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A mathematical  framework for a r igorous theory of general  sys t ems  is  
const ructed,  us ing  the no t ions  of the theory of Categor ies  and Funetors  
introduced by Ei lenberg  and MacLane (1945, Trans. Am. Math. Sac., 58, 
231-94).  A short d i s c u s s i o n  of the bas ic  ideas  is given,  and their  poss i -  
ble appl ica t ion  to the theory of b io logica l  sys t ems  is  d i s c u s s e d .  On the 
ba s i s  of these  considerat ions~ a number of resu l t s  are proved~ including 
the poss ib i l i t y  of s e l ec t i ng  a unique represen ta t ive  (a " e a n o n i e a l  form") 
from a family of mathematical  ob jec t s ,  all  of which represen t  the same 
sys tem.  As an example,  the represen ta t ion  of the neural  net  and the 
finite automaton is  cons t ruc ted  in terms of our general  theory. 

I. I n t roduc t ion .  In a previous paper (Rosen,  1958), we attempted 
to invest igate  some of the a spec t s  of a general theory of biologi- 
cal sys tems  and to point out several  of the poss ib le  applications 
which such a theory might have. We remarked at that time that 
although our treatment was an intui t ively reasonable  one1 it was 
not yet  of sufficient  scope to provide the foundation for a general 
theory. It is  the purpose of the present  paper to remove the am- 
biguit ies  contained in our earlier approach and to show how a pre- 
c ise  mathematical theory of systems may be constructed.  

Before we undertake the construction of our general theory, it 
may be of value to point out some of the diff icul t ies  which arise 
in an attempt to formalize our earlier treatment. We recall  that an 
arbitrary system might be decomposed into a col lec t ion of smaller 
ob jec ts  cal led c o m p o n e n t s  and that these  components  could be 
arranged in an oriented graph (the b l o c k  d iagram)  as follows: two 
components Mil M i are to be connected by an oriented edge 
M i --~ M i if an output of M i i s  an input to M i. However~ such an 
oriented graph is unable to provide an adequate representat ion for 
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many situations and may hence lead to a distorted picture of the 
actual input-output relations obtaining between the components of 
a system. For example, the number of d i s t i nc t  outputs produced 
by a component M i is not necessar i ly  the same as the number of 
oriented edges for which M i is origin in the block diagram, since 
more than one component may receive the same input from $/i" 
This will be the case,  e.g.~ if M i were an endocrine gland that 
produces a hormone which affects several different organs. On the 
other hand~ a component h/~ might provide a component ~/i with 

more than one distinct output, although the block diagram will only 

indicate one oriented edge connecting M i and M i. To illustrate 
this~ we may once again take M i to be an endocrine gland, such as 
the pituitary~ which provides a number of different hormones to the 

same organ. 
Further, it is necessary for formal purposes to adjoin to the 

block diagram a formal vertex which represents the environment. 
This vertex must be connected as origin to all components which 
receive environmental inputs and as terminus to all components 
which produce environmental outputs. Since this vertex is not 
i tself  a component~ its introduction necess i ta tes  a troublesome and 

artificial attention to special cases  in many arguments. 
Even more important than the foregoing is the necess i ty  of hav- 

ing an adequate means for discussing the behavior of the various 
time lags which occur in the operation of a biological system. We 
remarked in our earlier paper ( loc .  cir.)  that the operation lags of 
the various components of a system will depend in general upon 
the particular inputs with which the component is supplied, There 
is no obvious and easy means of accomplishing such a representa- 
tion within the framework of a pure graph theory. Likewise,  the 
requirement that  a component producing several dist inct  outputs 
will in general possess  a different lag at each output is slightly 
troublesome. 

Although we may to a certain extent overcome the difficulties 
we have mentioned by the introduction of a number of technical de* 
vices,  the theory which results  will have lost  the intuitional clar- 
ity which constituted a large part of i ts  appeal. It is therefore 
evident that  a suitable representation theory of biological systems 
will require an entirely different point of view than the one adopted 
above and will utilize a new set  of mathematical tools. The repre- 
sentation theory which we present below will be seen to fulfill 



BIOLOGICAL SYSTEMS AND THEORY OF CATEGORIES 319 

these conditions. The mathematical tools which we find appropri- 
ate are contained in the comparatively recent  theory of categories 

and functors (Eilenberg and MacLane, 1945). 
Since this theory is largely unfamiliar to non-mat, l~ematicians and 

since the emphasis which is placed on the theory in the mathemati- 
cal literature is quite different from the one which we will require, 

we enter into a brief discussion of its basic  notions before we con- 
struct our representation. It will be seen that,  although the theory 
which results  seems at the outset  to be considerably more compli- 
cated than our previous treatment, we can formulate our results ,  
and even our definit ions,  in a simpler, more intell igible and more 
precise fashion than is possible through any refinement of our 

other approach. 

]I. The Formal Representation. Throughout our previous dis- 
cussion,  we have regarded a component of a system M as a '%lack 
box,"  capable of receiving a number of inputs and of emitting a 
number of outputs. We observe that this  behavior implies that each 
component acts selectively upon its environment at each input; 
that is ,  each input to a component must belong to a fixed set  of 
admissible inputs in order to be accepted by the component. Like- 

wise, each output of a component is an element of a fixed set  of 
admissible outputs .  Both ~f these se ts  are completely determined 
by the component i tself .  Thus,  for example, an ordinary audio- 
amplifier will accept  as input only the elements of a certain set  of 
electric currents and will produce as output another element in 
this set.  Likewise ,  only the elements of a definite set  of chemi- 

cal compounds can serve as inputs to a given enzyme; this set is  
termed the set of substrates of the enzyme; the outputs of the en- 
zyme will similarly belong to fixed sets  of chemical compounds. 

With these ideas in mind, le t  us attempt to find a suitable repre- 
sentation for the simplest  type of component. We consider a com- 

ponent M which receives a number m of inputs and emits a single 
output, In a block diagram, M would be represented as a vertex 
which serves as the terminus for m directed edges Pl,  " " ,  Pm and 
as origin for a single arrow p. According to our discussion above, 

to each arrow Pi in the block diagram there corresponds a definite 
set, the elements of which are capable of serving as inputs to /I/. 
Le t  us designate the set  corresponding to Pi by A i for each i such 
that 1 ~. i ~ m, and the set  corresponding to p by B. Then we can 
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regard the effect  of t# as a mapp.ing or transforrr~ation, which as- 
signs to every m-tuple (a l ,  . . . ,  am) , ai~Ai,  a definite object  
b~B. In formal terminology, we assign to the component M a map- 
p ing / ,  where 

f: A 1 x A  s x , . . x . 4  m-- )  B. 

In words, M is to be represented by a mapping [, the domain of 
which is the "ca r tes ian  product" of the se ts  of admissible inputs 
to M, and the range of which is the c lass  of admissible outputs 

of M. 
In the general case, where we allow the component M to emit 

n > 1 outputs,  we must in general assign a mapping fk to each out- 
put Pk of ~/. Thus,  if B k is the set  of admissible output ob jec ts  
produced by M at Pk, we write 

[k: A1 x A 2 •  x A m --~ Bk.  

Hence a general component is  to be represented by an n-tuple of 
mappings~ where n is  the number of outputs of the component. 
These  mappings all p o s s e s s  a common domain; namely, the set  

A 1 x A s x . . .  x Am, but their ranges will differ, in general. 
These  simple remarks provide the main conceptual bas i s  for the 

ensuing discussion;  the remainder of the paper is largely an elabo- 
ration and formalization of these remarks. We may observe that 
regarding a biological system as a set  of mappings incorporates 
most of our intuitive notions about these sys tems in an extremely 
natural way. Further, we see  that most of the difficulties men- 
tioned in the Introduction have disappeared. Thus, if a component 
M provides the same input to more than one component, then this 
merely means that some of the mappings which represent  ?d are the 
same. Likewise ,  i t  is  seen that no difficulty can be caused by a 

component M providing a second component with more than one 
dist inct  input. 

With this background in mind, let  us proceed to introduce the 
mathematical tools which will provide the formal bas i s  for our 
representation. We shall proceed axiomatically. The above dis- 
cussion,  together with some elementary examples which we intro- 
duce to fix the ideas,  should serve to motivate our presentation. 

The first  notion which we introduce is that of a category. Ex- 
plicitly, a category consis ts  of the following data: 

1. A collection of objects,  which we shall designate by A, 
A" , o , o .  
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2. A function assigning to each pair (A, A') of objects  in the 
category, a set  denoted by H (A, A'), the elements of which 
are called mappings or transformations. This set may be 
empty for some pairs (A, A'). 

If f~H(A, A'), then we shall call the object  A the domain of f; the 
objec t  A" will be called the range of f. 

The data above represent  the irreducible minimum which must be 
given in order to construct  a theory of a set  of mappings; namely, 
we must be given both the mathematical objects  on which the map- 
pings act and the mappings themselves.  We must now introduce a 
means of combining, or composing, the mappings which we are 
given. Hence,  we further require of a category: 

3. There exists  a function (called composition) which assigns 
to pairs (ft g) of mappings such that f(H(A, A'), g~tt(A', A")t 
a mapping (denoted by gf) in the set  H(A~ A"). 

The composition operation may perhaps be more clearly repre- 
sented by means of a diagram of mappings of the type shown below: 

f 
A ) A '  

We shall have occasion to make further use of diagrams of this  
type throughout the ensuing discussion.  A diagram such as the 
above, in which any two directed paths of mappings with the same 
origin and terminus yield the same resultant ,  is cal led a commuta- 
tive diagram. 

As an example of a category, we may consider  the following: 
let  the objects  of the category consis t  of all groups, with the map- 
pings of each set  / / (A,  A') being the group homomorphisms of A 
onto A'. Or~ we may take for the objects  of the category the total- 
ity of all topological spaces ,  with the mappings of each tt(A, A') 
taken to be continuous mappings. For many other examples of 
such structures,  we refer the reader to the paper of Eilenberg and 
MacLane (1945). 

It will be seen  from these  concrete examples that the data 1-3 
above must be subjected to certain axioms in order that our ab- 
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stract  categor ies  may enjoy properties suggested by these ex- 
amples. Thus,  we shall require the following: 

Cat. 1: t t (A ,  A ' )  c~ t t (A1 ,  At"  ) .. f~ 

whenever A ~ A 1 and A" r A I . 
Here ~l is the empty set .  This  axiom merely s tates  that any map- 
ping has exactly one domain and exactly one range. 

A" "" Cat. 2: If / e l i ( A ,  A ' ) ,  g ~ H (  , A ), and h ~ H ( A " ,  A ' " ) ,  
then ]~(gf) ,. (hg) f. 

This axiom s ta tes  that the composition of mappings sa t i s f ies  the 
associa t ive  law. 

Cat. 3: For each object  A in the category, there exis ts  a map- 
ping i A ~H(A,  A), such that if A" is any other object  

and f e l l ( A ,  A ' ) ,  then fi A ~ f ;  for any mapping 
g ~ H ( A ' ,  A) we have l ag  .. g. 

The mapping i A is called the ident i ty  map of the object  A. We may 
remark at this point that s ince there exis ts  by (Cat. 3) a one-to-one 
correspondence between the objects  of a category and their iden- 
tity maps and since by (Cat. 1) each mapping of the category 
uniquely determines its domain and range, we could have dis- 
pensed with the objects  entirely and defined the category solely in 
terms of its mappings. We shall find that this is the generaliza- 
tion of a remark made earlier with reference to biological systems. 

Le t  us now denote by h an arbitrary category. We define a sub- 
category h o of h to be a collection of objects  and mappings of h 
satisfying the following conditions: 

Sub. 1: If A~h0,  then i A ~ A o . 
Sub. 2: If f and g are mappings in h 0such that the composi- 

tion g / i s  defined, then gf ~ h o. 
Sub. 3: If / is a mapping in A0~ then the domain of f and the 

range of f are objects  in h 0. 
It is readily verified that the objects  and mappings of a subcate- 
gory themselves comprise a category. 

We now introduce the notion of functor~ In general, whenever a 
mathematical structure has been defined axiomatically, we desire 
a means of comparing, in some sense,  different objects  which bear 
the structure in question. Most frequently, we proceed by con- 
structing various structure-preserving mappings between such ob- 
jec ts ,  For example, groups may be compared with one another by 
means of homomorphisms~ and topological spaces  by means of con- 
tinuous mappings. Categories,  then, may be compared by means of 
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some general ized type of mapping; such a mapping is called a 
functor. We now proceed to give a precise  definition. 

Let  A and B be categories.  A covariant functor T: A -.+ B is a 
pair of  mappings (the two denoted by T, the first  of which assigns 
to each object  A~A an object,  which we shall write as T(A), in B; 
and the second of which ass igns,  to each mapping f~H(A, A') in A, 
a mapping which will be written as T(f )eB,  T(f)eH[T(A),  T(A')]. 
We shall require the following conditions to be satisfied: 

Fun. 1: T (gf) z T (g) T (/) whenever g / i s  defined. 
Fun. 2: T(iA) .~ i T (A) for each A~A. 

We remark that it is possible to define contravariant functors, 
which behave precisely as do covariant functo:rs, except  for the 
fact that they reverse the directions of the mappings. Throughout 
the following discussion we shall deal exclus ively  with covariant 
functors which we shall refer to simply as functors. 

A functor T is cal led faithful if  the following conditions are 
fulfilled: 

F/d.  1: If f and g belong to H(A, A') and T ( f ) -  T(g), then 
/ - g .  

Fid. 2: If feH(A, A') and get t (A ' ,  A) are mappings such that 
gf z iA; and if T (A) ~ T (A'), T (f) -iT(A); then A I A'. 

Mappings f, g which sat isfy  the conditions mentioned in the postu- 
late (Fid. 2) are called e~uivalences of the objects  A, A' ;  in the 
case  where A is a category of groups, i ts equivalences are iso- 
morphisms; in a category of topological spaces ,  the equivalences 
are homeomorphisms. 

It is eas i ly  verified that the image of a category A under a func~ 
tot T: A --~ B is a subcategory of B. If T is faithful, then this 
image, which we may denote symbolically as T(A), is abstractly 
indist inguishable from A, and we may in this fashion regard A as 
being er~bedded by T as a subcategory of B. 

With this background, we may now state a theorem which will be 
of great  importance to our theory of representation of systems: 

Theorem 1. Any abstract  category A can be embedded as a sub- 
category of the category $, the objects  of which consis t  of all sets  
and the mappings of which are the total i ty of all set-theoretical  
many-one mappings of se ts .  

Proof. The proof of this theorem is given in the paper of Ellen- 
berg and MacLane (1945) and cons is t s  in the explicit  construction 
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of a faithful functor from A to $. We refer the reader to the origi- 
nal paper for the details .  

As a consequence of Theorem 1, we may by choosing a definite 
faithful functor T: h ~ $, regard the obiects  of an arbitrary cate- 
gory h as ordinary se ts  and the mappings of h as ordinary set- 
theoretical mappings. Hence in this manner the usual set-theoreti- 
cal terminology will make sense  in an arbitrary category, In par- 
ticular, we may speak of unions, intersect ions,  inclusions,  and 
cartesian products of objects  in a category. We shall have more 
to say about this aspec t  in Section IV below; we merely observe 
here that in general an arbitrary category will not be closed under 
these set-theoretical  operations. For our purposes,  however, we 
shall require from the outset  that the categories  with which we 
deal shall be c losed under the formation of cartesian products. 

This completes our digression on the mathematical tools which 
we shall util ize in the representation of biological systems; we 
now turn to the construction of the representation i tself .  Our point 
of departure is the observation made earlier that, given an arbitrary 

category A, we can form oriented graphs (called diagrams on p. 317) 
by selecting a collection or objec ts  fAil in the category and a col- 
lection of mappings from the appropriate se ts  tt(Ai, AI). Two ob- 
jec ts  in the diagram will be connected by an oriented edge if and 
only if some mapping of the collection has one of the objects  as 
range and the other as domain. For our purposes,  however, we 
shall require a slightly more general type of diagram in which the 
objects  of the diagram merely contain the domains and ranges of 
the mappings. 

Let  us agree to denote by d(f) and r(f) the domain and range, 

respect ively,  of an arbitrary mapping in a category. Then we shall 
say that a collection of ob jec ts  tAi] and a collection If} of map- 
pings in a category comprise an abstract block diagram if the fol- 
lowing conditions are satisfied:  

A.B.D. 1: If f is a mapping in the collection,  then there exist  
objects  A, A" in the collection such that d(f) _c A, 
r(f) c A'. 

A.B.D. ~: If A is an object  of the collection and A is of the 
form A t x A  2 x . . .  x A  , then A s i s  in the collec- 
tion, for 1 g. i 6 m. 
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A.B.D.  3: If A - A 1 x A 2 x . . .  x A m and there exis t  mappings 

f l  in the collection such that r(fl) C_ A i for each i, 
then for any mapping g in the collect ion such that 
d(g) C__ A, we have 

d(g) r~ [r(f i)  x r(f2) x . . .  x r(fm)] 4 fL 

These  abstract  block diagrams can serve as a vehicle  for the 
representation of biological  sys tems.  To clarify the above defini- 
tion, le t  us once again recall  the situation which we are attempting 
to formalize. We desire that each ob jec t  A in the abstract  diagram 
shall represent  a definite c lass  of physical  materials,  capable of 
serving as inputs or ()utputs to a component of some system, to 
which the diagram may correspond. (Since not every such diagram 
may correspond to a physical  system we use the adject ive ab- 
stract.) Each component of the system is i t se l f  represented by a 
collect ion of mappings in the diagram, all of which p o s s e s s  a 
common domain. Since it is in general poss ib le  for a component 
to accept  a wider c l a s s  of inputs than may be provided by other 
components of the system, we have allowed the inclusions in our 
definition, ins tead of requiring str ict  equali ty.  

The three axioms we have imposed on an abstract  block diagram 
will be  seen  to have simple interpretations in this context. The 
first axiom expresses  in concise  terms the statement that every 
component of  a system shall have at l eas t  one input and at l eas t  
one output. The second axiom is e s sen t i a l ly  a kind of closure 
condition and s ta tes  expl ici t ly  that if a component rece ives  an 
input, then that input must be represented within the system. The 
third axiom ensures  that  the system will actual ly be capable of 
s table operation, in the sense  that the mappings corresponding to 

an arbitrary component will actually be def ined on at l eas t  some of 
the poss ib le  inputs to the component. 

Before we proceed to consider  a specif ic  example, let  us pause  
for a moment to comment upon some of the aspec t s  of the represen- 
tation theory outlined above. Firs t ,  we notice that the great utility 
of Theorem I l ies  in enabling us to consider  all the c l a s s e s  A i 
which we may encounter as being se ts  in the mathematical sense ,  
and thereby enjoying all the properties and operat ions of se ts ,  
while allowing us to s ides tep  the dangerously metaphysical  ques- 
tion of  whether, and in what sense ,  these  c l a s s e s  " r e a l l y "  are 



326 ROBERT ROSEN 

sets .  Second, we observe that, although our representation takes  
the form of an oriented graph, just  as did the cruder representation 
which we described in the Introduction, we find a peculiar inver- 
sion of vert ices  and oriented edges between our abstract  diagrams 
and the block diagrams with which we started. That is,  a vertex 
in our original block diagram was thought of as representing a com- 
ponent of the system, whereas in our abstract  diagrams the compo- 

nents are represented by mappings, i .e . ,  by oriented edges.  Like- 
wise,  the oriented edges of the original block diagram were to 
represent  the inputs and outputs of the system, whereas in our ab- 
stract  diagrams we find that these inputs and outputs are repre- 
sented by objects  in a category and hence are vert ices  in the dia- 
gram. 

To illustrate the inversion between edges and vert ices men- 
tioned above, as well as to bring out clearly the manner in which 
our representation theory operates~ let us consider as a particular 
example the representation of the system M, the hypothetical reso- 
lution of which into components (block diagram) is shown in Fig- 
ure 1. 

According to our representation theory, there is a set  of map- 
pings corresponding to each component M i. Each of the compo- 
nents t/i except  for M1, emit a single output; hence each of these 
will be represented by a single mapping which we shall designate 
by fi" The component M1, however, produces two outputs and 
hence is to be represented by a pair of mappings (one for each out- 
putt, which we shall write as fl (1) and [1 (2) (Figure 27. 

Next, we must consider the representation of the links Pi shown 
in Figure 1. Let  us suppose that Pi is an output of a component 
M] and an input to a component M k. We recognize two poss ib le  
cases ,  according to whether Pi is the only input to t/k or not. If 
there are no other inputs to Mk, then we may represent  the link Pi 

by the set  A i- r(fj) w [ w d(/ka)] , where fj and fka are mappings 
C( 

corresponding to the components ~li, M k respect ively .  If M k re- 
ce ives  other inputs bes ides  fp then for each 0r we find that d(fka ) 
is a cartesian product, such that r(fi) is contained in one of the 
sets  which constitute the factors of this product. We may then~ 
for each ~, proiect d(fk~) onto the set  containing r(fi), in the 

sense  of Cartesian Products  (see e.g.,  Chevalley,  1956, p. 157; let  
us denote this projection by d](fk~). Finally,  we define the set  
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A 1 

1 ~A4 t 

A y  A6 

f2 > A 2 ~ A 3 

A 4xA 6 f3 ~A7 f5 j. Ae 

FIGURES 1 and 2. The component  M1 in F igure  1 co r responds  to the 
mappings  f~(O and fl(2) in F igure  2, The component  M~ co r r e sponds  to /~; 
Ms - to /s; etco The input Pl in F igure  1 cor responds  to the " o b j e c t "  AI 
in F igure  20 The inputs  Pa and P6 into the component  M1 cor respond  each  
to the ob j ec t s  A 4 and As, r e s p e c t i v e l y .  The to ta l  input into component  
Ms in F igure  1 thus co r responds  to the Ca r t e s i an  product A4 x A s i n F i g u r e  2, 

A~ which represents  the link p~ in the analogous manner as we did 
in the simple case;  namely, 

A,~r(fi) w I~dj(fkcr �9 

The reader can verify for himself without much trouble that this 
choice of mappings and objec ts  const i tu tes  an abstract  block dia- 
gram, as we have defined it above. 

All t hese  considerat ions lead from the block diagram of Figure 1 
to the network of  mappings shown in Figure 2. We observe that 
this representat ion has removed the diff icul t ies  mentioned above 
concerning the representat ion of the environment E. We have taken 
E into account  in a natural fashion among the A~. Also, the in- 
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version of vert ices and edges between the diagrams of Figure 1 

and Figure 2 is clearly shown; we remark that care must be taken 
to avoid confusion which can easi ly arise due to this inversion. 

Since the same lines of reasoning which led from Figure 1 to 

Figure 2 may be applied to any bioiogical system, we obtain our 
Representation Theorem. 

Theorem ~. Given any system M and a resolution of M into com- 
ponents, it is  possible to find an abstract block diagram which 
represents M and which consists  of a collection of suitable ob- 
jects  and mappings from the category $ of all sets.  

Proof. Completely contained in the above discussion.  

III. Canonical Forms. Our construction of an abstract block 
diagram to represent a given system, which we outlined in the pre- 
vious section, was contingent upon a particular decomposition of 
the system into components. Since it is in general possible to de- 

compose a given system in more than one manner, it therefore fol- 

lows that we may correspondingly find a large number of abstract 
block diagrams which represent the system. In this manner, we 

may introduce an equivalence relation into the collection of ab- 

stract block diagrams which we may form from the objects and 
mappings of a given category, .calling two abstract block diagrams 
equivalent if they are both representatives of the same system. It 

is the purpose of the present section to investigate some methods 
by which we may select  a definite representative from each such 
equivalence class of abstract block diagrams; this is called a 
problem of determining canonical forms for block diagrams. 

We shall first introduce some customary set-theoretic terminol- 
ogy which we shall find useful in formulating our results. If we 
are given a collection S of sets and a 1-1 onto mapping between S 
and the elements of some set /, then we shall say that the mapping 

indexes the collection S by the elements of I (the set I is then 
called an index set for S). We shall write an indexed collection 
as (A~)i~ r In what follows, .we shall always restrict ourselves to 
finite collections. If the collection contains n sets ,  then we shall 
take the index set I to consist  of the first n positive integers. 
This being so, ,we shall assume that the idea of the cartesian 
product of a family of sets (A~)i~ I is known, tVe shall write the 

cartesian product of an indexed collection of sets as /~A r 
t e l  

If ! is an index set, we shall call a 1-1 mapping ot I onto i tself  
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as a perrnutatio~ of I, ,and we shall denote such a permutation by 
rr(I). There is a nautral equivalence (1-1 onto mapping} between 
the cartesian products /~A i and / 7  A~ for any permutation rr; 

i ~ l  i ~ r ( I )  

this equivalence merely expresses  the general commutativity law 
for cartesian products. A subproduct of a cartesian product / - /A i 

i~ I  

is obtained by writing I ]A  i, ,where J C I. Let  us suppose that I 

contains n elements and J contains m < n elements. We shall de- 
fine the projection of ~/7A~ on ]-~A i in the following manner: 

i ~ l  j ~ J  

Choose a permutation of I such that the elements of the set  J be- 
come precise ly  the first m elements of rr(1). Then map any ele- 

ment xe H A  i onto i ts  first m elements; this will be a well-deter- 
i ~ I  

mined element in HAy.  
]eJ 

This procedure of projecting a cartesian product upon a sub- 
product may be expressed by means of the following diagram: 

e 
I TA  i ]~IT A i 
iEI iEl"[{I) 

f l J  

ttere P represents  the desired projection, .0 is the natural equiva- 

lence between the product and the permuted product, .and P is the 
mapping described above which sends each element of the per- 
muted product onto its first rn elements.  It is clear that P -- P.  O, 
in the sense  of composition of mappings; i .e. ,  . the diagram is 
commutative. 

Finally,  if A, .B, 6, are obiects  in a given category A, .and 
f :  A ---* B is a mapping in the category, .then f is said to be factor- 
able through 6' if there exis ts  mappings c O �9 A --* 6,, ,~: 6, ~ B in 
A such that the diagram 

P 
A ~-C 

B 

is commutative. 
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With these preliminaries, we may now undertake the main por- 
tion of our discussion. To motivate our procedure, let us suppose 
that we are given a block diagram of a system M; let M k be an ar- 
bitrary component of M with m inputs and n outputs. According to 
our representation theory, M~, will be represented by a family of n 

mappings, which we designate as before by fkcr , O~ = 1 , ~ . . ,  re. 

The domain of each of these mappings [k i s  contained in the car- 

tesian product l ' IA i ,  where I is the set  of the first m integers. 
iEI 

t~e now proceed to investigate in detail the possible behavior of 
the mappings fk' 

In particular, it is important for our purposes to investigate the 
question as to whether it is possible to factor a mapping 
[k: 1"IAi "* B through a subproduct of IZAi;  i .e.,  whether it is 

ieI  i~I 

possible to find a set J < I such that the diagram 

P 
T/'A i �9 TTAj 

<I 
B 

is commutative, where P is a projection, ,and ~ a  is prime with re- 

spect to all subproducts of / ' /A..  We remark that such a factori- 
l 

zation, if it exists,  is unique, as can readily be proved. Physi- 
cally, the possibility of factorization of a mapping fkc~ means of 

course that the ctth output of M k does not i tself  require all the 

stated inputs to M k in order to be produced, but only a certain 
subset of them; i.e.,  certain of the A i are superfluous in the 
domain of fkc~" 

If we perform these factorizations on each mapping fko; i n  the 
abstract block diagram representing bt, we obtain a new collection 
of mappings ~ , each defined on a subset of a certain subproduct 

of l-[Ai.  It may of course happen that factorization is not possi- 
i~I 

-= ~Ve can now ble for some 0r in which case we have ]-k~ fk s" 
collect these mappings into c l a s ses , ,  putting two mappings into 
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the same c lass  if and only if they have the same subproduct of 
T /A t as domain. Phys ica l ly ,  it will be seen that the poss ibi l i ty  
i~ l  

of factorization implies that our original choice of components was 
too coarse.  In other words, the component M k may be more accu-  
rately thought of as consist ing of a number of components, each of 
which is specif ied by a set  of factored mappings ~ all of which 

have as common domain a subse t  of the inputs to k/k, .and none of 
which are " supe r f l uous . "  

We may carry out this procedure on every component in the block 
diagram of the system M. It is clear that the factored mappings 
thus obtained, together with the subproducts which consti tute 
their domains and ranges, provide us with a new abstract  block 

d}agram which is equivalent to the one with which we started, in 
the sense  defined above, Further, it is obtained by a s equenceof  
canonical operations (i.e., factorizations through subproducts) and 
hence is in this sense  unique. Hence, ,we have a Canonical Form 
Theorem. 

Theorem 3. Given a block diagram for an arbitrary system M, 
we can find an abstract  block diagram representing M such that 
none of the mappings of the abstract  diagram is factorable through 
any subproduct of its domain. 

Proof. See the above discuss ion.  
This particular type of canonical form for abstract  block dia- 

grams seems to be the most natural one to consider. However, 
there are other types of canonical decomposit ions which suggest  
themselves,  of which we mention one in particular, because  of its 

relation to the study of general automata. Its most convenient 
formulation is the following: 

Theorem ]p. Given a decomposition of an arbitrary system M into 
components, we may find a further decomposition of M such that 
every component of the new decomposition emits exact ly one out-  
put. 

Proof. Let M k be a component in the given decomposition of M. 

If M k already emits exactly one output, there is nothing to be 

done. Hence, let us suppose that M k emits m > 1 outputs. In the 
abstract block diagram representing M, the component M k is repre- 
sented by a family of m mappings [ka ,~x = 1, , . . ,  m. We now re- 
construct a block diagram by allowing ~each of the mappings [kc~ to 

correspond to a new component which we shall call Mk~ and which 
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is provided with the same inputs as M k. This process is repeated 
for every component in the block diagram. The details of the 
necessary connections required to turn this set of mappings into 
an abstract block diagram equivalent to the one with which we 

started are slightly tedious, but elementary and will be omitted. 

Let us now briefly turn our attention to the problem of the possi- 
ble behavior of a system under the termination of an input to a 
component M k. This discussion will bring to light certain aspects 
of our representation theory and at the same time will lead to a 
new formulation of Theorem 3. 

To this end, let M k be a component which receives m inputs and 
emits n outputs. Then M~ is to be represented, as usual, by the 
mappings fkc, ~ = 1, . . . ,  ~ According to Theorem 3, each of 

these mappings will have a common domain, which we may write 
as / ' /A i, where I may be taken as the set of the first m integers. 

i~I  

Now the suppression of an input to M~ means precisely, in our 
terminology, the replacement of one of the sets A i (Ai0, say) by 

the empty set. This is in turn equivalent to saying that the do- 
main space of the mappings fkcr has been reduced to a subproduct 
I-IAi, ,where J is the set  l with the index i 0 deleted; i.e., J = l -  
ieJ 
ti0}. But since the mappings fkc~ may by virtue of Theorem 3 be 
assumed to be prime to subproducts of /-/Ai, they are in general 

i~I  

not defined on any such subproduct. This may perhaps be seen 
more clearly from a consideration of the analogous fact that a 

function of n variables will assume a definite value only if a value 

is given to each of the variables. Even in mathematical terms, a 
cartesian product, one factor of which is the empty set, is i tself  
empty. 

|Iowever~ we know that there exist  many systems which contain 
components that will produce some kind of output, even when 
one or more of theie inputs are terminated, t~e represent this state 
of affairs as follows: We consider that a mapping f ~ ,  which repre- 

sents a component M k, may be of such a nature that a restriction 
rule to subproducts for this mapping is given along with its defini- 
tion. Thus, the mapping may still  be defined on suitable sub- 
products I~A i of / ' /A i. Such a mapping will be called contracti- 

j r  i r  

ble to the subproduct I~A i. !Ve shall call the elements of the 
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range of a contracted mapping defective outputs, in line with 
their physical  significance.  If a mapping is such that no restr ic-  
tion rule to subproducts is given, the mapping will be called non- 
contractible. It will immediately be soon that this definition of 
contractibi l i ty is precisely the translation of the definition we pro- 
posed elsewhere (Rosen, 1958) into the terminology of our repro- 
sentat ion theory. 

We may now restate  Theorem 3 in a manner which more clearly 
shows its relationship to the concepts  we have introduced above: 

Theorem 5. Given a block diagram for an arbitrary system #1, 
we can find an abstract  block diagram representing #1, such that if 
any sot  A is removed from the diagram, then every mapping [ such 
that A is a factor of d(D produces defect ive outputs. 

Proof. A restatement of the proof of Theorem 3, using the termi- 
nology introduced above. We leave the detai ls  to the reader. 

The notion of contractibil i ty is the device used in our repre- 
sentat ion theory to d i scuss  the deeper intrinsic properties of bio- 
logical systems.  The s implest  poss ible  caso~ of course,  is that 
in which all mappings of the diagram are non-contractible; this 
case  was d i scussed  at some length in our previous paper (Rosen, 
1958). In the more general case,  we notice that one of the impor- 
tant consequences  of contractibil i ty is that the range of a mapping 
will in general be altered by contraction, while the domains of 
other mappings, for which this domain may serve as factor, are left 
unaltered. There is no guarantee that these domains and ranges 
will "match up";  i .e. ,  have a non-empty intersection. Hence a de- 
fective input may serve as no input at all to certain components. 
It will be seen intuitively that the notion of the poisoning of com- 
ponents by means of certain inputs is c losely  related to this type 
of situation. Also c lose ly  related to the above is the general 
problem of determining the dependent sets of the components of an 
arbitrary system, in the sense  defined by us (Rosen, 1958) .  
These  problems seem very difficult. 

As a final word in this context,  we may remark that it is possi- 
ble to define a concept  of the expandability of mappings in an ar- 
bitrary abstract  block diagram, corresponding to the contractibil i ty 
we have d i scussed  above. The justif ication for this notion is the 
fact  that biological sys tems,  when placed in a richer environment, 
may take on new properties (i.e.,  emit now outputs). The notion of 
expandabil i ty may perhaps be a useful moans for attacking this 
problem. 
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IV. A Theorem on Functors. It was mentioned at the time of 
their definition that functors furnish a natural means whereby cate- 
gories can be compared, much as groups can be compared by homo- 
morphisms and topological  spaces  by continuous mappings. Simi- 
larly, it follows that any structures formed from the objects  and 
mappifigs in various categories may l ikewise be compared by func- 
t o t s .  Thus, given an abstract  block diagram (which we may denote 
by •) of objects  and mappings in a category A, we may apply a 
functor T: A --) B and obtain in the category B the collection of 

images under T of the ob jec t s  and mappings of M. We may write 
the image of the abstract  block diagram M as T(M). One of the 
natural questions to ask concerning a given functor T is whether 
the image of an abstract  block diagram under T is again an ab- 
stract  block diagram. The present sect ion is devoted to a discus- 
sion of this question. 

First ,  we observe that Theorem 1 implies that, in the study of 
any functor T: A --, B, we may as well assume that A C S, B C S, 
where S is the category of sets .  Now S has certain structures of 
an algebraic nature imposed upon it, and these  structures were 
util ized in the construction of the abstract  block diagram. For in- 
stance,  S has a local Boolean structure, imposed by the operations 
of intersection and union. Further, the objec ts  of S form a par- 
t ially ordered space under the operation of set  inclusion, and a 
commutative semigroup under the cartesian product operation. 
Now an arbitrary functor T: A ~ B need have no relation to these 
structures, even if T is faithful; jus t  as a 1-1 set-theoretic mapping 

between two groups need have no relation to the group structures. 
If we wish these structures to be preserved, then we must impose 
the necessary  restr ict ions upon the functors which we shall con- 
sider. 

Le t  us consider at the outset  functors T which map the category 
of se ts  into itself; we shall denote this situation by T: S ~ $. 
We shall say that such a functor is regular if it sa t i s f ies  the fol- 
lowing conditions: 

Reg. 1: If A~S and A r ~l, then T(A) ~ ~. 
Reg. ~: ]f A C B, then T(A) C T(B). 

The first condition is a non-triviality type restriction. The second 
condition requires that T preserve the partial ordering placed on 
the objects  of S by the inclusion operation. 
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We shall now prove a lemma, which will be required in the proof 
of the main theorem of this section: 

Lemma. If T :$  -~ $ is a regular functor~ and A ( ~ B d ~ t h e n  

T ( A ) •  T ( B ) ~ .  
Proof. The hypothesis  A • B d ~l means explici t ly that there ex- 

is ts  a set  C ~ ~ such that C c A and C C B. By (Reg. 1), T(C) 4 9. 
By (Reg. 2), we have T(C) c T(A) and T(C) C T(B). Thus by 
definition we have that T (A) (~ T (B) r ~l. 

Finally~ we agree to call a functor T: $ --~ $ multiplicative if 

for any two sets  AI~ A2~ we have that T(A 1 •  T ( A I ) •  

T(A2). Thus, a multiplicative functor preserves the cartesian 
product operation of $ and may in fact be regarded as a semigroup 
homomorphism on $. 

We are now ready to s ta te  the main result: 
Theorem 6. Let  M be an abstract block diagram which repre- 

sents  a definite biological system. Le t  T be a faithful functor. 
Then T (hi) is an abstract  block diagram which represents  the sys-  
tem if and only if T is regular and multiplicative. 

Proof. First~ le t  us assume that T sa t i s f ies  the conditions of 
the hypothesis.  We must then show that T (hi) sa t i s f ies  the three 
conditions (A.B.D. 1-3) which we have laid down for an abstract  
block diagram. 

(A.B.D. 1) is sa t i s f ied  by any functor T. 
To verify that (A.B.D. 2) is satisfied~ let  f: / ~ A  i ~ B be a 

i el 
mapping in hi. On applying the functor T, this becomes T(f): 
T(I~A~) -~ T(B). The multiplicativity of T, however, implies 

that T ( 1 7 A ~ ) z  /~[T(A~)]. But by (A.B.D. 2) we know that, for 
i~I i~I 

each index i, A~ehi. Hence each T(A~) is in T(hi), and therefore 
(A.B.D. 2) holds in T (hi). 

To say that (A.B.D. 3) holds in T (/.t) is precisely to say that T 
is regular, as a glance at the definitions and the lemma proved 
above will verify. 

Thus,  we have shown that T (hi) is an abstract  block diagram. 
That  it must represent  the same system as hi follows from the 
faithful character  of  T. Thus, half our theorem is proved. It re- 
mains to show that  if T (hi) represents  the same system us hi, then 
T is faithful, regular, and multiplicative on the objects  and map- 
pings of hi, 
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First~ we show that T is faithful. The faithfulness of T on the 
mappings of hi is a consequence of the fact that two components in 
the system represented by the same mappings in kl must be repre- 
sented by the same mappings in T(kt). The faithfulness of T 
on obiects follows from the fact that, if a component of a sys- 
tem provides the same output to two distinct components~ then 
this output must be represented by equivalent objects in kl and 
in T (kl). 

To prove multiplicativity of T~ we observe that~ if f: ]-~A i --, B 
i e l  

is a mapping in hi~ then the domain of T (f) is T ( / ' /Ai )  . Bu* since 
i~ l  

T (hi) represents the same system as hi, the input to the component 
represented by T (f) must be precisely /- /IT (Ai)]. Comparing these 

two~ we see  th~t the multiplicativity follows. 
The regularity of T follows from the same type of argument 

which proved the multiplicativity. 
Idence the entire theorem is proved. 
Corollary. If T: S --, S is a functor such that~ for any abstract 

block diagram kl the obiects and mappings of which are in S~ T(hl) 
is again an abstract  block diagram equivalent to hi~ then T is 
faithful~ regular~ and multiplicative on all of hi, and conversely. 

Proof. Immediate from Theorem 6. 
Theorem 6 is a first step in the very difficult problem which 

plagues attempts at representation of biological systems; namely~ 
to prove that equivalent biological systems have the same repre- 
sentation and~ conversely~ to show that two mathematically equiva- 
lent  representations actually correspond to the same system. We 
are still far from achieving this result~ since among other things 
we have only considered the block diagram aspect  of the structure 
of systems and have neglected time lags and other aspects  of 
structure. Nevertheless~ Theorem 6 tells us at least  how we may 
begin to construct equivalent representations of biological sys- 
tem s. 

V. Example. The i cCul loch-Pi t t s -von  Neumann Theory of 
General Automata. An automaton consists~ in the first approxima- 
tion~ of a black box and a finite number of inputs and outputs~ each 
of which sat isf ies  the special property that it is capable of assure- 
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ing precisely two observable s tates .  Following the terminology of 
yon Neumann (1945) we shall call these  s ta tes  the s t i m u l a t e d  and 
u n s t i m u l a t e d  states .  An automaton is considered to be completely 
specif ied when it is known which of its outputs assume the stimu- 
lated state for every stimulation of a subset  of its inputs. 

On the bas is  of his general theory, yon Neumann constructs  
every general  automaton from a network of appropriate single-out- 
put automata (modulo the time lags of these  automata, which will 
be d iscussed  later). Hence it will be sufficient  to restr ict  our at- 
tention to this particularly simple type of automaton. Let  us de- 
note by U a single-output automaton which receives  n inputs. Each 
of these  inputs, by definition, is capable of assuming precisely 
two states; let  these s ta tes  be denoted by the symbols 0 and 1 
which shall correspond to the unstimulated and the stimulated 
state respect ively.  In the terminology of our representation we 
may take,  for the set  A which represents  the set  of admissible ob- 
jects  at each input of U, the set  consist ing of exact ly  two ele- 
ments 0, 1. This is the familiar "co in- toss ing  space , "  and we 
write A I f0, 1}. 

Our representation further st ipulates that the single output auto- 
maton U is to be represented by a single mapping f, the domain of 
which is the cartesian product of the se ts  of admissible objects  
corresponding to the inputs of U. Thus,  the domain of the mapping 
f may be taken as the cartesian product of  A with i t se l f  n times. 
This product may be expressed simply as the set  of all sequences  
of 0 and 1 of length n; or equivalently,  as the set  of all binary 
digits of length n. 

Since the output of the automaton U is also capable of only two 
states ,  the range of the mapping f may be taken to be just  the set 

n 

A itself .  Hence,  if we introduce the notation An ~ / - /As  (where 
i ' l  

A i ~ A for each index i)~ then we have 

f: A n -- ,  A .  

Explicit ly,  /(~) ~ 1, x ~ A "  means that the total input resul ts  in a 
stimulation of the output of U; f ( x )  z 0 means the opposite. 

According to our general definit ions,  a mapping f may be fac- 
tored down to a subproduct A m , m < n~ if and only if a mapping 7 
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and a proiection P: A n --) A m can be found such that the diagram 

A n P ) A m 

A 

is commutative. In the special case under consideration, we may 
embed A m in A n in a variety of ways as follows: We have a subset 
J of the first n integers, the elements of which we shall denote by 
i i ,  i~, . . . ,  i m. We can write this  subcontract as 

A(~) = ( . . . 0 ,  A l l  , O, . . . 0 ,  Ai~ , . . . 0 ,  Aim , . . . ) ,  

where of course Ail = A i 2 . ~ . . . = A i m  =A.  For example, if we 

consider the subproduct A n-1 obtained from A n by omitting the i th 
( i )  

co-ordinate of An~ we find that this can be expressed as 

A~(~I = (A1, A2, . . . ,  Ai_l,  0, Ai+~, . . . A n ) .  

On this basis ,  it is now easy to verify explicitly that a neces- 

sary and sufficient condition for a mapping f to be factorable 
through the subproduct A~(~) 1 is that for every input xeA n, we have 

f(A1 . . .  A i -1 ,  O, Ai+1, . . A n )  .. f (A  1 . . .  A i _ l ,  1, Ai+l, . .  An). 

The situation is analogous for all other subproducts. We shall as- 
sume throughout the following discussion,  as usual, that f is not 
factorable. 

We now turn our attention to the contractibili ty of the mapping f; 
that is,  the behavior of the automaton U upon the termination of 
one or more of its inputs. We have already, in our discussion of 
factorization, implicitly used the fact that an empty input is equiv- 
alent to an input of 0. This means that we can treat this special 
case as if we did not really drop down to a lower dimensional sub- 

product upon terminating an input to U; and hence the mapping f 
will always be contractible, and in fact, to every subproduct of 
its domain. We can write down explicitly the definition of the con- 
tracted mappings, as follows: Le t  A~) be a subproduct of A n, 
corresponding to an index set J =  I l l ,  iu, . . . ,  imt c l .  Then we 
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define the contraction fj  of the mapping f to A(')) as follows: 

f j  (x) .- 1 if and only if x e [f" 1 (1) r~ A~/)], 
f j (x)  .. 0 if and only if x e [ / -  1(0) n A~/)], 

where, by the natural embedding discussed above, x can be re- 
garded as an element of both A(')) and A n  thereby giving sense  to 
the definition of fl" 

Let  us, finally, suppose that An(i~ 1 is the subproduct obtained by 
terminating the ith input to the automaton 0. Then according to 
the definition of the contraction of f to A~(i~l , it follows that the 

automation will be completely inhibited by this termination [i.e., 
.. A~- I  f - I / A n - l )  0] if and only if the condition f-1(1)c~ . .0  is (i) ~ (i) (i) 

sa t is f ied and will be completely unaffected by this termination if 
and only if f - i  (1) c~ A~i")1 .. f-1 (1). This  las t  condition is equiva- 

, -1  We further note that our assumption of the lent to f-1 (1)C_ A (1) * 
non-contractibili ty of f forces this las t  inclusion to be strict, for 
if it were the case  that f-1 (1) .. A n- l ,  then it would immediately 
follow that f would be factorable, through the one-dimensional sub- 
product (0, . . .  0, A o 0, . . .  0). The general izat ion of this discus- 
sion of the behavior of a single-output automaton 0 to the termina- 
tion of one of its inputs to arbitrary subproducts (i .e. ,  to the termi- 
nation of more than one input) is straightforward and can be 
omitted. 

We now turn to the problem of the representation of the general 
automaton. As mentioned earlier,  each general automaton can be 
considered as a network of single-output automata. Our represen- 
tation theory shows that each single-output automaton can be rep- 
resented  as a mapping the range of which is the "coin- toss ing  
s p a c e "  A, and the domain of which is a car tesian product of  A 
with i tself ,  taken a number of times equal to the number of inputs 
to the automaton. Hence it follows that a category h sufficient  
for the representation of arbitrary automata is obtained by regard- 
ing the se t  of all finite cartesian products of A with i t se l f  as the 
se t  of objects  in the category. The only mappings of the category 
will be the se t s  t t(A ~, A) which will be the total i ty of set=theo- 
retical  mappings between A m and A. It  is readily verified that h is 
indeed a category and is obviously closed under the cartesian 
product operation on the sets  of  the category. 
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It thus follows from the above discussion that a general auto- 
maton can always be represented as an abstract block diagram in 
the category h defined above. Conversely, it follows from Theorem 
4 that an abstract block diagram of objects and mappings in the 
category indeed represents a general automaton. Thus, we obtain 
a complete characterization (ignoring time lags, for the momentt, 
of all possible general automata. It may be of interest  to observe 
at this point that this last  remark and Theorem 6 imply that any 
functor R: h --) h ,  such that the image under R of an abstract 
block diagram which represents a general automaton is again a 
general automaton, is necessar i ly  the identity functor on the ob- 
jects  of h ,  for the image of any single-output automaton, repre- 
sented by the mapping f: A"---) A, is transformed by • into 
R (f): R (A ~) --. R (A t. In order for this image to be a single-output 

automaton, we must have fiR(f)]  ~ R ( A  t ~ A; by Theorem 6 we 
have R (Ant ~- [R (At] ~, which by our last  observation is just  A% 

The brief discussion presented above is sufficient to indicate 
how the graphical aspects of the theory of general automata follow 
in a very simple manner from the formalism which we have devel- 
oped in the preceding sections,  The general automaton is in fact 
one of the simplest possible il lustrations of our formalism, and 
indeed the entire theory of automata might have been derived, in 
abstracto, from this viewpoint. The application of category theory 
to more general kinds of systems becomes correspondingly more 
complicated, but at the very least ,  we hope to have indicated in 
the foregoing that the notion of systems introduced here can be put 
on a rigorous basis  and that the resul ts  obtained by using those 
notions can be formally justified. 

The author is indebted to P ro fe smr  N. Rashevsky  for a thorough 
discussion of the manuscript, 

This work was aided by United States Public I~ealth Service 
Grant RG-5181. 
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