev(N )
+ . (1.12)

Define the reduction map Ψ : Γ′ → Γ that identifies reversible reaction pairs in
N ′ and defines the flux through the corresponding reversible reaction in N as
the net flux trough this reaction. So for Φ′ ∈ Γ′ we have

Ψ(Φ′)r :=

{

Φ′
r, if r ∈ Irr(N ),

Φ′
(r,+) − Φ′

(r,−), if r ∈ Rev(N ).
(1.13)

The map Ψ is additive and positively homogeneous. It is surjective, but not
injective generally. One can define a ‘right-inverse’, Ψ† : Γ → Γ′ such that
Ψ◦Ψ† = IdΓ. We call this map standard splitting or standard reconfiguration of
a flux distribution Φ ∈ Γ by assigning all net flux to the corresponding reaction
in positive or negative direction:

Ψ†(Φ)r :=























Φi, if r = i, i ∈ Irr(N ),

Φi, if r = (i,+), i ∈ Rev(N ), and Φi ≥ 0,

−Φi, if r = (i,−), i ∈ Rev(N ), and Φi ≤ 0,

0, otherwise.

(1.14)
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The stoichiometric matrix of the reconfigured network can now be expressed as

S′Φ′ = SΨ(Φ′) for Φ′ ∈ Γ′. (1.15)

Exercise 1.4.4 Show that Ψ maps the steady state flux cone (Γ′)∗ of N ′ onto
the steady state flux cone Γ∗ of N : Γ∗ = Ψ

(

(Γ′)∗
)

.

Before we can state the main result that relates EFMs and ECs we need to
introduce the concept of a futile cycle. A futile cycle in N ′ is a flux distribution
Φ′ ∈ (Γ′)∗ such that it involves a single reversible reaction pair and Ψ(Φ′) = 0,
i.e. the fluxes in either reaction are the same. A futile cycle does not have any
net production.

The main result that relates EFMs and ECs is now the following:

Theorem 1.4.5 (Relationship EFMs and ECs) The following holds:

(i) The standard reconfiguration of an EFM of N through Ψ† is an EC of the
reconfigured network N ′. Consequently, each EFM of N is the reduction
of some EC of N ′ under Ψ.

(ii) An EC of N ′ is either the standard reconfiguration of an EFM of N , or
it is a futile cycle.

Thus, the EFMs of N are in one-to-one correspondence with the non-zero re-
ductions of ECs of N ′. In particular, the set of EFMs is finite, generate Γ∗ and
is uniquely determined by N .

Since Γ∗ = Ψ((Γ′)∗) and (Γ′)∗ is generated by the collection of its ECs (see
Section 1.4.1), a consequence of Theorem 1.4.5 is, that Γ∗ is generated by the
collection of EFMs. Thus, any steady state flux mode of N can thus be viewed
as non-negative linear combination of EFMs. This representation need not be
unique.

E.g. [10] provides an algorithm for computing EFMs from the stoichiomet-
ric matrix that does not require the computation of ECs of the reconfigured
network. In Figure 1.2 an example is provided of a network with reversible
reactions, the associated reconfigured network and computed ECs and EFMs.

1.4.3 Extreme Pathways

Extreme Pathways were introduced by Palsson and coworkers [8, 5] indepen-
dently from Schuster et al. at almost the same time to work on particular
metabolic networks with reversible reactions. In there set-up there is a single
interior compartment, all internal reactions therein are irreversible, while some
exchange reactions are allowed to be reversible, with the particular condition,
that each internal metabolite is involved in at most one reversible exchange
reaction. We shall call this the ‘EP-condition’

One may show that this condition implies that the steady state flux cone
is pointed. Hence it is generated by its extreme rays (Theorem 1.4.1). The
flux modes that correspond to these extreme rays are called Extreme Pathways
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Figure 1.2: An example of a reaction network N with reversible reactions and its

reconfiguration N ′. The computed ECs of N ′ are presented as pathways. EC5 is a

futile cycle. EC1, . . . ,EC4 correspond to EFMs of network N .

(EPs). A network that satisfies the EP-condition will typically have more EFMS
than EPs. The excess EFMs are necessarily non-negative linear combinations
of the EPs, because the latter generate the steady state flux cone. Reaction
network N in Figure 1.2 satisfies the EP-condition. EFM1, EFM2 and EFM4

are EPs. EFM3 is the combination of EFM2 and EFM4.

Allthough the EPs thus form a smaller collection of flux modes that still
generates the steady state flux cone, their applicability is mainly limited by
the EP-condition. Various real-life examples will fail the condition that an
internal metabolites is involved in at most one reversible exchange reaction.
Nevertheless, Palsson and coworkers have provided a wealth of applications of
EP-analysis in a series of papers, see e.g. [1, 2, 6], among others.

1.5 Applications of Elementary Flux Modes

Once a sufficiently small biologically meaningful collection of flux modes is ob-
tained that generates the steady state flux cone one can apply these for various
purposes. The ideas for applications put forward by the Palsson school, using
EPs for networks that satisfy the EP-condition, can equally well be performed
with EFMs. As the collection of EFMs as generating set for the steady state
flux cone exists for any chemical reaction network, we continue by considering
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these as collection of generators. We mention a few applications:

One can determine network statistics taking the biological meaningful and
objective metabolic pathways as defined by the EFMs as starting point.
The pathways are obtained by mathematical means from the stoichiome-
try of the network rather than by subjective inspection. Using the EFMs
one may consider e.g. the distribution of pathway lenghts, pathway over-
lap, correlated reaction subsets, ...

It allows comparison among different organisms. Network-based statistics
as above for different organisms can be used to compare their metabolic
networks. Observed differences in network statistics may require further
biological research for explanation and understanding.

One can perform in silico bioengineering experiments to see what would
be the effect of a modification of the metabolic network before this is
achieved in a living organism (bacterium, yeast). An example is provided
in [1] (using EPs).

Biologically, the number of representations of a given flux mode that
involve different sets of EFMs provides quantification of the versatility of
the organism in organising its metabolism.

Analyse the possible ways of functioning of the metabolic network: one
can count the number of EFMs that are able to produce a given product
from a given substrate. Each EFM has an input-output signature: a set of
substrates that is taken up from the environment that results in a set of
products. Inspection of the possible input-output signatures gives insight
in the capabilities of the network.

One can show that optimal yield of a product takes effect in an EFM. So
one can identify optimal environmental conditions under which optimal
production is possible.

Phenotypic Phase Plane Analysis allows to analyse what combination of
EFMs is needed to have maximal production rate of a compound for a
given pair of influx rates for two substrates from the environment, and
changes in these combinations. This provides insight into changes in gene
regulation that are needed for the organism to optimally perform (i.e.
with regard to production of the chosen product) when its environment
changes.

1.6 Flux Balance Analysis

1.7 Reaction Network Theory

Reaction Network Theory is a branch of mathematics that is concerned with
the question to what extent the possible long-term dynamics of a reaction net-
work is determined by network topology, i.e. the way in which the reaction are
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coupled together, independent of parameter values. A notable example thereof
is Feinberg’s ‘Deficiency-One Theorem’ [4]. If all reactions fluxes are given
by Mass Action Kinetics, then a particular topology of the connections (the
’Deficiency-one’) implies that there can exist a single steady state only.

Application to metabolic networks seems of such theory seems limited, be-
cause of the Mass Action assumption. Most reactions in a metabolic network
are enzyme-catalyzed, so reaction rates do not satisfy this assumption when
the enzyme and enzyme-substrate complex(es) are not included in the model.
That is, when effective rate expressions for the reactions are used, obtained by
suitable time scale separation arguments (See Chapter 2).
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