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Abstract 

The theory of alternative stable states and tipping points has garnered a lot of attention in 

the last decades. It predicts potential critical transitions from one ecosystem state to a 

completely different state under increasing environmental stress. However, typically 

ecosystem models that predict tipping do not resolve space explicitly. As ecosystems are 

inherently spatial, it is important to understand the effects of incorporating spatial 

processes in models, and how those insights translate to the real world. Moreover, spatial 

ecosystem structures, such as vegetation patterns, are important in the prediction of 

ecosystem response in the face of environmental change. Models and observations from 

real savanna ecosystems and drylands have suggested that they may exhibit both tipping 

behavior as well as spatial pattern formation. Hence, in this paper, we use mathematical 

models of humid savannas and drylands to illustrate several pattern formation phenomena 

that may arise when incorporating spatial dynamics in models that exhibit tipping without 

resolving space. We argue that such mechanisms challenge the notion of large scale critical 

transitions in response to global change and reveal a more resilient nature of spatial 

ecosystems. 

Keywords: alternative stable states, vegetation patterns, resilience, Turing instability, front 

dynamics, coexistence states 

1. Introduction 

The idea that alternative stable states may exist in ecosystems has prevailed in ecological 
literature for almost half a century now (Holling, 1973; May, 1977; Noy-Meir, 1975). This 
directly relates to the theory of tipping points, which contributes to our understanding of 
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ecosystem functioning (Scheffer et al., 2009; Scheffer et al., 2001; van Nes et al., 2016). 
With increasing stress, an ecosystem persists in one of its stable states until a critical point 
(also called a tipping point) is reached and a critical transition (or tipping) to another stable 
state occurs (Fig. 1a). Once the system has crossed a tipping point, decreasing stress to the 
original value does not restore the system to the original state. This phenomenon of history 
dependence is called hysteresis. The ecological significance of such a phenomenon is that a 
tiny change in environmental conditions can result in irreversible change of the system to 
another state with completely different characteristics. The theory of alternative stable 
state has been used by ecologists to explain, for instance, the process of clear lakes rapidly 
turning turbid (Banerjee et al., 2021; Scheffer et al., 1993), desertification of vegetated lands 
(Rietkerk & van de Koppel, 1997; Rietkerk et al., 1997) and the co-occurrence of tropical 
forests and savannas for the same climatic conditions (Hirota et al., 2011; Staver et al., 
2011). 

To understand ecosystems with multiple alternative states, often the ball in a landscape 
analogy is used (Fig. 1b). Here, a ball represents the current ecosystem state and the 
landscape represents its stability properties (its ‘stability landscape’). When there is only 
one stable state, the landscape has one valley where the ball rests. With increasing 
environmental stress, the landscape changes shape and has two valleys, each representing 
an alternative stable state. The peak in between these two valleys represents a third 
equilibrium that is unstable. For further increase in stress levels, the landscape changes such 
that the original valley disappears and the ball rolls to the alternative valley. The 
mathematical phenomenon by which valleys form or disappear in the landscape is known as 
a bifurcation. This is the underlying cause for critical transition or (bifurcation-induced) 
tipping.  

A common mechanism that drives ecosystems to undergo such critical transitions are 
positive feedbacks (DeAngelis, 1986; van Nes et al., 2016). For instance, in the case of 
shallow lakes, nutrient overloading causes water turbidity, which leads to decrease in 
density of macrophyte plants, which in turn leads to even lesser nutrient uptake and so 
more turbidity (Scheffer et al., 1993). Similarly, in the case of dryland ecosystems, a 
decrease in vegetation reduces water infiltration into the soil, which in turn leads to further 
vegetation decrease (Rietkerk et al., 1997). In recent years, the changing global environment 
due to climate change led to a renewed resurgence of these ideas whereby the concept of 
critical transitions has been linked to ecosystems as well as climate system elements (Lenton 
et al., 2008). 



 

 

 Fig 1. A. Classical theory of tipping points: with increasing environmental stress the ecosystem 
undergoes a critical transition to the alternative stable state at T1 and the stress has to decrease 
below T2 before the ecosystem returns to the original state via another critical transition. The blue 
shaded region indicates the environmental conditions under which alternative stable states may 
exist. The solid and dotted lines represent stable and unstable ecosystem states respectively. B. 
Changes in stability landscape with increasing environmental stress (from top to bottom). Numbered 
balls in A and B correspond to the same ecosystem state for the same environmental stress levels. 

Typically, the vulnerability of ecosystems to critical transitions has been predicted by 

analyzing simple non-spatial models, which do not take into account important spatial 

processes, such as dispersal or lateral flows. Such mechanisms can lead to spatially 

structured ecosystem states, with spatial boundaries or fronts between alternative states; 

this has been shown to be important to assess ecosystem responses to global change (Goel 

et al., 2020; Zelnik et al., 2017). In this paper, we demonstrate the role of spatial processes 

for (ecosystem) models exhibiting alternative stable states without resolving space. When 

non-spatial models are extended by the inclusion of spatial processes, completely new 

behaviors can be found, leading to new predictions of the ecosystem dynamics and 

resilience. Although some spatial mechanisms of transitions that are relevant to spatially 

extended systems have been studied in ecological context, a comprehensive understanding 

is still lacking. So, it is important to summarize relevant knowledge in this area and integrate 

it with state-of-the-art ecological understanding. In this study, we demonstrate with 

examples various types of ecosystem behavior that can be found once we spatially extend 

non-spatial bistable models that are tipping-prone.  

We have chosen savannas and drylands as archetypical ecosystems for this study (Rietkerk 

et al., 2021), because of two main reasons. First, model predictions and observations 

suggest that savanna ecosystems may exhibit tipping. For instance, at the wetter end of its 



range of existence, the savanna-forest transition zone could be bimodal, i.e., for the same 

climatic conditions, both savanna and forest are observed (Aleman et al., 2020; D'Onofrio et 

al., 2018; Dantas et al., 2016; Hirota et al., 2011; Staver et al., 2011). Further in drylands, 

with arid and semi-arid conditions, it is predicted that desertification could occur via critical 

transitions or tipping (Rietkerk & van de Koppel, 1997; Rietkerk et al., 1997). Second, for 

both savannas and drylands, spatial patterns have been observed (Groen, 2007), and their 

importance has been acknowledged. At the savanna-forest boundary, the role of spatial 

scale and heterogeneity has been stressed upon recently (Aleman & Staver, 2018; Staver, 

2018; Wuyts et al., 2017). In semi-arid ecosystems, various kinds of vegetation patterns such 

as gaps, labyrinth, stripes and spots are well documented in the literature (Deblauwe et al., 

2008; Rietkerk & van de Koppel, 2008; Rietkerk et al., 2002), which highlights the 

importance of spatial processes.  

In this paper we represent drylands and humid savannas with two spatially explicit models. 

We use the reaction diffusion framework, as it is mathematically tractable and commonly 

used in ecology (Rietkerk et al., 2002; Zelnik et al., 2015). We demonstrate spatial pattern 

formation in these models due to diverse dynamics, such as interacting spatial feedbacks, 

spatial heterogeneity and behavior of spatial boundaries (also called fronts or interfaces) 

between alternative stable states. We identify the mechanisms that might be more relevant 

for each biome and argue that these mechanisms make ecosystems more resilient than 

earlier thought on the basis of non-spatial frameworks.  

The rest of the manuscript is organized in the following manner. First, we introduce non-

spatial models of humid savannas and drylands and study the change in equilibrium 

properties as environmental conditions change. Subsequently, we incorporate spatial 

dynamics in these models and demonstrate how this can fundamentally and qualitatively 

change the model predictions. Further, we elaborate on the differences in predictions that 

might be observed under dry and humid conditions depending on the driving force in that 

region. Finally, we discuss the implications of these new developments and delineate future 

perspectives for studies contributing towards consequences of global change. 

 

2. Model description 

To model humid savannas and drylands, we use two conceptual models, each with two 

interacting state variables. We choose this level of complexity for the following reasons. 

While single component models, which have been used earlier to model these ecosystems 

(Bastiaansen et al., 2022; Goel et al., 2020), are easier to analyze, they do not accommodate 

the richness and variety of behaviors that may be possible due to spatial effects. However, 

for the ease of analysis, we also refrain from incorporating more state variables, the likes of 

which are also prevalent in the literature (e.g. Gilad et al (2004); Rietkerk et al. (2002); 

Staver & Levin (2012); Wuyts et al. (2017)). Using models of similar complexity for both 

cases allows us to compare the two models with each other and generate new hypothesis 

about the mechanisms which may lead to different kinds of behavior when models 

exhibiting alternative stable states are spatially extended. 



a. Humid savanna model  

Here, we introduce a new modelling framework (hereafter referred to as “humid savanna 

model”) that considers two plant functional types: grasses, which fundamentally define 

savannas and its vegetation (Lehmann et al., 2011; Parr et al., 2014), and forest trees. For 

simplicity, we do not explicitly model savanna trees, but we cluster them together with 

grasses into the savanna vegetation variable, since the savanna trees have similar responses 

to shade and fire as grasses (Charles-Dominique et al., 2018). Grasses are shade intolerant, 

fire resistant and have good resprouting abilities, which thus results in minimal loss and 

quick regrowth after fire (Hoffmann et al., 2012). Further, grasses act as fuel for fires 

enabling them to spread, thus playing a significant role in fire mediated destruction of the 

forest trees (Lehmann et al., 2011). Conversely, tropical forest trees can tolerate shade well 

but do not generally have any trait conferring them fire resistant (Charles-Dominique et al., 

2018).  

We denote savanna biomass density by S (kg m-2) and forest biomass by F (kg m-2), and 

model their dynamics as: 

𝑑𝑆

𝑑𝜏
= 𝑟𝑆𝑆 (1 −

𝑆

𝐾𝑆
) − 𝑐𝐹𝑆 − (𝜂𝑓𝑆𝑆 + 𝑑𝑆)𝑆 

 
𝑑𝐹

𝑑𝜏
= 𝑟𝐹𝐹 (1 −

𝐹

𝐾𝐹
) − 𝜂𝑓𝐹𝑆𝐹 − 𝑑𝐹𝐹  

 

          ---------------------- (1)
             
Here, logistic growth is considered, which allows the forest and savanna biomass to increase 
until their carrying capacity is reached. rS and rF are the growth rate of savanna vegetation 
and forest trees respectively. KS and KF are their carrying capacities. dF and dS are the 
removal rate of the forest trees and of the savanna vegetation, resulting from various 
factors, such as natural mortality and herbivory. fS and fF represent the sensitivity of savanna 
vegetation and forest trees to fire, with fF > fS since savanna vegetation is more fire-resistant 
than forest trees.  Savanna vegetation acts as a fuel to the fires, which occur at a frequency 
ƞ. Thus, the rate at which savanna biomass is lost is proportional to the savanna plant 
biomass and can be modeled as -ƞfS S. Further, fire also causes destruction and loss of forest 
biomass and the rate at which such loss occurs is modeled with -ƞfF S. Forest trees with 
closed canopy have a negative influence on the shade-intolerant savanna vegetation which 
is modeled with -cFS. τ is time expressed in years. The dimensionless version of the model 
can be expressed as follows (see Supplementary material Section A.1 for details):  
 

𝑑𝑠

𝑑𝑡
= 𝑠(1 − 𝑠) − 𝑏𝑓𝑠 − 𝑛𝑠 

 
𝑑𝑓

𝑑𝑡
= 𝜇𝑓(1 − 𝑓) − 𝑎𝑠𝑓 − 𝑚𝑓  

 
 

                      ---------------------- (2) 



Here, s and f are the dimensionless state variables and μ, a, b, m, n are the dimensionless 
parameters of the model. In order to explore the equilibrium properties of the humid-
savanna model, we carry out a bifurcation analysis of the nonspatial model (Eqs. (2)). Water 
availability, mostly due to rainfall, is expected to be an important bifurcation parameter as 
tropical forests ultimately dominate when water availability is very large, while savannas are 
observed at lower mean annual rainfall (e.g. (Lehmann et al., 2011)) . As we are not 
modelling water availability explicitly, we represent, the changing climatic condition along 
the rainfall gradient in this transition zone by changing the forest tree growth rate (𝑟𝐹 in the 
dimensional model (1)). This is justified as precipitation increases the forest tree growth 
rate, while it has negligible impact on the growth of the savanna vegetation in mesic and 
humid savannas, where  the prevailing humid conditions are sufficient so that the grasses 

are not limited by water (D'Onofrio et al., 2018). Since 𝜇 =
𝑟𝐹

𝑟𝑆
  (see Supplementary material 

Section A.1), we choose μ as the bifurcation parameter (Fig 2.A,B). The choices of the rest of 
the parameters are motivated from ecological literature (see Supplementary material 
Section A.5).  
 
In an intermediate range of forest tree growth rate, 𝜇, the forest and savanna states exist as 
alternative stable states. On decreasing 𝜇, if the system is in the savanna state, it continues 
to persist in the same state, while if the system is in the forest state it undergoes an abrupt 
transition to the savanna state when the rainfall is low enough. The opposite happens on 
increasing 𝜇. It is interesting to note here that the tipping behavior demonstrated in this 
model is due to two transcritical bifurcations (see Supplementary material Section A.2, A.3 
for analytical expression of the steady states and their stability conditions and Section A.5, 
Fig S1 for the complete bifurcation diagram), and not fold bifurcations (Fig. 1), which are 
encountered in many other similar models (Staver & Levin, 2012; van de Leemput et al., 
2015).  

 



 

Fig. 2.  Bifurcation diagrams of the two dimensionless non-spatial models. (A,B) Humid savanna 

model (Equation 2), forest tree (A) and savanna vegetation (B) biomass as a function of forest tree 

growth rate (μ). The green lines represent forest-only state and the yellow lines represent savanna-

only state. The solid lines represent stable equilibria while the dashed lines represent unstable 

equilibria. For clarity, other biologically non-feasible equilibria are not shown here (see 

Supplementary material Section A.5, Fig S1,  for the complete bifurcation diagram). Parameter 

values: a=1.3, b=1.8, m=0.02, n=0.4. (C) Dryland model (Equation 4), vegetation biomass as a 

function of rainfall (p). The dark brown line represents the vegetated state and the light brown line 

represent the barren state. Parameter values: u=1.2, k=1. The red lines denote time series 

simulations with the respective equilibria as initial conditions and a gradual decrease in bifurcation 

parameters, i.e., dμ/dt=0.0005 and dp/dt=-0.0005. 

 

b. Dryland model  

To represent the vegetation dynamics in drylands, we consider a modified version of the 

commonly used Klausmeier model (Bastiaansen et al., 2019; Eigentler, 2021; Klausmeier, 

1999). Although this model has been largely used in the spatial context, we start with a non-

spatial variant here to highlight the differences in behavior predicted from the spatial and 

the non-spatial version. The non-spatial (i.e., “reaction”) part of the model (hereafter 

referred to as “dryland model”), which describes the water-plant interactions in drylands, is 

given as follows: 



 
𝑑𝑊

𝑑𝜏
= 𝑞 − 𝑙𝑊 − 𝑟𝑊𝑉2 

 
𝑑𝑉

𝑑𝜏
= 𝑟𝑗𝑊𝑉2 (1 −

𝑉

𝐾
) − 𝑑𝑉  

 

          ---------------------- (3) 

Here, W represents surface water and V represents vegetation biomass. q represents 

rainfall, l represents the water evaporation rate and rWV is the uptake rate of water which 

depends on both the water and the vegetation biomass present. The conversion of water 

into biomass is assumed to only occur until the vegetation reaches a carrying capacity K. 

Hence, it can be expressed as j(1-V/K) which is a decreasing function of V until it reaches 

zero at the carrying capacity, V=K. d represents natural mortality of the vegetation. 

The model can then be non-dimensionalized (see Supplementary material Section B.1) as 

follows: 

𝑑𝑤

𝑑𝑡
= 𝑝 − 𝑤 − 𝑤𝑣2 

 
𝑑𝑣

𝑑𝑡
= 𝑤𝑣2 (1 −

𝑣

𝑘
) − 𝑢𝑣  

 
 

          ---------------------- (4) 

where w and v are the dimensionless state variables and p, u, and k are positive parameters. 

Since water limitation drives the system dynamics, the rainfall parameter, ‘q’, is the 

appropriate choice for the bifurcation parameter. In the dimensionless model, this 

corresponds to ‘p’. All other parameters are adapted from earlier literature (see Supporting 

information, section 2.5). The model possesses two alternative stable states that exist for a 

certain parameter range, namely (i) a bare soil state and (ii) a vegetation state (Fig. 2.C).  As 

rainfall decreases, vegetation biomass decreases slowly until it reaches a threshold where 

vegetation can no longer persist and the system undergoes a critical shift to the barren 

state. This shift is irreversible as on increasing rainfall, the system can no longer go back to 

the vegetated state.  

 

3. Spatially extended ecosystems 
 

Spatial processes play a vital role in ecosystem functioning and biome distributions. 
Therefore we now spatially extend these two models and demonstrate how the predictions 
of alternative stable state theory change when incorporating spatial effects. We consider 

the evolution of the two dynamical variables in each model, (
𝑠
𝑓) in case of the humid 

savanna model or  (
𝑤
𝑣

) in case of the dryland model, on a unbounded spatial domain with 



coordinates (𝑥, 𝑦) ∈ R2 (or only 𝑥 ∈  R in case of one dimension). In addition to the local 
dynamics, spatial transport between locations now also plays a role. The simplest way to 
implement spatial transport is to add (linear) diffusion. Thus, new spatial models describing 
the vegetation dynamics in the humid savanna and drylands over time and space are given 
by the partial differential equations given by the following. 
 

Humid savanna model: 
𝜕𝑠

𝜕𝑡
= 𝑠(1 − 𝑠) − 𝑏𝑓𝑠 − 𝑛𝑠 + (

𝜕2𝑠

𝜕𝑥2
+

𝜕2𝑠

𝜕𝑦2) 

 
𝜕𝑓

𝜕𝑡
= 𝜇𝑓(1 − 𝑓) − 𝑎𝑠𝑓 − 𝑚𝑓 + 𝛿 (

𝜕2𝑓

𝜕𝑥2
+

𝜕2𝑓

𝜕𝑦2) 

                    -------------------(5) 
 
Dryland model: 

𝜕𝑤

𝜕𝑡
= 𝑝 − 𝑤 − 𝑤𝑣2 + 𝛿𝑤 (

𝜕2𝑤

𝜕𝑥2
+

𝜕2𝑤

𝜕𝑦2
) 

 
𝜕𝑣

𝜕𝑡
= 𝑤𝑣2 (1 −

𝑣

𝑘
) − 𝑢𝑣 + (

𝜕2𝑣

𝜕𝑥2
+

𝜕2𝑣

𝜕𝑦2
)  

 
-------------------(6) 

 
Here, δ represents the ratio of the diffusion coefficient of the forest and savanna vegetation 

and δ𝑤 represents the ratio of the diffusion coefficient of water and dryland vegetation (see 

Supplementary material Section A.1. and B.1 for non-dimensionalization of the full spatial 

models).  This type of models, known as reaction-diffusion equations, consist of a reaction 

part which describes the local dynamics and a diffusion part which describes the spatial 

transport. Such models are important in the context of spatial dynamics because they are 

mathematically tractable. Furthermore, a relatively simple class of such models can exhibit 

rich patterns (Klausmeier, 1999; Rietkerk et al., 2002; Wuyts et al., 2017; Zelnik et al., 2015), 

which are comparable to what is observed in real ecosystems.  In the following sections, we 

discuss the various mechanisms of spatial pattern formation that may be observed when 

models with alternative stable states are spatially extended. We discuss regular pattern 

formation which are known to occur in many models of drylands. Furthermore, patterns 

could also be formed due to local disturbances – which we discuss in the context of both 

humid savanna and drylands and then compare the two cases. We discuss the implications 

of such pattern formations in the context of transitions between alternative stable 

ecosystem states. The emergence of coexistence states, rather than tipping, as a result of 

spatially heterogeneous environment and front instabilities are also described. All 

simulations in the following sections have been carried out using MATLAB. 

 

a. Turing before tipping 



In the non-spatial models, the forest-only state as well as the savanna-only state, in case of 
humid savanna, and the vegetated state, in case of drylands, remain stable under small 
perturbations until a particular threshold of environmental pressure. However, such 
spatially uniform equilibria in models with two or more components may become unstable 
to spatially heterogeneous perturbations. This is the most well-known and largely studied 
Turing bifurcation and results in regular spatial patterns (HilleRisLambers et al., 2001; 
Turing, 1952). On investigating the models (5) and (6) for Turing bifurcations, we see that 
the humid savanna model does not exhibit such instability (for details see Han (2011) and 
Supplementary material Section A.4). So if a spatial domain is homogeneously covered with 
either of the forest or savanna state, then changing μ may lead to tipping of the domain to 
the alternative stable state. However, for the dryland model, the onset of Turing patterns 
could be seen easily (Fig. 3 and Supplementary material Section B.4, Fig. S2) and patterns 
observed in many real drylands are often explained by this phenomenon (Rietkerk & van de 
Koppel, 2008; Rietkerk et al., 2002). Further, we observe in the dryland model that the 
Turing bifurcation occurs before the threshold of environmental pressure where tipping is 
predicted to occur in the non-spatial version of the model (Fig 3, Supplementary material 
Section B.4 and Fig S2). This phenomenon has been referred to as “Turing before tipping” 
(Rietkerk et al., 2021). So, essentially this implies that, when considering spatial dynamics, 
on decreasing rainfall there is onset of pattern formation before the system reaches the 
tipping point.  
 

  
Fig 3.  Turing before tipping. (A) Turing bifurcation occurs for larger values of rainfall (pTuring) 
compared to the tipping point (pT) in the dryland model. The ecosystem could then persist in 
patterned states beyond the tipping point within the Busse balloon (a conceptual diagram is 



presented). With decreasing rainfall, the patterned state retains its wavelength until the edge of the 
Busse balloon (minor ecosystem adjustments are indicated by single arrows) where the ecosystem 
could shift (indicated by double arrows) to a pattern of different wavelength. There could be multiple 
such ecosystem shifts instead of a single catastrophic state shift when the rainfall parameter, p, 
changes gradually over time. Pathway for ecosystem degradation is indicated by the red lines and for 
ecosystem recovery is indicated by the green lines. The dark brown line (solid: stable; dashed: 
unstable) represents the vegetated state and the light brown line represent the barren state. (B) 
Vegetation biomass across one-dimensional spatial domain on decreasing the rainfall parameter 
gradually, i.e., dp/dt=-1.25x10-6, with randomly perturbed homogeneous vegetation state for p<pTuring 
as initial condition. Patterns of different wavelengths can be observed for p1=5.825>pT (C) and for 
p2=5.7625<pT (D). Parameter values: δw=200, other parameter values are the same as in Fig 2. 

 
Ecologically, such pattern formation can be explained by a combination of short-range 
facilitation and long-range inhibition due to vegetation. Vegetation patches increase water 
infiltration, which in turn increases vegetation locally thus resulting in a positive feedback. 
Water taken up by the vegetation leads to diffusion of water from nearby areas to the 
patch. Hence, there is less water further away from the patch, leading to decrease in 
vegetation which is a negative feedback. This feedback, which changes from positive to 
negative at different spatial scales is known as scale dependent feedback, and it explains the 
regular spatial pattern formation (Rietkerk & van de Koppel, 2008). Although the emergence 
of such patterns in ecosystem were earlier believed to be an early warning to the upcoming 
abrupt transitions, recent developments suggest that the behavior and stability of such 
patterns determines whether the ecosystem will undergo a critical transition to an 
alternative stable state. It has been shown in similar dryland models that the patterns can 
remain stable for a large range of environmental conditions. Also, for a particular 
environmental condition, there could be multiple stable patterns of different wavelengths. 
Moreover, it is possible to define a region in the parameter wave-number (number of 
patches per unit distance) space, also called “Busse balloon” comprising all the stable 
patterns (Bastiaansen et al., 2018; Siteur et al., 2014). In fact, on changing environmental 
conditions, the patterns remain stable up to the edge of this region where they typically 
adapt to a new wavelength. This mechanism leads to small transitions between patterns of 
different wavelength, which help ecosystems evade large critical transitions or tipping as 
predicted by alternative stable states theory. While we do not specifically define the Busse 
balloon for this particular model, in Fig. 3A, we illustrate a conceptual diagram of the 
general mechanism by which such a stability region helps evade tipping. 
 
 

b. Patterns due to local disturbances 
 
Although scale-dependent feedbacks (or Turing bifurcations) are probably the most well 
studied mechanism of pattern formation in ecosystems, patterns could also be formed due 
to spatially localized disturbances to the system state, such as grazing and local 
deforestation. The disturbances, here, refer to a change in ecosystem state in an otherwise 
homogeneous landscape rather than change in model parameters, which represents 
environmental condition. In models exhibiting alternative stable states, a range of 
environmental conditions (parameters) exists where the whole domain can be in one of the 
two possible states. In such an environment, if only a part of the domain is disturbed and 
transformed into the other ecosystem state, then the two alternative states can coexist in 



space, in a transient way, while they are connected via a spatial boundary, which is also 
called ‘front’ in the mathematical literature. Front dynamics are not fully understood yet, 
except for so-called potential systems (see Box 1). In the case of single component models 
that represent potential systems, such a front always exists in the bistable regime of the 
model. The fronts propagate in one of the directions, resulting in either a gradual recovery 
from initial disturbance or a gradual but complete transition to the alternative stable state 
(Bel et al., 2012; van de Leemput et al., 2015). They always travel towards the state with 
lowest potential or in other words the deepest well in the ball in landscape picture (see Fig. 
1).   
 
However, most two- or multi-component models representative of ecosystems are often 
not potential systems. In such a case, the above framework does not necessarily hold true 
and the direction of front propagation can only be explained by environmental conditions 
represented by model parameters. To demonstrate this, we study the spatial version of the 
humid savanna model equations (5) in one-dimension, under conditions where there is 
bistability between forest-only and savanna-only state in the non-spatial model. When the 
landscape is initially divided into forest and savanna, we see that either the forest biome 
invades the savanna biome or vice versa depending on the parameter values – similar to the 
case explained in Box 1. Moreover, when all other parameters are appropriately chosen, the 
parameter 𝜇, representing forest growth rate, can govern the direction of propagation of 
the traveling wave (see Fig. 4). For parameters corresponding to Fig. 2, when 𝜇 = 0.4, the 
savanna invades the forests and eventually covers the whole landscape and when 𝜇 = 0.5, 
the opposite happens. Since forest growth rates are expected to increase with water 
availability, ecologically this implies that changing climatic conditions could govern whether 
savanna invades the forest or vice versa. 
 
Box 1 
 
Direction of front propagation 
 
The intuition behind front propagation can be understood with the help of relatively simple 
models that are so-called potential systems. A system which describes time evolution of a 
state variable v, can be defined as a potential system if it is possible to define a function U(v) 
such that it always decreases with time (Strogatz, 1994). While this in general does not hold 
for most two- or multicomponent ecosystem models, single component non-spatial models 
are always potential systems. Hence, we consider such a model to illustrate this 
 

𝑑𝑣

𝑑𝑡
= 𝐹(𝑣) 

 
U is called a potential function and can be defined such that the following holds: 

 
𝑑𝑈

𝑑𝑣
= −𝐹(𝑣) 

 
Here, the function U depends on v which in turn depends on t. So, U has implicit 
dependence on time. Now,   
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So, the potential function U either remains constant with time or decreases. This implies 
that the system always approaches a local minimum of its potential. Such a minimum 
represents a stable state where any perturbation which is sufficiently small must decay in 
time. This is the mathematical reasoning behind the potential landscape being 
representative of the stability properties of a system, as demonstrated in Fig. 1. In case the 
system displays alternative stable states, say a state vA and a state vB, the states represent 
local minima, i.e., minimum with respect to local surroundings in the potential landscape. 
 
Using the potential function, and adding diffusion with coefficient D, a spatially extended 
model can be written as the following partial differential equation  
 

∂𝑣

∂𝑡
= −

𝑑𝑈

𝑑𝑣
+ 𝐷

∂2𝑣

∂𝑥2
 

 
For simplicity, we restrict ourselves to one spatial dimension. When one part of the spatial 
domain is in state vA and the other is in vB, there is a front connecting the two. Letting ξ 
denote the constant velocity at which the front propagates, we may define a new spatial 
coordinate that follows the location of the front z=x-ξt. We consider a front which 
asymptotically converges to vA when z→-∞ and vB when z→∞, then the velocity, ξ, can be 
expressed as (see Bel et al. (2012) and full derivation, see Supplementary material Section C) 
 

𝜉 = 𝐴−1[𝑈(𝑣𝐵) − 𝑈(𝑣𝐴)] 
 

where, 𝐴 = ∫ (𝑣′)2𝑑𝑧
∞

−∞
 

 
It can be observed from above that the front velocity depends on the difference between 
the potential U at the two alternative stable states. In the potential landscape, this process 
of front propagation converts areas of high potential to areas of low potential. In other 
words, this means the deeper well in Fig. 1 invades the other. The specific value (or values) 
of the parameter at which the potentials corresponding to the two alternative states are the 
same is called the Maxwell point, and for these parameter values the front is stationary, i.e. 
its velocity ξ = 0 (Bel et al., 2012; Pismen, 2006).  
 
 
Interestingly, there is a parameter value at which the front remains stationary, i.e., neither 
of the states invade the other, which is called “Maxwell point” (Pismen, 2006). At this point, 
in other words, the velocity of the front propagation becomes zero and thus the part of the 
landscape covered by each of the ecosystem states remains the same in size. Although the 
term “Maxwell point” has been coined in the case of potential systems (and before that in 
physics, see Clerk-Maxwell (1875)), we will further extend this notion to stationary fronts in 
other systems as well. The Maxwell point in the above case will be 0.4<𝜇𝑀<0.5 and can 
numerically be approximated to be 𝜇𝑀~0.4489 (Fig 4.B).  It is noteworthy that any slight 
deviation from that environmental condition at the Maxwell point would lead to a transition 



of the whole spatial domain to either of the ecosystem states, thereby exhibiting a 
characteristic of an unstable state. Similar analysis was also carried out for the dryland 
system where larger precipitation (p=6.4) leads to vegetation invading the barren land and a 
lower precipitation (p=6.3) results in the movement of the front in the opposite direction 
(Fig. 4. D-F). The “Maxwell point” in this case is approximately pM~6.3513 (Fig. E).  
 
 
 

 
 
Fig 4: Front propagation over time in one dimensional space. Direction of front propagation is 
indicated by the arrows. (A-C) Fronts connecting the savanna and the forest states. The savanna 
invades the forest when μ=0.4<𝜇𝑀, and the forest invades the savanna when μ=0.5>𝜇𝑀. For 
μ=𝜇𝑀(~0.4489), the front remains approximately stationary. Green and yellow lines denote forest 
and savanna biomass respectively, close to the initial condition where half of the spatial domain is in 
the savanna state and the other half is in the forest state.  The shaded regions indicate their 
respective biomass after a time t. Parameter values: δ=0.01, the other parameters are the same as in 
Fig 2. (D-F) Front connecting vegetation and the barren states. Vegetation invades barren land when 
p=6.4, and barren land invades vegetation when p=6.3. For p=pM (~6.3513), the front remains 
approximately stationary. The brown line indicates vegetation biomass close to the initial condition 
where half of the spatial domain is in the barren state and the other half is in the vegetated state. 
Parameter values: δw=100, the other parameters are the same as in Fig 2. 

 
The above-described behavior can lead to stable spatial patterns when multiple localized 

disturbances form localized domains of the alternative stable states in the landscape. This 

could happen when a homogeneous landscape is disrupted by, for instance, changes in land 

use. For example, multiple large patches of bare soil could form within an otherwise 

vegetated landscape in drylands. Mathematically, this results in the creation of multiple 

fronts. The dynamics of these multiple fronts is a bit more subtle than that of a single front. 

The fronts (i.e. the edges of the patches) may move towards each other, leading the 

vegetation patches or the barren areas to merge, depending on the direction of front 



propagation (Bel et al., 2012). However, a different behavior can also be observed, because, 

importantly, the presence of one front influences the movement of the other. In the case of 

two- or multicomponent systems, this can result in stationary fronts (Jaïbi et al., 2020; Zelnik 

& Meron, 2018). Such multiple stationary fronts may lead to domains of alternative stable 

states positioned next to each other, so they can coexist in a stable way. So, for 

environmental conditions where the barren state can invade the vegetated state, such 

multiple stationary fronts created via, for instance, local disturbances can lead to 

coexistence states, thus making the ecosystem more resilient. We show this with the 1D 

spatially-extended dryland model (6) (see Figure 5. A-C). When initially one part of the 

landscape is disturbed and converted to barren land, the whole landscape gradually evolves 

to a barren state (Fig. 5.A). On the other hand, when the initial disturbance produces 

multiple patches of barren land in the landscape, the same environmental conditions (i.e. 

the same model parameters) could yield stable vegetation patches (Fig 5.B). The barren 

state invades the vegetation in both directions until both fronts interact with each other 

leading to the stable vegetation patch (Fig. 5.C.). It is interesting to note that we do not find 

such type of stable patterns for the humid savanna model. In order to find that, an 

additional condition of environmental spatial heterogeneity is necessary, which is discussed 

in the following section (see Fig 5D-F)  

 

 
Fig.5: Coexistence states. (A) Barren state invading the vegetated state in the dryland ecosystem. (B) 
Stable vegetation patch in drylands due to multiple stationary fronts. (C) Propagation of the fronts in 
the dryland when there are multiple barren patches in the landscape. The brown line indicates 
vegetation biomass close to the initial condition while the shade indicates the biomass after a long 
time (t=1200). Parameters: p=6.2<pM,, other parameters are the same as Fig. 4.  (D) The forest state 
invades the savanna state in the humid savanna system (μ= μ0).  (E-F) Stable patterns of alternate 
savanna(s) and forest (f) patches due to (environmental) spatial heterogeneity of water availability, 
expressed as variation in the forest growth rate, μ= μ0 + 0.025 sin (0.16x), where x is the 1D spatial 
coordinate. The green and yellow shades in (F) indicate forest and savanna biomass at the end 
simulation time (t=11000). Parameters: μ0=0.46>μM, other parameters are the same as Fig 4. 

 



c. Spatially heterogeneous environment 
 

Front propagation in ecosystems will depend on local environmental conditions. Although it 
is common in model studies to assume that the dynamics arising from interactions between 
the system components remains the same throughout the whole domain, in real 
ecosystems conditions are typically heterogenous. Thus, local interactions can vary across 
the landscape with the spatial location. For example, water availability could vary quite a bit 
across a landscape, due to e.g. variations in topography and/or soil types. We incorporate 
such spatial heterogeneity of environmental conditions in the humid savanna model by 
assuming that the water availability determines variations in the forest growth rate, μ, 
across the domain. We specifically use two forms of spatial variation in  μ: (i) small changes 
around a mean and (ii) monotonically decreasing across the domain. For the former, we 
assume small sinusoidal variations in the forest growth rate, μ, across the domain, and 
simulate over a one dimensional spatial domain with μ(x)= 0.46 + 0.025 sin (0.16x), where x 
is 1D dimensionless spatial coordinate (Fig 5 E-F). We stress that the spatial variation in μ is 
thus relatively small. Noticeably, we now observe stable alternate patches or “coexistence 
states” of savanna and forest if there are multiple localized domains of savanna in a 
homogeneous forest landscape. This could potentially explain the savanna-forest mosaics 
often observed at the transition zone between the two biomes (Charles-Dominique et al., 
2018; Charles-Dominique et al., 2015). It is important to note that without spatial 
heterogeneity (i.e., for μ=0.46 in Fig. 5D), the whole landscape would be covered only with 
forest. In other words, incorporation of spatial heterogeneity made the propagating fronts 
stationary. So, for environmental condition where forest could invade the savanna, spatial 
heterogeneity can lead to stable coexistence states, thus making the ecosystem more 
resilient. This result is in accordance to earlier findings where spatial heterogeneity in 
environmental conditions has been shown to explain stable savanna-forest boundaries 
(Goel et al., 2020; Wuyts et al., 2017; Wuyts et al., 2019) .   
 



 
Fig. 6: Tipping to intermediate coexistence states when forest growth rate, μ(x)=μmax e-0.02x. Mean 

biomass of savanna (A) and  forest (B) vegetation with respect to changing μmax. The green lines 

indicate forest-only state while the yellow lines indicate the savanna only state. The blue line 

indicates the intermediate coexistence states where part of the landscape is covered with savanna 

and the rest with forest. The dashed black lines represent the unstable states.  The red lines denote 

time series simulations with savanna state as initial condition and a gradual increase in the 

bifurcation parameter, i.e., dμmax/dt=0.0002. The circles marked on the blue lines indicate the three 

values of μmax for which the coexistence states are demonstrated in (C). The coexistence state for 

μmax1=0.7 indicates multistability of the ecosystem; the coexistence states for μmax2=1.5 and μmax3=2.8 

are far beyond the tipping point in the non-spatial system in Fig. 2. Parameters values are same as 

Fig. 3.  

 
So, the non-spatial model, which exhibits tipping behavior, when extended with spatial 
effects shows either gradual transitions from one state to another or stable coexistence of 
forest and savanna states with boundaries separating the two states. Now, it is important to 
ask how these coexistence states respond to changing climatic conditions. It has been 
shown by Bastiaansen et al. (2022) that if the environmental condition varies within the 
landscape, i.e., the model parameters varies spatially, then that may lead to existence of 
multiple stable coexistence states for the same climatic condition. This is true in case of 
different single component ecosystem and climate system element models. These authors 



have argued that this may lead to the so-called “fragmented tipping”, i.e., the system will 
only tip to such intermediate coexistence states rather than undergoing one large scale 
critical transition to the alternative stable state. This leads us to testing this prediction 
within our two-component humid savanna model. For this, we use a second form of spatial 
heterogeneity of the forest growth rate parameter and assume 𝜇(𝑥) =  𝜇𝑚𝑎𝑥 𝑒−0.02𝑥(see Fig 
6). This essentially implies that the forest growth rate is at its maximum at one end of the 
landscape (x=0), and it decreases monotonically along the landscape with a minimum at the 
other end (x=L). We observe that changing the parameter 𝜇𝑚𝑎𝑥 , which amounts to change 
in the forest growth rate on the whole landscape, will not amount to tipping of the savanna-
only state to the forest only state but instead the system will switch to an intermediate 
stable coexistence state where only a part of the domain will transition to the new state.  
On changing the environmental condition 𝜇𝑚𝑎𝑥 , further, then system gradually changes 
along this intermediate stable state thus making the process less critical and more easily 
reversible. It is important to note that these coexistence states can remain stable for 
environmental conditions much beyond the tipping point predicted by the non-spatial 
model. This demonstrates that spatial processes in the ecosystems combined with small 
environmental heterogeneity makes them much more resilient than that predicted by non-
spatial models.   
 
 

 
d. Front instabilities  

Although till now we only discussed front dynamics in one spatial dimension, even richer 

behavior can be observed when extending in two spatial dimensions. When the fronts are 

not stationary, local processes that occur at the front zone determine the nature of the 

global transitions. Boundaries or fronts separating different ecosystem states are spatial 

structures that can go through instabilities much like uniform states can go through Turing 

instabilities in response to perturbations. When that happens, the spatial interface between 

alternative states or coexistence states can deform and self-organize giving rise to so called 

“finger-like patterns”. Similar patterns of coexistence states arising out of front invasion 

have been studied in the past in the context of predator-prey models, including three 

species Lotka-Volterra models (Mimura & Tohma, 2015; Petrovskii et al., 2005; Petrovskii et 

al., 2002), models of bacterial growth (Giverso et al., 2015) and dryland ecosystem models 

(Fernandez-Oto et al., 2019). A recent study by Carter et al. (2023) showed that the dryland 

model (Equation (6)) also exhibits front instabilities, which can in turn lead to spatial 

patterns. In that study, the authors established a mathematical criterion for the instability of 

fronts in two-component reaction diffusion models in two spatial dimensions. In particular, 

for activator-inhibitor-type systems, such as the dryland model (6), fronts between stable 

homogeneous states are typically unstable when the ratio of the diffusion coefficients of the 

components is suitably large, a reasonable assumption in the case of the dryland model (as 

water diffuses much faster than vegetation). This instability can lead to regular pattern 

formation: one observes “finger-like patterns” emerging from the interface in such models 

(Figure 7). In contrast to the corresponding system in one (spatial) dimension, a traveling 

front between stable homogeneous states is unstable in such activator-inhibitor-type 

models in two spatial dimensions, with instabilities giving way to alternating stable states 



which can self-organize into labyrinthine structures resembling Turing patterns. Ecologically 

such pattern formation is of potential profound significance: while one ecosystem state 

invades the other, simultaneously the latter is able to invade the former. This could even 

lead to reverse transitions of biomes, for example reversing desertification (Fernandez-Oto 

et al., 2019). However, in the humid savanna model, which does not have a strict activator-

inhibitor structure, we were unable to find any front instability, in spite of extensive 

numerical exploration. In fact, this is in accordance to the criterion introduced by Carter et 

al. (2023) which indicates that interfaces in such models may be stable also in two spatial 

dimensions so that no spatial patterns – fingers or labyrinths – will be formed.  

 

 
Fig. 7: The time evolution of front instabilities in the dryland model. Vegetation density is indicated by 

the color bar. Dark brown represents the vegetated state and light brown represents barren state. 

Simulations are initialized with vegetation covering (A) half of the landscape (B) a circular patch 

within the landscape. Parameter values: p=6.2, 𝛿𝑤=400. Other parameters are the same as in Fig 2.  

 
 
4. Discussion  
 
Distinct ways of spatial pattern formation may be pathways for ecosystems to avoid critical 

transitions or tipping. While non-spatial systems with alternative stable states predict that 

the system can exists in only one of the states, including spatial dynamics leads to 

qualitatively different behavior. A common scientific hypothesis currently is that humid 

savannas are bistable with forests, with these two biomes thus linked to tipping as 

theoretical framework (Hirota et al., 2011; Staver et al., 2011). Further, in drylands, 

desertification is also believed to be a result of ecosystem tipping (Rietkerk et al., 1997). We 

have shown that incorporation of relatively simple spatial dynamics in these ecosystem 



models can give rise to spatial patterns, which may lead to intermediate states and gradual 

transitions from one of the alternative ecosystem states to the other.  

In the drylands, scale-dependent feedbacks can lead to formation of Turing patterns before 

the environmental condition where tipping is predicted to occur. This phenomenon is 

known as “Turing before tipping”. Although patterns formed due to such instability were 

earlier believed to be early warning signs for tipping points, new mathematical analyses now 

indicate otherwise. Such patterns, in fact, indicate that multiple stable intermediate states 

exist in the ecosystems.  On increasing pressure on the ecosystem, the patterns can adapt to 

a new wavelengths, thus undergoing small transitions instead of one large critical transition 

or tipping. 

Although much of the studies regarding pattern formation in ecosystems have been linked 

to scale-dependent feedbacks, other mechanisms of pattern formation, e.g., due to local 

disturbances, may be equally relevant. A simple spatial extension of non-spatial models 

displaying tipping indicate that the spatial boundary separating the two states or biomes 

can move laterally in space on a slow time scale, leading to gradual transition of one of the 

states to the other. In other words, the two stable states can form coexistence states in a 

transient manner. Whether the forest invades the savanna or barren land invades the 

vegetation, or the other way around, is determined by environmental conditions. Further, if 

there are multiple patches of one stable state embedded in a landscape of the alternative 

stable state, such as e.g. patches of vegetation in barren land, there could be multiple 

fronts, whose movements are influenced by each other. These can lead to stationary fronts 

resulting in patterns of alternative states positioned next to each other. In other words, the 

two stable states could form coexistence states in a stable way.  

The above-described stationary fronts may not be a characteristic of some ecosystems, for 

instance in the humid savannas. In such a case, however, a small spatial heterogeneity, due 

to, for example, topography or soil type, can give rise to stationary fronts resulting in 

coexistence states of savanna and forest (see also Bastiaansen et al. (2022); Goel et al. 

(2020)).  So, additionally, if there are multiple localized disturbances in the spatial domain, 

these may result in stable savanna-forest mosaics, much often observed at the savanna-

forest boundary (Charles-Dominique et al., 2018; Charles-Dominique et al., 2015). 

Furthermore, such heterogeneity can be responsible for the system undergoing fragmented 

tipping. In this case, a part of the landscape tips to the alternative ecosystem state on 

changing climatic condition. Further change may result in only gradual transitions between 

the stable coexistence states. Such coexistence states can also exist much beyond the 

tipping point of the non-spatial system, making the ecosystem much more resilient than 

earlier believed. 

Even without spatial heterogeneity, these propagating spatial boundaries between two 

ecosystem states can destabilize to form finger-like patterns of alternative stable states 

situated next to each other, also referred to as coexistence states. In ecosystems with 

activator-inhibitor mechanisms playing an important role, such patterns eventually in the 

long run self-organize into labyrinth like structures resembling Turing patterns. It is 

important to note, however, that such a phenomenon may occur at much larger annual 



rainfall far from the point when Turing instability sets in. This underlines yet another 

mechanism by which ecosystems self-organize and may evade tipping.  

5. Conclusion 

Our study highlights the role of spatial pattern formation in ecosystem tipping and 
showcases that distinct mechanisms underlying pattern formation are relevant when there 
exists alternative stable states. While both dryland and humid savanna ecosystems may 
show gradual transitions from one stable state to the other, the drylands can exhibit stable 
patterns due to multiple localized disturbances. Such disturbances can also form patterns in 
the humid savannas but only under spatially heterogeneous environmental conditions. In 
fact, depending on the type of such heterogeneity, these stable coexistence of savanna and 
forest can exist much beyond the tipping point predicted by the non-spatial framework. 
Additionally, the drylands can also demonstrate spatial patterns due to Turing instability or 
front instability before the tipping point which were not observed in the case of humid 
savannas. The differences in the possible pathways of evading tipping can be attributed to 
the key mechanisms at play in the two biomes which are also reflected in the model 
structure. While the drylands are driven by an activator-inhibitor mechanism, in the humid 
savannas, the negative effect of the two vegetation types on each other is the dominant 
factor. The models used in this paper provide meaningful insights, but nevertheless it is 
important to acknowledge that they are quite simple and the realistic spatial effects are 
more complicated, probably leading to even more intricate dynamics in the real world. 
Hence, it is important to appreciate the spatial complexity of ecosystems while predicting its 
response and resilience to global change. Future research should be focused on identifying 
spatial patterns in real ecosystems which are believed to be tipping-prone and analyzing 
data from observations and remote sensing to understand the mechanisms behind such 
pattern formation and their resilience to changing climatic conditions. This can help in 
validation of the prediction from this study, and allow better understanding of ecosystem 
response thus enabling us to identify the ecosystems most vulnerable to the ongoing 
climate and land use change. 
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Supplementary text for “Rethinking tipping

points in spatial ecosystems”

A The humid savanna model

The forest-savanna boundary, which is at the wet end of the rainfall gradient,
can be represented by the following set of equations where the biomass density
of the savannas (S kgm−2) and the forest(F kgm−2) are the state variables. τ
is the time in years and x̃ and ỹ are the dimensional spatial coordinates (in m).

∂F

∂τ
= rFF

(
1− F

KF

)
− ηfFSF − dFF +DF

(
∂2F

∂x̃2
+

∂2F

∂ỹ2

)
(1a)

∂S

∂τ
= rSS

(
1− S

KS

)
− cFS − ηfSS

2 − dSS +DS

(
∂2S

∂x̃2
+

∂2S

∂ỹ2

)
(1b)

A.1 Non-dimensionalisation

To reduce the number of parameters in the above model, we introduce the
dimensionless variables:

s = S

(
1

KS
+

ηfS
rS

)
, f =

F

KF
, t = rSτ

and dimensionless parameters:

µ =
rF
rS

, b =
cKF

rS
, m =

dF
rS

, n =
dS
rS

, a =
ηfF

rS

(
1

KS
+

ηfS
rS

) , δ =
DF

DS

and dimensionless spatial coordinates:

x = x̃

√
rS
DS

, y = ỹ

√
rS
DS

Replacing the state variables in the diffusion term of equation (1a), we find:



27

DF
∂2F
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= DF

∂

∂x̃

(
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= DFKF
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DS

∂2f

∂x2

Similarly, DF
∂2F

∂ỹ2
= rSKF

DF

DS

∂2f

∂y2

Substituting the above and all other state variables in equation (1a), we have:

KF
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∂t

∂t
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∂2f
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)

Dividing both sides of the above equation by rSKF , we have:

∂f

∂t
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rS
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ηfS
rS
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rS
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)

Hence, substituting the dimensionless parameters, we have:

∂f

∂t
= µf (1− f)− asf −mf + δ

(
∂2f

∂x2
+

∂2f

∂y2

)
Replacing the state variables in the diffusion term of equation (1b), we find:
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Now, equation (1b) can be rearranged as:
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Replacing the state variables, the above equation can be rewritten as:

rS
1

KS
+

ηfS
rS

∂s

∂t
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rSs

1

KS
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ηfS
rS

(1− s)− cKF fs
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∂2s

∂x2
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∂2s
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Dividing both sides by
rS

1

KS
+

ηfS
rS

, we have:

∂s

∂t
= s(1− s)− cKF fs

rS
− dSs

rS
+

(
∂2s

∂x2
+

∂2s

∂y2
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Hence, substituting the dimensionless parameters,

∂s

∂t
= s(1− s)− bfs− ns+

(
∂2s

∂x2
+

∂2s

∂y2

)

So the dimensionless version of equation (1) indeed becomes

∂f

∂t
= µf(1− f)− asf −mf + δ

(
∂2f

∂x2
+

∂2f

∂y2

)
(2a)

∂s

∂t
= s(1− s)− bfs− ns+

(
∂2s

∂x2
+

∂2s

∂y2

)
(2b)

A.2 Equilibria

The above system (2) can be rewritten as:

∂f

∂t
= f(α− µf − as) + δ

(
∂2f

∂x2
+

∂2f

∂y2

)
∂s

∂t
= s(β − s− bf) +

(
∂2s

∂x2
+

∂2f

∂y2

) (3)

where we define, α = µ − m and β = 1 − n and assume α, β > 0. Then the

system can have the following equilibria: E0 = (0, 0), Ef = (
α

µ
, 0), which is the

forest-only state and Es(0, β), which is the savanna-only state. The coexistence
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equilibrium, Efs(f̂ , ŝ), is given by the following two equations:

α− µf̂ − aŝ = 0

β − ŝ− bf̂ = 0

(4)

so that α− µf̂ = aβ − abf̂ =⇒ α− aβ = µf̂ − abf̂ =⇒ f̂ =
α− aβ

µ− ab

Substituting the value of f̂ in (4) yields

aŝ = α− µ

(
α− aβ

µ− ab

)
=

α(µ− ab)− µ(α− aβ)

µ− ab
=

µaβ − abα

µ− ab

=⇒ ŝ =
µβ − bα

µ− ab

Efs is biologically feasible (i.e., both ŝ and f̂ are non-negative) only when
either of the following conditions hold:

µ− ab > 0, µβ − bα > 0, α− aβ > 0
µ− ab < 0, µβ − bα < 0, α− aβ < 0

(5)

A.3 Stability of the steady states

To determine the stability of an equilibrium, E∗(f∗, s∗), against homogeneous
perturbations, the system (3) is linearized around the equilibria by setting
(f, s)(x, t) = (f∗, s∗) + eλt(f, s), where (f∗, s∗) is the equlibria of the system.

This yields the eigen value problem, λ

(
f
s

)
= J(f∗, s∗)

(
f
s

)
, where J(f∗, s∗) is

the Jacobian matrix corresponding to system (3) evaluated at the equilibrium,
(f∗, s∗). Now, the Jacobian matrix for the system (3) can be written as:

J(f, s) =

(
α− 2µf − as −af

−bs β − 2s− bf

)
So to determine stability of the equlibrium, E0, we evaluate the Jacobian at
the equilibrium:

J(0, 0) =

(
α 0
0 β

)
The eigenvalues of the matrix are λ = α > 0 and λ = β > 0. Since both the
eigenvalues are positive, E0(0, 0) is unstable. The Jacobian evaluated at Ef is
given by:

J(
α

µ
, 0) =


−α −aα

µ

0 β − bα

µ


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The eigenvalues of the matrix are λ = −α < 0 and λ = β − bα

µ
. So the

forest-only state, Ef (
α

µ
, 0), is stable when µβ − bα < 0 and a saddle when

µβ − bα > 0. The Jacobian evaluated at Es is given by:

J(0, β) =

(
α− aβ 0
−bβ −β

)
The eigenvalues of the matrix are λ = α−aβ and λ = −β < 0. So the savanna-
only state, Es(0, β), is stable when α− aβ < 0 and a saddle when α− aβ > 0.
The Jacobian evaluated at Efs is given by:

J(f̂ , ŝ) =

(
−µf̂ −af̂
−bŝ −ŝ

)

Tr(J(f̂ , ŝ))= −µf̂ − ŝ < 0 and Det(J(f̂ , ŝ))=ŝf̂(µ − ab). The savanna-forest

mixed state, Efs, is stable when Det(J(f̂ , ŝ))> 0 which implies µ − ab > 0

(since ŝf̂ > 0). In that case, from (5), it follows, µβ − bα > 0 and α− aβ > 0
which implies that both Ef and Es are unstable. When either or both Ef and
Es are stable, from (5), it follows that if Efs exists, then µ − ab < 0. This
implies Efs is unstable. Hence, the savanna-forest mixed state cannot exist
together as a stable state with either or both of the stable savanna-only or
forest-only state.

A.4 Turing analysis

To determine the stability of the equilibria against spatially heterogeneous per-
turbations, the system (3) is again linearized around the equilibria, this time
by setting (f, s)(x, t) = (f∗, s∗) + eλt+iκx(f, s), where (f∗, s∗) is the equilibria
of the system, λ is the growth rate and κ is the wave number of the pertur-

bation. This yields the eigenvalue problem, λ

(
f
s

)
= M(f∗, s∗)

(
f
s

)
, where

M(f∗, s∗) = J(f∗, s∗)−D, J(f∗, s∗) is the Jacobian evaluated at the equilibria

(f∗, s∗) and D =

(
κ2δ 0
0 κ

)
. So at the equilibrium Ef ,

M(
α

µ
, 0) =

−α− κ2δ −aα

µ

0 β − bα

µ
− κ2


Tr(M(

α

µ
, 0))= −α − β − bα

µ
− κ2(δ + 1) < 0 as δ > 0 and Det(M(

α

µ
, 0))=

(−α−κ2δ)(β− bα

µ
−κ2). From section A.3, one can see that for the equilibrium
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Ef to be stable without diffusion, β − bα

µ
< 0 which implies Det (M(

α

µ
, 0))

can never be negative. So Turing instability cannot occur.
At the equilibrium Es,

M(0, β) =

(
−α− aβ − κ2δ 0

−bβ −β − κ2

)
So Tr(M(0, β))= −α−aβ−β−κ2(δ+1) < 0 as δ > 0 and Det(M(0, β))=(−α−
aβ − κ2δ)(−β − κ2) > 0. So Turing instability cannot occur.
Lastly, at the equlibrium Efs,

M(f̂ , ŝ) =

(
−µf̂ − κ2δ −af̂

−bŝ −ŝ− κ2

)
Now, Tr(M(f̂ , ŝ))=−µf̂ − ŝ − κ2(δ + 1) < 0 as δ > 0 and Det(M(f̂ , ŝ))=

(−µf̂ − κ2δ)(−ŝ− κ2)− abŝf̂ = (µ− ab)ŝf̂ + κ2(δŝ+ µf̂) + κ4δ. From section
A.3, it is clear that for the equilibrium, Efs, to be stable without the diffusion,
the condition, µ− ab > 0, needs to be satisfied. This implies Det(M(s, f)) can
never be negative. Turing instability cannot occur.

A.5 Parameterization and bifurcation diagram

The model (1) is parameterized using ecologically realistic values which are
provided in Table 1. The rationale behind choosing each value is explained
below the table.

Table 1 Description of parameters of model (1) and their values

Par. Values (Units) Description Notes/References

rF 0.25 yr−1 growth rate of the forest biomass Iuorio et al (2023)

rS 0.5 yr−1 growth rate of the savanna biomass (i)

dF 0.01 yr−1 death rate of the forest biomass (ii)

dS 0.1-0.5 yr−1 death rate of the savanna biomass (ii)

η 0.85 yr−1 Fire frequency (iii)

KF 30 kgm−2 carrying capacity of the forest biomass Chave et al (2003)

KS 3 kgm−2 carrying capacity of the savanna biomass (iv)

c 0.03 kg−1m2yr−1 shading effect of the forest limiting savanna (v)

fF 0.3 kg−1m2 sensitivity of forest trees to fire (vi)

fS 0.033 kg−1m2 sensitivity of savanna biomass to fire (vii)

DF 3.65-36.5 m2yr−1 diffusion coefficient of the forest assumed

DS 365-3650 m2yr−1 diffusion coefficient of the savanna 100 × DF

(i) The savanna biomass includes grass and trees and is assumed to grow
at twice the rate equal of the forest biomass. (ii) Forest trees live approxi-
mately 100 years. Hence, dF = 1/100 (Accatino et al, 2010) and combined
life expectancy of savanna tree and grass is assumed 10-50 years (Accatino
et al, 2010). (iii) It is assumed that there could be fire maximum once a year.
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(iv) The carrying capacity of biomass of forest trees is taken from Chave
et al (2003) and for savanna biomass we assumed it to be lower by a factor
of 5-10. (v) We assumed that when the forest reaches it carrying capacity,
then its negative effect on the savanna vegetation is large. So if we assume
cKF=0.9 yr−1 , it implies c=0.03 kg−1m2yr−1. (vi) Similarly, when the sa-
vanna biomass reaches its carrying capacity, then its negative impact on the
forest is large. So if we assume fFKS=0.9, which implies fF=0.3 kg−1m2.
(vii) Under similar conditions, i.e., when savanna biomass is at its carrying
capacity, the negative impact of fire on savanna biomass is relatively much
less. So if we assume fFKS=0.1, it implies fS=0.033 kg−1m2.

The above parameters are used to calculate the values of the dimensionless
parameters in the model (3). So the ratio of the diffusion coefficients can
also be calculated as δ = 0.01. The spatial coordinates x and y can also be
calculated assuming DS = 500. x = 100 is equivalent to approximately 3100
m. The values for other dimensionless parameters are used to demonstrate a
bifurcation diagram for the nonspatial version of model (3), with respect to µ
(see Fig. S1, parameters provided in the caption). We have used the numerical
continuation software, Matcont, for this bifurcation diagram (Dhooge et al,
2008).

Figure S1 Bifurcation diagram, with respect to µ, for the humid savanna model. (A)
savanna biomass (B) forest biomass. The green and the yellow lines indicate forest-only
equilibrium (Ef ) and savanna-only euilibrium (Es) respectively. Dotted lines indicate unsta-
ble equilibria. TB denotes transcritical bifurcation. The black solid lines indicate equilibria
which are not ecologically feasible as either savanna (s) or forest (f) is negative. In the inset,
although there exist a stable branch but the value of savanna biomass is negative. H denotes
Hopf bifurcation. E0, which is always unstable, is not shown. Parameter values: a = 1.3,
b = 1.8, m = 0.02 and n = 0.4
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B The dryland model

To represent the drylands, where rainfall is very limited, a modified version of
the Klausmeier model is used where the vegetation biomass (V kgm−2) and
the rainfall (W mm) are the state variables. τ is the time (day−1) and x̃ and
ỹ are the dimensional spatial coordinates (in m).

∂W

∂τ
= q − lW − rWV 2 +DW

(
∂2W

∂x̃2
+

∂2W

∂ỹ2

)
(6a)

∂V

∂τ
= rjWV 2(1− V

K
)− dV +DV

(
∂2V

∂x̃2
+

∂2V

∂ỹ2

)
(6b)

B.1 Non-dimensionalisation

To reduce the number of parameters in the above model, we introduced the
dimensionless variables:

w =
r

1
2

l
1
2

jW , v =
r

1
2

l
1
2

V , t = lτ ,

the dimensionless parameters:

p =
r

1
2 j

l
3
2

q, k =
r

1
2

l
1
2

K, u =
d

l
, δw =

DW

DV
,

and the dimensionless spatial coordinates:

x =
l
1
2

D
1
2

V

x̃ and y =
l
1
2

D
1
2

V

ỹ

Replacing the state variables, the diffusion term of (6a) becomes:

DW
∂2W

∂x̃2
= DW

l
1
2

r
1
2 j

∂

∂x̃

(
∂w

∂x̃

)
= DW

l
1
2

r
1
2 j

∂

∂x̃

(
∂w

∂x

∂x

∂x̃

)
= DW

l
1
2

r
1
2 j

l
1
2

D
1
2

V

∂2w

∂x̃∂x
= DW

l
1
2

r
1
2 j

l
1
2

D
1
2

V

∂2w

∂x2

∂x

∂x̃
= δw

l
3
2

r
1
2 j

∂2w

∂x2

Similarly, DW
∂2W

∂ỹ2
= δw

l
3
2

r
1
2 j

∂2w

∂y2

Replacing all the state variables of (6a), we have:

∂W

∂t

∂t

∂τ
=

l
3
2

r
1
2 j

∂w

∂t
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= q − l
3
2

r
1
2 j

w − r
l
1
2

r
1
2 j

l

r
wv2 + δw

l
3
2

r
1
2 j

(
∂2w

∂x2
+

∂2w

∂y2

)
Dividing both sides by

l
3
2

r
1
2 j

yields,

∂w

∂t
=

r
1
2 j

l
3
2

q − w − wv2 + δw

(
∂2w

∂x2
+

∂2w

∂y2

)
Substituting the dimensionless parameters gives:

∂w

∂t
= p− w − wv2 + δw

(
∂2w

∂x2
+

∂2w

∂y2

)

Replacing the state variables, the diffusion term of equation (6b) can be
expressed as:

DV
∂2V

∂x̃2
= DV

l
1
2

r
1
2

∂

∂x̃

(
∂v

∂x̃

)
= DV

l
1
2

r
1
2

∂

∂x̃

(
∂v

∂x

∂x

∂x̃

)
= DV

l
1
2

r
1
2

l
1
2

D
1
2

V

∂2v

∂x̃∂x
= DV

l
1
2

r
1
2

l
1
2

D
1
2

V

∂2v

∂x2

∂x

∂x̃
=

l
3
2

r
1
2

∂2v

∂x2

Similarly, DV
∂2V

∂ỹ2
=

l
3
2

r
1
2

∂2v

∂y2

Replacing all the state variables of Equation (6b), we have:

∂V

∂t

∂t

∂τ
=

l
3
2

r
1
2

∂v

∂t

= rj
l
1
2

r
1
2 j

l

r
wv2(1− vl

1
2

r
1
2K

)− l
1
2

r
1
2

dv +
l
3
2

r
1
2

(
∂2v

∂x2
+

∂2v

∂y2

)
Dividing both sides by

l
3
2

r
1
2

and substituting the dimensionless parameters

gives:

∂v

∂t
= wv2(1− v

k
)− uv +

(
∂2v

∂x2
+

∂2v

∂y2

)

Hence, the dimensionless version of the system (6) becomes

∂w

∂t
= p− w − wv2 + δw

(
∂2w

∂x2
+

∂2w

∂y2

)
(7a)

∂v

∂t
= wv2(1− v

k
)− uv +

(
∂2v

∂x2
+

∂2w

∂y2

)
(7b)
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B.2 Equilibria

The system can have one barren state, Ew = (p, 0), and two vegetated states,
Ewv(w1,2, v1,2), determined by the following equation:

p− w − wv2 = 0 (8a)

wv(1− v

k
)− u = 0 (8b)

From above, setting h =
1

k
, the equibria, Ewv(w1,2, v1,2), are (see Bastiaansen

et al (2019)):

w1,2 = u(
p

u
− v1,2

1− hv1,2
) = u

p

u
+ 2

p

u
h2 + 2h±

√( p
u

)2
− 4(1 +

p

u
h)

2(1 + h2)

v1,2 =

p

u
∓
√( p

u

)2
− 4(1 +

p

u
h)

2
(
1 +

p

u
h
) (9)

The two equilibria exists only if the term within the square root is positive, i.e.,( p
u

)2
− 4

(
1 +

p

u
h
)
> 0 which implies

( p
u
− 2h

)2
> 4 + 4h2

or,
p

u
> 2(h+

√
1 + h2). The two equilibria coincides at

p

u
= 2(h+

√
1 + h2).

So this value, p = 2u(h+
√
1 + h2) = pT is said to be the tipping point of the

system. For lesser rainfall, when p < pT , no vegetated state can exist.

B.3 Stability of the equilibria

To determine the stability of the equilibria, E∗, against homogeneous perturba-
tions, the system (7) is linearized around the equilibria by setting (w, v)(x, t) =
(w∗, v∗) + eλt(w, v), where (w∗, v∗) is the equlibria of the system. This yields

the eigenvalue problem, λ

(
w
v

)
= J(w∗, v∗)

(
w
v

)
, where J(w∗, v∗) is the Jaco-

bian matrix corresponding to system (7) evaluated at the equilibrium, (w∗, v∗).
Now, the Jacobian matrix for the system (7) can be written as:

J(w, v) =

(
−1− v2 −2wv

v2(1− hv) −u+ (2− 3hv)wv

)
So, to check the stability of the equlibria, we evaluate the Jacobian at the
equilibrium, Ew:

J(p, 0) =

(
−1 0
0 −u

)
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Since u > 0, both the eigen values are negative. Hence, Ew(p, 0) is always
stable.
Further, we evaluate the Jacobian at Ewv:

J(w1,2, v1,2) =

(
−1− v21,2 −2w1,2v1,2

v21,2(1− hv1,2) −u+ (2− 3hv1,2)w1,2v1,2

)
Tr(J)= −1− v21,2 − u+ (1− 2hv1,2 + 1− hv1,2)w1,2v1,2

= −1− v21,2 − u+ (1− hv1,2)w1,2v1,2 + (1− 2hv1,2)w1,2v1,2

= −1− v21,2 + (1− 2hv1,2)w1,2v1,2 (using (8b))

Again replacing w1,2v1,2 using (8b), we have,

Tr(J)= −1− v21,2 + u
1− 2hv1,2
1− hv1,2

Using 8(b), we have,

Det(J)=(−1− v21,2)(1− 2hv1,2)w1,2v1,2 + 2w1,2v1,2(1− hv1,2)v
2
1,2

=−w1,2v1,2((1 + v21,2)(1− 2hv1,2)− 2(1− hv1,2)v
2
1,2)

=−w1,2v1,2((1 + v21,2)− 2hv1,2(1 + v21,2)− 2v21,2 + 2hv31,2)

=w1,2v1,2(−1 + v21,2 + 2hv1,2)

Again replacing w1,2v1,2 using (8b),

Det(J)=
u

1− hv1,2
(−1 + v21,2 + 2hv1,2)

Ewv is stable when Tr(J(w, v)) < 0 and Det(J(w, v)) > 0. It is easy to see from
above, Det(J) > 0 implies (−1 + v21,2 + 2hv1,2) > 0 or, v1,2 > −h+

√
(1 + h2)

and Det(J) < 0 implies v1,2 < −h+
√

(1 + h2). It can be shown from (9) that

v1 < −h +
√
1 + h2 and v2 > −h +

√
1 + h2 (see (Bastiaansen et al, 2019)).

So the uniform state (u2, v2) is stable and (u1, v1) is unstable.

B.4 Turing analysis

To determine the stability of the equilibria against spatially heterogeneous
perturbations, the system (3) is again linearized around the equilibria, this
time by setting (w, v)(x, t) = (w∗, v∗) + eλt+iκx(w, v), where (w∗, v∗) is the
equilibria of the system, λ is the growth rate and κ is the wave number of the

perturbation. This yields the eigen value problem, λ

(
w
v

)
= M(w∗, v∗)

(
w
v

)
,

where M(w∗, v∗) = J(w∗, v∗) −D, J(w∗, v∗) is the Jacobian evaluated at the
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equilibrium, (w∗, v∗) and D =

(
κ2δw 0
0 κ

)
. Since (w2, v2) is the only stable

vegetated state, we evaluate the matrix M at Ewv(w2, v2),

M(w2, v2) =

(
−1− v22 − κ2δw −2w2v2
v22(1− hv2) −u2 + (2− 3hv2)w2v2 − κ2

)
Tr(M)= −1− v22 − u+ (1− 2hv2 + 1− hv2)w2v2 − κ2(δw + 1)

=Tr(J)− κ2(δw + 1) < 0

Det(M)=(−1− v22 − κ2δw)((1− 2hv2)w2v2 − κ2) + 2w2v2(1− hv2)v
2
2

= κ4δw − κ2(δw(1− 2hv2)w2v2 − (1 + v22)) +DetJ = H(κ2)

Turing instability occurs only when the largest real part of the eigenvalues,
λ, are positive, or Det(M) = H(κ2) < 0. Since H(κ2) is a parabola in κ2, the

minimum value is attained at κ2 = κ2
c for which

dH(κ2)

dκ2
= 0. Solving this

yields κ2
c =

δw(1− 2hv2)w2v2 − (1 + v2)

2δw
. Substituting the value of kc above,

the condition for Turing instability is H(k2c ) < 0. For parameter values used
throughout the main text and described in the following section, we plot the
largest real part of the eigen values, λ and H(κ2) for different values of p
and κ (Fig S2). The Turing bifurcation occurs around p = 5.91. For the same
parameter values, it is easy to see that tipping from vegetated state to barren
state occurs at pT = 5.794. This phenomenon is referred to as Turing before
tipping.

Figure S2 (A)The largest real part of the eigen values, λ and (B) H(κ2) with changing κ2.
The different curves represent different values of p. The yellow curve touches the zero line
and so turing bifurcation occurs around p=5.91. Other parameter values δw = 200, u = 1.2,
k = 1
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B.5 Parameterization

All the parameters for the dryland model have been selected in the range
described in Klausmeier (1999).

Table 2 Description of parameters of model (6)

Parameters Units Description

q 400-750 mm yr−1 precipitation rate

l 1.5 yr−1 water evaporation rate(i)

r 30 yr−1 kg m−2 uptake rate of water

j 0.003 kg m−2 mm−1 plant biomass yield per unit water consumed

K 0.225 kg m−2 carrying capacity of vegetation(ii)

d 1.8 yr−1 natural moratlity of vegetation

DV 1 m2yr−1 diffusion coefficient of vegetation

DW 100-400 m2yr−1 diffusion coefficient of water(iii)

(i) same order of magnitude as (Klausmeier, 1999), (ii) same order of mag-
nitude as equilibrium plant biomass in (Klausmeier, 1999), (iii) assumed to
be in the range (100-400) ×DV . The above parameters are used to calculate
the dimensionless parameters of the dryland model (given in caption of Fig.
S2). Also, the spatial coordinates, x and y can be calculated for the above
model. x = y = 100 is equivalent to approximately 81 m.

C Front propagation

To understand the notion of front propagation, we consider the following simple
reaction-diffusion equation. We restrict ourselves to one spatial dimension for
simplicity.

∂v(x, t)

∂t
= F (v) +

∂2v(x, t)

∂2x
(10)

We consider the system described by the time evolution of v to be a potential
system. Further, we also assume that in the absence of diffusion, the model
exhibits alternative stable states, vA and vB , i.e., F (vA) = F (vB) = 0 and
F ′(vA), F

′(vB) < 0. Let a front connecting two states vA and vB in the
spatial domain move with a velocity ξ. A new co-moving frame of reference,
z = x− ξt can be introduced. So the front will asymptotically converge to vA
when z → −∞ and vB when z → +∞. Substituting v(x) = v(z) in the above
equation (10) gives:

∂v(z)

∂t
=

dv(z)

dz

dz

dt
= −ξ

dv

dz
and

∂2v(z)

∂x2
=

d2v(z)

dz2

Therefore, the above equation (10) can be written as −ξ
dv

dz
= F (v) +

d2v

d2z
.
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Multiplying
dv

dz
on both sides, we have:

−ξ

(
dv

dz

)2

= F (v)
dv

dz
+

d2v

d2z

dv

dz

Since the system is a gradient system, there is a potential function U(v) such

that F (v) = −dU

dv
. Substituting this in the equation above, we have:

−ξ

(
dv

dz

)2

=
d

dz

(
1

2

(
dv

dz

)2

− U

)
Integrating both sides over the whole spatial domain, we have:

−ξ

∫ +∞

−∞

(
du

dz

)2

dz =

[
1

2

(
du

dz

)2

− U

]+∞

−∞
Using boundary conditions, v(z → −∞) = vA, v(z → +∞) = vB and
dv

dz
→ 0 as z → ±∞, from the above equation, it can be readily seen that

ξ = A−1[U(vB)− U(vA)] where A =

∫ +∞

−∞

(
dv

dz

)2

dz

So the front velocity depends on the difference between the potential, U , at
the two alternative stable states.

References

Accatino F, De Michele C, Vezzoli R, et al (2010) Tree–grass co-existence
in savanna: interactions of rain and fire. Journal of theoretical biology
267(2):235–242

Bastiaansen R, Carter P, Doelman A (2019) Stable planar vegetation stripe
patterns on sloped terrain in dryland ecosystems. Nonlinearity 32(8):2759

Chave J, Condit R, Lao S, et al (2003) Spatial and temporal variation of
biomass in a tropical forest: results from a large census plot in panama.
Journal of ecology 91(2):240–252

Dhooge A, Govaerts W, Kuznetsov YA, et al (2008) New features of the soft-
ware matcont for bifurcation analysis of dynamical systems. Mathematical
and Computer Modelling of Dynamical Systems 14(2):147–175

Iuorio A, Eppinga MB, Baudena M, et al (2023) How does negative plant-soil
feedback across life stages affect the spatial patterning of trees? Research
Square



40

Klausmeier CA (1999) Regular and irregular patterns in semiarid vegetation.
Science 284(5421):1826–1828


	The humid savanna model
	Non-dimensionalisation
	Equilibria
	Stability of the steady states
	Turing analysis
	Parameterization and bifurcation diagram

	The dryland model
	Non-dimensionalisation
	Equilibria
	Stability of the equilibria
	Turing analysis
	Parameterization

	Front propagation

