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Abstract. Spatially-distributed populations of various types of bacteria often display intri-
cate spatial patterns that are thought to result from the cellular response to gradients of nutrients
or other attractants. In the past decade a great deal has been learned about signal transduction,
metabolism and movement in E. coli and other bacteria, but translating the individual-level be-
havior into population-level dynamics is still a challenging problem. However it is computationally
impractical to use a strictly cell-based model to understand patterning in growing populations, since
the total number of cells may reach 1012 − 1015 in some experiments. In the past phenomenological
equations such as the Patlak-Keller-Segel equations have been used in modeling the cell movement
that is involved in the formation of such patterns, but the question remains as to how the micro-
scopic behavior can be correctly described by a macroscopic equation. Significant progress has been
made for bacterial species that employ a ‘run-and-tumble’ strategy of movement, in that macro-
scopic equations based on simplified schemes for signal transduction and turning behavior have been
derived [14, 13]. Here we extend previous work in a number of directions: (i) we relax a number of
the assumptions on the attractant gradient made in previous derivations, (ii) we use a more general
turning rate function that better describes the biological behavior, and (iii) we incorporate the effect
of hydrodynamic forces that arise when cells swim in close proximity to a surface. We also develop a
new approach to solving the moment equations derived from the transport equation to obtain macro-
scopic equations to any desired order. Numerical examples show that the solution of the lowest-order
macroscopic equation agrees well with the solution obtained from a Monte Carlo simulation of cell
movement under a variety of temporal protocols for the signal. We also apply the method to derive
equations of chemotactic movement that are governed by multiple chemotactic signals.
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1. Introduction. New techniques in cell and molecular biology have produced
huge advances in our understanding of signal transduction and cellular response in
many systems, and this has led to better cell-level models for problems ranging from
biofilm formation to embryonic development. However, many problems involve large
numbers of cells ( O(1012 − 1015)), and detailed cell-based descriptions are computa-
tionally prohibitive at present. Thus rational techniques for incorporating cell-level
knowledge into macroscopic equations are needed for these problems. One such prob-
lem arises when large numbers of individuals collectively organize into spatial patterns,
as for instance in bacterial pattern formation and biofilms. In these systems the col-
lective organization involves response to spatial gradients of attractants or repellents.
When cells move toward (away from) favorable (unfavorable) conditions, the move-
ment is called positive (negative) taxis if they adjust the direction of movement in
response to the signal, and kinesis if the frequency of directional changes or the speed
of movement is changed. If the active movement is in response to the gradient of a
chemical we call it chemotaxis or chemokinesis. In this paper we focus on bacterial
chemokinesis, which has been studied extensively in the bacterium Escherichia coli.
Despite the clear difference in the type of response, both taxis and kinesis are lumped
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together in the literature, and we do not distinguish between them here.

Escherichia coli is a cylindrical enteric bacterium∼ 1−2µm long, that swims using
a run-and-tumble strategy [4, 5, 37]. Each cell has 5-8 helical flagella that are several
body lengths long, and each flagellum is rotated by a basal rotary motor embedded
in the cell membrane. When all are rotated counterclockwise (CCW) the flagella
form a bundle and propel the cell forward in a smooth ‘run’ at a speed s =∼10 −
30µm/s; when rotated clockwise (CW) the bundle flies apart, the cell stops essentially
instantaneously because of its low Reynolds number, and it begins to “tumble” in
place. After a random time the cell picks a new run direction with a slight bias in the
direction of the previous run [6]. The alternation of runs and tumbles comprises the
‘run-and-tumble’ random movement of the cell. In the absence of a signal gradient
the run and tumble times are exponentially distributed with means of 1 s and 0.1 s,
respectively, but when exposed to a signal gradient, the run time is extended when the
cell moves up (down) a chemoattractant (chemorepellent) gradient [6]. The molecular
basis of signal transduction and motor control will be described in Section 2.

Under certain conditions, the collective population-level response to attractants
produces intricate spatial patterns, even though each individual executes the simple
‘run-and-tumble’ strategy. For instance, in Adler’s capillary assay E. coli cells move
up the gradient of a nutrient (an attractant), and the population forms moving bands
or rings [1]. More recently, Budrene and Berg found that when E. coli moves up
the gradient of a nutrient, they can also release another stronger chemoattractant.
They studied the patterns in two experimental configurations, one in which a small
inoculant of cells is introduced at the center of a semi-solid agar layer containing a
single carbon source, such as succinate or other highly-oxidized intermediates of the
TCA cycle. In this case the colony grows as it consumes the nutrients, cells secret the
chemoattractant aspartate, and a variety of spatial patterns of cell density develops
during a two-day period, including outward-moving concentric rings, and symmetric
arrays of spots and stripes. In the second type of experiment, wherein cells are grown
in a thin layer of liquid medium with the same carbon source, a network-like pattern
of high cell density forms from the uniform cell density, but this subsequently breaks
into aggregates in 5-15 minutes. The formation of these patterns involves intercellular
communication of millions of cells through the secreted chemoattractant aspartate,
and thus detailed cell-based models of signal transduction, attractant release, and cell
movement would be computationally expensive.

Heretofore, models of these and similar patterns have employed the classical
Patlak-Keller-Segel (PKS) description of chemotactic movement [2, 34, 36, 35, 30].
Additional mechanisms assumed in these models include nonlinearity in the chemo-
tactic coefficient, loss of motility under starvation conditions, or a second repellent or
waste field. To understand the patterns formed in the soft agar, Brenner et al. [8]
coupled the PKS chemotaxis equation with reaction-diffusion equations for both the
attractant and nutrient, and proposed a minimal mechanism for the swarm ring and
aggregate formation. They suggest that the motion of the swarm ring is driven by
local nutrient depletion, with the integrity resulting from the high concentration of
the attractant at the location of the ring; in contrast, the aggregates formed in the
ring results from fluctuations near the unstable uniform cell density. However, the
question of how to justify the chemotaxis equation from a microscopic description is
not addressed in any of the foregoing models.

Recently significant progress has been made toward incorporating characteristics
of the cell-level behavior into the classical description of chemotaxis [14, 13]. Using a
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simplified description of signal transduction, these authors studied the parabolic limit
of a velocity jump process that models the ‘run-and-tumble’ behavior of bacteria, and
showed that the cell density n evolves according to the parabolic equation

(1.1)
∂n

∂t
= ∇ ·

(

s2

Nλ0
∇n− bs2taG

′(S)

Nλ0(1 + taλ0)(1 + teλ0)
n∇S

)

.

Here S is the attractant concentration; N is the space dimension, and s, λ0, b, te,
ta and G(S) are parameters and functions that characterize the behavior of single
cells. The authors assumed that (a) the signal function G(S(x)) is time-independent,
(b) the gradient of the signal is shallow as measured by G′(S)v · ∇S ∼ O(ε) sec−1,
(c) the turning rate depends linearly on the internal state of the cell (λ = λ0 − by1),
and (d) the quasi-steady-state approximation is valid in estimating the higher order
moments in the moment closure step. However, assumption (a) is often unrealistic in
the processes of bacterial pattern formation, and assumption (c) imposes additional
restrictions on y1, i.e., y1 <

λ0

b , in order to guarantee the positivity of the turning
rate. Assumption (b) was used to justify the neglect of the higher order moments,
and while analysis showed that (b) can alternatively be replaced by Assumption (d)
in order to allow larger signal gradients, (b) is implicitly required in the perturbation
analysis on the diffusion time and space scales, as will be shown later by an example.

In this paper we remove some of these restrictions. In section 3 we relax the
assumptions (a) and (c) in order to allow time-dependent signals and a general turning
frequency of the cells, and show that when (b) is violated, diffusion time and space
scales are inapplicable. There we also develop a new method for solving the infinite
system of the moment equations, which allows elimination of (d). The method involves
systematic application of a solvability theorem to a perturbation expansion of the
solution. In section 4 we compare the solution of the macroscopic chemotaxis equation
and a stochastic simulation of chemotactic cell movement under a variety of temporal
dynamics of the signal. In section 5 we extend the method to allow for external force
terms in the transport equation. We illustrate the use of the resulting equation with
an application to the model of spiral stream formation in Proteus mirabilis colonies
[38], where a centripedal force is generated during the runs of the two-dimensional
cell movement. Finally, we explore macroscopic chemotaxis equations for bacterial
populations when exposed to several chemosignals in section 6. Before introducing the
details of the analysis, we describe the cell-based model of bacterial pattern formation
used in [38], which is based on a cartoon description of signal transduction introduced
in [27].

2. The cell-based model. Bacterial cells are small, the swimmers we study
here are typically 1-2 µm long. Therefore, we characterize their movement by their
position x ∈ RN and velocity v ∈ V ⊆ RN as functions of time t. In the experiments
of Budrene and Berg [9], the cell density is O(108) ml−1, thus the average volume
fraction of the cell population in the substrate is O(10−4). Even if in an aggregate
cells are 100 times more crowded than average, the volume fraction would still be
as small as O(10−2). Therefore, it is plausible to assume cells are well separated, so
there is no mechanical interaction between them. This means that we can treat the
movement of different cells as independent processes. In E. coli the cell speed is more
or less constant throughout the movement, so we assume only the direction of the
velocity changes during a tumble. In addition, since the mean tumbling time (∼ 0.1
s) is much shorter than the run time (∼ 1 s), we here neglect the tumbling time
and assume that cells reorient immediately. In addition, we neglect the rotational
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diffusion of cells during a run. Therefore, movement of cells can be characterized by
independent velocity jump processes of the type introduced in [25] and later used in
[17, 26, 14, 13]. The process is determined by a turning rate λ, and a turning kernel
T (v,v′, . . .) which gives the probability density of turning from v′ to v after making
the decision to turn. Since T is a probability density it must satisfy

∫

V

T (v,v′, . . .) dv = 1,

which means that no cells are lost during the reorientation. A generalization can be
made to include the tumbling of cells as a separate resting phase [25]. In that case,
the stochastic process would be determined by three parameters: the transition rate
from the moving phase to the resting phase λ, the transition rate from the resting
phase to the next moving phase denoted as µ, and the turning kernel T . It has been
shown, in the absence of internal dynamics, that inclusion of a resting phase results
in a re-scaling of the diffusion rate and the chemotactic sensitivity in the resulting
macroscopic equation, which is essentially a re-scaling of time [26].

When there is no signal gradient, the turning rate λ is a constant, while in the
presence of a signal gradient, λ depends on the current state of the flagella motor,
which in turn is determined as the output of the underlying signal transduction net-
work that transduces the extracellular signal into a change in rotational state.

Signal transduction in E. coli is a very complicated input-output process (Figure
2.1). Attractant binding to a receptor reduces the autokinase activity of the associated
CheA, and therefore reduces the level of phosphorylated CheYp , which is the output
of the transduction network, on a fast time scale (∼ 0.1 s). This constitutes the
excitation component. Changes in the methylation level of the receptor by CheR and
CheB restores the activity of the receptor complex to its pre-stimulus level on a slow
time scale (seconds to minutes), which is called adaptation. Adaptation allows the
cell to respond to further signals. The output CheYp in turn changes the rotational
bias of the flagella motors, and thus changes the run-and-tumble behavior [21, 37, 7].

Fig. 2.1. Signaling components and pathways for E. coli chemotaxis. Chemoreceptors
(MCPs) span the cytoplasmic membrane (hatched lines), with a ligand-binding domain on the
periplasmic side and a signaling domain on the cytoplasmic side. The cytoplasmic signaling
proteins, denoted Che in the text, are identified by single letters, e.g., A = CheA. (From [33]
with permission.)

Several detailed mathematical models has been proposed to model the entire
signal transduction network [33, 32, 23, 31]. In the deterministic models, the state of
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a cell can be described by a list of intracellular variables y = (y1, y2, · · · , yq) ∈ Rq,
and different models can be cast in the form of systems of ODEs

(2.1)
dy

dt
= f(S,y)

with different f , where S(x, t) is the signal concentration. In this article, we adopt a
simplified cartoon description which is minimal yet captures the essential excitation
and adaptation components:

dy1
dt

=
G(S)− (y1 + y2)

te
,(2.2)

dy2
dt

=
G(S)− y2

ta
.(2.3)

Here te and ta with te << ta are the excitation and adaptation time scales, x is the
current spatial position of the cell, and G(S) a functional of the signal detected by the
receptors. If we assume that there is no cooperative binding and the binding reaction

S +R
k+

−→←−
k−

SR

equilibrates rapidly, then

(2.4) G(S) = G0(
S

KD + S
)

with the binding coefficient KD = k−/k+. G(S) is bounded by G0 since the receptors
will be saturated at large concentrations of the attractant. The cartoon model has
been shown to predict the input-output behavior of the full model [33] in response to
step changes in the signal [14].

We may identify y1 as the negative of the deviation of CheYp from its steady
state, and therefore, we assume the turning rate of each cell depends only on y1, i.e.,

λ = λ(y1).

In addition, we assume that the turning kernel T is independent of x and y,

T = T (v,v′).

It has been shown experimentally that after a tumble, a cell has slight tendency to
continue its previous direction of movement [4].

Finally, the above description of cell movement can be coupled with components of
cell metabolism and cell division, and reaction-diffusion equations for the nutrient and
attractant. We note that the description of cell movement used here comes directly
from the biological observations; and by using reaction-diffusion equations for the
chemicals, as in section 4, convection of the chemicals in the fluid flow is implicitly
neglected. This approximation is valid here because the flow is very slow as a result
of the small Reynolds number and low volume fraction of the cell population.

The Monte Carlo scheme can be used to simulate the model, but stochastic
simulation can become extremely expensive because of cell division. Consider that
cells double in 2 hours, and that the entire experimental process can last 2 days.
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Assuming that n0 cells are introduced into the petri dish initially, we would have
248/2 × n0 ≃ 1.7× 107n0 cells at the end; thus we need a higher level description. In
the next section, we introduce a new method to embed the cell-level behavior in the
population-level description, so as to derive an evolution equation of the cell density
n(x, t) from the transport equation.

3. The transport equation and its diffusion limit absent external forces.
Let p(x,v,y, t) be the density of cells having position x ∈ Ω ⊂ RN , velocity v ∈ V ⊂
RN , and internal states y ∈ Rq at time t ≥ 0, where V is a compact subset of Rn and
symmetric about the origin. Then the velocity jump process introduced above leads
to the following transport equation when there is no cell growth

(3.1)
∂p

∂t
+∇x · (vp) +∇y · (fp) = −λ(y)p+

∫

V

λ(y)T (v,v′,y)p(x,v′,y, t) dv′.

Here the left hand side of the equation describes the change of the population density
due to the cell runs and the evolution of internal states, while the right hand side
models the reorientation during the “tumbles”. A fundamental assumption in using a
velocity jump process to model the “run-and-tumble” movement is that jumps occur
instantaneously, and therefore the forces are Dirac functions. This approximation is
appropriate for swimming bacteria since the Reynolds number is so small that cells
stop instantly at the end of a run. A more general treatment can be found in [29].

In [26], a resting phase has been introduced to incorporate cell birth and death.
While in some organisms it is true that cells stop to divide or give birth, the swimming
bacterium E. coli has been observed to divide while swimming smoothly [3]. Thus
the resting phase introduced is not necessary here. Therefore, by assuming that the
growth rate r is a function of the local nutrient level f(x, t), the transport equation
with cell growth reads

(3.2)
∂p

∂t
+∇x ·(vp)+∇y ·(fp) = −λ(y)p+

∫

V

λ(y)T (v,v′,y)p(x,v′,y, t) dv′+r(f)p.

When cells grow in the exponential phase in a rich medium, r is a constant. By
defining p = p̄ert and observing that p̄ satisfies equation (3.1), we can derive the
equation for n̄ =

∫

p̄dx and therefore n = n̄ert. For this reason we begin with the
transport equation (3.1) in the following derivation.

Define

z1 = y1

z2 = y2 −G(S),

then from the equations of y1, y2, we obtain the system

dz1
dt

=
−z1 − z2

te
(3.3)

dz2
dt

= −z2
ta
−G′(S(x(t), t))

(

∇S · v +
∂S

∂t

)

.

The transport equation in the new internal variables (z1, z2) reads

∂p

∂t
+∇x · (vp) +

∂

∂z1

(−z1 − z2
te

)

+
∂

∂z2

(

−z2
ta
−G′(S)(∇S · v +

∂S

∂t
)p

)

(3.4)

= −λ(z1)p+ λ(z1)

∫

V

T (v,v′)p(v′) dv′.
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This change of variables for the internal state makes the following analysis much
simpler.

In the remainder of this section we relax a number of assumptions used in [14, 13]
and present a new method to derive the chemotaxis equation in the diffusion limit of
the transport equation (3.4). We first list the assumptions on the turning kernel and
turning rate.

3.1. Assumptions on the turning kernel and turning rate. In our analysis
we adopt the assumptions of the turning kernel T in [17, 13]. The notation used here
coincides with that in [26, 13].

Define operator T and its adjoint T ∗ : L2(V )→ L2(V ) as follows:

(3.5) (T f)(v) =

∫

V

T (v,v′)f(v′) dv′, (T ∗f)(v) =

∫

V

T (v′,v)f(v′) dv′.

Denote by K to be the non-negative cone of L2(V ), K = {f ∈ L2(V )|f ≥ 0}. The
assumptions on the turning kernel T ∈ L2(V × V ) are

A1: T (v,v′) ≥ 0,
∫

V
T (v,v′) dv =

∫

V
T (v′,v) dv = 1.

A2: There are functions u0, φ, ψ ∈ K with the property u0 6= 0, φ > 0 a.e., such
that u0(v)φ(v′) ≤ T (v,v′) ≤ u0(v)ψ(v′).

A3: ||T ||〈1〉⊥ < 1.

From these assumptions, one can prove [17] that (a) T is a compact operator on L2(V ),
with spectral radius 1; (b) 1 is a simple eigenvalue with normalized eigenfunction
g(v) ≡ 1.

Next define the operators

(3.6) A = −I + T , A∗ = −I + T ∗.

Note that the operator L defined in [26] is λA here; in our derivation we use A instead
of L because A is independent of y. One can easily prove that A has the following
properties:

(i) ||A|| ≤ 2.
(ii) N (A) = N (A∗) = 〈1〉,
R(A) = R(A∗) = 〈1〉⊥ = {f ∈ L2(V ) |

∫

V
f(v) dv = 0}.

(iii) ∀γ with positive real part, γI −A is invertible.

For the turning rate, we introduce a more general form than used in [14, 13]. We
assume λ can be expanded to a Taylor series

λ = λ0 − a1z1 + a2z
2
1 − a3z

3
1 + · · ·

with a radius of convergence at least max{G0, 1}, which implies that

(3.7)

∞
∑

k=1

|ak| <∞.

The negative signs in the expansion of λ are introduced for the convenience of later
analysis. The form λ = λ0 − by1 used in [14, 13] is a special case of this general form
with a1 = b positive and ak = 0 for all k > 1.
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3.2. The parabolic scaling. To simplify the exposition we assume at first that
excitation is much faster than other processes, that is, te = 0, z1 = −z2. The general
result is simply stated later. Therefore the transport equation becomes

∂p

∂t
+∇x · (vp) +

∂

∂z2

(

−z2
ta
−G′(S)(∇S · v +

∂S

∂t
)p

)

(3.8)

= (λ0 + a1z2 + a2z
2
2 + · · · )(−p+

∫

V

T (v,v′)p(v′) dv′).

Since the total cell mass is conserved, we denote

(3.9) N0 =

∫

Ω

∫

V

∫

R

p dz2dvdx,

and scale p by setting,

(3.10) p̂ =
p

N0

The mean run time of E. coli is T ≃ 1 s, the speed is 10 ∼ 30 µm/s [4], and a
self-organized aggregate of cells has spatial dimension of 150− 250µm [24]. Thus, let
s0 = 10 µm/s, L = 1 mm, and re-scale the variables by setting,

v̂ =
v

s0
, x̂ =

x

L
, t̂ =

t

Tp
, V̂ =

V

s0

λ̂0 = λ0T, âk = akT, t̂a =
ta
T
, ǫ =

Ts0
L

= 0.01, Tp =
T

ǫ2
.

Therefore, v̂, x̂, t̂a, λ̂0, âk ∼ O(1). We also re-scale

(3.11) Ŝ =
S

KD
, Ĝ(Ŝ) = G(ŜKD), T̂ (v̂, v̂′) = sN−1

0 T (v,v′)

where KD is the binding constant defined earlier.
In these variables equation (3.8) becomes, after dropping the hats,

ǫ2
∂p

∂t
+ ǫ∇x · (vp) +

∂

∂z2

(

−z2
ta
−G′(S)(ǫ∇S · v + ǫ2

∂S

∂t
)p

)

(3.12)

= (λ0 + a1z2 + a2z
2
2 + · · · )(−p+

∫

V

T (v,v′)p(v′) dv′).

Here the space and time variation of S enters at O(ǫ) and O(ǫ2), respectively.
The goal of the moment closure method is to derive an approximating evolution

equation for the cell density n(x, t) from the transport equation (3.12). To do that,
ultimately we need to integrate (3.12) with respect to both z2 and v 1. There are
two places that one can apply the perturbation expansion: (a) to the incomplete
moments, viz, the z2-moments or v-moments; (b) to the complete moments which
are obtained by integrating both z2 and v. (b) will be used when there are external
forces acted on the cells in section 5. However, in this section, we show that because
the 0th-order z2-moment M0

0 is independent of v, applying the perturbation method
to the z2-moments directly can lead to the approximating equation for n(x, t) with
minimal assumptions.

1In the case that the signal function depends on n(x, t), i.e., S = S(n,x, t), we can approximate
S by S(n0,x, t), where n0 is defined in the expansion n = n0 + ǫn1 + ǫ2n2 + · · · . This approximation
introduces a term of O(ǫ) into the transport equation (3.12), and thus won’t change the equation
derived later for n0.
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3.3. The z2−moment equations. Define the moments of z2 as follows:

(3.13) Mj =

∫

zj2 p dz2, ∀ j = 0, 1, 2, 3, . . . . M = (M0,M1,M2, · · · )t.

By multiplying equation (3.12) by 1, zj2/j for j ≥ 1 and integrating, we obtain the
moment equations in the following compact form:

(3.14) ǫ2
∂

∂t
ΛM + ǫv · ∇xΛM = ǫ2BM + ǫCM + DM.

Here

(3.15) B = −G′(S)
∂S

∂t
Jt,

(3.16) C = −G′(S)(∇S · v)Jt,

and

(3.17) D = − 1

ta
diag {0, 1, 1, · · · }+AΛ(λ0I + a1J + a2J

2 + · · · ),

where A is the operator defined in (3.6), Λ : l∞(L2(V )) → l∞(L2(V )) is a diagonal
scaling operator Λ = diag

{

1, 1, 1
2 ,

1
3 , · · ·

}

, and J : l∞(L2(V )) → l∞(L2(V )) is the
shift operator that has ones on the upper diagonal entries:

(3.18) J =











0 1 0 · · ·
0 0 1 · · ·
0 0 0 · · ·
...

...
...

...











.

One can easily prove that J has the following properties:

||J||l∞(L2(V )) = 1, ker(J) =< (1, 0, 0, 0, · · · )t >,(3.19)

{0} ⊂ ker(J) ⊂ ker(J2) ⊂ · · · ⊂ ker(Jk) ⊂ · · · ⊂ l∞(L2(V )),(3.20)
∞
⋃

k=1

ker(Jk) $ l∞(L2(V )).(3.21)

Therefore, B and C are bounded linear operators on l∞(L2(V )). One can also easily
prove that D is a bounded linear operator on l∞(L2(V )) under the assumptions on
the turning kernel and turning rate introduced in section 3.1.

Since we are interested in the long-time dynamics, we will apply the regular per-
turbation method to solve the system (3.14). We explore two sets of assumptions. In

the first, we assume that Ĝ′(Ŝ)∂Ŝ
∂t̂

and Ĝ′(Ŝ)∇Ŝ · v̂ are of O(1) in the nondimensional-

ized variables, corresponding to G′(S)∂S∂t ∼ O(ǫ2)sec−1 and G′(S)∇S ·v ∼ O(ǫ)sec−1

in the dimensional variables. We show in section 3.5 that this assumption leads to
the same chemotaxis equation as in [13]. In the second, we relax the first set of

assumptions to allow Ĝ′(Ŝ)∂Ŝ
∂t̂

to be O(1
ǫ ) in the nondimensionalized variables, or

G′(S)∂S∂t ∼ O(ǫ) sec−1 in the dimensional variables. This assumption means that a
cell doesn’t experience a significant change in the fraction of receptors bound during
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an average run time. If the gradient is very large, this assumption may be violated
and the characteristic space and time scale may be very different from those of the
diffusion process. Therefore, the solution of the diffusion-limit chemotaxis equation
will not be a good approximation of the underlying velocity jump process at the loca-
tion where sharp spikes of the attractant arise. For this set of assumption, we show in
section 3.6 that the equation for the first order approximation n0 of the cell density
remains the same, but the equation for higher order terms nj depends on ∂S

∂t . First
however we prove a solvability theorem that will be used in the asymptotic analysis.

3.4. A solvability theorem. For k ≥ 1, we introduce sub-matrix operators of
D defined by partitioning D as follows

D =

[

Ek Fk
0 Gk

]

.

Here Ek is the upper-left k×k submatrix of D, Fk is the upper-right k×∞ submatrix,
and Gk is the lower-right remainder. Written out,

E1 = [λ0A], F1 = A[a1, a2, · · · ],

and for k > 1,

Ek =

2

6

6

4

λ0A a1A · · · ak−1A

0 λ0A− 1

ta
· · · ak−2A

· · · · · · · · · · · ·

0 0 · · ·
λ0

k−1
A− 1

ta

3

7

7

5

, Fk = A

2

6

6

4

ak ak+1 ak+2 · · ·

ak−1 ak ak+1 · · ·

· · · · · · · · · · · ·
a1

k−1

a2

k−1

a3

k−1
· · ·

3

7

7

5

.

for any k ≥ 1,

Gk = −
1

ta
I + Adiag



1

k
,

1

k + 1
,

1

k + 2
, · · ·

ff

(λ0I + a1J + a2J
2 + · · · ) = −

1

ta
I + AΛkΦ,

with Λk , diag
{

1
k ,

1
k+1 ,

1
k+2 , · · ·

}

and Φ , λ0I + a1J + a2J
2 + · · · .

Since components of D are operators on the space L2(V ), Ek is an operator
on (L2(V ))k. Also by the assumption on the turning rate (3.7), Fk: l

∞(L2(V )) →
(L2(V ))k, Gk: l

∞(L2(V ))→ l∞(L2(V )). In the following theorem we prove that for
any k, the operators Gk are bounded and invertible. We denote the l∞(L2(V )) norm
by || · || and the corresponding operator norm by ||| · |||.

Theorem 3.1. For any k ≥ 1, we have

(i) Gk is bounded with |||Gk||| ≤ 1
ta

+ 1
k ||A||L2(V )(λ0 +

∑∞
j=1 |aj |);

(ii) Gk is invertible, i.e., GkW = 0,W ∈ l∞(L2(V )) =⇒ W = 0.

Proof. (i) ∀W ∈ l∞(L2(V )), we have

||ΦW|| = ∞
max
i=1
||λ0Wi +

∞
∑

j=1

ajWi+j || ≤ ||W|| · (|λ0|+
∞
∑

j=1

|aj |),

||ΛkW|| =
∞

max
i=1
| 1

k + i− 1
Wi| ≤

1

k
||W||,

||AW|| ≤ ||A||L2(V ) · ||W||.
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Therefore, Φ, Λk and A are bounded operators on l∞(L2(V )). Since Gk = − 1
ta

I +
AΛkΦ, we have

|||Gk||| ≤
1

ta
+ ||A||L2(V )|||Λk||| |||Φ||| ≤

1

ta
+

1

k
||A||L2(V )(λ0 +

∞
∑

j=1

|aj |).

(ii) For k > ta||A||L2V |||Φ|||, we have |||taAΛkΦ||| < 1. Therefore Gk is invertible
with G−1

k = − 1
ta

∑∞
i=0(taAΛkΦ)i, i.e., GkW = 0⇒W = 0.

For k ≤ ta||A||L2V |||Φ|||, find m > 0 s.t. k+m > ta||A|| ||Φ||. Since Gk is upper
triangular, we get Wj = 0, ∀j ≥ m by observing Gk+m is invertible; we then apply
Gaussian elimination to the first m−1 equations in GkW = 0 from the (m−1)th row
back to the 1st row to get Wj = 0, j < m. Property (iii) of the operator A guarantees
that Gaussian elimination applies. This completes the proof.

3.5. The regular perturbation of (3.14). Write M as an expansion in powers
of ǫ as

(3.22) M = M0 + ǫM1 + ǫ2M2 + · · ·
or

(3.23)



















M0

M1

M2

M3

...



















=



















M0
0

M0
1

M0
2

M0
3

...



















+ ǫ



















M1
0

M1
1

M1
2

M1
3

...



















+ ǫ2



















M2
0

M2
1

M2
2

M2
3

...



















+ · · ·

The subscript indicates the order of the z2-moment, the superscript indicates the
order of the term in the expansion.

After substituting (3.22) into the evolution equation (3.14) and comparing terms
we find that

O(ǫ0):

DM0 = 0,

By Theorem 3.1, we have

(3.24) AM0
0 = 0 & M0

j = 0, ∀ j > 0.

By property (ii) of A, we have M0
0 independent of v, i.e., M0

0 = M0
0 (x, t).

O(ǫ1):

v · ∇xΛM0 = CM0 + DM1,

or by using (3.24)














v · ∇xM0
0

G′(S)∇S · vM0
0

0
0
...















= DM1 =

[

E2 F2

0 G2

]

M1
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Again, by Theorem 3.1, we have M1
j = 0, ∀ j > 1, and the problem reduces to solving

∇x · vM0
0 = λ0AM1

0 + a1AM1
1 ,

G′(S)∇S · vM0
0 = (λ0A−

1

ta
)M1

1 .

By property (iii) of A, λ0A− 1
ta

is invertible, and thus,

M1
1 = (λ0A−

1

ta
)−1G′(S)∇S · vM0

0 ,

AM1
0 =

1

λ0
∇x · vM0

0 −
a1ta
λ0
A(taλ0A− 1)−1G′(S)∇S · vM0

0 .

By property (ii) of A, 0 is a simple eigenvalue, and we can define a pseudo-inverse
operator of A as B = (A|〈1〉⊥)−1. Therefore, we obtain the representation,

(3.25) M1
0 = B 1

λ0
v · ∇xM0

0 −
a1ta
λ0

(taλ0A− 1)−1G′(S)∇S · vM0
0 + P1,

where P1 ∈ 〈1〉, i.e., P1 = P1(x, t), is arbitrary. Notice that n1 =
∫

V M
1
0 dv = P1|V |;

thus n1 can be determined once P1 is known.

O(ǫ2):

∂

∂t
ΛM0 + v · ∇xΛM1 = BM0 + CM1 + DM2

The first equation of the system implies

∂

∂t
M0

0 +∇x · vM1
0 ∈ R(A).

By property (ii) of A,

∫

V

(

∂

∂t
M0

0 + v · ∇xM1
0

)

dv = 0.

Using (3.25), we get an equation for M0
0

|V | ∂
∂t
M0

0 +
1

λ0
∇x ·

∫

V

vBv · ∇xM0
0dv(3.26)

−a1ta
λ0
∇x ·

∫

V

(

v(taλ0A− 1)−1G′(S)∇S · vM0
0

)

dv = 0.

By defining

(3.27) Dn = − 1

|V |λ0

∫

V

v ⊗ Bv dv

and

(3.28) χ(S) = − a1ta
|V |λ0

G′(S)

∫

V

v ⊗ (taλ0A− 1)−1vdv,
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we can rewrite equation (3.26) as

(3.29)
∂

∂t
M0

0 = ∇x ·
(

Dn∇xM0
0 − χ(S)M0

0∇xS
)

.

The cell density n(x, t) is defined as

n =

∫

V

∫

Z

p(x,v, z2, t)dz2 dv =

∫

V

M0(x,v, t) dv

=

∫

V

(M0
0 + ǫM1

0 + ǫ2M2
0 + · · · ) dv,

By expanding n = n0 + ǫn1 + ǫ2n2 + · · · , we find that

ni =

∫

V

M i
0 dv, ∀ i ≥ 0.

In particular, n0 = |V |M0
0 , thus n = |V |M0

0 + O(ǫ), and therefore we obtain the
chemotaxis equation

(3.30)
∂

∂t
n0 = ∇x ·

(

Dn∇xn0 − χ(S)n0∇xS
)

with a general tensor form of the diffusion rate (3.27) and the chemotaxis sensitivity
(3.28).

Our standing assumption is that the cell speed is constant, and thus V is the a
sphere of radius s =

√
v · v in 3-D. In the case that cells change direction of movement

purely randomly, the turning kernel is given by the uniform density

(3.31) T (v,v′) =
1

|V | .

In this case, the tensors Dn and χ(S) can be reduced to diagonal matrices, and thus
scalars,

(3.32) Dn =
s2

Nλ0
I, χ(S) = G′(S)

a1s
2ta

Nλ0(1 + taλ0)
.

As a result, we obtain the classical chemotaxis equation for n0

(3.33)
∂

∂t
n0 = ∇x ·

(

s2

Nλ0
∇xn0 −G′(S)

a1s
2ta

Nλ0(1 + taλ0)
n0∇xS

)

.

It is observed experimentally that the movement of E. coli shows directional
persistence, and the turning kernel only depends on the angle θ between the old
direction v′ and the new direction v [6, 22], i.e.,

(3.34) T (v,v′) = h(θ).

In this case, T is a symmetric operator, the average velocity v̄ after reorientation

v̄ =

∫

V

T (v,v′)vdv
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is parallel to the previous velocity v, and thus the diffusion rate and the chemotaxis
sensitivity are isotropic tensors (cf. [17], Theorem 3.5). As a result, one finds that
Av = −(1− ψd)v and

(3.35) Dn =
s2

N(1− ψd)λ0
I, χ(S) = G′(S)

a1s
2ta

Nλ0(1 + (1− ψd)taλ0)
,

where

(3.36) ψd =
v̄ · v′

s2
∈ [−1, 1]

is the index of directional persistence introduced in [25]. We note that ψd can not be
1 in order to satisfy Assumption 2 on the turning kernel, andψd has been reported
to be about 0.33 in the wild-type E. coli [4]. From (3.35), we can see that the larger
ψd is, the larger Dn and χ are, and therefore the larger the macroscopic chemotaxis
velocity uc = χ(S)∇S. The increase of uc to the persistence has also been analyzed
in [20], where weak chemotaxis coupled with rotational diffusion was analyzed.

Equations for higher order terms. In order to obtain equations for higher
order approximations of the cell density n(x, t), we can repeat the above calculation.
The full equation system at O(ǫ2) is

2

6

6

6

6

6

6

6

6

4

∂
∂t
M0

0 + v · ∇xM
1
0

v · ∇xM
1
1 +G′(S)

`

∂S
∂t
M0

0 + (∇S · v)M1
0

´

G′(S)∇S · vM1
1

0

...

3

7

7

7

7

7

7

7

7

5

=

2

6

6

6

6

6

6

6

6

6

4

λ0AM
2
0 + a1AM

2
1 + a2AM

2
2 + · · ·

(λ0A− 1

ta
)M2

1 + a1AM
2
2 + · · ·

(λ0

2
A− 1

ta
)M2

2 + · · ·

(λ0

3
A− 1

ta
)M2

3 + · · ·

...

3

7

7

7

7

7

7

7

7

7

5

.

Similar to previous reasoning, we have M2
j = 0, ∀ j ≥ 3, and

M2
2 = 2(λ0A−

2

ta
)−1G′(S)(∇S · v)M1

1 ,

M2
1 = (λ0A−

1

ta
)−1(v · ∇xM1

1 +G′(S)
∂S

∂t
M0

0 +G′(S)(∇S · v)M1
0 − a1AM2

2 ),

M2
0 =

B
λ0

v · ∇xM1 − a1

λ0
M2

1 −
a2

λ0
M2

2 + P2.

Here, the term (B/λ0)(∂/∂tM
0
0 ) in M2

0 is absorbed into the v-independent term P2.
By considering the solvability condition of equations at the next order of ǫ, the equa-
tion for P1, and therefore, for n1 = P1|V |, can be obtained. Calculation reveals that
the equation for n1 is the same as n0 in case that v is an eigenfunction of T , in
particular for the turning kernel (3.34),

∂

∂t
n1 = ∇x ·

(

s2

N(1− ψd)λ0
∇xn1 −G′(S)

a1s
2ta

Nλ0(1 + (1− ψd)taλ0)
n1∇xS

)

.

If we force n0 to satisfy the initial and boundary conditions of those for the cell density
n, the higher order terms nj , j > 0 should satisfy homogeneous initial and boundary
conditions, and the zero mean constraint. Therefore, we conclude that n1 ≡ 0, and
thus, n = n0 +O(ǫ2).
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By allowing a finite excitation time in the cartoon model, we obtain the chemo-
taxis sensitivity tensor

(3.37) χ(S) = − a1ta
|V |λ0

G′(S)

∫

V

v ⊗ (teλ0A− 1)−1(taλ0A− 1)−1vdv,

as in [13], and using the turning kernel (3.34), the chemotaxis equation becomes

(3.38)

∂

∂t
n0 = ∇ ·

(

s2

N(1− ψd)λ0
∇n0 − a1s

2taG
′(S)

Nλ0(1 + (1− ψd)taλ0)(1 + (1− ψd)teλ0)
n0∇S

)

.

From this equation we can see that: (a) directional persistence increases both the
diffusion rate and the macroscopic chemotactic velocity, as analyzed in [20]; (b) in-
clusion of the non-instantaneous excitation results in re-scaled chemotaxis sensitivity.
The only difference by using the full cartoon model is, that instead of using matrix
representations of M and operators B, C, D, block matrices should be used. A sim-
ilar version of Theorem 3.1 can be proved without difficulty. One can also show that
inclusion of a resting phase due to tumbling would result in a re-scaled diffusion rate
and chemotaxis sensitivity by the fraction of running time.

3.6. A weaker assumption on the extracellular signal. In the above deriva-
tion we assumed that G′(S)∂S

∂t̂
∼ O(1) on the parabolic (diffusion) time scale. How-

ever, when cells contribute to the signal field by secretion (example 4.2), G′(S)∂S∂t can
become large when the cell density is large. Here we relax the assumption to allow
G′(S)∂S∂t ∼ O(1

ǫ ) on the parabolic time scale, which is O(ǫ) sec−1 in the dimensional
variables. Under this assumption, we need to regroup the terms in the z2-moment

equation (3.14). We define St = ǫ∂Ŝ
∂t̂
∼ O(1), B = ǫB ∼ O(1), then equation (3.14)

can be rewritten as

(3.39) ǫ2
∂

∂t
ΛM + ǫv · ∇xΛM = ǫ(B + C)M + DM.

In this case, the equations in O(ǫ) are

v · ∇xΛM0 = (B + C)M0 + DM1,

from which we can solve

M1
1 = (λ0A−

1

ta
)−1G′(S)(St +∇S · v)M0

0 ,(3.40)

M1
0 = B 1

λ0
v · ∇xM0

0 −
a1ta
λ0

(taλ0A− 1)−1G′(S)∇S · vM0
0 + P1.(3.41)

In the representation of M1
0 (3.41), the term (taλ0A−1)−1G′(S)StM

0
0 is absorbed

by P1, since it is independent of v. Therefore the equation for n0 remains the same,
i.e., (3.30).

However, if we continue calculation for higher order terms, we obtain

M2
2 = 2(λ0A−

2

ta
)−1G′(S)(St +∇S · v)M1

1 ,

M2
1 = (λ0A−

1

ta
)−1(v · ∇xM1

1 +G′(S)(St +∇S · v)M1
0 − a1AM2

2 ),

M2
0 =

B
λ0

v · ∇xM1
0 −

a1

λ0
M2

1 −
a2

λ0
M2

2 + P2.



16

Here a1, a2, ∇S, St, n
0 and ∇n0 enter the expression of M2

0 , and by considering the
solvability condition at O(ǫ3),

∫

V

∂

∂t
M1

0 + v · ∇xM2
0dv = 0,

we obtain an equation for n1,

∂

∂t
n1 = ∇x ·

[

s2

Nλ0(1− ψd)
∇xn1 −G′(S)

a1s
2ta

Nλ0(1 + taλ0(1 − ψd))
n1∇xS

]

+f(a1, a2,∇S, St, n0,∇n0, . . .).

The first-order term n0 enters into the equation for n1 through the function f which
is linear in n0. In particular, for the turning kernel (3.34), f has the form

f = ∇ ·
[

a1t
2
as

2∇(G′(S)Stn
0)

Nλ0(1 + λ0ta(1− ψd))2

+
a1tas

2G′(S)St
Nλ0(1 + taλ0(1 − ψd))

( ∇n0

λ0(1− ψd)
− a1tan

0G′(S)∇S
λ0(1 + taλ0(1− ψd))

)

+

(

a2
1ta(1− ψd)

λ0(1 + λ0ta(1− ψd))
+
a2

λ0

)

4t2as
2n0G′(S)2St∇S

N(2 + λ0ta(1− ψd))(1 + λ0ta(1− ψd))

]

.

In this case, the solution of the n1-equation is generally nonzero, and therefore n =
n0 + ǫn1 +O(ǫ2), in contrast with the previous case.

4. Numerical comparison. According to the above perturbation analysis, the
bacterial cell-based model in section 2 can be approximated by the solution of the
chemotaxis equation (3.38) when coupled with an equation for the signal. In this sec-
tion we first present two examples in 1-D to illustrate how accurate the approximation
is. In both examples, we assume no cell growth and fast excitation, i.e., te = 0; thus
the equations for the internal dynamics become

dy2
dt

=
G(S(x, t)) − y2

ta
,(4.1)

y1 = G(S)− y2.(4.2)

with G(S) defined by (2.4). We also assume no turning persistence (ψd = 0), and the
turning rate

(4.3) λ = λ0 −
2λ0

π
tan−1(

y1πb

2λ0
),

which has the Taylor expansion,

λ = λ0 − by1 + · · · .
In this case, we compare with the stochastic simulation with the solution of

(4.4)
∂

∂t
n = ∇x ·

(

s2

Nλ0
∇xn−G′(S)

bs2ta
Nλ0(1 + taλ0)

n∇xS
)

.

We then apply the 2-D version of both the continuum model and the cell-based model
to the network-aggregate formation in E. coli colonies in section 4.3. The numerical
method used in implementing the cell-based model is described in detail in Appendix
A.
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4.1. Aggregation and dispersion in one space dimension. In this example
we analyze the motion of a bacterial population in response to a diffusing attractant
on a periodic domain [0, 4] mm. The dynamics of the attractant are described by the
diffusion equation

(4.5)
∂S

∂t
= Ds△S,

with the initial condition

(4.6) S(x, 0) = 80(1− |1− x|).

Here, we use nondimensional signal S. We suppose that initially the cells are uniformly
distributed in the domain, at a cell density n(x, 0) = n0 mm−1.

In Figure 4.1, we compare the stochastic simulation of the cell-based model with
the solution of the macroscopic equations (4.4), (4.5) and (4.6). For the stochastic
simulation, cell density is computed as the linear interpolation of the histogram for
the positions of the cells. It is observed that the attractant concentration, cell density
and cumulative cell density agree very well between the two models. We notice that
in the first few minutes, an aggregate of cells forms because of the initial attractant
gradient, later on the aggregate tends to be dispersed because diffusion smoothes out
the attractant gradient. We also notice that in this example G′(S)∇S · v becomes
as large as 30 ǫ s−1, but the solution of the chemotaxis equation (4.4) still provides
a good approximation of the results of the cell-based model. This means that the
chemotaxis equation may also be a good approximation of the underlying velocity
jump process for a slightly weaker assumption than we used.

4.2. Self-organized aggregation in one dimensional space. In this example
we investigate the motion of bacterial cells driven by the attractant that they produce.
Thus the attractant dynamics is governed by

(4.7)
∂S

∂t
= Ds△S + γn− µS.

We assume initially no attractant is added to the domain,

(4.8) S(x, 0) = 0.

Periodic boundary conditions and the same parameters are used as in the first exam-
ple. We set the initial condition of the cell density to be

(4.9) n(x, 0) = n0(1 + small random noise) mm−1

and stipulate that the noise has zero mean.
In Figure 4.2, we compare the stochastic simulation of the cell-based model with

attractant dynamics (4.7, 4.8) and the solution of the continuum model (4.4, 4.9, 4.7,
4.8). We take µ = 1/3 × 10−2/s, γ = 1/6 × 10−1/n0 s−1 per cell. A linear stability
analysis (see Appendix B) of the continuum model around the uniform steady state

(USS) (n, S) ≡ (n0, γn0/µ) shows that there are three unstable modes ψk = eik
2π
L
x,

k = 1, 2, 3 with exponential growth rates 0.1439, 0.1954, 0.0904. Thus, we expect that
instabilities develop around the uniform steady state and nonuniform peaks appear in
the cell density profile. The system (4.4, 4.7) has no blow-up solutions in finite time
[10], therefore nonuniform steady state develops finally.
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Fig. 4.1. Aggregation and dispersion in a time-dependent signal field. The solution of equation
(4.4) (smooth line) is compared with stochastic simulation of the cell based model when coupled
with the attractant dynamics (4.5, 4.6). The left, center and right columns are the attractant
concentration scaled by KD, the cell density and cumulative cell density scaled by the average cell
density n0 at t = 2, 5, 30 and 90 min. G(S), λ and T (v, v′) are given by equations (2.4, 4.3, 3.31).
4×103 cells are used for the Monte Carlo simulation (n0 = 103). Other parameters used are λ0 = 1
s−1, b = 1 s−1, ta = 2 s, s = 20 µm/s, KD = 100, G0 = 100, Ds = 8 × 10−4 mm2/s.
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Fig. 4.2. Self-organized aggregation in bacterial colonies. (A)–(D): the solution of system (4.4,
4.9, 4.7, 4.8) is compared with one realization of the stochastic simulation of the cell based model
coupled with the attractant dynamics given by equation (4.7, 4.8). The blue, green, red and cyan
curves represent profiles taken at t = 0, 20, 40, 180 min. (E), (F): comparisons of the amplitudes
of the first 4 Fourier modes of the solutions. Smooth lines: solution for the PDE system; dotted
lines: stochastic simulation. 4 × 103 cells are used for the Monte Carlo simulation (n0 = 103).
µ = 1/3 × 10−2 s−1, γ = 1/6 × 10−4 s−1 per cell. Other parameters used are the same as in Figure
4.1.

Figure 4.2 A – D show that in both models, the state of the system first evolves
towards the unstable uniform steady state (green curve), then small perturbations
finally lead the system to the stable nonuniform steady state (cyan curve). Because
the perturbations in the two models are random and the periodic boundary condition
allows for translation of solutions, we can not expect the peaks to appear at the same
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x coordinate. Therefore neither averaging over different stochastic simulations of the
cell-based model nor a point-wise comparison of the solutions of the two models is
appropriate. Instead we compare the discrete Fourier coefficients ωk of different modes

(φk)j = ek
2πi
Nx

j , k, j = 0, 1, · · · , Nx− 1 (Figure 4.2 E and F) in single realizations. We
see that, in both models, the 0th mode amplitude ω0 of n is constant because of
the conservation of the total number of cells, and the 0th mode amplitude ω0 of S
increases first to the USS γn0/µ and stays at that value afterward. In the first few
minutes, before reaching to the USS, the amplitude of the linearly-unstable modes ω1,
ω2 of n increases exponentially, and the amplitude of the other stable modes decreases
exponentially (zoom-in of E). After the initial few minutes, due to the nonlinearity
of the system, energy in the stable modes (both n and S) transfers to other modes,
and coefficients ωk increase until the system reaches the nonuniform steady state.
We observed that in numerical calculations the exact time for the unstable modes to
amplify sharply (around t = 70 min∼ 100 min in this realization) depends strongly
on the spectrum of the initial noise of the continuum model and the intrinsic noise of
the cell-based model. Once the Fourier coefficients of the unstable modes exceeds a
threshold (about 0.1 in this example), they start to grow faster than exponential. The
amplitude of the most rapidly-varying modes of the cell-based model was observed
to be much more noisy than that of the continuum model, because of the intrinsic
time-dependent noise of the stochastic simulation.

To compare the two models in the case of multi-aggregate formation, we enlarge
the domain from 4 mm to 8 mm to allow for more unstable modes. To match the
number and location of the peaks in the early dynamics, we choose an initial cell
density with sinusoidal noise

(4.10) n(x, 0) = n0(1 + η sin(
3π

4
x) + small random noise).

In order to focus on the development of the instability, we set the signal at the uniform
steady state initially

(4.11) S(x, 0) =
γ

µ
.

The numerical results for η = 0.5 are shown in Figure 4.3. We observe that
aggregates form at the locations with maximum initial cell density (20 min, 40 min).
Then, due to the instability of the multi-aggregate steady state, unevenness among
different aggregates develops (180 min) and leads to merging of aggregates. Finally
the single-aggregate stable steady state is reached (not shown). At t = 20 min, the
different noise in the two models are not significant, and the continuum model agrees
well with the cell-based model (Figure 4.3 B). However, at t = 40 min and 180 min,
the noise driven instability becomes important (Figure 4.3 C, D), and there one can
not directly compare the exact value of the solution of the two models. However,
it is shown that the two models exhibit the same qualitative dynamics in regard to
merging of the aggregates.

From Figure 4.2, 4.3, we conclude that the dynamics of both models agree very
well in different signal dynamics in 1-D, except for the location of the peaks where the
signal gradient becomes O(1). In that case, as shown in section 3, the diffusion limit
of the transport equation may not be a good approximation. In the next section, we
apply both model in the background of network and aggregate formation in E. coli
liquid assay.
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Fig. 4.3. Multi-aggregate formation in bacterial colonies. In the top four plots, the time-elapse
shots of the cell density solved from the continuum model (red line) is compared with one realization
of the result of stochastic simulation of the cell based model (blue line) with initial conditions (4.10,
4.11). In the bottom two plots, the amplitude of the first 4 Fourier modes of the solutions are
compared. Smooth lines: solution of the PDE system; dotted lines: stochastic simulation. 8 × 103

cells are used for the Monte Carlo simulation (n0 = 103). Same parameters are used as in Figure
4.2.

4.3. Bacterial pattern formation: E. coli network and aggregate for-
mation in liquid culture. When E. coli cells are suspended in a well-stirred liquid
medium with succinate as the nutrient, they secrete the attractant aspartate and ini-
tially self-organize into a thread-like network, which quickly breaks into aggregates.
The network-aggregate pattern appears on a time scale of 10 min. Since excess suc-
cinate is provided, cells grow in the exponential phase, and nutrient depletion is not
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involved. In this example, we model the above dynamics in 2-D by both the hybrid
cell-based approach and the macroscopic PDE approach, and compare the results.

The dynamics of the attractant is governed by the reaction-diffusion equation
(4.7). The total cell number in the domain is N0 and the average cell density n0.
We use no-flux boundary conditions since there is no material exchange of the system
with the environment. The uniform steady state of the continuum model (3.33, 4.7) is
(n, S) = (n0, γn0/µ). A linear analysis (see Appendix B) around the uniform steady
state explains the pattern formation as the result of the amplification of the unstable
modes of the fluctuation. To focus on the dynamics during pattern formation, we
start from the uniform steady state with a small perturbation as the initial values,

(4.12) n = n0(1 + small random noise) mm−2,

(4.13) S(x, y, 0) = γn0/µ.

In figure 4.4, We compare the numerical results of the continuum model (4.4, 4.7,
4.12, 4.13) with one realization of the stochastic simulation of the cell-based model.
We used COMSOL Multiphysics to solve the 2-D continuum model (with 15648 tri-
angles, using Lagrange elements), and the numerical algorithm given by Appendix
A to simulate the cell-based model. The initial values for the continuum model are
obtained by interpolating from the initial values of the cell-based model. Although
the exact details of the transient dynamics can be different because of different noise
in the two models, we note that both model predict comparable temporal and spatial
features of the dynamical evolution from the network to the aggregates formation.

5. Chemotactic movement in external fields. Bacterial cells can swim in
more complicated environments with external forces acting on them. For example,
when the cell density becomes large, there may be mechanical interactions between
cells, which may affect their swimming speed and direction. Another example arises
when gravity becomes important. During the formation of bio-convection patterns
reported in [11], oxygen-taxis drives the cells toward the top of the medium, while
gravity acts downward. Therefore, the above analysis should finally be generalized to
incorporate both forces between cells and forces due to external fields. The transport
equation with external forces has the form

∂p

∂t
+∇x · (vp) +∇v · (ap) +∇y · (fp) =(5.1)

−λ(y)p +

∫

V

λ(y)T (v,v′,y)p(x,v′,y, t) dv′.

Previous results have been obtained for crawling cells [15], where the active force
generation is incorporated by a simple cartoon description, and the jumps of velocity
model random polarization of cells when no signal gradient is detected. Because the
state inside each cell varies spatially, further dimension reduction is needed in that
analysis.

Here we extend the analysis in section 3 to include external forces and consider
a particular case in which bacteria swim close to a surface. In three dimensional
space, bacterial cells swim in straight “runs”, but are subject to rotational diffusion.
However, when they move near a surface, the “runs” display a consistent clockwise
bias when observed from above [16, 12]. The bias can be explained by the interaction
between the surface and the cell [19]. During a “run”, the cell body rotates clockwise
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Fig. 4.4. E. coli network and aggregates formation. (A), (B): the cell density from the con-
tinuum model (A: t = 7min, B: t = 13min); (C), (D): the positions of the cells calculated from the
cell-based model at the same time points; (E), (F): the interpolated cell density from (C) and (D). Pa-
rameters used include λ0 = 1 s−1, b = 5 s−1, ta = 2 s, s = 20 µm/s, kd = 40, Ds = 8×10−4mm2/s,
µ = 1/3 × 10−2 s−1, γ = 1/6 × 10−1/n0 s−1, n0 = 400.

while the flagella rotate counterclockwise when observed from behind. Therefore,
when a cell swims parallel to a surface a larger viscous force is exerted on the bottom
of the cell (closer to the surface) than that on the top of the cell, and thus net forces
arise on both the cell body and the flagella, and these net forces induce the bias in
the motion.

In the patterns formed in P. mirabilis colonies in [38], cells swim in a thin fluid-
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like slime layer on top of the hard surface, and therefore the runs are biased. By
incorporating a constant swimming bias to each cell’s right, a two dimensional cell-
based model leads to prediction of the chirality of spiral stream formation in P.
mirabilis colonies [38]. In this section, we derive a corresponding macroscopic chemo-
taxis equation from the cell-based model with the swimming bias. We also incorporate
persistence in the motion and thus assume the form of the turning kernel given by
(3.34). The resulting equation enables us to see the interplay of chemotaxis and the
swimming bias.

Let ω0 be the constant angular velocity during a run. Then the acceleration has
the form a = ω0v × n, where n is the normal vector of the surface pointing to the
fluid side, i.e., a = (ω0v2,−ω0v1). Let p(x,v, z2, t) be the cell density function. After
nondimensionalization, the transport equation reads,

ǫ2
∂p

∂t
+ ǫ

∂

∂x1
(v1p) + ǫ

∂

∂x2
(v2p) + ω0

∂

∂v1
(v2p)− ω0

∂

∂v2
(v1p)

+
∂

∂z2

(

−z2
ta
−G′(S)(ǫv1

∂S

∂x1
+ ǫv2

∂S

∂x2
+ ǫ2

∂S

∂t
)p

)

= (λ0 + a1z2 + a2z
2
2 + · · · )(−p+

∫

V

T (v,v′)p(v′) dv′).

By multiplying 1, zj2/j, j ≥ 1, and integrating with respect to z2, we get a system of
equations for the z2-moments M(t,x,v), where M is defined as in (3.13),

ǫ2
∂

∂t
ΛM + ǫv1

∂

∂x1
ΛM + ǫv2

∂

∂x2
ΛM + ω0v2

∂

∂v1
ΛM− ω0v1

∂

∂v2
ΛM(5.2)

= ǫ2BM + ǫCM + DM.

If we apply the perturbation method directly to equation (5.2), there is no easy
way to derive an approximating equation of the cell density, since M0

0 is no longer
independent of v, and thus there is no simple relation between the cell density n
and M0

0 . Instead, we choose to proceed by multiplying (5.2) by 1, v1 and v2, and
integrating with respect to v to get the complete moment equations. We define the
density moments

n(x, t) =

∫

M0 dv, nj(x, t) =

∫

Mj dv, j = 1, 2, · · · , n = (n, n1, n2, · · · )t,

and the velocity flux moments

Jj,k(x, t) =

∫

vkMj dv, j = 0, 1, 2, · · · , Jk = (J0,k, J1,k, J2,k, · · · )t, k = 1, 2,

Jj,kl(x, t) =

∫

vkvlMj dv, j = 0, 1, 2, · · · , Jkl = (J0,kl, J1,kl, J2,kl, · · · )t, k, l = 1, 2.

The subscript j is the index of the order of the z2-moment, and subscripts k, l are
the indices of the velocity moment. We introduce the matrix operators

(5.3) Ck = −G′(S)
∂S

∂xk
diag{0, 1, 1, · · · }Jt, k = 1, 2

where J is the matrix operator defined in (3.18), but here acting on l∞(R). We notice
that componentwise C1 + C2 = C with C defined by (3.16).
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We also define matrix operators

(5.4) D1 = − diag

{

0,
1

ta
,

1

ta
,

1

ta
, · · ·

}

,

(5.5) D2 = −Λ(λ0I +

∞
∑

i=1

aiJi)(1 − ψd) + D1.

To obtain the complete moment equations, we have to calculate
∫

V
DMdv and

∫

V vkDMdv. Notice that, by property (ii) of A, for any f(v),

∫

V

Af dv =

∫

V

(∫

−I + T (v,v′) dv

)

f(v′) dv′ = 0,

therefore
∫

V
DMdv = D1n. Assuming the turning kernel (3.34) and considering that

∫

V

vAf dv =

∫

V

(∫

V

−vf(v) + vT (v,v′) dv

)

f(v′) dv′ = −(1− ψd)
∫

vf(v) dv,

we obtain
∫

V

vkDM dv =

∫

V

D2v
′
kM(v′) dv′ = D2Jk, k = 1, 2.

Therefore the complete moment equations are

ǫ2
∂

∂t
Λn + ǫ

∂

∂x1
ΛJ1 + ǫ

∂

∂x2
ΛJ,2 = ǫ2Bn + ǫC1J1 + ǫC2J2 + D1n,(5.6)

(5.7)

ǫ2
∂

∂t
ΛJ1 + ǫ

∂

∂x1
ΛJ11 + ǫ

∂

∂x2
ΛJ12 − ω0ΛJ2 = ǫ2BJ1 + ǫC1J11 + ǫC2J12 + D2J1,

(5.8)

ǫ2
∂

∂t
ΛJ2 + ǫ

∂

∂x1
ΛJ12 + ǫ

∂

∂x2
ΛJ22 + ω0ΛJ1 = ǫ2BJ2 + ǫC1J12 + ǫC2J22 + D2J2.

Here B is defined by (3.15). To close the moment equations, we follow [13] and assume
the second velocity moments are isotropic, which is exact in 1-D:

(5.9) J0,kl =
s2

2
nδkl, Jj,kl =

s2

2
njδkl, k, l = 1, 2.

Then the moment equations reduce to

ǫ2
∂

∂t
Λn + ǫ

∂

∂x1
ΛJ1 + ǫ

∂

∂x2
ΛJ2 = ǫ2Bn + ǫC1J1 + ǫC2J2 + D1n,(5.10)

ǫ2
∂

∂t
ΛJ1 + ǫ

∂

∂x1
(
s2

2
Λn)− ω0ΛJ2 = ǫ2BJ1 + ǫC1(

s2

2
n) + D2J1,(5.11)

ǫ2
∂

∂t
ΛJ2 + ǫ

∂

∂x2
(
s2

2
Λn) + ω0ΛJ1 = ǫ2BJ2 + ǫC2(

s2

2
n) + D2J2.(5.12)

Assuming the regular perturbation expansions, with superscript indicating the order
of expansion,

n = n0 + ǫn1 + ǫ2n2 + · · · , Jk = J0
k + ǫJ1

k + ǫ2J2
k + · · · , k = 1, 2,
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substituting into the moment equations (5.10-5.12), and comparing terms of equal
orders of ǫ, we obtain,
O(ǫ0):

D1n
0 = 0,(5.13)

D2J
0
1 = −ω0ΛJ0

2,(5.14)

D2J
0
2 = ω0ΛJ0

1,(5.15)

O(ǫ1):

∂

∂x1
ΛJ0

1 +
∂

∂x2
ΛJ0

2 = C1J
0
1 + C2J

0
2 + D1n

1,(5.16)

s2

2

∂

∂x1
Λn0 − ω0ΛJ1

2 =
s2

2
C1n

0 + D2J
1
1,(5.17)

s2

2

∂

∂x2
Λn0 + ω0ΛJ1

1 =
s2

2
C2n

0 + D2J
1
2,(5.18)

O(ǫ2):

∂

∂t
Λn0 +

∂

∂x1
ΛJ1

1 +
∂

∂x2
ΛJ1

2 = B1n
0 + C1J

1
1 + C2J

1
2 + D1n

2.(5.19)

From equation (5.13) we get n0
j = 0, ∀j ≥ 1, or n0 = (n0, 0, 0, · · · )t. From

equation (5.14, 5.15), we see that (Λ−1D2)
2J0

1 = −ω2
0J

0
1, (Λ−1D2)

2J0
2 = −ω2

0J
0
2.

Since all the eigenvalues of (Λ−1D2)
2 are positive, if follows that J0

1 = J0
2 = 0.

Therefore equation (5.16) reduces to D1n
1 = 0, which means that n1

j = 0, j ≥ 1,

or n1 = (n1, 0, 0, · · · )t. Applying a similar argument to the 3rd and higher components
of the equations (5.17, 5.18) gives J1

j,1 = J1
j,2 = 0, ∀j ≥ 2. Thus the first two

components of (5.17, 5.18) become

s2

2

∂

∂x1
n0 − ω0J

1
0,2 = −λ0(1− ψd)J1

0,1 − a1(1− ψd)J1
1,1,(5.20)

−ω0J
1
1,2 = −s

2

2
G′(S)

∂S

∂x1
n0 − [λ0(1− ψd) +

1

ta
]J1

1,1,(5.21)

s2

2

∂

∂x2
n0 + ω0J

1
0,1 = −λ0(1− ψd)J1

0,2 − a1(1− ψd)J1
1,2,(5.22)

ω0J
1
1,1 = −s

2

2
G′(S)

∂S

∂x2
n0 − [λ0(1− ψd) +

1

ta
]J1

1,2.(5.23)

From equations (5.21, 5.23), we find that

(5.24)
(

J1
1,1

J1
1,2

)

= − s2G′(S)n0

2(λ0(1 − ψd) + 1
ta

)2 + 2ω2
0

[

λ0(1− ψd) + 1
ta

ω0

−ω0 λ0(1− ψd) + 1
ta

]

∇S.

From equations (5.20, 5.22), we obtain
„

J1
0,1

J1
0,2

«

= −
1

λ2
0(1 − ψd)2 + ω2

0

»

λ0(1 − ψd) ω0

−ω0 λ0(1 − ψd)

–

·(5.25)

„

s2

2
∇n0 + a1(1 − ψd)

„

J1
1,1

J1
1,2

««

.
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The first component of equation (5.19) is

(5.26)
∂

∂t
n0 +

∂

∂x1
J1

0,1 +
∂

∂x2
J1

0,2 = 0.

Substituting J1
0,1, J

1
0,2 by equations (5.25) gives the final chemotaxis equation,

(5.27)
∂

∂t
n0 = Dn△n0 −∇ ·

[

G′(S)n0
(

χ0∇S + β0(∇S)⊥
)]

,

where

Dn =
s2

2λ0(1 − ψd) +
2ω2

0

λ0(1−ψd)

,(5.28)

χ0 =
a1s

2(1− ψd)[λ0(1− ψd)(λ0(1− ψd) + 1
ta

)− ω2
0 ]

2((λ0(1− ψd) + 1
ta

)2 + ω2
0)(λ

2
0(1− ψd)2 + ω2

0)
,(5.29)

β0 =
ω0a1s

2(1 − ψd)(2λ0(1− ψd) + 1
ta

)

2((λ0(1− ψd) + 1
ta

)2 + ω2
0)(λ

2
0(1 − ψd)2 + ω2

0)
,(5.30)

and

(5.31) ∇S =

(

∂S
∂x1

∂S
∂x2

)

, (∇S)⊥ =

[

0 1
−1 0

]

∇S.

From the forms of Dn, χ0 and β0, we notice that when ω0 = 0, (5.27) reduces
to the chemotaxis equation we derived in section 3.5 in a two-dimensional space.
(5.27) can also be derived by using the assumptions in section 3.6. The macroscopic
chemotactic velocity in (5.27) is given by

(5.32) uS = G′(S)(χ0∇S + β0(∇S)⊥)

The magnitude of uS is

||uS || = ||G′(S)∇S||
√

χ2
0 + β2

0

= ||G′(S)∇S|| · a1s
2(1 − ψd)

2
√

((λ0(1 − ψd) + 1
ta

)2 + ω2
0)(λ

2
0(1− ψd)2 + ω2

0)

= ||G′(S)∇S|| · a1s
2ta

2λ0(1 + (1− ψd)λ0ta)
· 1
√

(1 +
ω2

0

(λ0(1−ψd)+ 1

ta
)2

)(1 +
ω2

0

λ2

0
(1−ψd)2

)

.

(5.33)

The angle between uS and ∇S is

(5.34) θuS ,∇S = tan−1
ω0(2λ0(1 − ψd) + 1

ta
)

λ0(1− ψd)(λ0(1 − ψd) + 1
ta

)− ω2
0

,

which is surprisingly independent of ∇S and a1.
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5.1. Numerical comparison of the macroscopic chemotaxis velocity.
The analytical prediction of the macroscopic chemotaxis velocity (5.32) is shown to
agree very well with statistics from the cell-based model at different signal gradients
and bias levels ω0 in Figure 5.1. Even for the large signal gradient ||∇G(S)|| = 15
(i.e., G′(S)∇S · v = 30 ǫ s−1), the difference is still within 10%.

The macroscopic chemotaxis velocity from the cell-based model is computed in
the following way. For a given combination of ∇G(S) and ω0, we used G(S) = S,
and a time-independent signal S = Rx2 in order to guarantee ∇G(S) to be constant
R in the whole path of a cell. Other parameters used remain the same as in previous
examples. For each parameter combination, 6×103 cells are put at the same location
with random initial velocity and zero initial y2. Positions of each cell are recorded
every 1 min for a 30 min period. The position vector xi at time ti = imin is computed
by averaging all the cell positions. Then the macroscopic velocity vector is computed
by applying the least square method to the averaged position, i.e., by finding v that
minimizes

∑

i(x
i
j − vti), where j = 1, 2 is the index for the space dimension.
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Fig. 5.1. Comparison of the macroscopic velocity from equation (5.32, 5.34) with statistics
from the cell-based model. In the first three plots, we compare (u

S
, v

S
) = (u

S
· ∇S, u

S
· (∇S)⊥)

as a function of ∇G(S) at different ω0 = 0.02π, 0.04π, 0.06π. Smooth lines are computed from
the equation (5.32), dots are computed from the cell-based model; top lines and dots are for u

S
,

bottom ones are for v
S
. The fourth plot is a comparison of the predicted angle θuS ,∇S by equation

(5.34) with simulation at different parameters. All other parameters are the same as the previous
examples.

6. Chemotaxis induced by multiple signals. Single chemical induced chemo-
tactic movement has been studied experimentally for various types of cells and mod-
eled mathematically both microscopically and macroscopically [21, 37, 18]. However,
many cell types are known to have multiple receptor types and thus can respond to
many different chemicals. For instance, E. coli has five major types of receptors for
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various nutrients, oxygen, etc. [37]. How these signals are integrated inside the cell is
not generally known and may depend on the cell type. Macroscopic phenomenological
chemotaxis equations have been proposed in [28]. In this section, we derive chemotaxis
equations from a modified cell-based model by allowing multiple chemosignals.

In the case of E. coli, the signalling pathways for different chemicals share the
same downstream phosphor-relaying network (including reactions of CheA, CheW,
CheY, CheB, CheR, CheZ etc.), the only difference is the upstream transmembrane
receptor. In the cell-based model in section 2, G(S) describes detection of the signal,
and y describes the state of proteins within the cell. When there are multiple signals,
G is generally a function of all possible signals, G = G(S1, S2, · · · , Sm). By performing
the standard procedure in section 3, a chemotaxis equation for multiple signals can
be derived that has the following form

(6.1)
∂

∂t
n = ∇ ·

[

Dn∇n− χ0n

(

∂G

∂S1
∇S1 + · · ·+ ∂G

∂Sm
∇Sm

)]

,

where

(6.2) χ0 =
a1s

2ta
Nλ0(1 + (1− ψd)taλ0)(1 + (1 − ψd)teλ0)

.

The functional form of G depends on the binding of the signal molecules to the
receptors. Consider for example, the case of two attractants, and assume that all the
binding is non-cooperative, and the two attractants S1, S2 competitively bind to the
same receptor R as follows

S1 +R
k+
1−→←−
k−1

S1R,(6.3)

S2 +R
k+
2−→←−
k−2

S2R.(6.4)

Then according to the law of mass action, we have

dS1

dt
= −k+

1 S1R+ k−1 S1R,

dS1R

dt
= +k+

1 S1R − k−1 S1R,

dS2

dt
= −k+

2 S2R+ k−2 S2R,

dS2R

dt
= +k+

2 S2R − k−2 S2R,

dR

dt
= −k+

1 S1R+ k−1 S1R− k+
2 S2R+ k−2 S2R.

If we further assume that the total number of receptors R0 is conserved, then

R+ S1R+ S2R = R0

Since the time scale of ligand binding is 10−2s, which is small compared to the exci-
tation and adaptation time, we may approximate the number of bound receptors by
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the quasi-steady state value,

S1R =
R0K2S1

K1K2 +K2S1 +K1S2
,

S1R =
R0K1S2

K1K2 +K2S1 +K1S2
,

and G can be written as

G = g(S1R+ S2R) = g(
R0(K2S1 +K1S2)

K1K2 +K2S1 +K1S2
).

If the two signals bind to different receptors, then a similar argument leads to the
form,

G = g(S1R1 + S2R2) = g(
R10S1

K1 + S1
+

R20S1

K2 + S2
).

In E. coli, the functioning units of chemoreceptors are observed to be trimers of dimers,
and different types of receptors can form hetero-trimers in vivo; thus the form of the
function of G actually can be even more complicated.

7. Discussion. In this paper, we developed a new method for deriving macro-
scopic equations of cell density from cell-level descriptions of chemotactic movement
involved in bacterial pattern formation. The method involves solving the infinite y-
moment equations systematically by applying regular perturbation methods. It allows
us to treat more general signal fields and cell-level descriptions than those used in the
work [14, 13]. These generalizations include, allowing (a) time-dependent signal func-
tions, (b) nonlinear turning frequency λ(y1) and (c) external force fields operating on
cells. We also note that although we adopted the cartoon description of excitation
and adaptation in their paper, the method proposed can manage autonomous ODE
models with polynomial right-hand-sides, as long as the time scales of intracellular
reactions can be separated from the diffusion scale of cells. Another advantage of
the method is that it doesn’t require unnecessary quasi-steady-state assumptions on
the internal dynamics for closing the moments. The work is focused on studying the
“run-and-tumble” chemotactic movement because it is the most understood biological
system. However, the derivation method can also be applied to other systems without
minor change. The limiting macroscopic equation maybe different depending on the
details of the specific internal dynamics.

In the derivation of equation 3.33, we assumed that the signal detected by the
cell in one “run” doesn’t change significantly. This assumption is satisfied in most
cases, but violation may appear inside self-organized aggregates. In this case, using a
diffusion time and space scale may not be proper, and therefore a chemotaxis equation
is not guaranteed to be a good approximation. However, in the numerical examples,
we showed that the chemotaxis equation still captures the main dynamics of the cell-
based model, although it seems to over-predict the amplitude and sharpness of the
aggregates.

In the cell-based model, we assumed that cell density is low enough so that there is
no mechanical interaction between cells. However, in some cases, the cell density can
be high, and direct interaction between cells through the fluid, or more complicatedly,
through their flagella can not be neglected. In these cases, we don’t know so far how
to incorporate these effects properly in the cell-based model, and if the microscopic
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x
1

x
2

Fig. A.1. Left: a schematic figure of the domains. The reaction-diffusion equations are solved
on the grid, while the cells can move around the whole domain. Right: the area fractions used in
defining the interpolators (A.1, A.2).

picture can be represented by macroscopic equations of cell density only. Phenomeno-
logical approaches have been proposed to incorporate the interaction as volume filling
effects (need reference). However, how to justify their macroscopic equations in these
cases need to be understood.

Appendix A. Numerical algorithm of the cell-based model. In the
implementation of the cell-based model, cell motion is simulated by a standard Monte
Carlo method in the whole domain, while the equations for extracellular chemicals
are solved by an alternating direction method (Crank-Nicolson in 1-D) on a set of
rectangular grid points (Figure A.1, left). In this appendix, we present the numerical
algorithm in a two-dimensional domain with only one chemical – the attractant –
involved (as in section 4.3). Each cell is described by its position (xi1, x

i
2), internal

variables (yi1, y
i
2), direction of movement θi and age T i (the superscript i is the index

of the cell). Concentration of the attractant is described by a discrete function defined
on the grid for the finite difference method (Figure A.1, left). We denote the time
step by k, the space steps by h1 and h2. Since two components of the model live
in different spaces, two interpolating operators are needed in the algorithm. Tgc is
used to evaluate the attractant concentration that a cell senses. For a cell at (xi1, x

i
2),

inside the square with vertex indices (n− 1,m− 1), (n,m− 1), (n− 1,m) and (n,m),
Tgc(xi1, xi2) is defined by the bi-linear function:

(A.1) Tgc(xi1, xi2) =
A4

A
Sn−1,m−1 +

A3

A
Sn,m−1 +

A2

A
Sn−1,m +

A1

A
Sn,m

where A = h1h2 and Aj , j = 1, 2, 3, 4 are the area fractions (Figure A.1, right).
On the other hand, the attractant secreted by cells is interpolated as increments at
the grid points by Tcg. Suppose during one time step k, a cell staying at (xi1, x

i
2)

secretes ∆ amount of attractant, we then interpolate the increment of the attractant
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concentration at the neighboring grid points as follows:

(A.2) Tcg(xi; p, q) =































A4∆
A2 , (p, q) = (n− 1,m− 1);
A3∆
A2 , (p, q) = (n,m− 1);
A2∆
A2 , (p, q) = (n− 1,m);
A1∆
A2 , (p, q) = (n,m);

0, otherwise.

We consider here a periodic boundary condition. The detailed computing proce-
dure is summarized as follows.

S1 Initialization.
(a) Initialize the chemical fields.
(b) Initialize the list of swimmer cells. Each cell is put in the domain with

random position, moving direction and age. yi is set to be 0.
S2 For time step l (= 1 initially), update the data of each cell.

(a) Determine the direction of movement θi by equation (3.34).
i) Generate a random number r ∈ U [0, 1];

ii) If r < 1− e−λik, update θi with a new random direction.
(b) (xi1, x

i
2)l ←− (xi1, x

i
2)l−1 +(sk cos θi, sk sin θi). Apply periodic boundary

condition to make sure (xi1, x
i
2) inside the domain,

(c) (T i)l ←− (T i)l−1 + k. If (T i)l ≥ 2 hours, then divide the cell into
two daughter cells. This step is only considered when cell growth is
considered.

(d) Update (yi1, y
i
2) by equations (4.1, 4.2).

i) Determine the attractant concentration before the cell moves (Si)l−1

and after the cell moves (Si)l by using the interpolating operator Tgc.
ii) Estimate the attractant level during the movement by Si(t) = (Si)l−1

t−lk
k +

(Si)l
lk+k−t

k and integrate equation (4.1) to get (yi2)l.
iii) (yi1)l ←− G(S)− (yi2)l.

S3 Compute the source term of the attractant f l−
1

2 due to the secretion by the
cells using the interpolator Tcg

f
l− 1

2

p,q =
∑

i

(Tcg((xi)l− 1

2

; p, q)),

where ∆ = γk.
S4 Apply the alternating direction implicit method to the equation of the at-

tractant (4.5):

S
l−1/2
p,q − Sl−1

p,q

k/2
= Ds

S
l−1/2

p+1,q − 2S
l−1/2
p,q + S

l−1/2

p−1,q

h2
x

+Ds

Sl−1

p,q+1 − 2Sl−1
p,q + Sl−1

p,q−1

h2
x

− γ
Sl−1

p,q + S
l−1/2
p,q

2
+ f

l− 1

2
p,q ,

Sl
p,q − S

l−1/2
p,q

k/2
= Ds

S
l−1/2

p+1,q − 2S
l−1/2
p,q + S

l−1/2

p−1,q

h2
x

+Ds
Sl

p,q+1 − 2Sl
p,q + Sl

p,q−1

h2
x

− γ
S

l−1/2
p,q + Sl

p,q

2
+ f

l− 1

2
p,q .

For the boundary grid points, use the periodic scheme.
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S5 l ←− l + 1. If lk ≤ T0, repeat S2-S4; otherwise, return.

Appendix B. linear analysis on the stability of the uniform steady state
of the continuum model.

Linear analysis of the classical chemotaxis equation system has been done in the
literature (need reference). For readers’ convenience, we include it here. Consider the
system

∂n

∂t
= ∇ · (Dn∇n− χ(S)n∇S)(B.1)

∂S

∂t
= Ds△S + γn− µS(B.2)

The uniform steady state is (n, S) = (n0,
γ
µn0), where n0 is the averaged cell density.

Without loss of generality, we assume a one-dimensional domain [0, L] with periodic
boundary conditions, as in the example 4.1 and 4.2. The analysis can be extended
without difficulty in the two dimensional case of example 4.3.

Let u = n − n0, v = S − S0 with S0 = γ
µn0. By linearizing around the uniform

steady state, we get the system

∂u

∂t
= Dn△u− χ(S0)n0△v(B.3)

∂v

∂t
= Ds△v + γu− µv(B.4)

Assume

u =
∑

q 6=0

ϕq(t)e
iωqx, v =

∑

q 6=0

ψq(t)e
iωqx

with ωq = 2qπ/L. The system can thus be reduced to

(B.5)

(

ϕq
ψq

)

t

= Aq

(

ϕq
ψq

)

with Aq =

( −Dnω
2
q χ(S0)n0ω

2
q

γ −Dsω
2
q − µ

)

for any q ∈ Z, q 6= 0. The uniform steady state of the nonlinear system is unstable if
the linearized system (B.3 - B.4) has exponentially growing non-homogeneous modes,
which means that there exists a wave number q such that Aq has a positive eigenvalue.

Simple calculation leads to
• Tr(Aq) = −(Dn +Ds)ω

2
q − µ < 0

• Det(Aq) = ω2
q(DnDsω

2
q + µDn − γχ(S0)n0)

• Tr(Aq)2 − 4Det(Aq) = [(Ds −Dn)ω
2
q + µ]2 + 4γω2

qχ(S0)n0 > 0.
Therefore Aq is simple with eigenvalues

(B.6) λ±q =
Tr(Aq)±

√

Tr(Aq)2 − 4Det(Aq)

2

λ−q is always negative and approaches −∞ as n,m → ∞, λ+
q can be positive when

Det(Aq) = λ−q λ
+
q < 0. Thus, the instability condition of the uniform steady state is,

∃q 6= 0, s.t. Det(Aq) < 0⇔ ω2
q(DnDsω

2
q + µDn − γχ(S0n0) < 0
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which is equivalent to

(B.7) 4π2Ds + L2(µ− γχ(γ/µn0)n0

Dn
) < 0

The growth rate of an unstable mode in the linear system is given by λ+
q .

From the instability analysis, we can also see that if the qth mode is unstable, the
lower modes are always unstable. This leads to multiple nonuniform steady states of
the nonlinear system (B.1, B.2), but only the one with a single high peak is stable.
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