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Abstract. Large environmental simulation models are usually overparameterized with 
respect to given sets of observations. This results in poorly identifiable or nonidentifiable 
model parameters. For small models, plots of sensitivity functions have proven to be 
useful for the analysis of parameter identifiability. For models with many parameters, 
however, near-linear dependence of sensitivity functions can no longer be assessed 
graphically. In this paper a systematic approach for tackling the parameter identifiability 
problem of large models based on local sensitivity analysis is presented. The calculation of 
two identifiability measures that are easy to handle and interpret is suggested. The first 
accounts for the sensitivity of model results to single parameters, and the second accounts 
for the degree of near-linear dependence of sensitivity functions of parameter subsets. It is 
shown how these measures provide identifiability diagnosis for parameter subsets, how 
they are able to guide the selection of identifiable parameter subsets for parameter 
estimation, and how they facilitate the interpretation of the correlation matrix of the 
parameter estimate with respect to parameter identifiability. In addition, we show how 
potential bias of the parameter estimates, due to a priori fixing of some of the parameters, 
can be analyzed. Finally, two case studies are presented in order to illustrate the suggested 
approach. 

1. Introduction 

The use of large and complex mathematical models is com- 
mon practice in the environmental sciences. This is mainly due 
to the increasing knowledge about causal mechanisms within 
environmental systems and the increasing computer power 
available. As scientific progress continues and computational 
costs still decrease, further growth of the models seems to be 
inevitable [Beck, 1999]. A second driving force in this devel- 
opment is the desire to extrapolate from a system under study 
to similar systems under different driving conditions, for in- 
stance, in order to predict the impact of different measures on 
a similar environmental system. Such an extrapolation is im- 
possible without an attempt to model the causal mechanisms of 
the system under study at an adequate level. 

In his encyclopedic review article, Beck [1987] gives an over- 
view of different modeling strategies and model classes applied 
in the environmental sciences. Basically, he distinguishes be- 
tween models which try to give an efficient description of the 
input-output behavior of a system without relying on hypoth- 
eses about how the system works internally and models which 
try to give an internal description of the system. Models of the 
first class are called black box models. They are usually rela- 
tively simple, parsimonious, and identifiable from the observa- 
tions available. A modeling approach using this type of model 
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is generally preferred by statisticians and control engineers. 
The approach is characterized by focusing on what can be 
learned from the data and by making little use of Prior knowl- 
edge of the system. A main drawback of this approach is the 
lack of (mechanistic) interpretability of the model. For this 
reason, extrapolations to similar systems and different driving 
conditions are not meaningful. Models of the second class are 
called mechanistic. They are usually more complex and poorly 
identifiable. A main reason for the poor identifiability is that 
"what we would like to know about the internal description of 
the system... is of a substantially higher order than what can 
be observed about the external description of the system" 
[Beck, 1987, p. 1416]. A modeling approach relying on this 
model class is usually preferred by natural scientists. It is char- 
acterized by an extensive use of causal hypotheses based on 
current understanding of how processes work, and it is closely 
linked to a reductionistic world view. From this point of view 
the description of natural systems requires complex and hence 
large models. Although the application of mechanistic models 
for extrapolative tasks is known to be a pretty delicate issue 
and critical voices even argue that it sometimes is more an 
exercise in prophecy than in prediction [Beven, 1993, 1987], 
mechanistic models nevertheless provide at least a rational 
basis for the daily need of extrapolation in the environmental 
sciences. 

Identifiability problems relating to the use of mechanistic 
models are widely reported and treated in the literature [see, 
e.g,, Beck, 1987; Kleissen et al., 1990; Gupta and Sorooshian, 
1983; Sorooshian and Gupta, 1983; Restrepo and Bras, 1985]. 
We briefly summarize different strategies that have been sug- 
gested in order to overcome these problems. 

1015 



1016 BRUNET AL.: PRACTICAL IDENTIFIABILITY ANALYSIS OF LARGE MODELS 

An obvious remedy is model reduction in the sense of re- 
stricting the model description to what is observed by the data 
[see, e.g., Jakeman and Hornberger, 1993]. However, this strat- 
egy is of limited use because either we stick to a mechanistic 
model, which in most cases results in possible reductions not 
being sufficient to achieve identifiability, or we end up with a 
pure input-output model. 

A promising approach to the identification problem is the 
use of Bayesian methods that incorporate a priori information 
on the parameters in the form of a prior distribution and do 
not require the parameters to be identifiable [see, e.g., Reichert 
and Omlin, 1997]. Within the field of water modeling, the 
Hornberger-Spear algorithm (also called regional sensitivity 
analysis (RSA) and Monte Carlo filtering method) [Beck, 1987; 
Hornberger and Spear, 1981, 1983] and generalized likelihood 
uncertainty estimation (GLUE) [Beven, 1992; Freer et al., 1996] 
belong to this approach. Current applications of the Bayesian 
methodology, however, are still suffering from very time- 
consuming calculations. They are restricted to models with 
short simulation times and a moderate number of parameters 
in order to keep computational costs reasonably low. In addi- 
tion, the problem of choosing appropriate prior distributions 
for the parameters is often hard to solve. 

Another strategy which is widely used is based on the par- 
titioning of the model parameters into a subset of parameters 
that is to be estimated from given observations and a subset of 
parameters that is fixed at a priori values. This strategy ensures 
the remaining model parameters to be identifiable. However, 
the partitioning of the model parameters is very much subject 
to the personal judgment of the modeler, a fact which is rarely 
made fully transparent. Further known drawbacks of this ap- 
proach are biased estimates and underestimated parameter 
uncertainties [see, e.g., van Straten, 1985]. 

In this paper, a systematic approach for tackling the identi- 
fiability problem for large environmental simulation models is 
suggested. In order to specify the problem we start with a brief 
summary of the main issues of model and parameter identifi- 
ability in section 2. In section 3 we recall the classical nonlinear 
least squares estimation of the parameters. We discuss assess- 
ment of the fit, the use of the covariance matrix of the estimate, 
and likelihood contouring techniques. These methods are, 
however, limited to the case where all parameters can be es- 
timated. In section 4 a strategy for tackling the parameter 
identifiability problem is presented for cases where the model 
is overparameterized with respect to given observations. This is 
nearly always the case with large simulation models. Parameter 
importance indices which account for the sensitivity of model 
results to single parameters are introduced in section 4.1, and 
collinearity indices and related measures which account for the 
degree of near-linear dependence of sensitivity functions of 
parameter subsets are introduced in section 4.2. Unless the 
number of parameters is small, these indices are preferred over 
the traditional sensitivity function plots. In section 4.3 we first 
discuss how parameter importance and collinearity indices can 
guide the selection of identifiable parameter subsets for pa- 
rameter estimation. It is argued that the process of parameter 
subset selection is best done by iteratively calculating param- 
eter importance and collinearity indices and performing pa- 
rameter estimation on selected subsets until convergence is 
achieved. Subsequently, it is shown how the suggested tools 
facilitate the assessment of the fit including identification of 
potential biases, caused by keeping other parameters fixed. 
Practical issues are discussed in section 4.4. Finally, two small- 

scale case studies are presented in section 5 in order to illus- 
trate different aspects of the suggested approach and to make 
comparisons of the different diagnostic tools. 

2. Basic Identifiability Issues 
Model identifiability analysis consists basically of two prob- 

lems: the problem of model structure selection and the prob- 
lem of parameter identification. Both issues have received 
much attention during the last decade in the environmental 
science and engineering literature [see, e.g., Stigter and Beck, 
1994; Kuczera and Mroczkowski, 1998]. Important contribu- 
tions have also been made from the point of view of uncer- 
tainty analysis [Draper, 1995; ChatfieM, 1995]. Both Draper 
[1995] and Chatfield [1995] agree with Stigter and Beck [1994] 
that in many data analyses, model structure uncertainty is one 
of the relevant sources of model prediction uncertainty 
whereas parametric uncertainty often contributes only margin- 
ally to the total model prediction uncertainty. 

In many applications, however, the problem of parameter 
identifiability of a given model structure is crucial. This is 
especially true when working with large environmental simu- 
lation models which are thought to summarize current scien- 
tific knowledge in a mathematical language. Such models, es- 
pecially the ones we call "state-of-the-art" models, are built in 
order to reflect the current consensus of the scientific commu- 

nity about key processes in a specific environmental system 
[Beck, 1987, 1999]. In many case studies, these models are 
(successfully) applied without questioning the model structure. 
Adjusting some of the parameters often turns out to be suffi- 
cient in order to match reasonably well the data under study. In 
this context the problem of parameter identifiability of a given 
model structure arises naturally. It has, however, a slightly 
different meaning than in classical system identification. When 
working with large environmental simulation models, it is 
hardly reasonable to expect to be able to "identify true param- 
eter values" from the data under study. The task is rather to 
find physically reasonable parameter values that describe the 
data adequately. In a complex, nonlinear model there are usu- 
ally many such values, and the goal of identifiability analysis is 
to obtain some insight about these adequate parameter values. 
The main tool for this is sensitivity analysis. 

For a nonlinear model, parameter sensitivity can be ad- 
dressed either locally near a given point or over a large region 
in the space of physically reasonable parameter values. The 
regional approach introduced within the field of water quality 
modeling by Hornberger and Spear [1981] addresses the latter. 
It aims to identify those points or regions in the parameter 
space which lead to model outputs that match the data rea- 
sonably well. Some of these points or regions can be far apart, 
and current implementations of the Hornberger-Spear algo- 
rithm include modern statistical tools for density estimation 
with the aim to provide a flexible description of these regions 
[Spear et al., 1994; Spear, 1997; Grieb et al., 1999]. The ap- 
proach suffers, however, from the "curse of dimensionality" 
because it is practically impossible to explore a high- 
dimensional parameter space without relying on further struc- 
tural assumptions. 

"Global sensitivity analysis," which has gained much atten- 
tion during the last decade, is another approach to assess 
sensitivity over the whole parameter space [Saltelli and Scoa, 
1997; Saltelli, 1999]. For a review, see Helton [1993], and for an 
application of different methods in an environmental modeling 
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context, see Campolongo and Saltelli [1997]. It is primarily 
designed to assess the contributions of the model parameters 
to the variation in the model output. Parameters are varied 
over a predefined, reasonable region of the parameter space as 
in the Hornberger-Spear approach. The resulting variability in 
the model output then is analyzed using regression and analysis 
of variance-based approaches such as standardized regression, 
projection pursuit regression (PPR) [Draper et al., 2000], 
Sobol's sensitivity indices [Sobol, 1993; Saltelli et al., 1999], and 
Fourier amplitude sensitivity tests (FAST) [Saltelli et al., 1999]. 
The global sensitivity analysis approach is particularly useful 
when one is primarily interested in quantifying the averaged 
influence of the parameters on the model output. 

Local sensitivity analysis has been applied extensively to 
large kinetic reaction systems in chemometrics [see, e.g., Turd- 
nyi, 1997]. For a review, see Turdnyi [1990], and for an appli- 
cation to a distributed water quality model, see Pastres et al. 
[1997]. Instead of varying the parameters over a predefined 
region in parameter space the local sensitivity approach con- 
siders the derivatives of the model output with respect to the 
parameters at a specific location in the parameter space. This 
approach has proven to be particularly successful in cases 
where systems are operated around a predefined location in 
parameter space. In addition, it is promising in cases where 
there are known parameter values that lead to an acceptable 
model output and the evaluation of the model is computation- 
ally too expensive to carry out a sensible regional analysis. A 
local sensitivity analysis then provides a comprehensive analy- 
sis of the "local region" that leads to a similar, acceptable 
model output. The local approach is also useful in combination 
with a regional approach, especially if the parameter space is 
high dimensional. In high dimensions, even if we compute the 
model output for !0,000 or 100,000 different parameter values, 
any two values are still far apart, so the information from a 
regional sensitivity analysis is necessarily coarse. In these cases, 
by means of local analyses carried out at a number of param- 
eter values with an acceptable fit for the data, it is still possible 
to characterize the parameter subspace that leads to a similar, 
acceptable model output in terms of individual parameter sen- 
sitivities and parameter dependencies (see section 4) with rea- 
sonable effort. 

Local sensitivity analysis has a close relationship to the clas- 
sical nonlinear parameter estimation problem [Bates and 
Watts, 1988]. In cases where all model parameters can be 
estimated from the data under study the (local) parameter 
identifiability problem can be described adequately from the 
point of view of both local sensitivity analysis and classical 
parameter estimation. In numerous applications in environ- 
mental modeling, however, it is not feasible to estimate all 
model parameters from the data under study. Then the param- 
eter identifiability problem is slightly different from the classi- 
cal parameter estimation problem. Nevertheless, there is still 
an important relationship between local sensitivity analysis and 
parameter estimation that is worthwhile examining. In order to 
shed maximum light on this relationship we analyze the (local) 
parameter identifiability problem in this paper mainly from the 
perspective of parameter estimation. It is important to note, 
however, that this is a choice of presentation. The suggested 
approach is not restricted to cases where parameter estimation 
is carried out. It can be applied at any interesting point in the 
parameter space, not only at parameter values obtained by a 
parameter estimation algorithm. 

3. Parameter Estimation and Assessing the Fit 
To put the parameter estimation problem into a statistical 

framework, let us consider the following observation equation: 

Y = •(0) + Z, (•) 

where Y = (Y•, Y2, --., Y,•)r is the observation vector and 
•q(0) = [rt•(0), ,12(0), -.., rt,•(0)] r is the outcome vector of 
a deterministic model, evaluated at the same points in time and 
space as the observations Y. The vector 0 - (0•, 02, ..., 
Om) r is the parameter vector of the deterministic model, and 
Z = (Z•, Z2, ..., Z,•)r is the observation error vector. Note 
that observation equation (1) remains unchanged for different 
deterministic model classes. All features of the deterministic 

model except the parameter vector 0 are hidden in the symbol 
•q( ). The model outcome vector •q(0) can therefore repre- 
sent, for example, n calculated outcomes of a set of nonlinear 
partial differential equations at given locations in space and 
time, n calculated outcomes of a set of nonlinear ordinary 
differential equations at given time points, or, simply, n values 
of a nonlinear function of associated regressor variables. 

Estimation of 0 in (1) is often done by weighted least 
squares. The weighted least squares estimator õwLs is defined 
to be the value minimizing the objective function 

J = [¾ - n(0)]•W[¾- n(0)] (2) 

over 0, where W = diag (w •, w2, .--, w,•) is a diagonal matrix 
of weights. Estimator õw•s is also the maximum likelihood 
estimator if we assume that Z in (1) is normally distributed 
with zero mean and Var [Z] = rr2W -•. 

The standard assessment of the fit in nonlinear regression is 
based on the linearization 

n(0) -- n(00) + 00 = , 
0=00 

(3) 

where 

on(o) 
v- (4) 

0=00 

is the n x rn derivative matrix evaluated at 0o. This gives the 
estimated (approximate) covariance matrix of the estimate 
6WL S as 

V•r[õwLs] = WRSS (VrWV)_•, (5) 
n -m 

with 

WRSS = [¾- n(Ows)] 

being the minimum weighted residual sum of squares, n being 
the number of observations, rn being the number of parame- 
ters, and V being the derivative matrix evaluated at 0o = õwLs. 
Given Var [õw•s] (approximate) standard errors, marginal 
confidence intervals and simultaneous confidence ellipsoids 
can be calculated [Bates and Watts, 1988]. 

Both the covariance matrix of the estimate and likelihood 

contouring techniques are used as diagnostic tools to detect 
poor parameter identifiability [e.g., Kuczera, 1990]. High off- 
diagonal absolute elements in the correlation matrix as well as 
long flat valleys in likelihood (WRSS) contour plots indicate 
strong dependencies of parameter estimates. In terms of pa- 



1018 BRUNET AL.: PRACTICAL IDENTIFIABILITY ANALYSIS OF LARGE MODELS 

rameter identifiability this means that the effects of changes in 
different parameter values on the model output can be self- 
canceling. In other words, different parameter values can lead 
to nearly the same model output; that is, the involved param- 
eters are poorly identifiable. Likelihood contouring techniques 
are also used to check the validity of linear approximation (3) 
[Bates and Watts, 1988]. 

Despite the undoubted diagnostic merits of the correlation 
matrix of the estimate and the likelihood contour plots with 
respect to parameter identifiability, both tools have important 
shortcomings in the multiparameter case. As will be demon- 
strated and discussed in the case studies in section 5, the 
interpretation of the correlation matrix of the estimate with 
respect to parameter identifiability in the case where more 
than two parameters are estimated is far from clear. The like- 
lihood contouring approach suffers mainly from two problems. 
On the one hand, it is not possible to display functions of more 
than two variables, and on the other hand, it becomes compu- 
tationally increasingly difficult to evaluate the likelihood on an 
m-dimensional grid with increasing m. One can plot the like- 
lihood evaluated on a series of two-dimensional grids corre- 
sponding to each pair of parameters, but the problem is how to 
choose the values of the other parameters. The simplest solu- 
tion is to fix the other parameters at their least squares esti- 
mate, which leads to the conditional likelihood function. This 
is computationally simple but gives only selected cross sections 
of the contour. As will be demonstrated in the case studies in 

section 5, conditional likelihood plots can be very misleading 
with respect to parameter identifiability diagnosis. A more 
comprehensive view of the global behavior of the m- 
dimensional likelihood contour is obtained by the two- 
dimensional profile likelihood function, where the objective 
function is minimized over all the other parameters for each 
point of the two-dimensional grid. These profile likelihood 
plots are strongly preferred for parameter identifiability diag- 
nostics [see Bates and Watts, 1988]. However, the evaluation of 
the two-dimensional profile likelihood on a series of grids can 
still be computationally expensive because for every point on 
the grids, m - 2 parameters have to be estimated with an 
iterative algorithm. Especially in cases where the evaluation of 
•1(0) is computationally expensive, the profile likelihood con- 
touring approach is computationally impossible. 

4. Parameter Identifiability Analysis 
for Overparameterized Models 

In section 3 we discussed the parameter estimation problem 
for identifiable problems. When dealing with models contain- 
ing practically nonidentifiable parameters, it is often not pos- 
sible to compute the least squares estimates. A typical ap- 
proach is to partition 0 into two components (0•0/<)r, where 
K is a subset of size k from {1, 2,..., m} and/• is the 
complement of size m - k. Only the component 0•c is to be 
estimated from the data available whereas the other compo- 
nent 0$c is fixed at an a priori value. The partitioning of 0 is not 
straightforward. Trying out all possible subsets K is feasible 
only if m is small and the evaluation of •1(0) is fast. Otherwise 
a more systematic strategy is needed. 

4.1. Screening for Important Parameters: 
Parameter Importance Indices 8 

A natural starting point for the problem of identifying a 
subset K of k parameters that is potentially identifiable from a 

given set of observations is the search for individual parame- 
ters that drive the variability in the model output. To assess the 
individual local parameter importance, we consider the sensi- 
tivity of the model output •1(0) to small changes in the param- 
eter values 0 at a specific location 00. This is given by the 
sensitivity matrix V defined in (4). Every column vi, j = 1, 
2, ..., m, represents the change in the model outcome vector 
•1(0) caused by a small change in 0 i divided by the small change 
in 0 i at the location 00. 

The simplest way of calculating V is to use the finite differ- 
ence approximation. Although this approach is known not to 
be computationally efficient in many cases, it is widely used 
because of its simplicity [Turdnyi, 1990]. In addition to simplic- 
ity, the calculation of V by means of finite differences is sup- 
ported by the argument that we are indeed interested in the 
differences and not in the derivative itself. 

In order to obtain dimension-free sensitivity information 
that enables comparisons we consider the scaled sensitivity 
matrix S = {sii} with 

i=l, 2,...,n j=l, 2,..-,m. S ij -- Vij SCi ' 
(6) 

Here vii denotes an element of V, A 0 i is an a priori measure 
of the reasonable range of 0 i, and SCi is a scale factor with the 
same physical dimension as the corresponding observation, 
accounting mainly for different scales of different output sig- 
nals. 

The norm of the columns s i provides an obvious measure of 
the importance of individual parameters. A large norm IIsll 
means that a change of A 0 i in the parameter 0 i has an impor- 
tant effect on the model outcome vector. This makes the pa- 
rameter 0 i identifiable with the data available if all other pa- 
rameters are fixed. In order to obtain additional information 

on the signs and the distribution of the values in each column 
we recommend the computation of the following five summa- 
ries: 

•jnsqr _._ • Sij , (7) 
i=1 

n 

r/ 
i=1 

n 
.... --- • sis, (9) 

i=1 

•?ax •__ max si•, (10) 
t 

•?in: min sis. (11) 
t 

Large differences between /3jnsqr and/3?abs indicate, for exam- 
ple, a high variability or outliers in s i. Checking/3•nax and/3?in 
should help to distinguish between these two cases. The two 
summaries /3jnax and /3jnin are generally useful for outlier de- 
tection and also to know the range of s i. A comparison of/3•nabs 
and /3?ean shows whether the elements of s i have all the same 
sign, and /3jnean gives information on the sign of the averaged 
effect a change in a parameter has on the model output. 

Ranking the parameters by one of the /3 measures in de- 
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creasing order results in a parameter importance ranking. In 
the context of weighted least squares estimation of parameter 
subsets, •sqr is best suited to serve as a ranking criterion. 

Note that the • measures (7)-(11) can be very sensitive to 
the choice of the A 0i, the scale factors SC/, and changes in the 
experimental layout, respectively. In addition, they depend 
naturally on 0o. A suitable choice of 0o, A0i, and SC/ is 
therefore crucial (see section 4.4). 

4.2. Identifiability of Parameter Subsets: 
Collinearity Index ht 

In section 4.1 the tuning importance of individual parame- 
ters was discussed. In order to assess the identifiability of a 
subset K of k parameters (1 < k -< m), however, we have to 
consider the joint influence of the parameters in K on the 
model output. In particular, we have to look for compensation 
effects of changes in the parameter values in K on the model 
output. This can be done by checking the degree of near-linear 
dependence within the column subsets Sk of the scaled sensi- 
tivity matrix S as defined in (6). If the s• are (nearly) linearly 
dependent, a change in the model output caused by a change 
in a model parameter 0j in K can be (nearly) compensated by 
appropriate changes in the other parameters' values in K. This 
prevents the parameters in K from being uniquely identifiable 
even if the model output is very sensitive to changes in the 
individual parameters. In such cases, parameter estimation 
procedures normally show poor convergence properties or 
even fail. 

Plots of s•, j = 1, 2, ..., k, against i = 1, 2,..., n have 
proven to be valuable diagnostic tools in order to detect near- 
linear dependencies among the s• in cases where k is reason- 
ably small. With these plots it is possible to detect near-linear 
dependencies and insensitive parameters fairly efficiently in 
cases where there are only a few parameters [Holmberg, 1982; 
Reicherr et al., 1995]. However, if one wants to tackle the 
parameter identification problem for large parameter subsets, 
the graphical approach usually fails. With increasing size of the 
parameter subset and the model outcome vector the graphical 
output becomes increasingly confusing. In addition, it is very 
difficult to detect near-linear dependencies among the si that 
involve several parameters. In order to be able to tackle the 
parameter identifiability problem of large models and to detect 
multiple near-linear dependencies among the s• we need diag- 
nostics that are easier to handle and to interpret than the 
extensive graphical output. 

The columns s•, j = 1, 2, ..., m, of S are said to be linearly 
dependent or collinear if there exists a vector I• = (/3•, 
/32, ..., /3m)r with IIlll 0 such that Sl• - 0. If this equation 
holds approximately, the columns s•, j = 1, 2,..., m, are 
said to be nearly linearly dependent or nearly collinear. Much 
research has been dedicated to collinearity analysis in different 
fields, including numerics (solving of linear systems of equa- 
tions) and statistics (linear regression diagnostics). According 
to the specific needs in the different fields, different collinear- 
ity measures were suggested by various authors. The review 
article by Stewart [1987] summarizes the approaches in numer- 
ics and statistics and proposes a unified view of the main issues 
in these two fields. A brief discussion of the collinearity prob- 
lem in the context of linear regression diagnostics is given by 
Weisberg [1990], and a broader discussion is given by Belsley 
[1991]. 

A simple but effective approach to measure near collinearity 
is to look for the linear combination SI• that has minimal norm 

under the constraint 1011 = 1. It is well known that this mini- 
mum is achieved if I• equals the normed eigenvector to the 
smallest eigenvalue X m of SrS. The minimal norm Is11 under 
II11 - • equals X•m (for details, see Belsley [1991]). It turns 
out, however, that this measure is heavily dependent on the 
norms of the columns of S. Columns with large norms will be 
more important in determining the eigenvalues than will col- 
umns with small norms, and these differences will be reflected 
as strongly in the eigenvalues as will collinearity [Weisberg, 
1990]. Therefore one should standardize the columns first. 

Centering the columns is common practice in linear regres- 
sion diagnostics, but it is not meaningful in nonlinear regres- 
sion, where there is usually no intercept (see case study in 
section 5.1, Figure 4). Consequently, we consider the normal- 
ized matrix S with columns 

sj 

s•- Isll j = 1, 2, ..., m. (12) 
To assess the degree of near-linear dependence of k -< m 
columns of $, we define a collinearity index •/•: as follows: 

1 1 
= (•3) 

with •'•c being a n x k submatrix of •, containing those columns 
that correspond to the parameters in K and Xk being the 
smallest eigenvalue of 

The above definition has a simple interpretation: A change 
in the output vector •1(0) caused by a shift of a parameter 0: 
K can be compensated, at least in the linear approximation, up 
to a fraction of 1 divided by the collinearity index •/•c by ap- 
propriate changes in the other parameters in K. A collinearity 
index of 20 therefore means that a change of the calculated 
results caused by a shift of a parameter 0i G K can be com- 
pensated to 5% by appropriate changes in the other parame- 
ters in K. A high value of a collinearity index •/•: thus indicates 
that the parameter set K is poorly identifiable even if the k 
individual parameters are among the top parameters of the 
parameter importance ranking. In order to get an overview of 
the identifiability of different parameter subsets we suggest 
that •/•c be calculated for all subsets K of the full parameter set 
M and that •/•c be plotted against the subset size. If M is of size 
greater than 20, it is computationally convenient to take sub- 
sets K from the top 20 parameters of the parameter impor- 
tance ranking instead of the full set M. 

Note that the definition (13) of the collinearity index has a 
close relationship to the condition number which is used as a 
measure of collinearity in different fields. The condition num- 
ber K•: of •: is defined as 

K•: = = (14) 
minll•11= 1 I•K• 

with X• being the largest and Xa being the smallest eigenvalues 
of g•g•c. Our collinearity index compares Xa with unity, which 
is the value of g•cl•ll if the columns are orthogonal, that is, 
maximally noncollinear. The value of ;h is of little interest in 
our context. This and the better interpretability of 'he as dis- 
cussed above are the reasons for preferring the index 'ho In 
practice, however, differences between 'he and g•c are usually 
small since 1 < X• < k by a result from linear algebra. 

Note that 3'•c, unlike the • measures (7)-(11), does not 
depend on the choice of the f 0: because of normalization of S. 
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Nevertheless, •/•: still can be very sensitive to the choice of the 
scale factors SCi and changes in the experimental layout, re- 
spectively, and it depends naturally on 00. Suitable choices of 
SCi and 00 are therefore crucial (see section 4.4). 

4.3. Parameter Identifiability Analysis Using Parameter 
Importance Indices • and Collinearity Indices •/ 

In this section we discuss different uses of the indices intro- 

duced in sections 4.1 and 4.2 in typical parameter identifiability 
analyses. First, identifiability diagnosis for a specific parameter 
subset K is considered. A parameter subset K is said to be 
(potentially) identifiable if the observed model output is suffi- 
ciently sensitive to small changes of all parameters in K on an 
individual basis and if the collinearity index •/•: does not exceed 
a critical value. Although it is difficult to give precise criteria, 
we can nevertheless give some guidelines from our experience. 
Concerning individual importance, it is important that all pa- 
rameters in K are in the upper part of the parameter impor- 
tance ranking and that the •j?sqr for all parameters in K are 
approximately on the same order of magnitude. Critical values 
for •/•: lie in the range of 5-20 according to our experience. As 
can be seen from •/•: -< •c•: _< X/•/•: this range of values is 
similar to the critical range for •c•: reported by Belsley [1991] in 
an econometric context. According to Belsley, collinearity 
problems going along with condition numbers below 10 are 
rare. On the other hand, condition numbers above 100 nearly 
always lead to severe parameter identifiability problems. 

Second, we tackle the problem of choosing a subset K of k 
parameters out of the full set M of rn parameters for param- 
eter estimation. This typically involves several steps. In large 
applications it has proven to be useful to partition the full 
parameter set from an a priori point of view into two subsets as 
a first step: a subset of parameters that should preferably be 
estimated from the data available and another subset which 

could not reasonably be estimated from these data (M. Omlin 
et al., Biogeochemical model of Lake Zfirich: Sensitivity, iden- 
tiffability and uncertainty analysis, submitted to Ecological 
Modelling, 2000; R. Brunet al., Practical identifiability analysis 
of ASM2d with multicomponent time series data at opera- 
tional WWTP scale, manuscript in preparation, 2000) (herein- 
after referred to as M. Omlin et al., submitted manuscript, 
2000, and R. Brunet al., manuscript in preparation, 2000, 
respectively). Possible reasons for fixing some parameters a 
priori include the availability of more direct experimentation 
techniques for these parameters. As a second step the param- 
eter importance ranking is calculated for the subset of param- 
eters that is possibly to be estimated. This step is followed by 
the calculation of the collinearity index for all possible subsets 
of the (approximately) top 20 parameters of the parameter 
importance ranking. Combining the information from the pa- 
rameter importance ranking and the collinearity analysis leads 
to the choice of several potential identifiable parameter sub- 
sets with collinearity indices below the critical value and con- 
taining parameters which are among the top parameters in the 
parameter importance ranking. For further details of this step, 
see the case studies by Omlin et al. (submitted manuscript, 
2000) and Brunet al. (manuscript in preparation, 2000). After 
having chosen potentially identifiable subsets, parameter esti- 
mation for these subsets is performed. At the new location in 
parameter space the second step is repeated, and we enter an 
iterative procedure with possibly several iterations until con- 
vergence is achieved. 

Third, we consider the assessment of the fit once a subset of 

parameters has been estimated successfully. Primarily, stan- 
dard tools like the covariance matrix of the estimate can be 

used, but we suggest that in addition, the collinearity indices be 
calculated for all subsets of the estimated parameters at õ•:. As 
will be demonstrated in the case studies, these collinearity 
indices are very helpful in order to identify the most problem- 
atic parameter subsets, and they complete, in a lucid way, the 
information that is present in the correlation matrix. 

An assessment of the fit should include also an analysis of 
potential bias of the parameter estimates due to fixing some 
parameters a priori. Under the assumption that •1(0) repre- 
sents the "true model" structure, estimation of a subset K of 
parameters leads to biased estimates õ•: unless the fixed pa- 
rameters 05: are at the true parameter values. As the true 
values 05: are practically never known, parameter subset esti- 
mation will nearly always lead to a problem of biased esti- 
mates. The calculation of suitable collinearity indices can help 
to identify the fixed parameters which are the main (potential) 
bias sources. A subset J C • of sensitive, fixed parameters is 
considered to be an important (potential) bias source if 
is large whereas •/•: and •/j are reasonably low. A large 
means that some of the estimated values õK are heavily de- 
pendent on the fixed parameter values 0j. In this case, õK has 
to be understood clearly as a conditional estimate, and this fact 
has to be taken into account when comparisons with values 
reported in the literature are made. To assess potential bias 
sources practically, we suggest calculating collinearity indices 
for all subsets K t_J J, with K being the subset of estimated 
parameters and J C K being a subset of sensitive, fixed pa- 
rameters. If $• is of large size, the analysis is typically restricted 
to a subset size of J of 1 or 2 (Omlin et al., submitted manu- 
script, 2000; Brunet al., manuscript in preparation, 2000). 

4.4. Practical Considerations 

Three crucial questions of practical relevance remain. First, 
how to choose a suitable 00 to start the parameter identifiabil- 
ity analysis; second, how to choose A 0 i in (6); and third, how 
to choose SCi in (6). 

The approach outlined in sections 4.1-4.3 is based on the 
assumption that there is a known point 00 in the parameter 
space which leads to an acceptable model output. In cases 
where data are available, 00 might be chosen such that the 
model fits the data reasonably well. If significant prior knowl- 
edge about parameter values is available, a suitable 00 may be 
found combining physical reasoning and parameter impor- 
tance screening information as discussed in section 4.1. In the 
case where no data are available, 00 might be a reasonable 
"operating point" gained from the literature or a number of 
points gained from a regional sensitivity analysis. 

For a suitable choice of A0i, j = 1, 2, ..., m, we need a 
prior range of reasonable values for 0 i based on the literature 
or on expert knowledge. This is similar to specifying a prior 
distribution in a Bayesian analysis. A typical choice for A0i, 
j - 1, 2, ..., m, is a quarter of the reasonable range specified 
for 0•. Assuming a normal prior distribution for 0 i and assum- 
ing that the reasonable range is a 95% prior interval, this 
choice corresponds to making A 0 i equal to the prior standard 
deviation of 0•. In cases where there is only little prior knowl- 
edge available a reasonable choice of A 0i, j = 1, 2, ..., m, 
can be the value 0% itself. This choice accounts at least for 
different scales of the parameters. 

Whereas the A 0 i account for different scales and ranges of 
possible values of the parameters, the SCi, i = 1, 2, ..., n, 
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account for different scales of different outputs. Usually, SCi 
are chosen to be constant for the same output variable. If 
parameter estimation is performed by weighted least squares, 
SCi are best chosen to be X/•/wi whereas the w i are usually 
chosen in order to ensure that observations of different output 
variables (with different scales) have a similar influence on the 
objective function. Outside the context of weighted least 
squares, SCi are best set to a typical or mean value of the 
corresponding output variable. 

(length approximately equal to 8 m, height 0.9-1.76 m) and 
small drops every 50 m along the river control channel slope, 
prevent bed erosion during high flow, and cause high reaera- 
tion rates [Uehlinger et al., 2000]. 

5.1.2. Model and data. The following oxygen mass bal- 
ance model is used to describe the 02 dynamics in the inves- 
tigated study reach: 

0Co2 OCo2 
Ot + v•-•-= rprod + rresp + rex. (15) 

5. Case Studies 

Two case studies are presented in order to demonstrate 
different aspects of the suggested approach in particular ap- 
plications. In order to make the presentation short and clear 
the case studies involve deterministic models which are over- 

parameterized with respect to the data available for identifi- 
cation but which are not large in the sense of having tens or 
even hundreds of parameters. In addition, this should enable a 
comparison of the suggested measures of identifiability with 
traditionally applied diagnostic tools that are restricted to 
models with a small number of parameters (e.g., sensitivity 
function plots) or to cases where the full parameter set can be 
estimated (e.g., the correlation matrix of parameter estimates 
and likelihood contouring). Applications to large deterministic 
models with many parameters are given by Omlin et al. (sub- 
mitted manuscript, 2000) and Brunet al. (manuscript in prep- 
aration, 2000). 

The first case study is dedicated to a common issue in water 
quality modeling: The modeling of dissolved oxygen in a river. 
The deterministic model is given by a single partial differential 
equation. Containing four parameters and a single state vari- 
able, the model is of modest complexity only. The aim of this 
first study is mainly to compare the different diagnostic tools. 
The second case study deals with microbial laboratory data. It 
is based on published experimental work and modeling by 
Sommer [1997]. Growth of biomass and simultaneous degra- 
dation of two substrates are described by a model of the wide- 
spread Monod type. The deterministic model consists of a set 
of ordinary differential equations. Containing 13 parameters 
and three state variables, the model is of moderate complexity 
already. The aim of this study is mainly to show how the 
suggested measures can guide the selection of a subset of 
identifiable parameters out of the full parameter set and how 
they facilitate the assessment of the fit including identification 
of potential biases caused by keeping some parameters fixed. 
In addition, this second study demonstrates how the depen- 
dence of parameter identifiability on the experimental layout is 
reflected by the suggested measures. 

All calculations including numerical solution of differential 
equations, sensitivity analysis, and parameter estimation were 
done with AQUASIM, a computer program designed for sim- 
ulation and data analysis of aquatic systems [Reichert, 1994, 
1998]. 

5.1. Dissolved Oxygen in the River Glatt 
5.1.1. River Glatt. The Glatt catchment is located in the 

northeastern part of the Swiss Plateau. The river Glatt, outflow 
of the eutrophic lake Greifensee (river kilometer 0.0), flows 
through a densely populated area to the river Rhine (conflu- 
ence at river kilometer 35.5). The river is channelized. In the 
study reach (river kilometers 26.1-35.1), banks are protected 
with a stone riprap. Five artificial cascades and boulder ramps 

In (15), Co2 (gO2 m-3) is the dissolved oxygen concentra- 
tion, v (md -•) is the mean current velocity, rprod (gO2 d -• 
m -3) is the oxygen production rate due to gross primary pro- 
duction, rresp (gO2 d -• m -3) is the oxygen consumption rate 
due to respiration, and rex (gO2 d -• m -3) is the oxygen trans- 
fer rate due to gas exchange between water and the atmo- 
sphere along river sections between cascades or ramps. Pro- 
duction, respiration, and gas exchange along river sections are 
parameterized as follows: 

1 

/'prod = • PI, (16) 

1 

rresp---- d R, (17) 

r•x = ggas( t•sat - Go 2) (18) 

In (16)-(18) d (m) is the mean water depth, P (W -• gO 2 
d -•) is the production rate constant, I (Wm -2) is the light 
intensity at the water surface, R (gO 2 m -2 d -•) is the ecosys- 
tem respiration rate per unit surface area of the river bed, Kgas 
(d -•) is the gas exchange constant accounting for gas exchange 
along river sections, and C sat is the saturation concentration of 02 

Go 2. 
Across cascades or ramps, air bubbles enhance reaeration. 

The reaeration efficiency E gas of a ramp describes the extent 
that supersaturation or subsaturation will be reduced across 
the ramp [Uehlinger et al., 2000]: 

C•)p 2 __ /•down x-•O2 

Egas = C•- •sat ß (19) •O2 

In (19), C• is the O2 concentration upstream of the ramp, 
and C døw• is the O2 concentration downstream of the ramp. O2 

Dissolved o•gen, temperature, and discharge data used in 
this study were kindly provided by the Swiss National Hydro- 
logical and Geological Sumey (N•UF program, Jakob et al. 
[1994]). Instead of light intensi• measurements at the river 
surface of the study reach, global radiation data recorded by 
the Swiss Meteorological Institute (S•) at the Zfirich •r- 
port (•8 • south of the study reach) were used for the light 
intensi• I. Data on channel morpholo• were provided by the 
Water Protection Authori• of the Canton Zfirich (AWEL). 

5.1.3. Parameter estimation and parameter identifiabili• 
analysis. As the model equations (15)-(19) contain only four 
parameters that are potentially to be estimated (P, R, Kgas , 
and Egas) and their numerical solution is rather cheap compu- 
tationally, we start the analysis with parameter estimation. 
Because there are only obsemations from a single state (o•- 
gen), weights in (2) are set to 1, and weighted least squares 
simplifies to ordina• least squares. Following the notation in 
(2), Y = (Y•, Y2, ---, y•)r denotes the O2 time series data 
recorded at the end of the study reach, •(0) = [•(0), 
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Table 1. Parameter Estimates, Absolute and Relative 
Standard Errors, and Approximate Correlation Matrix of 
Parameter Estimates for P, R, and Kgas, With Egas Being 
Fixed to 0.5 

Standard Error Correlation Matrix 

Parameter Estimate Absolute Relative Kgas P R 

Kgas 48.4 13.8 0.28 1.000 
P 0.104 0.0204 0.20 0.995 , 1.000 

R 38.7 7.42 0.19 0.993 0.997 1.000 

r/2(0 ), ..., r/,•(0)] r denotes the predicted 02 concentrations 
at kilometer 35.1 at the same time points where 02 data were 
recorded, and 0 = (P, R, Kgas, E gas)r denotes the parameter 
vector. 

A first attempt to estimate the full parameter vector failed 
because of lack of convergence of the estimation algorithm. 
The model is clearly overparameterized with respect to the 02 
time series data available. This is rather obvious because it is 

not possible to discriminate the two gas exchange processes 
with oxygen time series data from a single location. We there- 
fore fixed the parameter E gas 'to a reasonable value of 0.5, 
using a formula used by Uehlinger et al. [2000], and tried to 
estimate the remaining three parameters. Quick convergence 
was achieved to the estimates shown in Table 1. Predicted and 

observed 02 concentrations are shown in Figure 1. 
A first assessment of the fit based on the estimated covari- 

ance matrix of the estimates in Table 1 reveals that in spite of 
quick convergence the parameter subset {P, R, Kgas} is only 
poorly identifiable. All elements of the correlation matrix of 
parameter estimates are above 0.99, and the estimated stan- 
dard errors are considerably high. The poor identifiability is 
also shown by the profile likelihood contours in Figure 2. The 
long flat valleys mean that parameter values can be varied over 
a large range in the direction of the valley without significant 
change in the model output. Although profile likelihood con- 
tours show a moderate departure from the linear approxima- 
tion (WRSS increases more slowly in the direction of increas- 
ing parameter values, and two ellipses are slightly curved), the 
linear approximation is nevertheless useful. In particular, the 
direction of the valley is obtained correctly. We will comment 
on the conditional likelihood plots below. 

To analyze the parameter identifiability problem further, we 
first produced a sensitivity function plot and calculated/5 mea- 
sures according to (7)-(11). The A 0 i in (6) was set to 0i, and 
SCi was set to 1 (gO 2 m-3). Results are shown in Figure 3 and 
Table 2. The continuous sensitivity functions in Figure 3 give a 
good overview of the identifiability situation. In order to take 
into account the present experimental layout we added sym- 
bols corresponding to the columns of S. The plot shows that 
the model output is considerably sensitive to all four parame- 
ters. It is most sensitive to P and R, less sensitive to Kga s, and 
even less sensitive to E gas. This finding is confirmed by the 
parameter importance ranking in Table 2, which basically pro- 
vides a statistical summary of the information in the sensitivity 
function plot. It reflects the fact that production, respiration, 
and reaeration along the river reach downstream of the last 
cascade have a larger effect on the measured oxygen concen- 
tration than the oxygen concentration immediately down- 
stream of the cascade. From both the sensitivity function plot 
and the parameter importance ranking we can conclude that 

every parameter has to be considered as potentially identifiable 
on an individual basis. 

To assess the identifiability of groups of parameters, we 
made pairwise scatterplots of the columns of S and calculated 
collinearity indices of all parameter subsets. Results are shown 
in Figure 4 and Table 3. From Figure 4 we see that the sensi- 
tivities of {P, Egas}, {P, Kgas}, and {Kgas, Egas} are strongly 
correlated whereas the sensitivities of the other pairs are not. 
It is important to note, however, that the correlation does not 
cause identifiability problems in the cases of {P, Egas} and {P, 
Kgas}. Sensitivities of {P, E gas} and {P, Kgas} are indeed 
correlated, but they are not (nearly) collinear like the sensitiv- 
ities of {Kgas, Egas}. The difference is that the regression line 
relating the two sensitivities passes close to the origin in the 
case of {Kgas, Egas}, but not in the cases of {P, Egas} and {P, 
Kgas}. The effect of a change in Kgas on the model output can 
therefore be nearly compensated by an appropriate change in 
Egas. In contrast, the effect of a change in the parameter P on 
the model output can only be made constant by an appropriate 
change in Kgas and E gas, respectively, but not approximately 
zero. This is due to the sensitivity of P being equal to zero 
during nocturnal hours (primary production occurs only when 
enough light is available) whereas the gas exchange process 
continues during nighttime (see Figure 3). 

The collinearity indices in Table 3 confirm the findings from 
Figure 4 for pairs of parameters: Columns of S corresponding 
to the parameters {Kgas , E gas} are nearly collinear (-y•: = 
9.07), but other pairs of columns are not (•,•: < 2.1). In 
addition, Table 3 provides information concerning multiple 
near-linear dependencies. The parameter subset {P, R, E ga s} 
has a collinearity index of approximately 24, and the collinear- 
ity index of the full set {P, R, Kgas , E gas} is almost 60. These 
high collinearity indices point to the severe identifiability prob- 
lems we found in the first stage of the analysis. Parameter 
estimation of the full parameter set failed because of lack of 
convergence, and estimation of (P, R, Kgas} resulted in large 
estimated standard errors and high off-diagonal elements of 
the estimated correlation matrix (Table 1). The collinearity 
indices in Table 3 now show that it is the near collinearity of 
the triple {P, R, Kgas} that causes the elements of the corre- 
lation matrix in Table 1 to be high and not the near collinearity 
of pairs of sensitivities as might be concluded from a naive 
interpretation of the correlation matrix. 

This fact is also illustrated comparing profile and conditional 

O O O 

o o •/o 

00:00 12:00 00:00 12:00 00:00 12:00 O0 O0 

23-May- 1992 24-May- 1992 25-May- 1992 

Figure 1. Observed (symbols) and predicted (solid line) 0 2 
concentrations in the river Glatt at kilometer 35.1. In addition, 
the calculated oxygen saturation concentration {•sat is shown 
(dashed line). 
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Figure 2. Profile (left-hand side) and conditional (right-hand side) likelihood (WRSS) contour plots (see 
section 3). The least squares estimate from Table 1 is shown as a cross in all plots. The contours refer to the 
80 and 95% confidence regions in the profile likelihood plot and to the same WRSS values in the conditional 
likelihood plot. The added solid line in the profile likelihood plot is the projection of the eigenvector 
corresponding to the (smallest) eigenvalue which determines the collinearity index of the parameter subset 
{P, R, Kgas} to be high (see Table 3). This eigenvector has the same direction as the main axis of the 
confidence ellipsoid calculated from linear approximation. 

likelihood plots in Figure 2. The long flat valleys of the profile 
likelihood correspond to the high collinearity index of the 
parameters subset {P, R, Kgas} and to the high off-diagonal 
elements of the correlation matrix in Table 1. They show the 
poor identifiability of {P, R, Kgas}. The conditional likelihood 
plot on the right-hand side, however, suggests a different pic- 
ture. Contours are nearly circular, and there seems to be no 
parameter identifiability problem. However, this is certainly 
not true. The nearly circular contours only mean that the 
identifiability problem is not caused by pairs of parameters, 
which we know already from the collinearity indices shown in 
Table 3. It is important to note that the common interpretation 
of the correlation matrix of the estimate in the sense of pair- 
wise linear dependencies can be quite misleading. Correlation 
matrices of estimates have to be interpreted in the profile and 
not in the conditional likelihood sense. As this is rather diffi- 

cult to do in the multidimensional case, the calculation of 

I: I I I I_. I I O0 O0 12:00 00:00 12:00 O0 O0 12:00 00:00 

23-May- 1992 24-May- 1992 25-May- 1992 p 

Figure 3. Continuous relative sensitivity functions of the 0 2 R 
ggas 

concentration with respect to the parameters P, R, Kgas , and Egas 
Egas shown as lines. Symbols corresponding to the columns of 
S are added in order to indicate the actual experimental layout. 

collinearity indices for all parameter subsets can facilitate a 
correct interpretation of the correlation matrix of the param- 
eter estimate. 

In order to illustrate the collinearity index graphically and to 
demonstrate the poor identifiability of {P, R, Kgas} in more 
detail, we performed parameter estimations of {P, R} for 
different values of Kgas. Relative changes of estimated param- 
eters and WRSS values are shown in Figure 5. Changing the 
value of Kgas and holding the other parameters fixed at their 
initial least squares estimate result in a sharply increasing (con- 
ditional) cWRSS. This reflects the fact that the model output 
is fairly sensitive to changes in Kgas. However, if {P, R) are 
allowed to change (they are estimated for different values of 
Kgas), changes in cWRSS due to changes in Kgas can be com- 
pensated to approximately 1/•/•: • 4 %, which is shown by the 
flat (profile) pWRSS line. A high collinearity index therefore 
means that the one-dimensional profile pWRSS is flat, com- 
pensating the possibly steep cWRSS to a large extent. A com- 
parison of Figure 2 and Figure 5 reveals that changes in the 
estimates of P and R follow nearly exactly the direction of the 
long flat valleys which is approximately given by the eigenvec- 
tor corresponding to the (smallest) eigenvalue which deter- 
mines the collinearity index of the parameter subset {P, R, 
Kgas} to be high. We further see that the pWRSS curve is 
asymmetric. Apart from a departure from the linear approxi- 
mation, this indicates that the parameters {P, R, Kgas} are 

Table 2. Parameter Importance Ranking a 

Parameter •msqr •mabs • .... •max •min 

1.96 1.45 1.45 3.84 0.00 
1.63 1.62 -1.62 -1.33 -1.70 
0.84 0.77 0.08 1.09 -1.42 

0.22 0.20 0.02 0.27 -0.35 

aThe 15 measures are defined in equations (7)-(11). 
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Figure 4. Pairwise scatterplots of columns of sensitivity ma- 
trix S. Horizontal and vertical dashed lines are added to show 

the origin. 

gasworks site. Benzene and toluene served as the sole carbon 
source, and the growth medium supplied the biomass with 
nitrogen, phosphorus, and other minerals necessary for bacte- 
rial growth. Substrate and biomass samples were taken from 
the liquid phase. The toluene and benzene samples were mea- 
sured directly on a gas chromatograph, and the biomass con- 
centration was determined measuring the protein content. Fur- 
ther details of the experimental procedure are documented by 
Sommer [1997]. 

5.2.2. Model, data, and basic simulation. The experi- 
ment is described by a modified version of J. Bailey and D. 
ellis' model [see Sommer, 1997, and references therein]. It 
consists of three nonlinear first-order differential equations 
describing the degradation of two individual substrates and 
growth of biomass. The model is further expanded by a time 
lag tlag accounting for a lag phase at the beginning of the 
experiment. 

dSt St 

d•-= -kt gst q- S t q- ZbS b ](ff t --> tlag, (20) 
dSb Sb 

dt = -k• Ks• + S• + ztSt X' t •> tlag , (21) 
dX S t S b 

d t = Ytk t gst q- S t q- Z bS b wl(ff q- Y•k b Ks• + S • + z tS t X-- b X 

better identifiable if gas exchange is small, a fact we already 
noticed in Figure 2. This is actually true because a smaller gas 
exchange coefficient leads to a slower approximation of the 
oxygen concentration to the equilibrium value during the night 
(which itself is not constant because of the temperature de- 
pendence of the saturation concentration, see Figure 1), and 
this makes the three parameters more identifiable. In highly 
aerated rivers, however, it is not possible to identify production 
and respiration rates from oxygen measurements alone. 

5.2. Microbial Degradation Experiment 

The case study presented in this section is based on pub- 
lished experimental work and modeling including parameter 
estimation [Sommer, 1997]. 

5.2.1. Experimental setup. The degradation experiment 
was carried out in a stirred batch reactor under sterile aerobic 

conditions. The aqueous medium consisted of benzene and 
toluene, bacteria, growth medium, and distilled water. The 
biomass was a pure culture, identified as Pseudomonas cepa- 
cia, and originated from a ground water sample from a former 

Table 3. Collinearity Indices for All Parameter Subsets 

Parameter 

Subset 

E gas, Kgas 9.07 
P, R 2.02 
Kgas , P 1.57 
E gas, P 1.55 
Kgas , R 1.04 
Egas, R 1.04 

Kgas , P, R 23.81 
Egas , P, R 9.13 
Egas , Kgas , P 9.10 
E gas , Kgas , R 9.09 
Egas , Kgas , P, R 59.49 

t --• tlag, (22) 

dS• dSb dX 
d--•-= d•-= d•-= 0 t < t•ag. (23) 

States and parameters are explained in Tables 4 and 5, 
respectively. Degradation and growth processes are formu- 
lated with standard Monod kinetics. An inhibition effect of the 

presence of benzene and toluene on the degradation of tolu- 
ene and benzene, respectively, is added in (20) and (21). Initial 
concentrations •ini .•ini and Xin• •"b ,•'t , are treated as model param- 
eters. Note that the parameters k t and k b do not have the usual 
biological meaning of maximal degradation rates because they 

I'• ß - 

(1) - 
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(1) o 

_.m m 
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I I 
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3O 5O 7O 9O 

Kgas 

Figure 5. Relative changes of estimated parameters and 
WRSS values for different values of K•as. Here cWRSS de- 
notes one-dimensional conditional likelihood (WRSS) values, 
and pWRSS denotes one-dimensional profile likelihood 
(WRSS) values. 
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Table 4. Symbols, Units, Scale Factors, Number of Observations, and Description of the 
State Variables a 

State Unit SCi n ohs Description 

S t mg L -• 0.10 25 
S•, mg L -• 0.10 28 
X mg L- • 0.35 37 

concentration of toluene in liquid phase 
concentration of benzene in liquid phase 
concentration of suspended biomass 

asci, scale factors; n ohs, number of observations. 

include effects of yield coefficients and head space factors (two 
additional factors due to the experimental setup). 

The data consist of a total of 90 observations including 
measurements of all state variables (see also Table 4). It is 
publicly available from the Institute of Mathematical Model- 
ling, Technical University of Denmark, at http://www.imm.d- 
tu.dk/documents/ftp/phdliste/phd31data/run4b.inp. In Figure 6 
the data are shown together with the deterministic model out- 
put for 0 -- 0o as specified in Table 5. Note that the values 0o 
(except zt,) are fitted values (see Table 8). 

5.2.3. Parameter identifiability analysis and parameter es- 
timation. Parameter identifiability analysis and parameter es- 
timation are done for two experimental layouts in order to give 
a motivating example with regard to possible applications of 
the suggested approach in the field of experimental design for 
nonlinear models. The first (layout 1) corresponds to the full 
data set. This means that we look at a design that takes obser- 
vations at exactly the same points where data are actually 
available. The second (layout 2) corresponds to a reduced data 
set with observations only of the states St, and St at the same 
points as in layout 1. The second layout is typical for applica- 
tions where only substrates are measured and not biomass. 

In order to provide reasonable estimates of prior parameter 
uncertainties, parameters were classified into three classes 
from a biological point of view: accurately known parameters 
(class 1, relative uncertainty 5%), moderately inaccurately 
known parameters (class 2, relative uncertainty 20%), and 
poorly known parameters (class 3, relative uncertainty 50%). 
Initial concentrations of substrates were assumed to be known 

accurately (class 1). Maximum degradation rates, decay rate of 
biomass, yields, and the parameters tlag and X ini were assumed 
to be known moderately inaccurately (class 2). Finally, half- 
saturation coefficients and inhibition coefficients were as- 

sumed to be known only poorly (class 3) (see Table 5). Because 
zt, equals zero, an absolute prior uncertainty was assumed 
directly for this parameter. 

In Table 6, results of the parameter importance screening 
are given. Scale factors were chosen according to Table 4, and 
prior parameter uncertainties were chosen according to Table 
5. The values of 8 msqr decrease quasi-continuously down to 
10% of the maximum for both layouts. Table 6 shows a very 
small sensitivity of the model output to the value of the half- 
saturation coefficient Kst,. This is not quite astonishing be- 
cause typical experimental concentrations are much larger 
than Kst, and the inhibition termztS t makes the contribution of 
Kst, to the denominator of the Monod factor even less impor- 
tant. Therefore the value of Kst, influences the shape of the 
decreasing benzene concentration only within a small time 
domain in which the concentration as a function of time bends 

toward the time axis in Figure 6. The model output is, however, 
much more sensitive to the value of Kst. This is due to the 
slightly larger value of Kst (initial toluene and benzene con- 
centrations are similar), to the absence of the inhibition term 
(note that zt, = 0), and to the effect of toluene as an inhibitor 
for growth on benzene. Further conclusions can be drawn from 
the results in Table 6. The 8msqr of Yt, and b is smaller for 
layout 2 than for layout 1. This indicates that observations of 
the biomass play a key role in identification of these two pa- 
rameters. The •max and •jmin show that positive changes in z t,, 
gst , tlag , Zt, b, and Kst, lead to higher substrate concentrations 
over the whole time interval for layout 2 and that positive 
changes in k t, Y,, X ini, k t,, and Yt, lead to lower substrate 
concentrations. This is also reflected by the fact that •jmabs and 
•jmean of these parameters maximally differ in the sign for 
layout 2. From a biological point of view this finding is obvious, 
because layout 2 considers only observations of the substrates. 

Table 5. Symbols, Units, Values (0o), Prior Uncertainty, and Description of Model Parameters a 

Prior Uncertainty 

Parameter Unit 0o Absolute (A0) Relative Description 

b h- • 0.0367 0.00734 0.20 

k•, h -• 0.229 0.0458 0.20 
Ks•, mg L- • 0.477 0.239 0.50 
gst mg L -• 0.863 0.431 0.50 
k t h -1 0.350 0.0699 0.20 

ini mg L- • 4.72 0.236 0.05 
ini mg L -• 5.11 0.255 0.05 t 

tla. g ' h 2.08 0.417 0.20 
X in' mg L- 1 0,803 O. 161 0.20 
Y•, ... 0.639 0.128 0.20 
Yt ... 1.14 0.229 0.20 
z•, ... 0 0.250 
2' t ooo 1.18 0.588 

decay coefficient of biomass 
maximum degradation rate for benzene 
half-saturation coefficient for benzene 
half-saturation coefficient for toluene 
maximum degradation rate for toluene 
initial concentration of benzene 
initial concentration of toluene 

time lag 
initial concentration of biomass 

yield coefficient for benzene 
yield coefficient for toluene 
benzene inhibition coefficient 
toluene inhibition coefficient 

aparameter values (0o), except the value for z•,, are fitted values using the full data set (see fit results in Table 8). Prior parameter uncertainty 
is given as absolute (A0) and relative values. 
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Figure 6. Data (symbols) and deterministic model output 
(lines) for 0 = 0o (see Table 5). 

In order to get information on the identifiability of subsets of 
parameters, collinearity indices •'K were calculated for all sub- 
sets K of the full parameter set M. The calculations were done 
for both experimental layouts. A graphical representation of 
the results is given in Figure 7, where the collinearity index 
versus parameter subset size is plotted. Note that the ordinate 
is limited to •'K < 50 in order to show the information in the 
interesting range of •, in more detail. The collinearity index for 
the full set M reaches to 380 in the case of layout I and to 2900 
in the case of layout 2. This makes clear that the full parameter 
set is not identifiable either for layout I or for layout 2. The 
plots in Figure 7 show interesting features. From the left-hand- 
side plot we see that despite the careful design of the experi- 
ment there is a pair of parameters with a collinearity index 
greater than 25. Furthermore, the plot shows that the maxi- 
mum collinearity index increases quickly with the size of the 
parameter subset. This means that there are many parameter 
subsets of moderate size that are practically nonidentifiable. 
On the other hand, the same plot shows that the minimum 
collinearity index increases quite slowly with increasing param- 
eter subset size. There is indeed a subset of size 12 with a 

collinearity index of 20, which is even smaller than the maxi- 
mum collinearity index of subset size 2. These features lead to 
the conclusion that with data collected according to layout 1 
there is probably only one parameter to be omitted from the 
full set of 13 parameters in order to be able to perform 
weighted least squares parameter estimation. 

The right-hand plot shows similar features, but both the 

maximum and the minimum collinearity indices increase faster 
than in the case of layout 1. This is not astonishing bearing in 
mind the fact that layout 2 is poorer than layout 1 both quan- 
titatively (53 instead of 90 design points) and qualitatively (two 
state variables observed instead of three). In the case of layout 
2 there are three parameter subsets of size 2 that show a 
collinearity index greater than 20. On the other hand, there is 
a subset of size 8 with a collinearity index smaller than 20. 
Subsets with size greater than 9 do not appear in the plot; they 
all have collinearity indices greater than 50. The conclusion we 
draw from this is that it should be possible to estimate a subset 
of no more than 8 parameters by weighted least squares with 
data collected according to layout 2. 

In Table 7, collinearity indices for specific parameter subsets 
are shown. In Figure 7 the points corresponding to these sub- 
sets are labeled with the number of the subset. Considering the 
model equations (20)-(22), the high collinearity indices of sub- 
sets 4 and 8 are evident: Higher degradation rates k t and kt, 
can nearly be compensated by an appropriate adjustment of 
Kst and zt, and Kst, and zt, respectively. The particularly high 
collinearity index of subset 4 makes clear that every parameter 
set including this subset is nonidentifiable either with layout 1 
or with layout 2. Considering the collinearity indices of subsets 
1-3, it seems best to omit parameter zt, from parameter esti- 
mation. A look at the collinearity indices of subsets 9 and 10 
confirms this decision: Dropping zt, in set 9 decreases the 
collinearity index dramatically for both layout 1 and layout 2. 
The resulting collinearity index is only slightly higher than the 
collinearity index of subset 8. It is interesting to note that 
collinearity indices of subsets 5-8 are higher than the collinear- 
ity indices of the corresponding subsets 1-4. This finding is not 
evident considering the model equations (20)-(22). However, 
it becomes clear when looking at Figure 6. Degradation of St is 
faster than degradation of St,. Many design points for St show 
a nearly constant St,. This makes the identification of z t, very 
difficult. Collinearity indices of subsets 11 and 12 show that 
initial concentrations of S/, and St and the time lag parameter 
tlag are well-identifiable parameters for both layout 1 and lay- 
out 2. The reason is that both experimental layouts provide 
measurements of St, and St at the initial state of the experi- 
ment and during the lag phase (see Figure 6). Whereas there 
is no significant difference in the collinearity indices between 
layout 1 and layout 2 regarding subsets 1-10, there are large 

Table 6. Parameter Importance Ranking for Layout 1 and Layout 2 a 

Layout 1 Layout 2 

Parameter (•msqr (•mabs (• .... &max (•min (•msqr (•mabs (• .... (•max (•min 

zb 5.16 2.91 2.02 15.48 -6.04 6.48 4.03 4.03 15.48 0.00 
kt 4.35 2.47 - 1.72 4.97 - 12.48 5.46 3.43 - 3.43 0.00 - 12.48 
Yt 3.35 2.19 -0.50 5.84 - 10.50 3.74 2.29 - 2.29 0.00 - 10.50 
X ini 2.31 1.44 -0.83 2.72 -6.42 2.86 1.93 - 1.93 0.00 -6.42 

gst 2.23 1.25 0.86 6.83 - 2.64 2.80 1.72 1.72 6.83 0.00 
t lag 2.03 1.31 0.93 5.25 - 1.95 2.56 1.83 1.83 5.25 0.00 
kb 1.80 0.88 -0.65 1.34 - 7.70 2.30 1.26 - 1.26 0.00 - 7.70 
zt 1.61 0.85 0.63 5.89 - 1.30 2.06 1.22 1.22 5.89 0.00 
S• ni 1.17 0.73 0.73 2.55 -0.07 1.48 1.00 1.00 2.55 -0.07 
sini 1.10 0.65 0.62 2.36 -0.20 1.42 0.99 0.93 2.36 -0.20 
Yo 0.91 0.62 0.05 1.77 - 2.49 0.82 0.49 -0.49 0.00 - 2.49 
b 0.66 0.43 -0.12 1.27 - 1.88 0.44 0.26 0.26 1.27 0.00 

Kso 0.50 0.20 0.15 2.61 -0.45 0.64 0.29 0.29 2.61 0.00 

aThe & measures are defined in equations (7)-(11). 
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Figure 7. Collinearity indices for all parameter subsets for layout 1 (L1) and layout 2 (L2). The numbers in 
the plots refer to the parameter subsets defined in Table 7. The horizontal dashed lines indicate the critical 
7 in this particular application. 

differences regarding subsets 13-17. For instance, subset 17 
seems to be identifiable for layout 1 but not for layout 2. The 
nonidentifiability of subset 17 for layout 2 reflects the fact that 
layout 2 does not provide information about the biomass X. 
Lacking this information, the parameters of subset 17 cannot 
reasonably be estimated from a biological point of view. 

Combining the information gained from Figure 7 and Table 
7 leads to the conclusion that subset 19 (for layout 1) and 
subset 18 (for layout 2) are the subsets that combine maximal 
subset size with a collinearity index which still should allow 
parameter estimation without convergence problems. In order 
to demonstrate this, we performed weighted least squares pa- 
rameter estimation according to (2) for subset 19 with full data 

and for subset 18 with data according to layout 2. Weights were 
chosen as wi = 1/(SCi) 2 with scale factors SCi as given in 
Table 4. Parameters that are not estimated for layout 2 are set 
to the estimates obtained for layout 1. Convergence was 
achieved in both cases only after quite many iterations. This 
clearly indicates that a collinearity index of approximatively 20 
is already critical for parameter identifiability in this applica- 
tion. 

Results of parameter estimation are given in Table 8 (subset 
19 and layout 1) and Table 9 (subset 18 and layout 2). Both 
Table 8 and Table 9 show high standard errors for Ksb, zt, and 
Kst, indicating that these three parameters are only poorly 
identifiable. This is, on the one hand, due to the high collinear- 

Table 7. Collinearity Index for Specific Parameter Subsets for Layout 1 and Layout 2 

Layout 1 
Subset Parameters 7K 

Layout 2 
'•K 

1 gst , k t 10.27 
2 K,t, z b 25.42 
3 k t, z b 17.01 
4 gst , kt, z b 152.02 
5 K,b, k b 3.32 
6 K,b, zt 2.38 
7 k b, z t 7.16 
8 K,b, k b, z t 16.02 
9 K,t, kt, zb, K,b, kb, Zt 376.18 
10 K,t, kt., .K,t,, kt,, zt 17.11 
11 •ini x,n, 1.04 •a.b .• •'t 

12 S3, TM x ini 1.51 • •'t • tlag 
13 rt,, Y, 3.80 
14 X ini, Y•, 1.98 
15 xini, Yt 3.58 
16 xini, Yb, Yt 9.85 
17 b, X ini, Yb, Yt 10.71 

•ini xini 18.04 18 gst, mr, gsb, kb, zt, •'b , •,t ,tlag 
19 Kst, kt, gsb , kb, zt, S• ni xini b X ini, Yb, Yt 20.72 • •'t • tlag• • 

10.35 
25.71 

17.09 
149.51 

3.34 

2.39 

7.18 
16.00 

378.01 
16.93 

1.02 

1.62 

14.89 

4.50 

6.02 
28.94 

144.23 

18.38 

2454.05 
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Table 8. Parameter Estimates, Absolute and Relative Standard Errors, and Approximate Correlation Matrix of Parameter 
Estimates for Parameter Subset 19 Estimated With Full Data 

Parameter 

Standard Error Correlation Matrix 

Estimate Absolute Relative b kb Ks b Ks t kt cini .•ini xini øb •'t /lag Yb Yt z t 

b 0.0367 

k b 0.229 
Ksb 0.477 
Kst 0.863 
k t 0.350 
sini 4.72 b 

sini 5.11 t 

tla. g ' 2.08 
.X TM 0.803 

Yb 0.639 
Yt 1.14 
zt 1.18 

0.00273 0.07 1.00 
0.0426 0.19 0.34 1.00 
0.325 0.68 0.40 0.91 a 1.00 
0.325 0.38 -0.27 -0.52 -0.61 1.00 
0.0384 0.11 -0.17 -0.31 -0.37 0.93 a 
0.0338 0.01 -0.08 0.15 0.19 -0.08 
0.0439 0.01 0.11 0.00 -0.07 0.06 
0.264 0.13 0.05 -0.31 -0.28 0.23 
0.118 0.15 0.08 -0.11 -0.14 -0.36 
0.127 0.20 0.51 0.51 0.48 -0.27 
0.106 0.09 -0.26 -0.44 -0.36 0.26 
0.428 0.36 0.26 0.93 • 0.77 -0.52 

1.00 

-0.16 1.00 

-0.01 0.16 1.00 
0.33 -0.16 -0.54 1.00 

-0.40 0.05 -0.21 0.61 1.00 
-0.05 -0.04 0.06 0.22 0.31 1.00 

0.07 -0.03 -0.06 -0.32 -0.51 -0.92 • 
-0.39 0.03 0.12 -0.40 -0.05 0.34 

1.00 

-0.32 1.00 

•Absolute off-diagonal elements in the correlation matrix exceeding a value of 0.9. 

ity indices of subsets 1 and 8 as shown in Table 7. On the other 
hand, it also reflects the relatively low sensitivity of the model 
output to changes in Ksb (see Table 6). Furthermore, it is 
interesting to note that despite the small sensitivity of the 
model output to changes in b (see Table 6) the standard error 
for b in Table 8 is reasonably low. The reason for this is that 
there exists a time domain (after all substrate is consumed) 
where the model output exclusively depends on this parameter. 
This makes the sensitivity function of b nearly orthogonal to 
the other sensitivity functions, which is shown by low collinear- 
ity indices for all pairs of parameters containing b. 

A closer look at the correlation matrix in Table 8 reveals that 

there are four off-diagonal elements exceeding a value of 0.9. 
To make clear which dependencies of parameter sensitivities 
are shown by these elements, we consider the collinearity in- 
dices in Table 7. Parameter subset {Kst , kt) (subset 1) has a 
collinearity index of approximately 10 in Table 7 and a corre- 
lation of 0.93 in Table 8. This indicates that the high value in 
the correlation matrix is mainly caused by a pairwise near- 
linear dependence of the sensitivities of {Kst, kt}. Pairwise 
interpretation of the other off-diagonal elements exceeding 
0.9, however, would be misleading. Considering the high ele- 
ments of {Ksb, k b ) and {kb, zt) in Table 8, we see from Table 
7 that the corresponding collinearity indices are only small 
(3.3) and moderate (7.2), respectively. On the other hand, we 
find a high collinearity index for the triple {Ksb , kb, zt) 
(16.0). This makes clear that the high correlations of {Ksb, 
kt,) and {kb, zt) in Tables 8 and 9 show the dependence of the 

triple {Ksb , kb, zt} and not the dependence of the pairs {Ksb , 
k b} and {kb, Zt}. The situation is similar in the case of {Yb, 
Yt}. The collinearity index in Table 7 (3.8) clearly indicates 
that the pairwise interpretation is not adequate. The high ab- 
solute element of { Yb, Yt} points to the strong dependence of 
the triple {X ini, Yb, Yt} (collinearity index of 10.7) instead. 

Fixing some parameters and estimating the others leads to 
biased estimates under the assumption that the model is cor- 
rectly specified, unless the fixed parameters are fixed at their 
(unknown) true values. Exploring potential bias problems is 
especially important if the model output is very sensitive to 
changes in the fixed parameter values and if the collinearity 
index increases strongly when a fixed parameter is added to the 
estimated parameter subset. As we know from Table 6, the 
model output is very sensitive to changes in the fixed param- 
eter z b. In addition, the collinearity index increases dramati- 
cally (from 21 to 380) if we add z b to the estimated parameter 
subset. This leads to the expectation that setting z b to another 
value would change at least some of the parameter estimates 
significantly. 

In order to study the influence of the value of z b on the 
estimates of the other parameters we performed additional 
parameter estimations of subset 19 for different values of z b 
using full data. Relative changes of estimated parameters and 
WRSS values are shown in Figure 8. To keep Figure 8 simple, 
lines for parameter estimates which change less than 10% over 
the range considered for Zb were suppressed. From Figure 8 it 
can be seen that fixing Z b, for instance, at 0.2 increases the 

Table 9. Parameter Estimates, Absolute and Relative Standard Errors, and Approximate Correlation Matrix of Parameter 
Estimates for Parameter Subset 18 Estimated With Data According to Layout 2 

Standard Error Correlation Matrix 

Parameter Estimate Absolute Relative k b Ksl• Ks t kt cini .•ini øb '-'t /lag Zt 

kb 0.242 0.0619 0.26 1.00 
Ksb 0.616 0.453 0.74 0.96 • 1.00 
Ks t 0.727 0.279 0.38 0.19 0.10 1.00 
k t 0.337 0.0325 0.10 0.09 0.03 0.95 a 1.00 
sini 4.72 0.0368 0.01 -0.22 -0.18 -0.31 0.42 b -- 

sit ni 5.10 0.0435 0.01 0.04 0.03 -0.17 -0.32 
tlag 2.07 0.218 0.11 -0.19 -0.18 0.57 0.78 
zt 1.28 0.649 0.51 0.97 • 0.90 • 0.17 0.06 

1.00 

0.10 1.00 
-0.30 -0.62 
-0.27 0.14 

1.00 

-0.28 1.00 

aAbsolute off-diagonal elements in the correlation matrix exceeding a value of 0.9. 



BRUNET AL.: PRACTICAL IDENTIFIABILITY ANALYSIS OF LARGE MODELS 1029 

X ' 

x 

o. -x-- kt 
ß .o Kst 

cWRSS 

pWRSS 

0 '0 "0 O. 0 ..0 

I I I I I I I I I I 

0,0 0,2 0:4 0,6 0,8 1,0 

Zb 

Figure 8. Relative changes of estimated parameters and 
WRSS values for different values of zt,. Here cWRSS denotes 
one-dimensional conditional likelihood (WRSS) values, and 
pWRSS denotes one-dimensional profile likelihood (WRSS) 
values. 

estimate of k t by approximately 12% and decreases the esti- 
mate of gst by approximately 40%. The other parameters do 
not change significantly. At the same time the conditional 
WRSS increases 1200% (this is out of plot range), whereas the 
profile WRSS increases only 0.6%. The large change in the 
conditional WRSS reflects the high •jmsqr of Z t, (see Table 6), 
and the fiat profile WRSS reflects the high collinearity index of 
the full parameter set (3' = 380). The sharp increase in condi- 
tional WRSS can be compensated to a very large extent by 
appropriate changes in other parameters. In addition, the 7 
values in Table 7 show which parameter estimates are expected 
to change, compensating for changes in zt,. Parameter subset 9 
shows a collinearity index of 376, which is nearly as high as the 
collinearity index of the full set. This means that we have to 
consider only the parameters belonging to subset 9 as candi- 
dates that might change significantly. The other parameter 
estimates are not expected to change because they are not 
suited to compensate for changes in z t,. A closer look at pa- 
rameter subset 4 reveals that this triple already has a collinear- 
ity index of 152. Estimates of K•t, and kt are therefore expected 
to change significantly when zt, is set to another value. This is 
exactly what we see in Figure 8. The conclusion that can be 
drawn is that K•t, and kt have to be seen clearly as conditional 
estimates (conditional on z t, = 0) whereas the other param- 
eter estimates are less dependent on the value of z t,. 

6. Summary and Conclusions 
As models in the environmental sciences continue to grow 

further, assessing practical parameter identifiability for large 
simulation models becomes increasingly important. In this pa- 
per we presented two diagnostic tools suitable to cope with the 
challenge posed by large models with many parameters and 
time-consuming numerical model evaluations. The sensitivity 
measures • analyze the identifiability of parameters on an 
individual basis, and the collinearity indices 7 analyze the com- 
pensation effects occurring in the case of joint estimation of 
parameter subsets. The use of these tools in the following four 
tasks was demonstrated: identifiability diagnosis for arbitrary 
parameter subsets, the selection of identifiable parameter sub- 

sets for parameter estimation, the correct interpretation of the 
correlation matrix of parameter estimates with respect to pa- 
rameter identifiability, and the exploration of potential bias 
problems due to fixing some parameters a priori. As the diag- 
nostics 15 and 3' do not depend on the observations but only on 
the experimental layout, they are also suitable for experimental 
design purposes, a potential application that so far has only 
been sketched. 

The principal conclusion of this paper is that it is worthwhile 
to calculate 15 and 3' indices routinely in the course of any 
parameter identification procedure of overparameterized 
models and to carry out analyses as suggested and summarized 
above. This is especially true for the so-called "state-of-the- 
art" models. Careful parameter identifiability analyses for such 
models with typical data sets and at typical "operating points" 
will give a deeper understanding of parameter identifiability 
problems due to overparameterization. In addition, compari- 
sons of applications of the same model to different data sets 
will be easier if parameter identifiability is discussed in more 
detail, including, for example, potential bias problems. Finally, 
we see an important potential of the suggested tools in future 
applications to experimental design based on large, nonlinear 
simulation models. 

Acknowledgments. We thank H. M. Sommer for making her data 
available and Eric Arvin for pointing our attention to these data. 
Furthermore, we thank the Swiss National River Survey Program 
(NADUF) for providing oxygen and discharge data for the river Glatt, 
the Water Protection Authority of the Canton Ziirich (AWEL) for 
providing channel morphology data for this river, and the Swiss Me- 
teorological Institute (SMA) for making their radiation data available. 
Finally, the suggestions and comments by Matt Hare and two anony- 
mous reviewers, which helped to improve the manuscript, are grate- 
fully acknowledged. 

References 

Bates, D. M., and D. G. Watts, Nonlinear Regression Analysis and its 
Applications, John Wiley, New York, 1988. 

Beck, M. B., Water quality modeling: A review of the analysis of 
uncertainty, Water Resour. Res., 23(8), 1393-1442, 1987. 

Beck, M. B., Coping with ever larger problems, models, and data bases, 
Water Sci. Technol., 39(4), 1-11, 1999. 

Belsley, D. A., Conditioning Diagnostics: Collinearity and Weak Data in 
Regression, John Wiley, New York, 1991. 

Beven, K., Towards a new paradigm in hydrology, in Water for the 
Future: Hydrology in Perspective, edited by J. C. Rodda and N. C. 
Matalas, IAHS Publ., 164, 393-403, 1987. 

Beven, K., Future of distributed modeling, Hydrol. Processes, 6(3), 
253-254, 1992. 

Beven, K., Prophecy, reality and uncertainty in distributed hydrological 
modeling, Adv. Water Resour., 16(1), 41-51, 1993. 

Campolongo, F., and A. Saltelli, Sensitivity analysis of an environmen- 
tal model: An application of different analysis methods, Reliab. Eng. 
Syst. Safety, 57(1), 49-69, 1997. 

Chatfield, C., Model uncertainty, data mining and statistical inference 
(with discussion), J. R. Stat. Soc., Set. A, 158(3), 419-466, 1995. 

Draper, D., Assessment and propagation of model uncertainty (with 
discussion), J. R. Stat. Soc., Set. B, 57(1), 45-97, 1995. 

Draper, D., A. Saltelli, S. Tarantola, and P. Prado, Scenario and 
parameteric sensitivity and uncertainty analyses in nuclear waste 
disposal risk assessment: The case of GESAMAC, in Mathematical 
and Statistical Methods for Sensitivity Analysis, edited by A. Saltelli, 
K. Chan, and M. Scott, chap. 13, pp. 275-292, John Wiley, New 
York, 2000. 

Freer, J., K. Beven, and B. Ambroise, Bayesian estimation of uncer- 
tainty in runoff prediction and the value of data: An application of 
the GLUE approach, Water Resour. Res., 32(7), 2161-2173, 1996. 

Grieb, T. M., R. J. M. Hudson, N. Shang, R. C. Spear, S. A. Gherini, 
and R. A. Goldstein, Examination of model uncertainty and param- 



1030 BRUNET AL.: PRACTICAL IDENTIFIABILITY ANALYSIS OF LARGE MODELS 

eter interaction in a global carbon cycling model (GLOCO), Envi- 
ron. Int., 25(6-7), 787-803, 1999. 

Gupta, V. K., and S. Sorooshian, Uniqueness and observability of 
conceptual rainfall runoff model parameters: The percolation pro- 
cess examined, Water Resour. Res., 19(1), 269-276, 1983. 

Helton, J. C., Uncertainty and sensitivity analysis techniques for use in 
performance assessment for radioactive waste disposal, Reliab. Eng. 
Syst. Safety, 42(2-3), 327-367, 1993. 

Holmberg, A., On the practical identifiability of microbial growth 
models incorporating Michaelis-Menten type nonlinearities, Math. 
Biosci., 62, 23-43, 1982. 

Hornberger, G. M., and R. C. Spear, An approach to the preliminary 
analysis of environmental systems, J. Environ. Manage., 12, 7-18, 
1981. 

Hornberger, G. M., and R. C. Spear, An approach to the analysis of 
behavior and sensitivity in environmental systems, in Uncertainty and 
Forecasting of Water Quality, edited by M. Beck and G. van Straten, 
pp. 101-116, Springer-Verlag, New York, 1983. 

Jakeman, A. J., and G. M. Hornberger, How much complexity is 
warranted in a rainfall-runoff model?, Water Resour. Res., 29(8), 
2637-2649, 1993. 

Jakob, A., J. Zobrist, J. S. Davies, P. Liechti, and L. Sigg, NADUF: 
Langzeitbeobachtung des chemisch-physikalischen Gew•isser- 
zustandes, Gas WasserAbwasser, 74, 171-186, 1994. 

Kleissen, F. M., M. B. Beck, and H. S. Wheater, The identifiability of 
conceptual hydrochemical models, Water Resour. Res., 26(12), 2979- 
2992, 1990. 

Kuczera, G., Assessing hydrologic model nonlinearity using response 
surface plots, J. Hydrol., 118(1-4), 143-161, 1990. 

Kuczera, G., and M. Mroczkowski, Assessment of hydrologic param- 
eter uncertainty and the worth of multiresponse data, Water Resour. 
Res., 34(6), 1481-1489, 1998. 

Pastres, R., D. Franco, G. Pecenik, C. Solidoro, and C. Dejak, Local 
sensitivity analysis of a distributed parameters water quality model, 
Reliab. Eng. Syst. Safety, 57(1), 21-30, 1997. 

Reichert, P., Aquasim: A tool for simulation and data-analysis of 
aquatic systems, Water Sci. Technol., 30(2), 21-30, 1994. 

Reichert, P., AQUASIM 2.0: User manual, technical report, Swiss 
Fed. Inst. for Environ. Sci. and Technol., Dtibendorf, Switzerland, 
1998. 

Reichert, P., and M. Omlin, On the usefulness of overparameterized 
ecological models, Ecol. Modell., 95(2-3), 289-299, 1997. 

Reichert, P., R. von Schulthess, and D. Wild, The use of AQUASIM 
for estimating parameters of activated sludge models, Water Sci. 
Technol., 31(2), 135-147, 1995. 

Restrepo, P. J., and R. L. Bras, A view of maximum-likelihood esti- 
mation with large conceptual hydrologic models, Appl. Math. Com- 
put., 17(5048), 375-403, 1985. 

Saltelli, A., Sensitivity analysis: Could better methods be used?, J. 
Geophys. Res., 104(D3), 3789-3793, 1999. 

Saltelli, A., and M. Scott, Guest editorial: The role of sensitivity anal- 
ysis in the corroboration of models and its link to model structural 
and parametric uncertainty, Reliab. Eng. Syst. Safety, 57(1), 1-4, 
1997. 

Saltelli, A., S. Tarantola, and K. P.S. Chan, A quantitative model- 
independent method for global sensitivity analysis of model output, 
Technometrics, 41(1), 39-56, 1999. 

Sobol, I. M., Sensitivity estimates for nonlinear mathematical models, 
Math. Modell. Comput. Exp., 1(4), 407-414, 1993. 

Sommer, H. M., Variability in microbiological degradation experi- 
ments: Analysis and case study, Ph.D. thesis, Inst. of Math. Modell., 
Tech. Univ. of Den., Lyngby, 1997. 

Sorooshian, S., and V. K. Gupta, Automatic calibration of conceptual 
rainfall runoff models: The question of parameter observability and 
uniqueness, Water Resour. Res., 19(1), 260-268, 1983. 

Spear, R. C., Large simulation models: Calibration uniqueness and 
goodness of fit, Environ. Modell. Software, 12(2-3), 219-228, 1997. 

Spear, R. C., T. M. Grieb, and N. Shang, Parameter uncertainty and 
interaction in complex environmental models, Water Resour. Res., 
30(11), 3159-3169, 1994. 

Stewart, G. W., Collinearity and least squares regression (with discus- 
sion), Stat. Sci., 2, 68-100, 1987. 

Stigter, J. D., and M. B. Beck, A new approach to the identification of 
model structure, Environmetrics, 5, 315-333, 1994. 

Turanyi, T., Sensitivity analysis of complex kinetic systems: Tools and 
applications, J. Math. Chem., 5(3), 203-248, 1990. 

Turanyi, T., Applications of sensitivity analysis to combustion chemis- 
try, Reliab. Eng. Syst. Safety, 57(1), 41-48, 1997. 

Uehlinger, U., C. K6nig, and P. Reichert, Variability of photosynthe- 
sis-irradiance curves and ecosystem respiration in a small river, 
Freshwater Biol., 44(3), 493-507, 2000. 

van Straten, G., Analytical methods for parameter space delimitation 
and application to shallow lake phytoplankton dynamics modeling, 
Appl. Math. Comput., 17(4), 459-482, 1985. 

Weisberg, S., Applied Linear Regression, 2nd ed., John Wiley, New 
York, 1990. 

R. Brun and H. R. Ktinsch, Seminar ftir Statistik, ETH Ztirich, ETH 
Zentrum, CH-8092 Ztirich, Switzerland. (brun@stat.math.ethz.ch; 
kuensch @ stat.m ath.ethz. ch ) 

P. Reichert, EAWAG, Postfach 611, Oberlandstrasse 133, CH-8600 
Dtibendorf, Switzerland. (peter.reichert@eawag.ch) 

(Received April 10, 2000; revised October 26, 2000; 
accepted October 27, 2000.) 


